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and Department of Applied Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

Peter Hänggi
Institut für Physik, Universität Augsburg, Universitätsstraße 1, 86135 Augsburg, Germany
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The dynamics of a generic quantum XOR gate operation involving two interacting qubits being coupled to a
bath of quantum harmonic oscillators is explored. By use of the formally exact quasiadiabatic-propagator
path-integral methodology we study the time-resolved evolution of this interacting and decohering two-qubit
system in presence of time-dependent external fields. The quality of the XOR gate operation is monitored by
evaluating the four characteristic gate quantifiers: fidelity, purity, the quantum degree, and the entanglement
capability of the gate. Two different types of errors for the XOR operation have been modeled, i.e., ~i! bit-flip
errors and ~ii! phase errors. The various quantifiers are systematically investigated vs the strength of the
interqubit coupling and vs both, the environmental temperature and the ~Ohmic-like! bath-interaction strength.
Our main findings are that these four gate quantifiers depend only very weakly on temperature, but are
extremely sensitive to the bath-interaction strength. Interestingly enough, however, we find that the XOR gate
operation deteriorates only weakly upon decreasing the interqubit coupling strength. This generic case study
yields lower bounds on the quality of realistic XOR gate operations.
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I. INTRODUCTION

The basic elements of quantum computation are logic
quantum gates, which represent manipulations of quantum
bits, u0& and u1&, according to Boolean algebra. Any arbitrary
complex logic operation can be build up of only a few basic
gates ~universal gates! @1# and one can show that almost
every gate that operates on two or more qubits is a universal
gate @2#. The explicit construction of quantum networks for
elementary arithmetic operations then becomes possible
upon appropriately combining such universal gates; see, for
instance, Ref. @3# for the explicit construction of the addition
or the modular exponentiation. In turn, this permits the
implementation of Shor’s quantum factorizing algorithm @4#
in terms of elementary gates. Together with Deutsch’s algo-
rithm @5#, these two quantum algorithms are presently the
most important examples that are known to be superior to
their classical counterparts and which do justify the current
efforts towards a technological realization of a quantum
computer.
In this work we concentrate on one such elementary gate,

namely, the quantum exclusive OR ~XOR! gate. It is a unitary
transformation that propagates an initial state uC in& of a two-
qubit system to a final state uCout&5UXORuC in&. Represented
in the computational basis ub i&P$u00&,u01&,u10&,u11&% (i
51, . . . ,4), the XOR gate operation can be written as

UXOR5S 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

D . ~1.1!

Since this operation inverts the state of the second qubit of
1050-2947/2001/65~1!/012309~11!/$20.00 65 0123
the basis states if the first qubit is in the state u1&, this op-
eration is also called the quantum controlled-NOT ~CNOT!
gate. The set of all one-qubit gates together with the quantum
XOR gate is universal, as has been demonstrated in Ref. @6#.
The main impediment on the roadway to a working quan-

tum computer is decoherence @7–12#. It disturbs the phase
relation in a quantum superposition state and therefore is
effective at the roots where the quantum computer is be-
lieved to have its most important advantage. Any realistic
quantum computer will have some interaction with its envi-
ronment, which induces decoherence ~decay of the off-
diagonal elements of the reduced density matrix! and dissi-
pation ~change of populations of the reduced density matrix!.
Moreover, other sources for decoherence that are due to im-
perfect gate operations and cross talks of the qubits within a
register need to be considered @10#.
Several previous works in the literature deal with the ef-

fect of decoherence in quantum information processing sys-
tems. Unruh @7# and Palma et al. @9# consider a model of a
single qubit, which is represented by the eigenstates of the
quasispin operator sz and which couples to a bosonic envi-
ronment via its sz component. It describes appropriately the
dephasing ~decoherence! but does not include population ex-
change ~dissipation!. Combining L noninteracting qubits of
this type, they estimate the decoherence ~in the limit of a
large coherence length of the bath! to increase exponentially
with the length L of the register.
Dissipative effects ~bit-flip errors! are properly described

by the so-called spin-boson model @13–16#, where the qubit
is represented by the sx component of the spin 1/2, but the
coupling to the bosonic bath is mediated by the sz compo-
nent of the spin-1/2 ~note that this refers to the localized
representation!. In this model, the bath also induces transi-
tions between the two system eigenstates ~bit flips! and—in
©2001 The American Physical Society09-1
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addition to decoherence—energy is exchanged between sys-
tem and bath. The general solution of the problem in terms of
a generalized ~non-Markovian! master equation for the entire
reduced density matrix for an arbitrary initial preparation in
the presence of a static bias and also for a time-dependent
driving has been given in Ref. @16#. In our work, the assump-
tion of a Markovian bath and of a weak system-bath interac-
tion ~Bloch-Redfield approach!, which may restrict the valid-
ity of the master equation ~see below!, is not made.
The previously discussed works concern the investigation

of decoherence in single qubits or in a register of noninter-
acting qubits. Decoherence and dissipation in a system of
interacting qubits has been studied only rarely. The dynam-
ics of two coupled two-level systems has been investigated
by Dubé and Stamp @17# by means of a general model for
coupled Josephson junctions, for coupled nanomagnets, or
for interacting Kondo impurities. Each two-level system is
represented ~in the tunneling representation! by the sx com-
ponent of a spin 1/2. The two spins interact via their sz
components. Moreover, their sz components couple to a
bosonic bath. By use of real-time path integrals the dynamics
of the relaxation process is determined. Although no specific
problem of quantum information processing is investigated,
this is the first work where two interacting spins in a dissi-
pative bath have been considered.
A similar model has been studied by Governale, Grifoni,

and Schön @18#. Two biased spin-~1/2! systems interact via
their sy components, which is the appropriate coupling for
Josephson-junction charge qubits ~see below!. Moreover,
their sz components couple either to the same or to different
bosonic baths. Applying the widely used Bloch-Redfield for-
malism, the time evolution of the populations of the logical
states is evaluated. This model describes dissipation being
caused by fluctuations in voltage sources in Josephson-
junction charge qubits ~see below!. However, no specific
quantum-information operation has been considered.
A two-qubit quantum gate for quantum information pro-

cessing in coupled quantum dots has been investigated in
Refs. @11,19#. Two spin-~1/2! systems are coupled using a
time-dependent Heisenberg-type interaction. Moreover, a
coupling of the spins to a bosonic bath has been taken into
account. By solving the quantum Liouville equation in the
limit of weak system-bath coupling ~Born-Markov approxi-
mation! for the reduced density operator, the purity and the
fidelity of the swap operation Uswapui j&5u j i& (i , j50,1) is
calculated as a function of time. However, the authors con-
sider the time evolution of the quantum system after the
swap operation has been completed. The same is true for the
XOR gate operation in Ref. @11#, where, additionally, a further
assumption has been made: The pulse sequence to realize the
quantum XOR consists of four pulses of the external fields.
Each pulse is taken to be constant over the corresponding
time interval. To obtain the solution over the entire time span
within the Born-Markov approximation, it is necessary to
assume a finite time interval between the single pulses. This
is required because the Born-Markov approximation is
known to violate positivity of the reduced density operator at
short transient times @20,21#. This additional time span
~pulse-to-pulse time! has been taken as three times the
01230
switching time interval. This leads to an extension of the
computation time, which is only due to formal mathematical
reasons and which deteriorates the quality of the gate opera-
tion. Moreover, a systematic study of the dependence of the
gate quantifiers on the relevant parameters has not been
given.
In this work, we investigate systematically the XOR quan-

tum gate in presence of an interaction of the qubits with their
environment. Thereby, we take into account the full time
dependence of the external fields, which induce the XOR op-
eration without invoking further approximations on the sys-
tem Hamiltonian. In particular, we use the numerical ab ini-
tio technique of the quasiadiabtic-propagator path integral
~QUAPI! @22# ~for other applications, see also Refs. @23,24#!.
This numerically precise iterative real-time path-integral
method does not suffer from the above-mentioned problem
of lacking positivity. In order to realize the logic XOR opera-
tion in physical systems, we introduce a generic model
Hamiltonian, which is suitable for studying the XOR opera-
tion on a very general and idealized level. We determine the
quality of the gate by calculating the four characteristic gate
quantifiers introduced by Poyatos, Cirac, and Zoller @25#;
namely, the ~i! purity, ~ii! fidelity, ~iii! quantum degree, and
~iv! entanglement capability. To that end, we consider two
important types of computational errors, i.e., phase errors
and bit-flip errors. The former can be modeled by coupling
the sz component of each spin to the bath while the later is
induced by coupling the sx component of each spin to the
bath. We are mainly interested in the quality of the gate
operation during its time evolution and, most importantly,
right after it has been completed. We choose three different
parameter sets for which different coupling constants in the
qubit Hamiltonian lead to differently long time intervals re-
quired for the gate operation.
So far, we have discussed theoretical aspects of quantum

information processing. However, those refined and highly
elaborate concepts face the question of how they can be
implemented in experimental hardware. Several proposals to
build a quantum information processor exist. Prominent can-
didates are, for instance, atoms in optical cavities, ions in
linear or Paul traps interacting with laser beams, or nuclear
spins in a nuclear magnetic resonance liquid @26#. Although
the experimental techniques in those fields of research are
currently most advanced, the problem of upscaling of a
quantum computer can seemingly only be solved within
condensed-matter systems that can be embeded in an elec-
tronic circuit. Promiment systems for condensed-matter qu-
bits are flux states of a SQUID ~superconducting quantum
interference device! ~flux qubits! @27# ~see also @12#!, charge
states of superconducting islands with Josephson junctions
~charge qubits! @12,28#, and spin @11,29# or charge @30#
states in ultrasmall coupled semiconductor quantum dots
~quantum-dot qubits!. Moreover, several realizations of qu-
bits in nuclear @31,32# and electronic @32,33# spins in semi-
conductor nanostructures have been proposed.
The paper is organized as follows: In Sec. II, we introduce

a generic model as a starting point for the quantum XOR
operation including the interaction with the environment. In
Sec. III, we present a brief review on the numerical tech-
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nique of the QUAPI, which we employ in the following. In
order to determine the quality of the decoherent XOR gate, we
use four quantifiers which are introduced in Sec. IV. The
results and the conclusions are presented in Secs. V and VI,
respectively.

II. A GENERIC MODEL FOR THE QUANTUM XOR GATE

A. The coherent XOR operation

The quantum XOR gate is a two-qubit operation that can
be modeled by two coupled spin-~1/2! systems represented
by the Pauli operators sW j5(s j

x ,s j
y ,s j

z)T, j51,2. The two
logical states of each qubit are represented by the two eigen-
states of the sz component of each spin, i.e., u0& j[u↑& j and
u1& j[u↓& j . We assume that the single qubit as well as the
coupling between the two qubits can be controlled by switch-
ing on ~local! external fields, for instance, magnetic fields.
This system can generically be described @12# by the generic
Hamiltonian

HXOR~ t !52
\

2 (
j51

2

BW j~ t !sW j1\(
j5” k

J~ t !s j
1sk

2 , ~2.1!

where s j
65(s j

x1is j
y)/2. Moreover, BW j(t)5„B j

x(t),0,
B j
z(t)…T, j51,2 are time-dependent coupling strengths ~with
the dimension of a frequency! arising from local time-
dependent external fields at the site of the spin j in longitu-
dinal ~z! or transverse ~x! direction. In Eq. ~2.1!, the coupling
between the two qubits is assumed to be symmetric; further-
more, it should be controllable from the outside leading to a
time-dependent interaction strength J(t). The particular form
of the interaction in Eq. ~2.1! is only one example. We note
that this generic model does not account for the particular
details of a physical realization of qubits in a specific
condensed-matter system. For each individual system, such
as flux qubits or charge qubits, the Hamiltonian looks differ-
ent in detail. In particular, the coupling term between the two
qubits takes different forms. However, all two-qubit Hamil-
tonians have a structure that is similar to our generic model
in Eq. ~2.1!. The general physical behavior will be similar
such that our generic model serves as an archetype.
The quantum XOR gate ~1.1! can be obtained by a se-

quence of one- and two-qubit operations according to @12#

UXOR5U2
x S p

2 DU2z S 2
p

2 DU2x~2p !U12S 2
p

2 DU1x S 2
p

2 D
3U12S p

2 DU1z S 2
p

2 DU2z S 2
p

2 D , ~2.2!

where

U j
x/z~a !5expS i a

2 s j
x/zD , j51,2,

U12~b !5exp@ ib~s1
1s2

21s1
2s2

1!# ~2.3!

are the propagators over the single time intervals with the
external fields in the Hamiltonian, Eq. ~2.1!, switched on and
01230
off in the following way: In order to attain this propagator, a
pulse sequence of the external fields is necessary. For sim-
plicity we assume throughout this work, that the pulses are
switched instantaneously on and off and are constant over
the time span toff2ton during which they are on. This induces
time-dependent interaction strengths B(t)5B@Q(t2ton)
2Q(t2toff)# with B5B j

(x/z) , J5const and with Q(t) being
the Heaviside function. Furthermore, we assume that both
spins are equal and experience local fields of equal strength.
This implies B1

x/z5B2
x/z[Bx/z. The angles a and b in Eq.

~2.3! are related to the actual physical propagation time t
according to

a5Bx/zt and b5Jt . ~2.4!

The switching times then follow as t15p/(2Bz), t25t1
1p/(2J), t35t21p/(2Bx), t45t31p/(2J), t55t4
1p/(Bx), t65t51p/(2Bz), and tXOR5t61p/(2Bx), where
tXOR denotes the total time elapsed during the full XOR gate
operation. An example of this pulse sequence is sketched in
Fig. 1 for the case of Bx5Bz5J . The coupling constants are
given in units of Bz while the time is scaled in units of
(Bz)21. One immediately observes that the computation time
tXOR is extended if the coupling energies are decreased. We
note that the assumption of rectangular pulses is not required
by the numerical technique we use and is made here only for
the sake of simplicity. We could also consider other shapes of
the pulses that are more realistic for specific physical sys-
tems, and especially, we could consider imperfect switching
processes as well; the latter would constitute a further source
of decoherence. In this respect, our generic model is minimal
since it assumes precise control over the deterministic part of
the time evolution via precise control of the external fields.
More realistic assumptions on the external driving fields like
nonrectangular pulse shapes or imperfect switching would
deteriorate our findings as these effects are an additional
source of decoherence.

FIG. 1. Schematic view of a pulse sequence necessary to gen-
erate the quantum XOR gate. The parameters are set to Bx5Bz5J
5const. The frequencies are given in units of Bz while the time is
scaled in units of (Bz)21. The switching times t j are given in the
text and are in this case equal to multiples of p/2.
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B. Interaction with the environment

We model the interaction of the qubit system with the
fluctuating environment by a Hamiltonian, in which HXOR(t)
is coupled to a bath of harmonic oscillators, i.e.,

H~ t !5HXOR~ t !1HB1H int
x/z ~2.5!

with

HB5(
j51

N

\v jS a j
†a j1

1
2 D . ~2.6!

Here, a j
† (a j) denotes the creation ~annihilation! operator of

the j th bath oscillator with frequency v j . Since we want to
investigate the role of bit-flip errors as well as phase errors
we include in our model two different types of interactions.
On the one hand, the sx components of the spins couple to
the fluctuating environment and the populations of the qubit
states are disturbed ~bit-flip errors!. On the other hand, phase
errors are generated by coupling of the sz components of the
spins to the environmental noise. This is conveniently mod-
eled by the form

H int
x/z5

\

2 ~s1
x/z1s2

x/z!(
j51

N

k j
x/z~a j

11a j!, ~2.7!

where k j
x/z denotes the coupling strength of the j th oscillator

to the system and where the superscript (x/z) denotes one or
the other kind of interaction. We note that we assume here a
coupling of the two spins to the same bath. This implies that
the spins are effectively coupled to each other via the bath. A
coupling of the spins to different ~uncorrelated! baths could
be readily incorporated in the numerical QUAPI technique
~see below!.
To study the dynamics of this system, we have to specify

the initial conditions. Throughout this work, we assume that
the density operator W(t) of the entire system plus bath at
initial time t50 factorizes according to

W~0 !5rS~0 ! ^ rB . ~2.8!

rS(0) is the density operator of the system at time t50 and
rB5ZB

21 exp@2HB /(kBT)# is the canonical equilibrium distri-
bution of the ~decoupled! bath at temperature T. Moreover,
ZB5tr exp@2HB /(kBT)# and kB denotes the Boltzmann con-
stant.
The influence of the bath is fully characterized @14# by the

spectral density

Gx/z~v !52p(
j51

N

~k j
x/z!2d~v2v j!, ~2.9!

which assumes a continuous form if the number N of oscil-
lators approaches infinity. Throughout this work, we apply an
Ohmic spectral density with an exponential cutoff, i.e.,

Gx/z~v !5gx/zv exp~2v/vc!, ~2.10!
01230
where the dimensionless bath-interaction constant gx/z char-
acterizes the strength of the interaction with the environment.
This spectrum mimics the environmentally induced fluctua-
tions in the external circuit, which supplies flux through the
SQUID loops in the flux qubits @12,27#. Moreover,
background-charge fluctuations in the voltage sources in Jo-
sephson charge qubits @12,28# also lead to an Ohmic imped-
ance R. Similarly, electronic states in coupled quantum-dot
qubits experience an Ohmic environment, either for the spin
@11,29# or for the charge @30# degrees of freedom.

III. NUMERICAL AB INITIO TECHNIQUE: QUAPI

In order to describe the dynamics of the two-qubit system
of interest it is sufficient to consider the time evolution of the
reduced density operator

r~ t !5trbath_U~ t ,0!W~0 !U 21~ t ,0!,

U~ t ,0!5T expH 2i/\E
0

t
H~ t8!dt8J . ~3.1!

Here, U(t ,0) is the propagator of the full system plus bath
and T denotes the time-ordering operator. Moreover, trbath
means the partial trace over the harmonic bath oscillators.
Due to our assumption that the bath is initially at thermal
equilibrium and decoupled from the system, see Eq. ~2.8!,
the partial trace over the bath can be performed. We denote
the matrix elements of the reduced density matrix in the
computational basis with r i j(t)[^b iur(t)ub j& and rewrite
them according to Feynman and Vernon @34# as

r i j~ t !5 (
m ,n51

4

G i j ,mn~ t ,0!rmn~0 !, ~3.2!

with the propagator G given by

G i j ,mn~ t ,0!5E DxDx8A@x#A*@x8#FFV@x ,x8# . ~3.3!

The functional A@x# denotes the probability amplitude for
the free system to follow the path x(t) and FFV@x ,x8# de-
notes the Feynman-Vernon influence functional @34# ~see
Ref. @14# for details!. The functional integrations in Eq. ~3.3!
extend over paths with end points x(0)5xm , x(t)5x i ,
x8(0)5xn , and x8(t)5x j , which belong to the initial and
final states, rmn(0) and r i j(t), respectively.
The technique that we use to calculate the reduced density

operator, Eq. ~3.2!, is the iterative tensor multiplication
scheme derived for the so-called QUAPI. This numerical al-
gorithm was developed by Makri and Makarov @22# within
the context of chemical physics. Since its first applications it
has been succesfully tested and adopted to various problems
of open quantum systems, with and without external driving
@22–24#. Because the details of this algorithm have been
extensively discussed previously in the literature @22–24#,
we only mention those prominent ingredients that are of im-
portance for our work.
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~i! Symmetric splitting of the short-time propagator: To
obtain a numerical iteration scheme, we discretize the time
interval @0,t# into N steps Dt , such that tk5kDt and split
symmetrically the full propagator over one time step
U(tk11 ,tk) in Eq. ~3.1!, according to the Trotter formula, into
a system and an environmental part,

U~ tk11 ,tk!'exp~2iHBDt/2\ !US~ tk11 ,tk!

3exp~2iHBDt/2\ !,

US~ tk11 ,tk!5T expH 2
i
\Etk

tk11
dt8HXOR~ t8!J . ~3.4!

The neglect of higher-order terms of the propagator in Eq.
~3.4! causes an error of the order of Dt3. The short-time
propagator US of the bare system is given by the correspond-
ing exact system propagators in Eq. ~2.3! over a time step
Dt . At this point, we emphasize that this method is not
plagued by the problem of lacking positivity of the density
operator at short times, as is the case for the usually em-
ployed master-equation approach in the Born-Markov limit
@11,19#. The exact coherent dynamics of the bare system en-
ters and the decomposition of the short-time propagator ac-
cording to Eq. ~3.4! is valid for any arbitrary short time.

~ii! The interaction with the bath induces correlations
among the paths ~memory! that are described by the influ-
ence functional in Eq. ~3.3!. As long as the temperature of
the Ohmic bath is finite, these correlations decay exponen-
tially fast with increasing time @14#. This motivates to ne-
glect such long-time correlations and to break up the influ-
ence kernels into smaller pieces of length KDt , where K
denotes the number of time steps over which the memory is
fully taken into account.
The two strategies in ~i! and ~ii! are countercurrent. In

step ~i! a small time step Dt is desirable in order to minimize
the error due to the neglected higher-order terms in the
propagator. On the other hand, in ~ii! a large time step is
needed in order to take a long memory range into account. A
compromise between those two errors has to be found in
practice by applying the principle of minimal sensitivity @24#
to adjust the two parameters Dt and K, see discussion below.

~iii! The third important ingredient is the appropriate
choice of basis representation of the problem. For the algo-
rithm it is required to iterate the dynamics in the eigenbasis
of that system operator, which couples to the bath. Then the
influence functional in Eq. ~3.3! can be evaluated in terms of
the eigenvalues of the coupling operator. In problems where
the coordinate of a quantum particle in a continuous potential
is damped, the continuous position operator turns into a dis-
crete set of position eigenvalues. Hence, this representation
has been termed the discrete variable representation.

Bit-flip errors. If the sx components of each spin couple
to the bath, see Eq. ~2.7!, the eigenbasis of the coupling
operator is determined by ^a iu(s1

x1s2
x)/2ua j&5l i d i j with

l150, l2521, l351, and l450. A basis rotation of the
computational basis with basis states ub j& has to be per-
formed according to
01230
ua i&5(
j51

4

R i jub j&, ~3.5!

with the transformation matrix

R5
1
2 S 1 1 1 21

21 21 1 21
1 21 1 1

21 1 1 1
D . ~3.6!

Phase errors. For the second case that the sz components of
each spin couple to the bath in Eq. ~2.7!, the system part of
Hamiltonian is already diagonal in the computational basis,
i.e., ^b iu(s1

z1s2
z )/2ub j&5l id i j with l151, l250, l350,

and l4521. No additional basis transformation is neces-
sary.

IV. CHARACTERISTIC GATE QUANTIFIERS

In order to quantify the quality of the quantum gate, we
use four global parameters that have been defined by Poya-
tos, Cirac, and Zoller @25#: ~i! the gate fidelity F, ~ii! the gate
purity P,~iii! the quantum degree Q of the gate, and ~iv! the
entanglement capability C of the gate. These four quantifiers
can be calculated once the reduced density operator r in Eq.
~3.1! is determined. To this end, 16 unentangled input states
uC in

j &, j51, . . . ,16 are defined according to uca&1ucb&2
(a ,b51, . . . ,4), with uc1&5u0&, uc2&5u1&, uc3&5(u0&
1u1&)/A2, and uc4&5(u0&1iu1&)/A2. They form one pos-
sible basis set and span the Hilbert space for the superopera-
tor VXOR , where r(tXOR)5VXORr(0), see Ref. @25# for de-
tails. Moreover, these basis states are chosen to be
unentangled states in order to avoid the application of a pre-
ceding two-qubit gate for the preparation of the system state.
The gate fidelity F is defined as the overlap between the

propagation with the ideal propagator UXOR , Eq. ~1.1!, av-
eraged over all 16 initial states uC in

j & according to

F5
1
16 (

j51

16

^C in
j uUXOR

1 rXOR
j UXORuC in

j & ~4.1!

with rXOR
j 5r(tXOR), with initial condition r(0)

5uC in
j &^C in

j u.
In a similar way, the purity P is defined as

P5
1
16 (

j51

16

tr~rXOR
j !2. ~4.2!

This quantity is proportional to the ~negative! linearized
entropy and reflects the effects of decoherence.
The third quantity, the quantum degree Q of the gate, is

defined as the maximum of the overlap of all possible output
states stemming from unentangled states and of all maxi-
mally entangled ~Bell! states uCme

k &, k51, . . . ,4. In formal
terms, this implies
9-5
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Q5max
j ,k

^Cme
k urXOR

j uCme
k &. ~4.3!

The purpose of this parameter is to quantify the notion of
nonlocality. Bennett and co-workers @35# have shown that all
those density operators that have an overlap with a maxi-
mally entangled state being larger than the value (2
13A2)/8'0.78 are nonlocal, i.e., violate the Clauser-
Horne-Shimony-Holt inequality @35#.
Obviously, F51, P51, Q51 denote the ideal gate op-

eration.
The fourth quantifier is the entanglement capability C of

the gate. It denotes the smallest eigenvalue of the partial
transposed density matrix @36#, which is determined from
rXOR
j for all unentangled input states uC in

j &. rXOR
j character-

izes an entangled state if and only if the smallest eigenvalue
of the partial transposed density operator is negative. The
ideal operation has an entanglement capability of C520.5.

V. RESULTS

Having determined the reduced matrix in Eq. ~3.1! by the
iterative QUAPI algorithm, we investigate the influence of
the interaction with the environment systematically. There-
fore, we assume that the two qubits are identical and expe-
rience external fields of the same strength, i.e., B1

x5B2
x

5Bx and B1
z5B2

z5Bz. Moreover, we introduce the follow-
ing dimensionless parameters: We scale the quantities with
respect to the characteristic energy scale of the single qubit,
which is given by the energy splitting \Bz of the single
qubit. This in turn defines a time scale (Bz)21. Consequently,
the temperature is given in units of \Bz/kB ~Note that gx/z is
already dimensionless!. For all following results, we have
used a cutoff frequency of vc550Bz in Eq. ~2.10!.

A. Time-resolved quantum XOR operation

We first illustrate the time-resolved dynamics of a generic
XOR operation. To this end, we determine the populations of
the four states of the computational basis as a function of
time, i.e., P i j(t)ª^i j ur(t)ui j& with i , j50,1 for the initial
condition r(0)5u11&^11u. We choose the pulse sequence
sketched in Fig. 1 with parameters Bx5Bz and J5Bz. More-
over, we choose for illustrative purpose a rather high tem-
perature of T50.1\Bz/kB . Figure 2 depicts the results for
the three different cases of ~i! no coupling to the bath, gx/z

50 ~solid line!, ~ii! bit-flip errors with gx50.01 ~long
01230
dashed line!, and ~iii! phase errors with gz50.01 ~dotted
line!. The switching times t j are equal to multiples of p/2 for
this special case of equal energies.
The iterative QUAPI algorithm possesses two free param-

eters that have to be properly adjusted. We fix the number K
of memory time steps and the length Dt of each time step
according to the principle of minimal sensitivity @24#. By
applying this method, we obtain the values Dt
50.15(Bz)21 with K52 ~not shown!.
As one observes, the final state of the ideal operation

(gx/z50) is uC&5u10&. The deviation of the dynamics in
presence of decoherence and dissipation from the ideal case
is clearly visible.
We emphasize here that no additional time intervals be-

tween the switching events have been inserted as it would
have been necessary for the application of Bloch-Redfield-
type master-equation techniques.

B. Quality of different quantum XOR operations

In order to fix the parameter sets for the numerical simu-
lations in the following investigations, we are guided by
three different physical realizations of condensed-matter qu-

FIG. 2. Time-resolved dynamics of the quantum XOR operation
for the case of equal energies, i.e., Bx5Bz5J . Depicted are the
populations P i j(t)5^i j ur(t)ui j& as a function of time for the initial
condition r(0)5u11&^11u for three different cases of ~i! no coupling
to the bath, gx/z50 ~solid line!, ~ii! bit-flip errors with gx50.01
~long dashed line!, and ~iii! phase errors with gz50.01 ~dotted line!.
The time is scaled in units of (Bz)21. Moreover, we set the tem-
perature to T50.1\Bz/kB and the cutoff frequency to vc550Bz.
TABLE I. Parameter sets that have been used for the simulations of the quantum XOR gate. They mimic
typical experimental situations for coupled qubit systems. The explcit values for three important solid-state
qubit systems, i.e., flux qubits and charge qubits in superconducting Josephson devices ~sets I and II! and spin
and charge qubits in ultrasmall semiconductor quantum dots ~set III! have been taken from literature ~see
text!. The dimensionless time tXORBz the entire gate operation takes is given in the last column.

Set Bz Bx J T Bx/Bz J/Bz T/Bz tXORBz

I ~Flux qubits! 0.5 K 50 mK 25 mK 25 mK 0.1 0.05 0.05 82(p/2)
II ~Charge qubits! 1 K 100 mK 5 mK 50 mK 0.1 0.005 0.05 442(p/2)
III ~Quantum-dot qubits! 1 meV 1 meV 0.05 meV 125 mK 1 0.05 0.01 46(p/2)
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bits, namely, flux qubits ~set I! @27,12#, charge qubits ~set II!
@12,28#, and qubits realized in coupled semiconductor quan-
tum dots ~set III! @11,29#.
The typical situation in superconducting qubits ~set I and

set II! is that the energy Bx for the sx components is one
order of magnitude smaller than the characteristic energy Bz

of the single qubits. The typical temperature in both cases is
T50.05Bz, while the interqubit coupling strength J for the
charge qubits is one order of magnitude smaller than for the
flux qubit. Hence the gate operation for set II takes longer
than for set I and one would expect set II to be more exposed
to decoherence. Therefore, set I should yield better results
than set II. However, as we shall see below, this depends
strongly on the kind of error induced by the bath, i.e., bit-flip
or phase error.
In order to reduce the duration of the gate operation in

comparison to set I, we choose Bx5Bz in a third parameter
set ~set III!. This choice implies that for set III the XOR takes
the least time. Moreover, we additionally reduce temperature
to T50.01Bz compared to set I. The third parameter set
mimics typical experimental situations for coupled semicon-
ductor quantum bits. The parameter sets are summarized in
Table I. The total operation time tXOR can easily be deter-
mined, see discussion below Eq. ~2.4!.
The QUAPI parameters are determined by the principle of

minimal sensitivity for K53. We obtain for the case of H int
x

~bit flip errors! for set I @in units of (Bz)21] Dt50.06, for set
II Dt50.2, and for set III Dt50.02, and for the case of H int

z

~phase errors! for set I Dt50.013, for set II Dt50.08, and
for set III Dt50.01.

1. Dependence on temperature

The dependence of the four characteristic gate quantifiers
on the bath temperature T is depicted with Fig. 3. In panel ~a!
the influence of the random bit flips are investigated while
panel ~b! depicts the effect of phase errors. The bath-
interaction constant for the bit-flip errors is chosen to be gx

51026 and for the phase errors we set gz51024 @12#.
First, one observes that all results depend only very

weakly on temperature. Extrapolating the results to zero tem-
perature indicates the influence of the nonvanishing quantum
fluctuations of absolute zero. This behavior is typical for
nonseparable quantum systems being bilinearly coupled to a
harmonic bath @37#. Note that even at zero temperature finite
damping is present because we do not monitor the ~unitary!
time evolution of the total system plus bath, but rather that of
the physical subsystem being in contact with the bath. The
environmental degrees of freedom, which are all traced out,
are thus causing dissipation on the relevant system variables.
At zero temperature, the second moment ~and even-order
higher ones! of the quantum fluctuations acting on the sub-
system are not vanishing, and energy of the subsystem can
be dissipated even at T50. In particular, in clear contrast to
the classical case, the coupling energy assumes quantum me-
chanically a nonzero value at zero temperature. This cou-
pling energy then allows to rearrange energy and generates
decoherence at T50.
01230
Second, the results for F, P, and Q always are located
below a value of 0.999 85 for bit-flip errors and 0.975 for
phase errors. This fact demonstrates that even smaller
strengths of the coupling to the environment than the used
gx51026 or gz51024 are necessary in order to obtain a
desired value of 0.999 99 @11#.
As discussed in the preceding section, set III should yield

the best results since it requires the shortest operation time.
However, as one observes in Fig. 3, this strongly depends on
the operator mediating the coupling to the bath. For bit-flip
error processes, it is the system operator

Hc
x5
1
2 ~s1

x1s2
x !5S 0 1 1 0

1 0 0 1
1 0 0 1
0 1 1 0

D , ~5.1!

which couples to the bath. One readily observes that a long J
pulse, during which the interqubit coupling operator

H125Js j
1sk

25JS 0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

D ~5.2!

is switched on, generates many transitions among different
states. This can be seen by diagonalizing ~the inner nonzero
block of! H12 and by transforming Hc

x to the resulting eigen-
basis of H12 . However, if the B j

x fields are switched on, then
not as many transitions occur. This can be seen by diagonal-
izing the corresponding system Hamiltonian Bx 1

2 s j
x being

switched on and by transforming Hc
x to the resulting eigen-

basis. This explains why set I with a shorter J pulse yields
better results than set II for the case of bit-flip errors, see Fig.
3~a!.
For the case of phase errors, it is the system operator

Hc
z5
1
2 ~s1

z1s2
z !5S 1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 21

D , ~5.3!

which couples to the bath. If now the B j
x fields are switched

on for a long time span, many transitions among different
states are induced. In analogy to the previous case, Hc

z can be
transformed to the eigenbasis of the corresponding system
Hamiltonian Bx 1

2 s j
x being switched on and the resulting op-

erator has many nonzero matrix elements that generate many
transitions. On the other hand, long J pulses are less effective
since H12 and Hc

z commute. This explains why set III with
shorter B j

x pulses compared to set I yields better results. Put
differently, a gate operation that takes longer than another
may nevertheless perform better when subjected to an inter-
mittently switched on system Hamiltonian, which is less sen-
9-7
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sitive to decoherence. This qualitative conclusion is robust
for the treatment of more realistic systems as they may arise
in the future.

2. Dependence on the bath-interaction strength

As shown in the preceding section, the quality of the gate
operation cannot be improved by lowering the temperature
of the environment. The second possibility to reduce the in-
fluence of the environment is the shielding of the qubit sys-
tem against external noise. This implies that the strengths of
the bath interaction, gx/z, are reduced. The results for the
dependence of the four gate quantifiers on the coupling con-
stants gx/z are depicted in Fig. 4.
One observes that the deviations of the four gate quanti-

fiers from their ideal values depend linearly on the bath-
interaction strengths. However, the prefactor is much larger
than 1. Although one might have expected a linear increase
of the deviations with increasing bath interaction in this
small-damping regime, the deviations are not of the same
order of magnitude as the bath-interaction strengths them-
selves but can be several orders of magnitude larger. This
demonstrates that the bath-interaction strengths have to be
less than 1027 in order to achieve deviations being less than

FIG. 3. Dependence of the fidelty F, the purity P, the quantum
degree Q, see Eqs. ~4.1!–~4.3!, and the entanglement capability C
on temperature T for bit-flip errors ~a! and phase errors ~b!. The
temperature is scaled in units of \Bz/kB . The qubit parameters are
given in Table I. The bath-interaction constant for the bit-flip errors
is set at gx51026 and for the phase errors at gz51024.
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the desired 1025 ~see above!. Moreover, the bath-interaction
strengths have to be less than 1023 in order to obtain values
for the quantum degree larger than Q'0.78. Only then, the
Clauser-Horne-Shimony-Holt inequality is violated and non-
local correlations between the entangled qubits occur.
As in the previous section, we find again that the results

for set I yield the best results when bit-flip errors are consid-
ered and set III performs best when phase errors are consid-
ered. The same argumentation as presented in Sec. VB 1
applies.
We note that although the individual results for the gate

quantifiers appear to be similar, they contain different physi-
cal information. For instance, the purity P does not quantify
the ‘‘amount of entanglement’’ between the two qubits,
which, however, is characterized by the entanglement capa-
bility C. In addition, one might also find different limits for

FIG. 4. Dependence of the four gate quantifiers on the dimen-
sionless bath-interaction strength. Shown are the deviations from
the ideal values, i.e., 12F, 12P, 12Q, and u20.52Cu in a log-
log representation. Upper panel ~a!: bit-flip errors (gx); lower panel
~b!: phase errors (gz). The lower bound of Q'0.78 for the Clauser-
Horne-Shimony-Holt inequality turns into an upper bound for the
deviation 12Q and is indicated by the horizontal dotted-dashed
line ~see text!. For the remaining parameters, see Table I.
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the quantifiers being required for a succesful quantum calcu-
lation.

3. Dependence on interqubit coupling strength

In the remaining part we address the dependence of the
quality of the gate operation on the strength J of the interqu-
bit coupling. Physically, one expects that an interqubit cou-
pling strength J, which is comparable to the characteristic
qubit energy Bz, i.e., J'Bz, would yield best performance
results because of a corresponding minimal gate operation
time. This is confirmed in Fig. 5 for the two different sets I
and III ~set II is equivalent to set I!. Panel ~a! illustrates the
results for the bit-flip errors with gx51026, and correspond-
ingly panel ~b! for the phase errors with gz51024. For J

FIG. 5. Dependence of the gate quantifiers on the strength J of
the interqubit coupling. Shown are the deviations from the ideal
values, i.e., 12F, 12P, 12Q, and u20.52Cu in a log-log repre-
sentation where J is scaled in units of Bz. Depicted are the results
for parameter sets I and III from Table I. The upper panel ~a! shows
the results for the bit-flip error with gx51026 while the lower panel
~b! depicts the results for the phase error with gz51024. The hori-
zontal dot-dashed line marks the upper bound of 12Q'0.22 for
the Clauser-Horne-Shimony-Holt inequality.
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approaching 1, the deviations of the quantifiers from their
ideal values approach saturation values. Clearly, this ‘‘mini-
mal’’ deviation cannot be avoided, since even in the fastest
gate operation the influence of the bath is still present.
For set I, we find that for coupling strengths J smaller

than 1021 the deviations increase. For set III, however, the
deviations increase already for larger values of J. Overall, we
summarize this section by noting that the XOR gate operation
deteriorates only weakly upon decreasing the interqubit cou-
pling strength.

VI. CONCLUSIONS

In this work we have shown that the numerical
quasiadiabatic-propagator path-integral method ~QUAPI! of
Makri and Makarov provides an appropriate method to in-
vestigate decohering quantum information processes that in-
volve time-dependent Hamiltonians in presence of a cou-
pling to an external environment. We have applied this
iterative algorithm to the example of the quantum XOR gate
operation and have obtained the full time-resolved evolution
of the two-qubit system in presence of time-dependent exter-
nal fields. No further approximations on the time evolution
of the gate operation such as a Markovian evolution or ex-
tended time spans of the gate operation have been invoked.
We have investigated the quality of the quantum XOR op-

eration by numerically determining four characteristic gate
quantifiers, i.e., the fidelity F, the purity P, the quantum
degree Q, and the entanglement capability C of the gate. We
have simulated the gate operation for three parameter sets.
Thereby, we have suceeded in investigating systematically
the quality of the gate operation as a function of the environ-
mental temperature T, the bath-interaction strength g , and
the strength J of the interqubit coupling. Two different types
of errors in the qubits have been modeled: ~i! bit-flip errors
and ~ii! phase errors. We have elucidated how the different
physical setups perform under these conditions. We have
demonstrated that the quality of the gate operation does not
only depend on the total operation time tXOR . However, one
has to carefully take into account the kind of the induced
errors. In order words, this means that not always the shortest
operation will yield the least deviations from the ideal opera-
tion. As another major finding we establish that the quality of
the gate depends only very weakly on temperature but rather
strongly on the bath-interaction strength. Although the de-
viations from the ideal case increase linearly with increasing
bath-interaction strength, they can be several orders of mag-
nitude larger than the bath-interaction strength itself. More-
over, we have illustrated that the interqubit coupling strength
plays an important role and should not be smaller than 0.1E0
with E0 being the typical energy scale of the qubit system.
Since perfect switching mechanisms are assumed, these find-
ings for the deviations from the ideal operation provide a
lower bound since a real XOR gate operation may suffer from
additonal errors induced by imperfect field pulses.
In order for a quantum information processor to operate

optimally, the decoherent influence of the environment needs
to be suppressed. Therefore, three different approaches are
currently discussed: These are the techniques of quantum
9-9
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error correction, fault tolerant quantum computation, and en-
tanglement purification @26#. The general idea common to all
three methods is to use for quantum information processing
only a small subset of a larger set of entangled ancilla qubits.
Although these ideas are very promising for small register
lengths, the techniques become increasingly difficult if one
attempts to realize large qubit registers in physical systems.
Moreover, one has to keep track of the quantum state of the
environment. Whilst these requirements are seemingly fea-
sible for quantum optical information processing systems
@38#, they appear insufficient for condensed-matter systems
with their characteristic huge number of environmental de-
grees of freedom.
An alternative approach consists in minimizing the occur-

rence of errors by controlling decoherence via the applica-
tion of tailored time-dependent external fields to qubit sys-
012309
tems @15,39–42#. For example, the application of a time-
dependent periodic external field can induce a Floquet
spectrum with degenerate quasienergy states @15,39,40# or it
can move the qubit out off resonance with certain bath
modes @42# thereby reducing decoherence. The suitability of
such schemes to a quantum gate operation, however, remains
to be demonstrated.
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