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The study of collective effects in simple liquids has
been  the  subject  of  intense  interest  over  the  last  few
years in Inelastic Neutron Scattering (INS) experiments
[1], Molecular Dynamics (MD) simulations [2, 3], and
different theories [4]. According to these methods, liq-
uid alkali metals have distinct collective excitations in
a wide range of wave-vector values and also outside the
hydrodynamic  region.  This  fact  was  obtained  from  a
careful analysis of the dynamic structure factor S(k, w )
spectra.  High-frequency  peaks  are  appreciable  in
S(k, w ) for low k values (approximately, up to half the
position  of  the  first  maximum  of  the  static  structure
factor), and these peaks do not exist in high-k regions.
Understanding  the  microscopic  mechanism responsi-
ble for  the propagation and damping of  these excita-
tions  is  still  a  challenge  in  liquid  metals,  where  the
dynamics  is  conditioned  by  interacting  electron  gas
effects. So, a recent INS experiment on liquid cesium
near its melting point was carried out by Bodensteiner
et al. in Grenoble [5]. The results of their experiment
have shown that high-frequency collective excitations
exist in this system for wave vector region k < 1.1 Å–1.
MD  simulation  performed  by  Kambayashi  and  Kahl
[2] validated fully the findings of INS in liquid cesium.
The  analysis  of  collective  excitations  that  extend
beyond the hydrodynamic limit is a great contribution
to the development of theoretical models of the liquid
state [6].

For a system composed of N particles of mass m, the
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density fluctuations are given by

where rj(t) is the coordinate of the jth particle and k is
the wave vector. Then, the main dynamical quantity of
interest is the density–density correlation function F(k,
t) = ár *(k, 0)r (k, t)ñ /á| r (k, 0)|2ñ , where á| r (k, t)|2ñ = S(k)
is  the  static  structure  factor.  The  angular  brackets
denote an equilibrium ensemble average at temperature
T and density r = N/V with V being the volume of the
system involved. If F(k, t) is known, the dynamic struc-
ture factor follows from

According to the memory function (MF) formalism and
the projection operator method [7], we can find the time
evolution of F(k, t) in the following way:

(1)

Here,  we  introduce  the  first  general  relaxation  fre-
quency  parameter   and  the  MF  of  the  first  order
M1(k, t). However, by using the same method, we can
define the time evolution of the high order MF M1(k, t),
M2(k, t),  ….  Thus,  a  set  of  interconnected  relaxation
processes  corresponds  to  an  arbitrary  relaxation  pro-

r k t,( ) N 1– ikr j t( )[ ] ,exp
j 1=

N

å=

S k w,( ) S k( )/p[ ] Re F k iw e+,( )[ ] .
e +0®

lim=

F k t,( )d
dt

------------------ W 1
2

t M1 t t–( )F k t,( ).d
0

t

ò–=

W 1
2

                               



148                 
cess (for example, to a density fluctuations in liquids),
which can be easily taken into account by MF formal-
ism.

According  to  the  definition,  for  ergodic  processes
the correlation functions M0(k, t) = F(k, t), M1(k, t), …,
Mi(k, t) have the following properties:

(2)

Thus, the correlation functions Mi(k, t) have character-
istic  time  scales,  which  can  generally  be  defined  at
fixed  k by the equation

(3)

Here, Re[…] denotes the real part of […].
These time scales Ti characterize the corresponding

relaxation processes and can have different numerical
values. Nonetheless, on a certain level (for example, on
the ith level), the scale invariance of the nearest inter-
connected relaxation processes can exist. Physically, it
implies the existence of the time-scale invariance (TSI)
of relaxation processes on the nearest ith and (i + 1)-th
relaxation  levels.  Such  an  approach  allows  one  to
receive  an  approximation  of  the  form  Mi + 1(k, t) »

Mi(k, t),  which  is  actually  the  closure  of  the  chain  of
integro-differential equations similar to 1. As a result,
only the first (i – 1) variables are necessary for the full
description  of  the  system investigated.  In  the  case  of
simple liquid metals, by analogy with the hydrodynam-
ics region, we propose that only three variables, namely
local  density,  local  momentum  density,  and  local
energy density,  are sufficient to reproduce its  spectral
features  at  the  microscopic  level.  These  variables  are
implicitly present in F(k, t), M1(k, t), and M2(k, t). From
the above reasoning, one can write the following clo-
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Fig. 1. Theoretical (solid line) and experimental (s) values
of the dynamic structure factor for liquid cesium near the
melting point.
sure: M4(k, t) »  M3(k, t). By means of the Laplace trans-
formation of the corresponding equations for M0(k, t) =
F(k, t), M1(k, t), M2(k, t), we obtain an expression for
the dynamic structure factor in which the static struc-
ture factor S(k) and general relaxation parameters of the
ith orders  (i = 1, 2, 3, 4) are contained:

(4)

Now, we use the theory proposed above for the eval-
uation of S(k, w ) in liquid cesium near its melting point
at T = 308 K. The quantities needed for the calculation
are S(k)  and  (i  = 1,  2,  3,  4).  The numerical static
structure data were obtained by Bodensteiner et al. [5],
and we use these S(k) data in our calculations. The first
two relaxation parameters   and  are  defined as

=  KBTk2/[MS(k)],   =   –  ,  where   =

3 S(k)  +  N/MV [1  –  cos(kr)] u(r).  Here,
KBT is the thermal energy, g(r) is the radial distribution
function,  and  u(r)  is  the  pair  interparticle  interaction
potential  (the  z  axis  is  chosen  in  the  direction  of  the
wave vector k).  However,  to calculate the second fre-
quency  parameter  ,  we  use  the  known  Hubbard–

Beeby  approximation  [8]   =  3 S(k)  +  [1  –
3sin(x)/x – 6cos(x)/x2 + 6sin(x)/x3] – . Here x = kR0

with R0 = 4.8 Å and the Einstein frequency  is taken
to be 4.12 ps–1, which is the value obtained by Boden-
steiner  [5].  The  theoretical  formulas  for   and
cannot be used in calculations for one reason. The final
result of these calculations has gross errors. Therefore,
these parameters can be defined by comparing theoret-
ical  and  experimental  results.  Namely,  we  found  the
third and the forth relaxation frequency parameters (
and ) were found by us from two mutually indepen-
dent conditions: the behavior of S(k, w ) in the points of
central (w  = 0) and side (w  ¹  0) maximums.

We have calculated S(k, w ) in the low-k region k =
0.4 ~ 0.9 Å–1, where high-frequency peaks were exper-
imentally  observed.  The  results  for  the  representative
wave vectors are shown in Fig. 1. It is clear in Fig. 1 that
our theory describes adequately the collective density
excitations in spectra of S(k, w ) for liquid cesium. For
the investigated wave-vector region, we have achieved
a good agreement with the experiment [5]. In Fig. 2, we
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Fig. 2. Dynamic structure factor calculated on the basis the-
ory for liquid cesium at 308 K.

Fig. 3. Frequency dependence of non-Markovity parameter
e 1(k, w ) for 4 < k < 12 nm–1.
report  a  set  of  normalized  dynamic  structure  factors,
S(k, w )/S(k), as calculated from our theory for the wave
vector region 0.4 £  k £  1.8 Å–1. In this figure, one can
see certain changes in the position and altitude of the
central  and side peaks at  different values of the wave
vector k. As can be seen in Fig. 2, side peaks persist up
to k ~ 1.1 Å–1, i.e., very close to the position of the first
peak  in  the  static  structure  factor  (k  ~  1.4  Å–1).  This
again shows that the liquid supports collective excita-
tions for wavelengths comparable with the mean inter-
particle  spacing,  a  distinctive  characteristic  of  liquid
metals [6].

To  understand  the  nature  of  the  collective  excita-
tions below k = 1 Å–1, we have studied the behavior of
the  frequency-dependent  non-Markovity  parameter
e 1(k, w ). This parameter was at first entered [9] on the
basis of parameter e 0 = t 0/t 1, where the relaxation times
t 0 and t 1 are calculated by Eq. (3). By this non-Marko-
vity  parameter  [10],  all  relaxation  processes  can  be
divided into a Markovian scenario, when e 0  ¥ ,  a
quasi-Markovian scenario at  e 0  > 1,  and a non-Mark-
ovian  scenario  at  e 0  ~  1.  The  generalized  parameter
e 1(k, w ) is defined at fixed k by the expression

(5)

Here, m j(w )  is  the  power  spectra  of  the  ith  relaxation
level  that  was  introduced.  In  Fig.  3,  we  present  the
results  of  calculations  for  the  frequency-dependent
non-Markovity parameter e 1(k, w ) at several values of
wave vectors k. It can be seen in Fig. 3 that the values
of e 1(k, w ) show an alternation of maxima and minima.
In addition, e 1(k, w ) and S(k, w ) maxima in the low-k
region are located on approximately the same frequen-
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cies  that  are  associated  with  collective  excitations  in
liquid metal. The amplitudes of these peaks quickly fall
as k increases. This is due to the amplification of non-
Markovity effects. The occurrence of e 1(k, w ) peaks in
the region of collective excitations indicates an essen-
tial amplification of quasi-Markovity on propagation of
ion  density  fluctuations.  High-frequency  collective
excitations disappear smoothly with increasing k,  and
simultaneously  non-Markovity  is  further  enhanced.
Similarly, an increase in e 1(k, w  = 0) means an enhance-
ment of randomness in the thermal motion of particles.
Thus, the frequency behavior of the parameter e 1(k, w )
observed consists in a consecutive alternation of quasi-
Markovian and non-Markovian relaxation scenarios of
behavior. Such an alternation cannot be received within
the framework of any other theory.

In this Letter, we have presented the theory, based
on Zwanzig–Mori’s MF formalism [7], and the idea of
TSI, which allows one to describe the dynamic struc-
ture spectra in all  experimentally investigated regions
of  the  wave  vector.  The  long-range  memory  and  the
short  time  correlations  have  affected  the  analysis  of
non-Markovian properties of the collective dynamics in
liquid cesium. In this way, we are going to establish the
non-Markovian nature of collective excitations in liq-
uid cesium at low k values.
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