Transformation invariance of Lyapunov exponents
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Ordinary differential equations constitute a widely used tool to describe the dynamical behavior of
physical, biological, chemical and many other systems. Moreover, since Lorenz’s [1] discovery of deter-
ministic non-periodic flow, time-continuous dynamical systems play an important role in the exploration of
chaotic phenomena [2-5]. In the modern theory of dynamical systems, their properties are mainly analyzed
in a qualitative way in terms of their flow in phase space. Afirst simplification of such analysis might be
achieved by transforming the investigated dynamical system to a system with a functional simpler or more
convenient form. As a specific example, we mention recent advances [6,7] in the theory of three-dimensional
dynamical systems with quadratic non-linearities where coordinate transformations to the so-called jerky
dynamics allow for a classification based on functional simplicity of the resulting third-order differential
equations. The new dynamical system, however, should have the same dynamical properties as the original
one, i.e., the character of the long-time dynamics (fixed point, limit cycle, strange attractor etc.) should not
be changed. This leads to the question about the invariance properties of such quantities that can be used to
characterize different dynamical long-time behavior, such as dimensions of attractors or Lyapunov expo-
nents.

The concept of the dimension of an attractor is based on its metric properties, leading, e.g., to the
Hausdorff dimension, or on its invariant measure, yielding, e.g., the information dimension [8]. With this
concept a simple classification of attractors is possible. For instance, a fixed point has dimension zero, a
stable limit cycle has dimension one, a 2-torus has dimension two, while the dimensions of strange at-
tractors being a signature of dissipative, deterministic chaos take on values that are typically non-integer. In
Ref. [9], it is shown that the Hausdorff dimension as well as the information dimension are invariant under
a wide class of invertible coordinate transformations.

Lyapunov exponents are defined using the dynamical long-time properties of the trajectories on an at-
tractor [10]. The type of the attractor is uniquely characterized by its Lyapunov spectrum, i.e., the signs of
the corresponding Lyapunov exponents [2]. For the phase space dimension three, e.g., an attracting fixed
point possesses the Lyapunov spectrum {—, —, —}, an attracting limit-cycle {0, —, —}, an attracting 2-torus
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{0,0,—} and a strange attractor {+,0,—}. Besides this, Lyapunov exponents are also of fundamental
interest, because the most common definiton of chaos in physics is based on them: a dynamical system is
chaotic if its attractor possesses at least one positive Lyapunov exponent.

Moreover, the Lyapunov exponents can also be used to define a dimension-like quantity, the Lyapunov
dimension [8,11]. For typical attractors, the Kaplan—Yorke conjecture states that this dimension is equal to
the information dimension [8,11,12]. This is proven only for the special case of two-dimensional invertible
maps [13], though there are heuristic and numerical evidences for its general validity [8,12,14]. Since the
information dimension is invariant under coordinate changes [9], one can expect that this is also true for the
Lyapunov dimension or even the Lyapunov exponents themselves.

In this paper, we give a detailed and transparent demonstration only based on elementary differential
calculus that this assumption is in fact true. The Lyapunov exponents of dynamical systems that are de-
scribed by ordinary differential equations are invariant under a wide class of transformation of variables.
As a consequence, also the Lyapunov dimension is invariant, and the above definition of chaos is inde-
pendent of the coordinates used. This may not be surprising and, moreover, seems to be a widely accepted
fact. Otherwise, the Lyapunov exponents would surely not have become such an important concept in the
theory of dynamical systems. Nevertheless, to our knowledge there exists no proof of this fact in the lit-
erature. For maps, a corresponding proof is presented by Metzler [15].

As starting point we consider the n-dimensional autonomous dynamical system

% = F(x), (1)

where x denotes a point in an n-dimensional phase space I'* C R”, F(x) is an n-dimensional continuously
differentiable vector field and the overdot denotes the derivative with respect to time ¢. The solution of this
dynamical system for a fixed initial value x, € I'"* is given by the trajectory ¢(¢;Xo). Then, ¢(t = 0;%0) = X
holds and ¢(z;x¢) fulfills the equation

¢ (1 %0) = Flo(t;%0)] 2)

for all > 0. To define the Lyapunov exponents for the dynamical system (1), we consider a reference
trajectory ¢, = ¢(¢; X,) with initial value x, and a nearby trajectory ¢(¢; X, + X,) which belongs to a small
initial deviation X, from x,. The dynamical behavior of such nearby trajectories can be described ap-
proximately by the linearization of Eq. (1) with respect to the reference trajectory ¢,, i.e., by the linear
system of differential equations

with a time-dependent n x n coeflicient matrix (D«F), (¢,) = 0, Fi(¢,) = (0F/0x;)(¢,) (i,j=1,2,...,n).
We denote the solution of Eq. (3) for the initial value X, € R" by ¢, (#;Xo). The subscript x, shall elucidate
the dependence of this solution on the reference trajectory ¢, which is determined by its initial value x;.

The Lyapunov exponents with respect to a reference trajectory ¢, that is supposed to be bounded for all
t = 0 are defined as [10]

~ .1 - ~
I, (Ro) = fim — 10 [, (1 %), )

where we assume that the limit exists. Therefore, they constitute a measure for the mean exponential
divergence or convergence of nearby trajectories. With the above definition, the following statements
originally derived by Oseledec hold [2,10,16]:

(i) There are n Lyapunov exponents 4, 2 22 = 2 /1,7, i.e., there are s gl < s < n) different Lyapunov
exponents A with multiplicity n; and with A > S > W For any 2%, there is a linear vector space

B = {X) € R": Ay, (Xp) < A® }w1thR"*U DU D UY

(11) Which Lyapunov exponent A% will result from Eq (4) depends on the choice of the initial pertur-
bation X, in the following manner: 4, (X,) = A% if X, € U®\ UKD (with ULD = ). In particular, for all
vectors X, that are not in the subspace U limit (4) yields the largest Lyapunov exponent AV,

(iii) In general, the Lyapunov exponents are identical for almost all reference trajectories that belong to
the basin of attraction of a certain attractor.
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Next, we specify the transformation of variables whose effect on the Lyapunov exponents of the
dynamical system (1) we want to study. Such a transformation T : x — y with

y =T(x) (5)

maps the phase space I C R" to a phase space I C R” that is again n-dimensional. We suppose that T is
invertible and possesses an inverse T~' : y — x with

x=T(y) (6)

and that T and T~' are at least twice continuously differentiable with respect to x and y, respectively.
Applying the transformation T to Eq. (1) leads to the new dynamical system

where the transformed vector field G(y) is given by
G(y) = DT[T™ (y)[F[T~'(y)]. (8)

This follows immediately from the differentiation of Eq. (5) with respect to time ¢. For a solution of system
(7) that belongs to an initial value y,, we write ¥(#;y,). The relation between the trajectories of the original
and the transformed dynamical systems (1) and (7) is given by

(1 %0) = T~ {y[r; T(xo)]} )
or, equivalently,
Tlo(t;x0)] = Y[t; T(Xo)]- (10)

This can be verified in the following way. Differentiating Eq. (10) with respect to time t and using (2) and
(9), one obtains an equation for y/[t; T(x)] that is consistent with G{y/[t; T(x¢)]} from (8).

For the definition of its Lyapunov exponents, the dynamical system (7) has to be linearized with respect
to a reference trajectory Y, = ¥(¢;y,). This results in the linear system of differential equations

¥ = DGy, (11)

where (DyG),;(Y,) = 8,,Gi(¥,) = (0G;/dy;)(¥,) (i,j=1,2,...,n). With the solution lzyr(t; Y,) of this linear
differential equation (for an initial value y,), the limit

#y,(¥o) = lim — ln 10y, (2 30)l (12)

defines the Lyapunov exponents of the transformed dynamical system (7). Clearly, from this definition
analogous consequences result as from Eq. (4). In particular, which of the different Lyapunov exponents are
obtained from limit (12) depends on the choice of the initial perturbation y,,.

After describing the considered situation in detail, giving the relevant definitions and fixing the notation,
we are now in the situation to prove that the Lyapunov exponents of the original dynamical system (1) and
of its transformed counterpart (7) agree. Clearly, this equality can be valid only for Lyapunov exponents of
such reference trajectories of (1) and (7) that can be mapped to each other. We consider an arbitrary
bounded reference solution ¢, = ¢(¢;x,) of system (1) and, moreover, suppose that y, = T(x,) holds. It
follows that v, = ¥ (t;y,) = T[e(#;X,)] or, inverted and in shortened form

¢ =T () (13)

are valid. As discussed above, the initial deviations X, or y,, respectively, determine which Lyapunov
exponent of the sets of all different Lyapunov exponents results from Egs. (4) or (12). Therefore, the in-
variance of all of them is proven, if one can show that / (Xo) = g, (¥,) is valid for an appropriate
transformed initial perturbation y,. To perform this proof, we subd1v1de it into four steps:
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(i) It must be guaranteed that the boundedness of ¢, implies that also y, = T(¢,) is bounded for all
t = 0. This, however, is an immediate consequence of the invertibility and differentiability of the trans-
formation T. _

(ii) Since the definitions (4) and (12) are based on the solutions ¢, (¢ X,) and ¥, (#;y,) of the linearized
systems (3) and (11), respectively, we have to investigate the relations between these two solutions.
Therefore, we search for a transformation L : X — y with y = L(X) that converts the solutions of system
(3) to the solutions of (11), i.e.,

L[y, (¢ X0)] = Y, [ L(Xo)]- (14)

To determine the transformation L, we first derive an equation for L and then use this equation to find L.
Since both systems are linear, L is also linear and, therefore, can be written in the form

y =Lx (15)

with a non-trivial n x n matrix L. Taking the derivative of this relation with respect to time and using

Eq. (3), one obtains ¥ = LX 4+ LDF(¢,)x. However, y is determined by differential equation (11), where,

again, y is given by Eq. (15). Collecting all this and taking into account that the resulting equation is valid
for arbitrary X, one finally obtains

This differential equation constitutes an equation that determines the matrix L. However, we will not
evaluate L by integrating (16), since we do not know the initial value L(z = 0) at all. We will, however,
derive a solution of (16) by calculating DyG(,) using Eq. (8). So, we consider

D,G(y)|, = Dy{D.TIT ()IFIT ()]}, . (17)

where the notation |¢r explicitly elucidates that the above expressions have to be evaluated at y = y, after
taking the derivative. Since G depends on y only via T~'(y), we can write G(y) = G[T'(y)] with

G(x) = D,T(x)F(x). (18)
Therefore, for the derivative of G, we obtain

D,G(y)|, =DyG[T'(y)]|,, =DG[T (y)]DyT ' (y)], = DxG[T ' WIDT) [T (y)]| - (19)

Yr v

For the last implication, we have used the identity D,T~'(y) = (D,T) '[T~'(y)]. This follows from dif-
ferentiating T[T '(y)] =y with respect to y, provided that det[D,T(x)] # 0 holds for all x € I'" and,
therefore, D, T(x) is invertible. Eq. (19) can also be written as

D,G(y)

v, - DXE(X) (DXT)71 (X) ’ (20)

Pr

if one takes into account relation (13), @, = T~'(y,). The derivative of G(x) is obtained from Eq. (18),

D,G(x) = Dy[D.T(x)F(x)] + D,T(x)D,F(x). 1)

Here, the arrow in the first summand indicates that the outer derivative is only applied to this labeled term
and not to F. To simplify this first summand, we study it component-wise by writing

1 !
(D«[D, T(x)F(x)]); = 0, [D, T(x)F(x)]; = [0y, (D), (x)]Fx (x) = F (%), 0, Ti(x), (22)
where the summation convention has been used. Since T is supposed to be twice continuously differentiable,
the order of the derivatives can be changed. Then, 0,,7;(x) can be rewritten as (DXT)U(X) and, using

Fi(x) = X, the sum F(x)0,, corresponds to a total time derivative. Altogether, we have Fj(x)0,,0,, Ti(x) =
(d/df)(DsT),,(x) and, therefore,
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d

DAD,T(x)F(9)] = 3

D, T(x). (23)
Now, combining Egs. (20), (21) and (23) and, then, multiplying the result by D,T(¢,), one obtains

D,G(y)DT(p,) = & DyT(p,) + DyT(0,)DF(p,). (24)

Comparing this result with Eq. (16), we finally find the central relation
L =D\T(¢,). (25)

Therefore, the transformation L between the linearized systems (3) and (11) is given by the linearized
transformation T taken at the reference trajectory ¢, = ¢(#;X,). In particular, the relation between the
initial perturbations X, and y, reads y, = L(¢ = 0)Xo = DsT(x;)Xo.

(iii) Based on Eq. (25) we now derive properties of L which are needed to show the invariance of the
Lyapunov exponents. Since the reference trajectory ¢, is supposed to be bounded and the derivative
D, T(x) is finite for finite x, a first consequence of Eq. (25) is the boundedness of L for all # > 0. Therefore,
there exists a time-independent constant Lt < oo such that

LX) = [ILX]| < L7[IX]] (26)

holds for all X € R”. Similarly, taking into account that detL = detD,T(¢,) # 0 is valid for all ¢ > 0,
a corresponding estimation can also be derived for the inverse L~'. Rewritten as an estimation for L, it
reads

L) = [[Lx]| = L7[IX] (27)

with a time-independent constant L~ > 0. Eq. (27) is valid for all X € R".
(iv) With Egs. (26) and (27), the proof that 7, (Xo) and py,[L(Xo)] are identical is now straightforward.
From the definitions of the Lyapunov exponents (4) and (12) follows:

,uT(xl_) [L(io)] _ /lx,(io) = lim l In ||L[¢xr(ta A)E())]H

— — 28
N T A (28)

where also the relation JT(XI)[t;L(io)] = L[o, (t;Xo)] [cf. Eq. (14)] has been used and the two appearing
logarithms have been combined. With Eq. (26) one further obtains piy,)[L(Xo)] — Ay, (Xo) <
lim,_.(1/¢#)InL* and, therefore

Hr(x) [L(X0)] = 4x, (X0) < 0. (29)
Correspondingly, using (27) instead of (26), we find

Hry(s [L(X0)] = 4, (X0) = 0. (30)
Taken together, Egs. (29) and (30) yield the desired result

Hr(x,) [L(QO)] = /lx,-(io)- (31)

To obtain this invariance of the Lyapunov exponents under coordinate changes, we had to make several
assumptions on the transformation T that describes the change of coordinates: T has to be invertible, at
least twice continuously differentiable, and the determinant of its Jacobian DT must not vanish anywhere
in the phase space.

These requirements on T, however, can be weakened by an alternative derivation of Eq. (25) that is
based on a theorem about the solutions of linear systems like (3) or (11). These systems are obtained by
linearizing the original dynamical system along a reference solution. Now, the theorem states [17] that the
solution of such a linear system for an initial value that is the normalized vector in the ith direction of the
underlying (euclidean) space, is given by the derivative of the reference solution of the original dynamical
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system with respect to the ith component of its initial value. For the dynamical system (1) and its linearized
counterpart (3), e.g., this means

op(t;x:) ~ .

“or Py, (1;€), (32)
where €' is a normalized vector in the ith direction of the X-space. Clearly, for systems (7) and (11) an
analogous relation holds.

From this theorem follows the relation

DyT(¢:)Dy, (8 x:) = Dy [; T(x:) DT (%), (33)

which is obtained by setting x, = X; in Eq. (10) and differentiating it with respect to X, is equivalent to
Eq. (25). Therefore, we have derived the explicit form of the linear transformation L only by using the
property (10) of the transformation T. In other words, the Lyapunov exponents of two different dynamical
systems (1) and (7), whose solutions are mapped to each other by a transformation T according to (10), are
identical even if T is not invertible (and, moreover, T needs to be differentiable only once). However, for the
validity of the relations (26) and (27) it is necessary that || DyT(x)|| < co and detD,T(x) # 0 hold. The first
condition also guarantees that a bounded reference solution ¢, of (1) is transformed to a bounded tra-
jectory . of Eq. (7). Therefore, for non-invertible transformations T, the invariance of the Lyapunov
exponents is only valid for such trajectories that for all # > 0 are confined to those regions in phase space,
where these two conditions are fulfilled. Typically, this will be the whole phase space except a final number
of isolated points.

Summarizing our results, we have shown that Lyapunov exponents are invariant under invertible
transformations of variables. Moreover, the invariance property is not restricted to such coordinate
changes, but is also valid for non-invertible transformations that map the trajectories of two different
dynamical systems to each other according to Eq. (10). Then, the Lyapunov exponents of these systems are
identical for almost all of their trajectories.
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