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Diffusion in tilted periodic potentials: Enhancement, universality, and scaling
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An exact analytical expression for the effective diffusion coefficient of an overdamped Brownian particle in
a tilted periodic potential is derived for arbitrary potentials and arbitrary strengths of the thermal noise. Near
the critical tilt ~threshold of deterministic running solutions! a scaling behavior for weak thermal noise is
revealed and various universality classes are identified. In comparison with the bare ~potential-free! thermal
diffusion, the effective diffusion coefficient in a critically tilted periodic potential may be, in principle, arbi-
trarily enhanced. For a realistic experimental setup, an enhancement by 14 orders of magnitude is predicted so
that thermal diffusion should be observable on a macroscopic scale at room temperature.
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I. INTRODUCTION

Within the realm of thermal equilibrium, the overdamped
force-free thermal diffusion of a single Brownian particle as
considered, e.g., by Einstein in Ref. @1#, is always reduced
when an additional periodic potential is switched on @2#, and
it is therefore tempting to conjecture a qualitatively similar
behavior at least for time-independent nonequilibrium sys-
tems. A first main conclusion of our present explorations is
that the opposite is the case: The effective diffusion coeffi-
cient of a Brownian particle in a periodic potential that is
driven away from equilibrium by a static ‘‘tilting force’’ can
become arbitrarily much larger than in the presence of ther-
mal noise alone. A striking consequence of our finding is the
possibility to observe thermal diffusion of macroscopic par-
ticles on macroscopic time and length scales at room-
temperature in appropriate tilted periodic structures.

A second main result of our present paper are scaling
relations for the diffusion coefficient that become asymptoti-
cally exact in the limit of weak thermal fluctuations and
small deviations from the critical tilt ~i.e., the threshold at
which deterministically running solutions set in!. Further-
more, the asymptotic behavior of the diffusion leads to a
classification into different universality classes with scaling
exponent and scaling function depending on the characteris-
tics of the potential at the critical tilt. These concepts—
scaling and universality—are a recurrent theme in many
branches of statistical physics, such as, e.g., critical phenom-
ena, hydrodynamics, or low-dimensional nonlinear dynamics
@3#. Most closely related to our present findings are the scal-
ing and universality phenomena as observed in the context of
so-called deterministic diffusion @4–8#, especially in the
presence of noise @9–11#, and of noisy systems at a saddle-
node bifurcation ~e.g., relaxation oscillations! @12,13#.

At the basis of all our above mentioned findings is an
exact analytical expression for the diffusion coefficient, ap-
plicable to arbitrary periodic potentials, arbitrary tilts, and
arbitrary strengths of the thermal noise @see Eq. ~22! below#.

Besides describing a real Brownian particle, thermal dif-
fusion in a tilted periodic potential, as we will consider it
1063-651X/2002/65~3!/031104~16!/$20.00 65 0311
here, is of relevance in numerous other contexts ~see also
Chap. 11 in Ref. @14#!, such as Josephson junctions @15#, the
motion of fluxons in superconductors @16#, rotating dipoles
in external fields @17#, the rotation of molecules in solids
@18#, superionic conductors @19#, charge density waves @20#,
synchronization phenomena @21# in electrical circuits as de-
scribed by the Adler equation or in phase locked loops @22#,
mode locking in laser gyroscopes @23#, plasma accelerators
@24#, diffusion of atoms and molecules on crystal surfaces
@25#, particle separation by electrophoresis @26#, biophysical
processes such as neural activity @27# and intracellular trans-
port @28#, and possibly also for the explanation of the matter-
antimatter asymmetry of the universe @29#. Also worth noting
is the fact that the Brownian motion in a ‘‘traveling periodic
potential’’ ~pump! of the form V0(x2vt) can be readily
mapped onto a static tilted periodic potential @30#. Moreover,
our results near criticality ~marginal stability! are universal
for general dynamical systems close to a saddle-node bifur-
cation @12,13#, such as for instance relaxation oscillations.

With the present work we continue and explain in more
detail our brief account in Ref. @31#. The organization of the
paper is as follows: In Sec. II we introduce the model and the
basic quantities of interest, namely, the average particle cur-
rent and the effective diffusion coefficient. In Sec. III we
derive as our first main result the relation ~15! between the
diffusion coefficient and the first two moments of the first
passage time distribution. As a consequence, the closed ana-
lytical expression ~22! can be inferred. Section IV is devoted
to the exploration of universality and scaling properties of
the diffusion coefficient near the threshold of deterministi-
cally running solutions ~critically tilted periodic potentials!,
predicting a giant enhancement of the free thermal diffusion
under suitable conditions. The latter result is exemplified in
Sec. V for the special case of a mechanical Brownian particle
that moves in a critically tilted geometrical profile. The sum-
mary and discussion of our findings is presented in Sec. VI.

II. MODEL

We consider the following model for the overdamped
Brownian motion of a particle with coordinate x(t):
©2002 The American Physical Society04-1
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h ẋ~ t !52V8„x~ t !…1j~ t !, ~1!

V~x !ªV0~x !2xF , ~2!

where h is the viscous friction coefficient ~static mobility! of
the particle and where the total potential V(x) consists of a
periodic part V0(x) with period L,

V0~x1L !5V0~x !, ~3!

and a homogeneous, static ‘‘tilting force’’ F. Further, thermal
fluctuations are modeled as usual @32# by Gaussian white
noise with zero average and correlation

^j~ t !j~s !&52hkTd~ t2s !, ~4!

where T is the temperature, k is the Boltzmann constant, and
^¯& indicates the ~nonequilibrium! average over a statistical
ensemble of realizations in Eq. ~1!. Finally, as compared to a
full fledged Newtonian equation of motion, an inertia term
mẍ(t) is missing on the left-hand side of Eq. ~1!. In other
words, this inertia term is assumed to have a negligibly small
effect in comparison with the other forces appearing in Eq.
~1!, hence the name overdamped motion @14,32#.

A first basic quantity of interest is the average particle
current in the long-time limit ~i.e., after transients due to
initial conditions have died out!

^ ẋ&ª lim
t→`

^x~ t !&
t . ~5!

The analytical solution for this current goes back to Stra-
tonovich @33# and has subsequently been rederived many
times @see, e.g., Chap. 11 in Ref. @14#; the explicit formula
will be given in Eq. ~18! below#. The fact that such an exact
closed solution can be given without any further restrictions
in the model ~1! is rather exceptional and has given this
model the status of a ‘‘hydrogen atom’’ in the context of
Brownian motion theory.

In our present study, the quantity of central interest will be
the effective diffusion coefficient

Dª lim
t→`

^x2~ t !&2^x~ t !&2

2t . ~6!

Exact analytical results are known in two special cases. First,
in the absence of the periodic potential V0(x) in Eq. ~1! a
straightforward calculation yields the so-called Einstein rela-
tion

D5kT/h5..D0 if V08~x ![0 ~7!

for arbitrary values of the static tilt F @34#. Second, in the
absence of a tilt F, the following analytic prediction for the
diffusion coefficient is due to @2,35#

D5
D0

E
0

L dx
L eV0~x !/kTE

0

L dy
L e2V0~y !/kT

if F50. ~8!
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It has been furthermore demonstrated in Ref. @2# that D
<D0 , basically by applying the Cauchy-Schwartz inequality
to the denominator in Eq. ~8!.

The evaluation of the diffusion coefficient ~6! in the pres-
ence of both an arbitrary tilt F and an arbitrary periodic
potential V0(x) is not obvious. One of the main objectives of
the present work is the derivation of such a general, exact
diffusion formula, analogous to Stratonovich’s result for the
current.

III. EVALUATION OF THE DIFFUSION COEFFICIENT

In order to evaluate the diffusion coefficient ~6! we will
take advantage of another quantity that is analytically known
for the model ~1!, namely, the moments of the first passage
time. To define these quantities, we consider the stochastic
process ~1! with an arbitrary but fixed seed x(0)5x0 and we
denote by t(x0→b) the time until an arbitrary but fixed point
b is reached for the first time. Then the nth moment of the
first passage time is the statistical average

Tn~x0→b !ª^tn~x0→b !&. ~9!

In what follows, we will temporarily restrict ourselves to
the case F.0 and b.x0 , since otherwise the averages in
Eq. ~9! may diverge. Then, for the one-dimensional dynam-
ics ~1!, these moments of the first passage time are given by
the well-known closed analytical recursion ~see, e.g., Sec. 7
in Ref. @32# and further references therein!

Tn~x0→b !5
n
D0

E
x0

b
dx eV~x !/kTE

2`

x
dy e2V~y !/kT

3Tn21~y→b ! ~10!

for n51,2 . . . and with T0(y→b)[1. Note that the conver-
gence of the integrals in Eq. ~10! is guaranteed by our as-
sumption that F.0 and b.x0 . In principle, it is quite plau-
sible that all properties of the stochastic process ~1! should
be expressible in terms of the moments ~10! and, in this
sense, available in closed analytical form. In practice, the
explicit connection between a given quantity of interest and
the moments is, however, not at all obvious.

We now come to the first main point of our paper, namely,
the derivation of an exact expression for the diffusion coef-
ficient D in terms of the mean first passage time T1(x0
→b) and the so-called first passage time dispersion

DT2~x0→b !ª^t2~x0→b !&2^t~x0→b !&2

5T2~x0→b !2@T1~x0→b !#2. ~11!

To this end, we denote by a an arbitrary point between x0
and b. Then the time t(x0→b) that the stochastic process in
Eq. ~1! needs to travel from x0 to b can be decomposed into
the time to travel from x0 to a, plus the time to travel from a
to b. For a white noise driven process ~1!, the latter two
times are statistically independent of each other @36#. Fur-
ther, since the process ~1! is homogeneous in time, all statis-
tical properties of t(x0→b) are exactly the same as those of
t(x0→a)1t(a→b) with t(x0→a) and t(a→b) being sta-
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tistically independent of each other. It then follows readily
from the definitions in Eqs. ~9! and ~11! that the mean first
passage time T1(x0→b) and the dispersion DT2(x0→b) are
additive quantities, i.e.,

T1~x0→b !5T1~x0→a !1T1~a→b !, ~12!

DT2~x0→b !5DT2~x0→a !1DT2~a→b !. ~13!

As a second consequence it follows that t(x0→x01lL) is
statistically equivalent to a sum of l independent, random
variables t(x0→x01L),. . . ,t„x01(l21)L→x01lL…, and
due to the periodicity ~3!, they are identically distributed.
Invoking the central limit theorem, the distribution of the
first passage times t(x0→x01lL) thus approaches ~for large
l! a Gaussian distribution with mean value lT1(x0→x01L)
and variance lDT2(x0→x01L).

Next, we introduce a discrete set of ‘‘coarse-grained
states’’ along the x axis $xmªx01mlL%m52`

` with mutual
distance lL, where l is a large but fixed integer @37#. The
process x(t) is said to be in a certain ‘‘state’’ from the instant
of time it hits the associated point xm until the moment it hits
one of the adjacent neighboring points xm61 . It follows that
both the current ^ ẋ& and the diffusion coefficient D are iden-
tical for the original process x(t) and its coarse-grained
counterpart due to the long-time limits in the respective defi-
nitions ~5! and ~6!. Next, we note that ‘‘backward transi-
tions’’ xm°xm21 require climbing up an ‘‘energy ramp’’ of
height lLF by thermal activation and are thus suppressed by
a Boltzmann factor ~barometric formula! exp$2lLF/kT% com-
pared to xm°xm11 , i.e., ‘‘sliding down the ramp.’’ For suf-
ficiently large l we, therefore, can safely neglect transitions
xm°xm21 . The remaining ‘‘forward transitions’’ between
neighboring ‘‘states’’ xm and xm11 are identically distributed
random events @38# with a probability distribution that is
identical to the first passage time distribution for the original
process x(t). In particular, the moments of the first passage
time Tn(xm→xm11) are thus identical for the original pro-
cess x(t) and its coarse-grained counterpart. On the other
hand, we have seen above that for sufficiently large l, all
these moments and hence the entire coarse-grained process is
completely fixed by the mean first passage time T1(x0→x0
1L) and the dispersion DT2(x0→x01L). As our main con-
clusion we thus find that if two processes (1) yield the same
values of T1(x0→x01L) and DT2(x0→x01L) then ^ ẋ&
and D will also be the same in the two cases.

With the above construction at our disposal, we may con-
clude @31# that

^ ẋ&5
L

T1~x0→x01L !
, ~14!

D5
L2

2
DT2~x0→x01L !

@T1~x0→x01L !#3
. ~15!

The proof of these relations follows from the consideration
of the special case with a potential V0(x)[0 in Eq. ~1!,
implying ^ ẋ&5F/h and Eq. ~7!. The evaluation of T1(x0
→x01L) and DT2(x0→x01L) according to Eqs. ~10! and
03110
~11! is straightforward and one sees that the relations
~14!, ~15! are indeed fulfilled. But from our conclusion at the
end of the preceding paragraph, it now follows that Eqs. ~14!
and ~15! are also satisfied for a process ~1! with an arbitrary
periodic potential V0(x). We remark that here and in the
following, the reference point x0 is arbitrary.

By introducing Eqs. ~10! and ~11! into Eq. ~15! an ana-
lytical formula for D is recovered within our so far used
restriction that F.0 ~otherwise several terms in this formula
would diverge!. To remove this restriction we first rewrite
the y integral in Eq. ~10! with n51 as

E
2`

x
dy e2V~y !/kT5(

l50

` E
x2L

x
dy e2V~y2lL !/kT. ~16!

According to Eqs. ~2! and ~3! we have that V(y2lL)
5V(y)1lLF , so that a geometrical series arises in Eq. ~16!;
it can be summed to yield

E
2`

x
dy e2V~y !/kT5

E
x2L

x
dy e2V~y !/kT

12e2LF/kT . ~17!

Using Eq. ~14! with Eq. ~10! we thus recover Stratonovichi’s
formula for the particle current @33#,

^ ẋ&5
12e2LF/kT

E
x0

x01L dx
L I6~x !

, ~18!

where we have introduced

I1~x !ª
1
D0

eV~x !/kTE
x2L

x
dy e2V~y !/kT, ~19!

I2~x !ª
1
D0

e2V~x !/kTE
x

x1L
dy eV~y !/kT, ~20!

and where ‘‘I6’’ indicates that the index may be chosen to be
either ‘‘1’’ or ‘‘2’’. The equivalence of these indices in Eq.
~18! follows by interchanging in the denominator the order
of the two integrations in combination with some additional
steps ~see also Appendix A!. We remark that the well-
established formula ~18! can also be used, by reversing steps,
as a derivation of Eq. ~14!. For later use, we also note that

I6~x !ªE
0

L dz
D0

exp$6@V~x !2V~x7z !#/kT%. ~21!

By similar manipulations as used in the derivation of Eq.
~18! ~the details of which are given in Appendix A!, we
obtain for the diffusion coefficient ~15! a central result of this
paper, namely @31#,

D5D0

E
x0

x01L dx
L I6~x !I1~x !I2~x !

F E
x0

x01L dx
L I6~x !G 3 , ~22!
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with arbitrary reference points x0 and arbitrary indices in I6

both in the numerator and the denominator. So far, we have
restricted ourselves tacitly to F.0. It is not difficult to see
that our results above for both the current and the diffusion
coefficient remain valid also for F,0. Moreover, for both of
them, the limit F→0 does not give rise to any problems: In
Eq. ~18! one recovers the obvious result ^ ẋ&50 @28# and by
observing that in Eqs. ~19! and ~20! the y integral is x inde-
pendent one readily recovers Eq. ~8! from Eq. ~22!.

In other words, the above closed expressions for both the
current ~18! and the diffusion ~22! are exact analytical results
for arbitrary periodic potentials V0(x) and arbitrary forces F.
While the current formula has been known for more than 30
years, the corresponding compact expression for the diffu-
sion coefficient has, to the best of our knowledge, been de-
rived here for the first time ~see also the discussion in Sec.
VI!.

For V0(x)[0 one recovers from Eq. ~22! by means of a
straightforward calculation the Einstein relation ~7!. For non-
trivial potentials V0(x), the above general analytical expres-
sion is still rather complicated. One may evaluate it numeri-
cally for arbitrary potentials V0(x), and one may try to
simplify it analytically for some special limits. A particularly
interesting such limit will be considered in the next section.
We remark that an analytical discussion of other limits in Eq.
~22! is also possible, but will not be pursued further here ~see
also the remark below on the weak noise limit!.

As far as the numerical evaluation of our formula ~22! is
concerned, a representative example for the sine potential

V0~x !5U0 sin~2px/L !, ~23!

is depicted in Fig. 1. The purpose of this figure is threefold.
First, it confirms within the numerical accuracy of the simu-
lations that our analytical prediction ~22! is indeed exact.
Second, it contains a comparison with a formula for the dif-
fusion coefficient recently proposed by Constantini and
Marchesoni @39# of the form

D5kT
d
dF ^ ẋ&, ~24!

with ^ ẋ& given by Eq. ~18!. This prediction is expected to
capture the correct qualitative behavior of D under rather
general conditions and can be shown to become asymptoti-
cally exact in any of the three limits F→0,F→` ,
V0(x)/kT→0. As far as the quantitative behavior of D under
general conditions is concerned, our findings in Fig. 1 show
that the formula from Eq. ~24! is at most a rough
approximation—see also the discussion at the end of the next
section. Third, the most interesting feature in Fig. 1 is the
resonancelike behavior of the diffusion coefficient around
that value of the tilt F for which the potential in Eq. ~2!
ceases to exhibit local extrema, which apparently gets more
and more pronounced as the thermal noise strength kT and
thus the bare ~force-free! diffusion coefficient D05kT/h in
Eq. ~7! decreases. In the next section we will consider in
more analytical detail this special limit of weak noise in
combination with a tilt F close to its critical value.
03110
We finally remark that, for both numerical and analytical
purposes, the reformulation ~22! of the original analytical
result in Eqs. ~15! and ~10! simplifies matters a lot in the
weak noise limit, since only a very small ~and usually quite
evident! region of z values then contributes significantly to
the integrals in Eq. ~21!. The most involved case is the near-
critical regime treated in detail below. In any other case, the
weak noise limit can be handled rather straightforwardly by
standard steepest descent-type methods.

IV. UNIVERSALITY AND SCALING NEAR
THE CRITICAL TILT

We now turn to the case of a critically tilted periodic
potential, i.e., we choose F5Fc such that V(x) in Eq. ~2!
exhibits a strictly monotonic behavior with the exception of
exactly one inflection point within each period L. In other
words, the tilted potential just ceases to display any local
maxima and minima ~saddle-node bifurcation @13#!, corre-
sponding to the threshold beyond which deterministically
running solutions set in. When looking upon x as a phaselike
variable, we may also speak of relaxation oscillations in this
context.

Without loss of generality we assume that Fc.0 ~poten-
tial ‘‘tilted to the right’’! and that the inflection point is at
x50 ~modulo L!, i.e., V(x) is strictly monotonically de-
creasing, V8(x),0, unless x is a multiple of L. Next we
assume that for

F5Fc1e with Fc.0 and e small, ~25!

FIG. 1. Diffusion coefficient ~6! versus the tilt F for the over-
damped model ~1!–~4! with a sinusoidal periodic potential ~23!.
Using dimensionless units, the parameter values are h5U051, L
52p , kT5D050.1. Note that the critical tilt @onset of determinis-
tically running solutions in Eq. ~1!# occurs at F5Fc51. Solid line:
analytical prediction ~22!. Filled dots: numerical simulations with
an estimated relative uncertainty of 0.01. Dashed line: analytical
approximation ~24!, ~18!. Dashed-dotted line, filled squares, and
dotted line: same as solid line, filled dots, and dashed line, respec-
tively, but now for kT5D050.01.
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the potential V(x) can be written in the general form

V~x !52m sgn~x !uxuq2ex52mxuxuq212ex , ~26!

in the vicinity of the critical point x50. We furthermore
restrict ourselves to the cases

m.0, q.1, ~27!

implying differentiability with

V8~x !52mquxuq212e . ~28!

In the remainder of the interval @2L/2,L/2# , the potential
V(x) may be an arbitrary strictly monotonically decreasing
smooth function, while outside @2L/2,L/2# it is fixed by
Eqs. ~2!,~3!. An example with q,1 is given at the end of this
section.

We remark that in the generic case we have

q53, V8~0 !5V08~0 !2Fc50,

V9~0 !5V09~0 !50,

V0-~0 !526m,0. ~29!

For instance, this is so whenever V0(x) in Eq. ~2! is an
analytic function of x. Nevertheless, more general q values
are also worth studying, as our results below will demon-
strate. They can be readily realized experimentally by tailor-
ing the form of V0(x) accordingly. We finally note @using
Eqs. ~2!,~3!# that V(L/2)2V(2L/2)52FL . Assuming that
Eq. ~26! is a rough approximation for V(x) in the entire
interval @2L/2,L/2# it follows that 22m(L/2)q2eL
'2FL and hence

m'Fc~L/2!12q. ~30!

Our second main assumption throughout this section is
that the thermal energy kT is small, in the sense that

kT!LFc . ~31!

Our main goal in what follows is to determine the behavior
of the diffusion coefficient D for asymptotically small e and
kT.

It is instructive to extend for a moment the approximation
~26! to the entire x axis and to consider the corresponding
dynamics ~1! for e50 and in the zero temperature limit
j(t)[0, i.e.,

ẋ~ t !5
mq
h

ux~ t !uq21. ~32!

A straightforward calculation then shows that in order to
reach the inflection point x50 from a seed x(0),0, an in-
finite amount of time is needed if q>2, while a finite time is
sufficient when q,2 ~but still q.1!. On the other hand, for
x(0)→2` a finite time suffices to reach a small neighbor-
hood of x50 for q.2, while this traveling time diverges for
q<2. Analogous results are recovered for the traveling times
in the region x.0. As a consequence, fundamentally differ-
03110
ent kinds of behavior of the corresponding mean first passage
times for q.2 and q,2 are expected also for asymptoti-
cally small but finite kT ~but still e50! @40#: For q.2 the
motion of the particle ~1! is dominated by the passage
through the vicinity of x50, where Eq. ~31! is valid, whereas
for q,2 one expects that the passage through this region is
negligible, and outside this region the influence of the noise
can be ignored. A similar behavior is still expected for finite
e-values, provided they become sufficiently small as kT ap-
proaches zero, while otherwise again fundamentally different
realms may be encountered. In the following subsections, a
more rigorous, quantitative version of these heuristic argu-
ments will be elaborated.

Regarding the case q,1 we restrict ourselves to the spe-
cific example of a critically tilted piecewise linear potential.
More precisely, we consider the diffusion of particles in a
step-type potential, i.e., V(x) decreases proportional to the
integer part of 2x/L , with kT much smaller than the poten-
tial step. This problem is a priori not simple at all, and was
in fact the question that motivated the entire present investi-
gation. However, with the general framework developed
above now at hand, one readily finds from Eqs. ~22! and ~15!
the result D52D0/3 for small kT, i.e., the free diffusion
coefficient is reduced by the factor 2/3.

A. Evaluation of the diffusion coefficient

In this subsection we derive our central results ~53!–~55!
for the scaling behavior of the effective diffusion coefficient.

We first focus on the evaluation of the integral
*x0
x01Ldx I6(x) appearing in Eqs. ~18! and ~22!. To keep

things simple, we temporarily focus on the index ‘‘1’’ and
make the specific choice x052L/2, but it is clear that the
final result will be valid for both indices and any x0 . Be-
cause of Eq. ~31! one can replace the lower integration limit
x2L in Eq. ~19! by 2` to a very good approximation @see
also Eq. ~A1! in Appendix A#. Next we evaluate a part of the
integral *2L/2

L/2 dx I1(x), namely @cf. Eq. ~21!#,

E
2L/2

2a
dx I1~x !5E

2L/2

2a
dx

1
D0

E
2`

0
dz e @V~x !2V~x1z !#/kT,

~33!

where we have introduced

aªAS kTm D 1/q

'
AL
2 S 2kTLFc

D 1/q

. ~34!

Here A is a dimensionless number, and in the second relation
in Eq. ~34! we have exploited Eq. ~30!. In the following, we
will always assume that A is very large, while a is so small
that Eq. ~26! can be applied in the region uxu<a @such a
choice of A and a is guaranteed to be possible due to Eq.
~31!#. Observing that for small kT only z values very close to
zero contribute notably in the second integral in Eq. ~33!, a
Taylor expansion of the integrand about z50 yields after a
straightforward calculation the result
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E
2L/2

2a
dx I1~x !5E

2L/2

2a
dx

h

uV8~x !u H 11OS kTV9~x !

@V8~x !#2D J
5E

2L/2

2a
dx

h

uV8~x !u $11O~A2q!%. ~35!

In the last identity we have exploited the fact that a in Eq.
~34! belongs to the region where Eq. ~26! applies if kT be-
comes sufficiently small, and that within this region uV8(x)u
will be much smaller than it is outside it. In the same way
one finds that

E
a

L/2
dx I1~x !5E

a

L/2
dx

h

uV8~x !u $11O~A2q!%. ~36!

In the remaining integral

E
2a

a
dx I1~x !5E

2a

a
dx

1
D0

E
2`

0
dz e @V~x !2V~x1z !#/kT,

~37!

again only very small z values contribute significantly and
one thus may exploit Eq. ~26! in the entire integration do-
main. After changing integration variables to x̃
ªx(m/kT)1/q, z̄ª2z(m/kT)1/q and then dropping the tildes,
one finds that

E
2a

a
dx I1~x !5

h

m2/q@kT#122/q E
2A

A
dx K~x ,g !, ~38!

where @cf. Eqs. ~19!,~21!#

gªe/@m1/q~kT !121/q# , ~39!

K~x ,g !ªE
0

`

dz exp$2xuxuq211~x2z !ux2zuq212gz%

5e2x~ uxuq211g !E
2`

x
dy ey~ uy uq211g !. ~40!

Note that K(x ,g) is a dimensionless function and that both
its arguments ~x and g! are dimensionless as well. We also
remark that if we had worked with I2(x) instead of I1(x)
then the results ~35! and ~37! would have been recovered
without any modification, while on the right-hand side of Eq.
~38! the integrand K(2x ,g) would have appeared, which of
course gives the same result as K(x ,g) after integration
over x.

Upon adding up the three contributions ~35!, ~36!, ~38!
one sees that for q.2 the last one dominates for any small
but fixed choice of a in Eq. ~34! as kT becomes small. In
particular, the latter contribution ~38! converges for kT→0,
which is basically a consequence of the fact that the mean
first passage time to infinity is finite for q.2. Recalling that
the final result does not depend on the specific choice x0
52L/2 and the index ‘‘1’’, we can conclude that @31#

E
x0

x01L
dx I6~x !5

hG1~g !

m2/q@kT#122/q for q.2, ~41!
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G1~g !ªE
2`

`

dx K~6x ,g !, ~42!

up to a relative error that approaches zero as kT decreases
and provided that e also decreases such that the dimension-
less number g in Eq. ~39! remains constant. Note that Eq.
~41! has the form of a scaling law with a completely univer-
sal, dimensionless scaling function G1 for any given value of
the ‘‘critical exponent’’ q. The equivalence of both signs in
Eq. ~42! is obvious, but we have kept both of them in order
to indicate the effect of the two possible signs in Eq. ~41!.

In the opposite case q,2 things are more complicated
since later we will be interested not only in asymptotically
small kT and e with g from Eq. ~39! kept fixed, but also in
the case of negative e values such that the corresponding
negative g values diverge logarithmically as kT approaches
zero. To this end, we henceforth set

Aª~Lqm/kT !2/q. ~43!

In this way, A@ugu as kT→0 and a form ~34! tends to zero
@other choices than in Eq. ~43! with the same properties
would also be possible#. It follows that the contributions of
order A2q in Eqs. ~35! and ~36! can be neglected for asymp-
totically small kT. By closer inspection one further can de-
duce that in the remaining integrals ~35! and ~36! a g value
that diverges at most logarithmically with kT has an asymp-
totically negligible effect as well, i.e., we can formally set
e50 in those integrals. The remaining integrals in Eqs. ~35!
and ~36! converge if one formally lets a tend to zero, imply-
ing the asymptotically exact approximation

E
x0

x01L
dx I6~x !5

hĜ1~g !

m2/q@kT#122/q

1E
x0

x01L h dx
Fc2V08~x !

for 1,q,2,

~44!

where

Ĝ1~g !ªE
2A

A
dx K~6x ,g !. ~45!

Note the implicit kT dependence of Ĝ1 via Eq. ~43!. In spite
of this dependence, one finds that the first term on the right-
hand side of Eq. ~44! is negligible in comparison with the
second for asymptotically small kT with the possible excep-
tion of very large, negative g values. In the latter case, we
may evaluate Eq. ~45! by means of a saddle point approxi-
mation with the result Ĝ1(g).S(g), where

S~g !ªU~2g !
2pug/qu~22q !/~q21 !

q~q21 !
exp$2~q

21 !ug/quq/~q21 !%. ~46!

The Heaviside step function U~2g! has been introduced in
order to make S(g) well defined for arbitrary g. Closer in-
4-6



DIFFUSION IN TILTED PERIODIC POTENTIALS: . . . PHYSICAL REVIEW E 65 031104
spection shows that the difference Ĝ1(g)2S(g) is for all
values of g negligible in comparison with the second term on
the right-hand side of Eq. ~44!. In other words, we obtain the
result

E
x0

x01L
dx I6~x !5

hS~g !

m2/q@kT#122/q

1E
x0

x01L h dx
Fc2V08~x !

for 1,q,2.

~47!

As already noticed, for positive or moderately negative g
values the second term on the right-hand side dominates.
Since the quantity ~47! is basically equivalent to the mean
first passage time T1(x0→x01L) @cf. Eq. ~A3!# this approxi-
mate kT independence in Eq. ~47! is in agreement with our
heuristic discussion above @see also below Eq. ~31!#. On the
other hand, for sufficiently large negative g values, the first
term on the right-hand side in Eq. ~47! takes over, reproduc-
ing the expected Arrhenius-type behavior ~46! for the escape
time over a potential barrier @32#. Finally, we note that also
in the case q.2 a saddle point approximation for large nega-
tive g values in Eq. ~42! leads to the very same result S(g)
as in Eq. ~46!.

The above results imply for the current ^ ẋ& in Eq. ~18!
that

^ ẋ&5
D0

L S LqmkT D 2/q 1
G1~g !

for q.2, ~48!

^ ẋ&5
D0

L
Lqm
kT

1

S kTLqm D 2/q21

S~g !1E
x0

x01L dx mLq22

Fc2V08~x !

for 1,q,2. ~49!

The ‘‘crossover’’ case q52 requires a separate treatment that
is relegated to the Appendix B.

For the evaluation of the numerator in Eq. ~22! one pro-
ceeds in exactly the same way as for the denominator, and
we only report here the final results,

E
x0

x01L
dx I6~x !I1~x !I2~x !5

h3G3~g !

m4/q@kT#324/q for q.4/3,

~50!

G3~g !ªE
2`

`

dx K~6x ,g !K~x ,g !K~2x ,g !, ~51!

E
x0

x01L
dx I6~x !I1~x !I2~x !5

h3@S~g !#2/2
m4/q@kT#324/q

1E
x0

x01L h3dx
@Fc2V08~x !#3

for 1,q,4/3. ~52!
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As in Eq. ~42!, we have kept in Eq. ~51! both signs, though
their equivalence is obvious. Moreover, for q.4/3 a saddle
point approximation for large negative g values in Eq. ~51!
again leads to the same expression @S(g)#2/2 as appearing in
Eq. ~52!. For the ‘‘crossover’’ case q54/3, see Appendix B.

The implications of the above results for the diffusion in
Eq. ~22! are

D5D0S LqmkT D 2/q G3~g !

@G1~g !#3
for q.2, ~53!

D5D0S LqmkT D 324/q

3
G3~g !

F S kTLqm D 2/q21

S~g !1E
x0

x01L dx mLq22

Fc2V08~x !G 3
for 4/3,q,2, ~54!

D5D0

S kTLqm D 4/q23@S~g !#2

2 1E
x0

x01L dx m3L3q24

@Fc2V08~x !#3

F S kTLqm D 2/q21

S~g !1E
x0

x01L dx mLq22

Fc2V08~x !G 3
for 1,q,4/3. ~55!

We recall that G1(g), S(g), and G3(g) from Eqs. ~42!, ~46!,
and ~51!, respectively, are dimensionless scaling functions of
their dimensionless argument ~39! that are completely uni-
versal for any given q value. Similarly, the fraction Lqm/kT
as well as all the integrals appearing in Eqs. ~49!–~55! are
dimensionless numbers. Under the approximative assump-
tion that Eq. ~26! is valid in the entire interval @2L/2,L/2#
one obtains for those integrals the result

E
x0

x01L dx mLq22

Fc2V08~x !
5

2q21

q~22q !
, ~56!

E
x0

x01L dx m3L3q24

@Fc2V08~x !#3
5

8q21

q3~423q !
. ~57!

The special ‘‘crossover’’ values q52 and q54/3 are ad-
dressed in Appendix B. Basically, these q-values continu-
ously ~but not smoothly! match together the results ~53!–
~55!, involving certain logarithmic corrections similarly as it
is the case for crossover exponents in the context of critical
phenomena.

B. Discussion and examples

In this subsection we discuss Eqs. ~53!–~55!.
As far as the result ~53! for q.2 is concerned, the most

remarkable feature is the divergence of D/D0 when kT tends
to zero for any fixed g value. In other words, we recover a
giant enhancement of thermal diffusion ~cf. Fig. 1!. Specifi-
cally, for q53, i.e., the most important case in practice @cf.
Eq. ~29!#, the scaling function G(g)ªG3(g)/G1

3(g) appear-
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ing in ~53! is depicted in Fig. 2. From this plot it follows that
the scaling form ~53! is rather well satisfied already for mod-
erately small kT values and that the enhancement of diffusion
is most pronounced for g values in Eq. ~39! of the order
unity. A similar behavior is recovered for any other q.2. In
other words, for q.2 the diffusion coefficient as a function
of F exhibits a pronounced peak at F5Fc with a height of
the order D0(Lqm/kT)2/q and a width DF5De of the order
m1/q@kT#121/q @cf. ~39!#. Exploiting that D0}T @cf. ~7!# we
have, in particular, that

D~gmax!;D0
122/q}T122/q, ~58!

gmax.0. ~59!

Further, we note that for large negative g values one can
exploit in Eq. ~53! the saddle point approximation ~46! for
G1(g) and the corresponding approximation @S(g)#2/2 for
G3(g) as discussed below ~52!.

Returning to the height of the peak in the special case q
53 the numerics from Fig. 2 in combination with Eq. ~53!
implies that

D.0.0696D0S L3m

kT D 2/3

for q53, F5Fc . ~60!

We remark that in the present special case q53, the integra-
tions in Eq. ~42! can be exchanged and the integral over x
performed, with the result

G1~g !5E
0

`

dx e ~2gx22x6/4!. ~61!

FIG. 2. Bold solid line: Dimensionless scaling function G(g)
ªG3(g)/G1

3(g) in Eq. ~53! for q53 versus its dimensionless ar-
gument g from Eq. ~39! by numerically evaluating Eqs. ~42!,~51!.
Full and dashed-dotted lines: Same as the respective lines in Fig. 1,
but now plotted in the form (D/D0)(kT/Lqm)2/q @cf. Eq. ~53!# ver-
sus g @cf. Eqs. ~25!,~39!# with q53 @cf. Eqs. ~23!,~29!#.
03110
Similarly, the integral over x can also be performed in Eq.
~51!. Further analytical simplifications are only possible for
g50. In this case, Eq. ~61! can be expressed as

G1~0 !521/3ApG~1/6!/33/2.2.39, ~62!

where G(z)ª*0
`dt tz21e2t is the Gamma function with

G(1/6).5.57. Due to a remarkable mathematical identity by
Sigeti and Horsthemke @12# one further finds for the scaling
function in Eq. ~51! the result

G3~0 !5@G1~0 !#2/6. ~63!

By means of this result one analytically recovers Eq. ~60!.
Note also the difference between the relation ~63! for g50
and the asymptotic behavior G3(g)5@G1(g)#2/2 for large
negative g values as discussed below Eq. ~52!.

Next, we turn to the discussion of the result ~54! for 4/3
,q,2. The salient difference in comparison with Eq. ~53! is
a competition between the two terms in the denominator on
the right-hand side of Eq. ~54!. For any fixed g value, the
first term is negligible when kT becomes sufficiently small.
Thus D/D0 increases proportional to @kT#4/q23, i.e., we find
again a giant enhancement of thermal diffusion. More subtle
is the behavior of Eq. ~54! as a function of g for a small but
fixed kT value. For arbitrary positive as well as for moder-
ately negative g values it is still the second term in the de-
nominator that dominates and thus the g dependence of D is
governed by G3(g). These predictions are confirmed by
comparison with a direct evaluation of the exact formula
~22!, see Fig. 3 for an example. In contrast to the case q
53 ~cf. Fig. 2! the asymptotic scaling form ~54! with S(g)

FIG. 3. Bold solid line: Dimensionless scaling function G3(g)
in Eq. ~54! for q53/2 versus its dimensionless argument g from Eq.
~39! by numerically evaluating Eq. ~51!. Other lines: The quantity
(D/D0)(kT/Lqm)324/q @2q21/q(22q)#3 @cf. Eqs. ~54!,~56!, and
main text# with D from Eq. ~22! versus g @cf. Eq. ~39!# for a po-
tential V(x) that is given by Eq. ~26! for all xP@2L/2,L/2# while
outside @2L/2,L/2# it is fixed by Eqs. ~2!,~3!. Parameter values in
dimensionless units: L52,m51,h51, kT5D051023 ~dotted!, kT
5D051025 ~short dashes!, kT5D051027 ~long dashes!.
4-8



DIFFUSION IN TILTED PERIODIC POTENTIALS: . . . PHYSICAL REVIEW E 65 031104
→0 is approached only for rather small kT values in Fig. 3.
On the other hand, for large negative g values we can make
use of the saddle point approximation @S(g)#2/2 for G3(g)
as discussed below Eq. ~52!. Since S(g) from Eq. ~46! in-
creases very fast with decreasing g, the right-hand side of
Eq. ~54! increases very fast as long as G3(g) governs the g
dependence. However, again due to this fast increase, the
first summand in the denominator starts to compete with the
second summand and ultimately takes over, leading to a de-
crease of D proportional to 1/S(g). Thus a peak appears at a
~negative! g value for which both terms in the denominator
are of the same order of magnitude. The detailed quantitative
calculation is straightforward and leads to the result

D~gmax!5D0
2
27
Lqm
kT F E

x0

x01L dx mLq22

Fc2V08~x !G21

, ~64!

where gmax is defined via the transcendental equation

S kTLqm D 2/q21

S~gmax!52E
x0

x01L dx mLq22

Fc2V08~x !
. ~65!

For small kT one thus obtains with Eq. ~46! the leading order
solution

gmax.2qF 22q
2q~q21 !

lnS LqmkT D G121/q

,0. ~66!

The width Dg of the peak is found to be of the order

Dg.S q
2gmax

D 1/~q21 !

. ~67!

First of all, we note the logarithmic kT dependence in Eq.
~66!. In other words, the peak region is self-consistently de-
scribed by our calculations, see above Eq. ~43!. Second, tak-
ing into account Eq. ~7! we see that the maximal effective
diffusion coefficient in Eq. ~64! is in fact independent of kT.
In other words, the maximal enhancement of diffusion is
even stronger than for q.2, see Eq. ~58!. Under the approxi-
mative assumption that Eq. ~26! is valid in the entire interval
@2L/2,L/2# one obtains with Eq. ~56! the explicit result @31#

D~gmax!5
222qq~22q !

27
Lqm
h

, ~68!

independent of kT. These asymptotic predictions for kT→0
are nicely confirmed already for moderately small kT values
by comparison with a direct numerical evaluation of the ex-
act formula ~22! in Fig. 4. Note that while the maximizing g
value in Eq. ~66! tends to 2` as kT→0, the corresponding
tilt e5F2Fc in Eq. ~39! tends to zero. While kT may be-
come arbitrarily small, the case kT50 is not included in our
above calculations, basically since this limit is singular in
Eq. ~10! and thus in Eq. ~22!. The basic physical reason for
this singularity is the fact that the passage time through the
interval @2L/2,L/2# remains finite for any finite kT but be-
comes infinite for kT50.
03110
Finally, we turn to the discussion of the result ~55! for 1
,q,4/3. For positive and moderately negative g values the
two integrals on the right-hand side of Eq. ~55! dominate and
thus the diffusion coefficient is essentially constant. Conse-
quently, the diffusion D is proportional to the bare value D0
and in the limit V08(x)→Fc1e , corresponding to q→1, the
correct behavior ~7! is also recovered. On the other hand,
with increasingly negative g values, the first term in the nu-
merator in Eq. ~55! takes over, while in the denominator the
integral is still dominating. In other words, we essentially
recover the same behavior as in Eq. ~54!. Especially, a peak
of the form ~64!–~68! arises for any 1,q,2, cf. Fig. 4.

In the case q.2 the approximation by Constantini and
Marchesoni in Eq. ~24! can be evaluated by means of Eqs.
~18!,~31!,~39!, and ~41!, leading to

D5D0S LqmkT D 1/q @2G18~g !#

@G1~g !#2
for q.2. ~69!

Comparison with the exact asymptotics ~53! shows that this
approximation does not capture the correct scaling functions
and exponents. A similar disagreement is obtained for 1,q
,2. On the other hand, one readily finds that the main quali-
tative features are correctly reproduced in all cases.

C. Basic physical mechanism

The basic physical mechanism responsible for the en-
hancement of the thermal diffusion may be understood along
the following heuristic argument. As discussed below Eq.
~32!, for q.2, e50, and small kT, the noisy dynamics ~1! is
dominated by the passage through the ‘‘dynamical bottle-

FIG. 4. Diffusion coefficient ~22! versus the tilt F for a potential
V(x) defined via Eqs. ~25!,~26! with q53/2 for all x
P@2L/2,L/2# while outside @2L/2,L/2# it is fixed by Eqs. ~2!,~3!.
Using dimensionless units, the parameter values are h51,L52, m
51, Fc51. The five curves with increasingly sharper peaks corre-
spond to the following five values of kT5D0 : 331022, 1022,
1023, 1024, and 1025. The theoretically predicted peak height for
asymptotically small kT from Eq. ~68! is 0.1̄.
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neck’’ located at the inflection point x50, cf. Eq. ~26!. Since
e50, a very small perturbation due to thermal noise is al-
ready sufficient to kick the particle across the inflection point
x50. This small variation in comparison with an unper-
turbed particle is subsequently greatly enhanced by the fur-
ther dynamical evolution. The result is a huge dispersion for
a statistical ensemble of particles subjected to different real-
izations of the noise. It is quite suggestive that the same
basic mechanism subsists also for nonvanishing e values at
least as long as they are so small that the corresponding g
values in Eq. ~39! remain finite when kT approaches zero.

Due to the same mechanism, one expects a very strong
change of the particle current ^ ẋ& upon small changes of the
tilt F near the critical value Fc . In other words, a relation
like in Eq. ~24! is expected to be correct at least qualitatively.
However, it is clear that this heuristic argument can be ap-
plied only for q.2, because only then the ‘‘bottleneck’’ near
x50 dominates the dynamics @cf. the discussion below Eq.
~32!#. Since we have found an enhanced diffusion also for
e50 and 4/3<q<2 we have to conclude that such a simple
argument only captures a part of the essential physics and
that a relation of the form ~24! cannot be strictly correct @cf.
Fig. 1 and the discussion below Eq. ~69!#.

Interestingly enough, a similar heuristic explanation in
terms of dynamically enhanced thermal fluctuations seems
again applicable for 2.q.1 near the peak in the diffusion
coefficient described by Eqs. ~64!–~68!: As discussed above
Eq. ~64!, in this peak region both summands in the denomi-
nator of Eq. ~54! are comparable, reflecting the fact that the
passage time through a very small neighborhood of x50 is
comparable to the traveling time through the remainder of
@2L/2,L/2# . On the other hand, the large negative g value in
Eq. ~66! and the concomitant Arrhenius-type form of Eq.
~46! indicate that the former time scale is governed by a
thermally activated escape process across a potential barrier.
On this basis, it is quite plausible that the dynamical en-
hancement of these thermally induced ~rare! escape events
will be maximal when both time scales are comparable.

The discussion below Eq. ~32! implies that for q.2 the
mean first passage time T1(x0→x01L) is dominated by a
small neighborhood of the inflection point x50, while for
2.q.1 the region outside this small neighborhood is no
longer negligible. From our results in Eqs. ~50!,~52! we can
conclude that a similar crossover occurs for the first passage
time dispersion DT2(x0→x01L) at q54/3. In view of our
central relations ~14! and ~15! the need to distinguish be-
tween two q regimes for the current ^ ẋ& in Eqs. ~48!,~49! and
three q regimes for the diffusion D in Eqs. ~53!–~55! is then
immediately clear.

We finally note that a suitable comparison between the
directed and the diffusive transport is provided by the dimen-
sionless number @41#

Qª

2D
L^ ẋ&

5
DT2~x0→x01L !

@T1~x0→x01L !#2
5 lim
t→`

^x2~ t !&2^x~ t !&2

L^x~ t !&
,

~70!

where the second equality follows from Eqs. ~14!,~15! and
the third from Eqs. ~5!,~6!. For large positive g one finds that
031104
Q becomes very small, while for large negative g one finds
that Q approaches unity. For q53 and g50.gmax @cf. Eq.
~59!# the relation ~63! implies Q51/3, whereas for 2.q
.1 and g5gmax @cf. Eq. ~66!# one finds that Q52/9. In
other words, in the most interesting regime close to the maxi-
mum of the diffusion coefficient the particle dispersion
^x2(t)&2^x(t)&2 is comparable to L times the mean dis-
placement ^x(t)& and similarly the first passage time disper-
sion is comparable to the square of the mean first passage
time.

V. MACROSCOPIC THERMAL DIFFUSION

In this section we consider the thermally induced diffu-
sion of a real mechanical particle of spherical shape that
moves in a liquid under the action of gravitation along the
rigid surface of a critically tilted periodic geometrical profile,
see Fig. 5.

The position of the particle is described by its coordinate
y along some horizontal axis and its vertical position z.
Gravitation is pointing in the negative z direction and the
motion is constrained by a rigid surface according to z
>h(y), where h(y) has the shape of a periodic profile with
period L0 that is critically tilted ‘‘to the right,’’ i.e.,

h~y1L0!5h~y !2h0 , ~71!

with h0.0, see Fig. 5. The motion along the third spatial
direction ~perpendicular to both y and z! decouples from the
motion in the y-z plane and can, therefore, be ignored. With-
out loss of generality we assume that h(y) has an inflection
point at y50 and thus satisfies for small y a relation analo-
gous to Eq. ~26! with e50, i.e.,

h~y !52m0y uy uq21. ~72!

Physically, it is quite plausible that for asymptotically
small kT, the constraint z>h(y) can henceforth be replaced
by z5h(y) without changing the dynamics along the y di-
rection. A more detailed mathematical justification of this
step is possible but not further elaborated at this place. At

FIG. 5. A spherical Brownian particle in a liquid, rolling down a
critically tilted, periodic surface h(y) under the action of gravita-
tion, see also Eq. ~71!.
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every given position @y ,h(y)# , the thermal noise acting on
the particle consists of a perpendicular and a tangential com-
ponent relative to the geometrical profile h(y). Under the
assumption that the thermal fluctuations can be modeled by
Gaussian white noise, these two components are statistically
independent at any given time and position. Furthermore, the
perpendicular component has no effect because of the con-
straint z5h(y). In order to achieve an effective one-
dimensional description of the form ~1! the appropriate ap-
proach is thus to work with the path-length x along the
geometrical profile as our generalized coordinate. The infini-
tesimal line element dx is then specified by the obvious re-
lation dx25dy21dh2 and the sign convention in the relation
dx56(dy21dh2)1/2. Without loss of generality we choose
the sign convention such that dx5dy„11@h8(y)#2…1/2 and
the x origin such that

x~y !5E
0

y
dŷ„11@h8~ ŷ !#2…1/2. ~73!

The potential energy of the particle with density r and
radius r due to the effects of gravitation and the buoyancy of
the surrounding liquid with density r l is given in terms of the
generalized coordinate x by

V~x !5Fgh„y~x !…, Fgª~4p/3!r3~r2r l!g , ~74!

where y(x) is the inverse of x(y) ~which obviously exists!
and where g is the acceleration due to gravity. Observing that
h8(0)50 in Eq. ~73! it follows that V(x) is a critically tilted
periodic potential that satisfies Eq. ~26! for small x with

e50, m5Fgm0 . ~75!

With Eqs. ~2!, ~3!, ~71!, ~73!, and ~74! it follows that

FcL5V~x !2V~x1L !5Fgh0 , ~76!

L5E
0

L0
dŷ„11@h8~ ŷ !#2…1/2. ~77!

We assume that the frictional force acting on the particle
under consideration is of the Stokes form h ẋ(t) with friction
coefficient

h56pneffr , ~78!

where neff is the effective viscosity of the surrounding liquid.
For a spherical particle that does not rotate and that is sur-
rounded by an unbounded reservoir of liquid, neff is given by
the bare viscosity of this liquid. A rigorous quantitative
theory describing the thermal motion @note that h also ap-
pears in Eq. ~4!# of the actual setup we have in mind should
include the effects of rotational degrees of freedom and the
quite intricate boundary effects, both mechanical and hydro-
dynamical @42#. Here, we shall adopt the simplifying as-
sumption @43# that all these effects are approximately cap-
tured by an appropriately renormalized viscosity neff .
Further, we assume that all kinds of fluctuations within the
liquid ~density, temperature, etc.! are approximately captured
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by the thermal noise j(t) in Eq. ~1!. Finally, we assume
incompressibility of the liquid ~and the particle! such that the
densities r and r l are constant, and we exclude temperature
gradients.

Finally, we should justify the assumption that the inertia
term mẍ(t), missing on the left-hand side of Eq. ~1!, is in-
deed negligible, at least in those aspects of the dynamics that
are responsible for the asymptotic behavior in Eqs. ~53!–
~55!. In practice, this is a very delicate question and a truly
satisfactory answer seems only possible by means of a com-
parison with numerical simulations that fully take into ac-
count these small but finite inertia effects. Intuitively, we
expect that there is a range of small but still macroscopic
particle sizes for which the overdamped description ~1!
would be admissible. A closely related question concerns the
omission of memory effects both in the noise and the dissi-
pation, which can be justified by closer inspection under the
condition that the particle density r is much larger than the
liquid density r l .

In the important case q53, and with

g.981 cm/s2, ~79!

n̂ª1022 g/cm s.nwater , ~80!

r̂ª10 g/cm3 @r iron.7.9 g/cm3# , ~81!

r̂ª0.1 cm, ~82!

ĥ0ª1.5 cm, ~83!

T̂ª293°K @room temperature# , ~84!

the free diffusion coefficient ~7! can be written, using Eq.
~78!, as

D0.2.14310212 T

T̂

n̂

neff

r̂

r

cm2

s
. ~85!

Further, one obtains from Eq. ~60! for the diffusion coeffi-
cient at the critical tilt the formula

D.4.9931023 n̂

neff

r

r̂ S TT̂ D
1/3S r2r l

r̂

L3m0

4 ĥ0
D 2/3 cm2

s

for q53. ~86!

In the actual experimental realization, which is presently un-
der construction in the labs of one of the present authors
~H.L.!, each fraction appearing in Eqs. ~85! and ~86! is of the
order of unity @44#. In particular, for typical shapes h(x) one
finds that Lqm0/2q21h0 is a dimensionless number of the
order of unity @cf. Eqs. ~30!,~75!,~76!,~77!#, independently of
the actual value of L. It follows that the diffusion coefficient
in the critically tilted periodic potential ~86! is enhanced in
comparison with the free thermal diffusion coefficient ~85!
by about nine orders of magnitude, so that it may well reach
macroscopically observable values. The width of the peak of
the diffusion coefficient with respect to variations of the po-
-11
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tential tilt has been estimated above Eq. ~58!, namely, DF
.m1/q@kT#121/q. This width of the peak may be used to
estimate the experimentally admissible deviation Dh0 from
the exact ‘‘critical’’ h0 value in Eq. ~71!. Due to Eq. ~76! we
see that DF5Dh0Fg /L , yielding the following theoretical
estimate for Dh0 :

Dh0

ĥ0

.1.2310210S L3m0

4 ĥ0
D 1/3S T

T̂

r̂

r2r l
D 2/3 r̂2

r2
. ~87!

Since the fractions on the right-hand side are again of the
order of unity, this theoretically required precision is thus
extremely high.

As discussed in the previous section, the largest enhance-
ment of thermal diffusion is expected for 2.q.1. From Eq.
~64! we then find for the maximal diffusion coefficient the
result

D.2.423102q~22q !
n̂

neff

r2

r̂2
r2r l

r̂

Lqm0

2q21ĥ0

3

2q21

q~22q !

E
x0

x01L dx mLq22

Fc2V08~x !

cm2

s
for 2.q.1, ~88!

see also Eqs. ~56! and ~68!. Again, all the fractions in the
right-hand side are of order unity. In other words, if the fab-
rication of such a specially tailored profile h(y) with 2.q
.1 is possible with the necessary precision, then the en-
hancement of thermal diffusion can be further improved by
another five orders of magnitude as compared to the case q
53. For the required precision to hit the correct h0 value in
Eq. ~71! one obtains @45#

Dh0

ĥ0

.S 0.06 q~q21 !

22q

Lqm0

2q21ĥ0
D 1/q

3S 1.3310215 T

T̂

r̂

r2r l

r̂3

r3D
121/q

. ~89!

In comparison with Eq. ~87!, this theoretically required pre-
cision is considerably lower, especially for q values close to
unity. In contrast to this global precision Dh0 , the necessary
local precision of the profile h(y) may be a more serious
problem in practice. Finally, we remark that the maximally
enhanced diffusion in Eq. ~64! and hence in Eq. ~88! is not
reached exactly at the critical tilt, cf. Eq. ~66!. The corre-
sponding ~negative! deviation from the critical h0 value in
Eq. ~71! is of the same order of magnitude as Dh0 in Eq.
~89!, see also Eq. ~67!.

VI. DISCUSSION

In this paper, we have addressed the problem of over-
damped Brownian motion in a tilted periodic potential in the
031104
presence of white thermal noise @31#. Our first main result is
the compact and exact expression ~22! for the diffusion co-
efficient, valid for arbitrary tilted periodic potentials and ar-
bitrary strengths of the thermal noise. At the basis of this
result lies Eq. ~15!, connecting the diffusion coefficient with
the mean first passage time and the dispersion of the first
passage times. The relations ~14! and ~15! have been previ-
ously proposed ~without proof! in the context of random
walk theory on discrete lattices @46#, and they are also well-
known asymptotic relationships in the particular case of so-
called renewal processes, see, e.g., formulas ~14! and ~16! in
Chap. 5 of Ref. @47#. While all these works are concerned
with models in discrete space, the use of the above relations
for the continuous problem at hand has in fact been advo-
cated ~without proof! in Ref. @11#, and an independent alter-
native derivation of Eq. ~15!, based on the results from Ref.
@47#, has recently been presented in Ref. @48#. Note also that
a different expression for the diffusion coefficient ~24! was
recently proposed in Ref. @39#, which is, in general, only
approximatively valid ~see Fig. 1 and Sec. IV!. As a side
remark we mention that our result has nothing to do with the
relation between the diffusion coefficient and the Lyapunov
exponent in certain chaotic dynamics @49#. In particular, the
concept of Lyapunov exponents is useless in our context
since it focuses on infinitesimal deviations between trajecto-
ries, while the diffusion coefficient here is governed by de-
viations ranging over many periods L.

It seem likely that a relation analogous to Eq. ~15! can
also be derived under more general conditions, e.g., in higher
dimensions or beyond the overdamped limit @39,50#. While
in these cases the mean first passage times and the dispersion
of the passage times are generally not known in analytical
form, such a relation may still be useful for speeding up the
numerical determination of the diffusion coefficient. For spa-
tially discrete, periodic, one-dimensional systems, an exact
expression for the diffusion coefficient has been derived by
Derrida in Ref. @51#, see also Ref. @52# for various generali-
zations. It is clear that Derrida’s result will become equiva-
lent to Eq. ~15! or Eq. ~22! in the continuous space limit.
Conversely, by considering periodic potentials V0(x) with
very high barriers between neighboring local minima
~‘‘states’’!, an effective spatially discrete model is recovered.
Again, it is clear that in this way our result will become
equivalent to Derrida’s discrete random walk result. In prac-
tice, our compact expression ~22! for the diffusion coefficient
is, however, considerably simpler than Derrida’s.

Turning to our second main result, we recall that quantum
mechanics is generally appreciated to be indispensable for
the explanation, e.g., of the stability of atoms, molecules, and
solids. Yet, verifying and exploiting basic quantum mechani-
cal effects ‘‘more directly’’ on a macroscopic scale is cur-
rently attracting much attention. A somewhat similar situa-
tion arises with respect to the random microscopic
fluctuations at the basis of statistical mechanics. As detailed
in Sec. V, the present study suggests a very elementary ex-
periment that would make those microscopic fluctuations
‘‘visible’’ on a macroscopic scale. In contrast to the quantum
mechanical case, here the word ‘‘macroscopic’’ literally
means ‘‘observable by the naked eye.’’
-12
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We note that somewhat related phenomena are also
known in other far-from-equilibrium systems. For example,
the spreading of particles can be enhanced by the critical
fluctuations in the vicinity of a nonequilibrium phase transi-
tion to a convective state, resulting in a diverging diffusion
coefficient D;(T2Tc)2z, where z is a dynamical critical
exponent @53#. Another well-known example is the enhance-
ment of dispersion by turbulence. Diffusion can also be am-
plified by the coupling to a convective ~laminar! process as
exemplified in the well-studied example of Taylor dispersion
with a characteristic diffusion coefficient given by D;D0

21

;T21, where D0 is the usual ~bare! molecular diffusion co-
efficient: see Ref. @54# for a review. In contrast to our present
case, in those examples strong nonequilibrium fluctuations
and/or gradients of the temperature and the velocity of the
surrounding medium are a crucial ingredient. Two other ex-
amples that come closer to the situation of interest to us are,
respectively, the Suzuki scaling law for relaxation from a
marginally stable state @55# and the transient bistability in
explosive systems @56#. In these cases, the dispersion is in-
creased by the amplification of the initial thermal spreading
in the close vicinity of a metastable point through the subse-
quent fast dynamical evolution away from this point. From
this point of view, our present problem may be considered as
the dispersion of particles in a potential displaying a spatially
periodic repetition of marginally stable states—recall also
our qualitative explanation of the effect below Eq. ~55!. Fi-
nally, we mention that a somewhat similar, resonancelike
enhancement of the free thermal diffusion has also been re-
ported for various systems in the presence of a time-
dependent external driving force @57–61#. While the behav-
ior of the diffusion coefficient there is reminiscent of the
present case, the underlying physical mechanisms are once
again quite different.
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APPENDIX A

We present in this appendix some details pertinent to the
derivation of Eq. ~22!. We first introduce the quantities

Ĩ1~x !ª
1
D0

eV~x !/kTE
2`

x
dy e2V~y !/kT5

I1~x !

12e2LF/kT ,

~A1!
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Ĩ2~x !ª
1
D0

e2V~x !/kTE
x

`

dy eV~y !/kT5
I2~x !

12e2LF/kT .

~A2!

The last identity in Eq. ~A1! follows from Eq. ~17! and simi-
larly for Eq. ~A2!. Next, we rewrite the first two moments in
Eq. ~10! as

T1~x0→b !5E
x0

b
dx Ĩ1~x !5

1

12e2LF/kT Ex0
b
dx I1~x !,

~A3!

T2~x0→b !5
2
D0

E
x0

b
dx eV~x !/kTE

2`

x
dy e2V~y !/kT

3E
y

x
dz Ĩ1~z !1R . ~A4!

Here R is given by

Rª
2
D0

E
x0

b
dx eV~x !/kTE

2`

x
dy e2V~y !/kTE

x

b
dz Ĩ1~z !

52E
x0

b
dx Ĩ1~x !E

x

b
dz Ĩ1~z !

52@T1~x0→b !#222E
x0

b
dx Ĩ1~x !E

a

x
dz Î1~z !

52@T1~x0→b !#222E
x0

b
dx Ĩ1~z !E

z

b
dx Ĩ1~x !

52@T1~x0→b !#22R5@T1~x0→b !#2. ~A5!

Substituting this in Eq. ~A4! we obtain

DT2~x0→b !5
2
D0

E
x0

b
dxE

2`

x
dyE

y

x
dz e @V~x !2V~y !#/kT Ĩ1~z !

5
2
D0

E
x0

b
dxE

2`

x
dzE

2`

z
dy e @V~x !2V~y !#/kT Ĩ1~z !

52E
x0

b
dxE

2`

x
dz e @V~x !2V~z !#/kT@ Ĩ1~z !#2. ~A6!

Using the fact that Ĩ1(x) in Eq. ~A1! is L periodic, a similar
calculation as in Eq. ~17! then yields

DT2~x0→b !

5
2

@12e2LF/kT#3
E
x0

b
dxE

x2L

x
dz e @V~x !2V~z !#/kT@I1~z !#2.

~A7!
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By choosing b5x01L and interchanging the order of inte-
gration, we finally obtain

DT2~x0→x01L !5
2D0

@12e2LF/kT#3
E
x0

x01L
dz@I1~z !#2I2~z !

52D0E
x0

x01L
dz@ Ĩ1~z !#2 Ĩ2~z !. ~A8!

With the definitions

H~x !ªE
2`

x
dy e2V~y !/kT, ~A9!

K~x !ªE
x

`

dy eV~y !/kT, ~A10!

we can rewrite Eq. ~A3! as

T1~x0→x01L !5
1
D0

E
x0

x01L
dx@2K8~x !H~x !# .

~A11!

Using the fact that the product K(x)H(x) is L periodic, a
partial integration yields

T1~x0→x01L !5
1
D0

E
x0

x01L
dx H8~x !K~x !

5E
x0

x01L
dx Ĩ2~x !

5
1

12e2LF/kT E
x0

x01L
dx I2~x !.

~A12!

Similarly, Eq. ~A8! can be rewritten as

DT2~x0→x01L !5
2
D0

2 E
x0

x01L
dz

3@2K8~z !H~z !#2H8~z !K~z !.

~A13!

Since H8(z)K8(z)51 the integrand equals
(1/2)H2(z)dK2(z)/dz; integration by parts yields

DT2~x0→x01L !5
2
D0

2 E
x0

x01L
dz@2H8~z !K~z !#2

3@2K8~z !H~z !#

52D0E
x0

x01L
dz@ Ĩ2~z !#2 Ĩ1~z !

5
2D0

@12e2LF/kT#3
E
x0

x01L
dz@I2~z !#2I1~z !.

~A14!
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Finally, using Eqs. ~A3!, ~A8!, ~A12!, and ~A14! in Eq. ~15!
leads to the result ~22!.

APPENDIX B

In this appendix we discuss in some detail the special
cases q52 and q54/3 that have been omitted in the main
text in Sec. IV.

In the case q52 we may choose, similarly as in the dis-
cussion below Eq. ~43!, a large value of A and then approxi-
mately set e50 and A2q50 in Eq. ~35!. The remaining
integral does not converge for a→0 but we may introduce a
convergence-inducing term according to

E
2L/2

2a
dx I1~x !5E

2L/2

2a
dxF h

Fc2V08~x !
2

h

2muxuG
1E

2L/2

2a
dx

h

2muxu
. ~B1!

The first integral converges for a→0 and by actually per-
forming this limit we make an error that vanishes for kT
→0, see Eq. ~34!. The second integral in Eq. ~B1! can be
performed, with the result

E
2L/2

2a
dx I1~x !5E

2L/2

0
dxF h

Fc2V08~x !
2

h

2muxuG
1

h

2m F12 lnS LFc2kT D1lnS mL
2Fc

D2lnAG ,
~B2!

where we have used Eq. ~34!. Exactly the same result is
recovered for Eq. ~36!. Turning to Eq. ~38!, a convergence
inducing term for A→` may be introduced according to

E
2a

a
dx I1~x !5

h

m E
2A

A
dxFK~x ,g !2

1
2

1
11uxuG

2
h

m E
2A

A
dx

1
2

1
11uxu

. ~B3!

Indeed, the first integral now converges when A→` , while
the second one can be performed. Neglecting all contribu-
tions that tend to zero when A→` , we thus obtain

E
2a

a
dx I1~x !5

h

m E
2`

`

dxFK~x ,g !2
1
2

1
11uxuG2

h

m
lnA .

~B4!

Putting together everything, we finally find that

E
x0

x01L
dx I6~x !5

h

m F12 lnS FcL2kT D1G̃1~g !1CG for q52,

~B5!

where we have introduced
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G̃1~g !ªE
2`

`

dxFK~x ,y !2
1
2

1
11uxuG , ~B6!

CªlnS mL
2Fc

D1E
2L/2

L/2
dxF m

Fc2V08~x !
2

1
2uxuG . ~B7!

As in the case of G1(g) in Eq. ~42!, G̃1(g) is again a uni-
versal, dimensionless scaling function of its dimensionless
argument g. Further, the saddle point approximation ~46! can
be applied for large negative g values. Finally, C is a con-
stant of order unity that depends on the details of the poten-
tial V0(x). For instance, when the form ~26! is exactly valid
on the entire interval @2L/2,L/2# then we have C50.

A similar calculation yields the result

E
x0

x01L
dx I6~x !I1~x !I2~x !5

81
128 S h

m D 3

lnS FcL2kT D
for q54/3, ~B8!

where we have restricted ourselves to the leading order term
in the weak noise limit kT/FcL→0, i.e., higher order terms
analogous to those on the right-hand side of Eq. ~B5! have
been omitted.

For the resulting diffusion coefficient ~22! one obtains
031104
D5D0
L2m

kT

G3~g !

F12 lnS FcL2kT D 1G̃1~g !1CG 3 for q52,

~B9!

D5D0

81
128 lnS FcL2kT D

F E
x0

x01L dx mL22/3

Fc2V08~x !G 3
for q54/3. ~B10!

The detailed discussion of the result ~B9! can be carried
out in complete analogy to the one for 2.q.4/3 below Eq.
~55!. In particular, for sufficiently small kT, the second and
third term in the denominator are negligible for positive and
moderately negative g values, while for large negative g the
saddle point approximation ~46! for G̃1(g) and G3(g)
5@S(g)#2/2 can be applied. In Eq. ~B10! only the leading
order terms for small kT have been kept. Thus the discussion
of the dependence for a fixed kT upon variation of g is not
possible on the basis of Eq. ~B10! but it is clear that this
dependence will be of exactly the same form as the one for
4/3.q.1 discussed below Eq. ~68!. Especially, Eqs. ~64!–
~68! can be taken over for q54/3 without any change.
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