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Abstract

The West African monsoon (WAM) rainfall is characterized by a strong temporal and spatial

variability. The interplay of various large- and small-scale drivers generates frequent weather

extremes such as droughts or floods, making West Africa one of the most vulnerable parts

of the world in terms of food security. While it is known that teleconnections to sea surface

temperatures determine the overall WAM regime, it is still uncertain by which margin and at

which scales regional atmospheric and land surface processes may modify it.

In this data scarce region, atmospheric models are indispensable tools allowing physically

consistent interaction experiments on different components of the monsoon system. This thesis

uses the Weather Research and Forecasting model (WRF) driven by reanalysis data to investigate

the relevance of regional moist processes, convection and vegetation patterns for the WAM regime

and presents the abilities and limits of the model to properly capture the involved processes.

Furthermore, the possibility to improve WRF by adjusting it to regional characteristics is

analysed. This includes the choice of a favourable model set-up based on a region-specific

parameterization classification, the explicit treatment of convection and the implementation of

satellite-derived land surface parameters.

A mixed-physics ensemble with 27 parameterization combinations is used to evaluate the effect

of regional moisture distribution on the WAM for the rainy season 1999. Although all ensemble

members use the same boundary forcing, the ensemble spread covers the whole range of dry to

wet monsoon regimes observed in the Sahel between 1979 and 2010. The most rigorous shift from

wet to dry monsoon conditions was found to be related to an increase of low- and mid-level clouds

weakening the incoming solar radiation and hence the sea-land pressure gradient. In particular,

significant large-scale changes in precipitation are always linked to a change in the intensity of

the pressure gradient and thus of the moist Hadley-type meridional circulation that connects

the monsoon winds to the Tropical easterly jet. This shows that regional moist processes may

indeed alter the monsoon dynamics.

A closer look at the convective processes reveals that explicit instead of parameterized convection

considerably improves both the precipitation characteristics as well as the incoming shortwave

radiation associated with the modelled cloud cover. This confirms convection as a key process for

the monsoon circulation since it affects the water and energy balance not only in the atmosphere

but also at the surface.
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Abstract

In turn, the partitioning of surface energy and moisture fluxes may affect the location and

frequency of convective systems. Land cover and vegetation play a crucial role in this partitioning.

To investigate the effect of observed interannual vegetation changes between 2009 and 2010 on

the WAM precipitation, novel high-resolution satellite-derived dynamical datasets for vegetation

fraction, albedo and leaf area index are implemented into WRF. The two years exhibit opposing

vegetation anomalies. In comparison to a climatological land surface, the vegetation changes

exhibit the strongest effect on latent heat fluxes and associated surface temperatures. Moisture

divergence (convergence) and a decrease (increase) of rainy hours is found over regions with

higher (lower) vegetation fraction during the day and the opposite during the night. These effects

cancel out when averaged over larger regions, leading to negligible changes in total precipitation

amounts. An improvement of modelled rainfall through the integration of observed dynamical

surface information with respect to observations was only detectable in the Sahel region.

These findings suggest that both regional atmospheric and land surface processes may trigger

significant changes in precipitation amounts or shifts of the monsoon rainband when they affect

the large-scale temperature gradient over land, which is always connected to a change of the

large-scale pressure gradient driving the WAM. Accordingly, temperature changes at smaller

scales rather affect local moisture convergence or divergence and therefore the rainfall distribution

instead of total amounts.

The results presented in this thesis contribute to further improve our picture of factors for WAM

variability, which forms the basis for any practical measures that could improve the resilience of

the West African population whose livelihood still depends on rainfed agriculture.

Sissili river, Ghana. Photo by C.K., May 2013.
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Zusammenfassung

Die Niederschläge des westafrikanischen Monsuns (WAM) sind durch eine starke räumliche

und zeitliche Variabilität charakterisiert. In Hinblick auf Nahrungsmittelsicherheit ist West

Afrika eine der gefährdetsten Regionen der Welt, da das Zusammenspiel verschiedener groß-

und kleinskaliger Wetterfaktoren regelmäßig zu Wetterextremen wie Dürren oder Überflutungen

führt. Es ist bekannt, dass das übergeordnete Monsunregime von Telekonnektionen mit Meeres-

oberflächentemperaturen dominiert wird. Unsicher ist allerdings, in wie weit und auf welchen

Größenskalen regionale Atmosphären- und Landoberflächenprozesse den WAM beeinflussen

können.

Atmosphärische Modelle sind unerlässliche Werkzeuge in dieser datenarmen Region. Sie erlauben

physikalisch konsistente Interaktionsexperimente für verschiedene Komponenten des Monsun-

systems. In dieser Studie wird das Weather Research and Forecasting (WRF) Modell verwendet,

um die Relevanz von regionalen Feuchteprozessen, Konvektion und Vegetationsmustern für das

Monsunregime zu untersuchen. Weiterhin wird WRF auf seine Fähigkeit den WAM und seine

beteiligten Prozesse korrekt zu simulieren geprüft und mögliche Limitierungen aufgezeigt. Dabei

werden Möglichkeiten der Modellverbesserung durch eine Anpassung an regionale Charakteristika

diskutiert. Diese Anpassung beinhaltet die Auswahl der Modellkonfiguration, basierend auf

einer regionsspezifischen Klassifikation der Parametrisierungen, dem Anwenden einer expliziten

Konvektionsbeschreibung und die Implementierung satellitengestützter Oberflächenparameter.

Es wird ein Modellphysik-Ensemble mit 27 Parameterisierungskombinationen verwendet, um den

Effekt von regionaler Feuchteverteilung auf den WAM 1999 zu untersuchen. Obwohl alle Ensemble-

Mitglieder die selben Randbedingungen als Antrieb verwenden, spannt das Ensemble die gesamte

Bandbreite von feuchten zu trockenen Monsunregimen auf, die in der Sahelzone von 1979 bis 2010

beobachtet wurden. Die drastischste Verschiebung von trockenem zu feuchtem Regime wurde

dabei in Zusammenhang mit einem Anstieg der Wolkenbedeckung in der niederen bis mittleren

Troposphäre festgestellt. Diese schwächt die Sonneneinstrahlung und somit den Meer-Land-

Druckgradienten. Generell konnten alle signifikanten, großskaligen Niederschlagsänderungen

auf eine Veränderung der Intensität dieses Druckgradienten, und damit auf eine Veränderung

der feuchten meridionalen Monsunzirkulation die den Monsunwind mit dem Tropical Easterly

Jet verbindet, zurückgeführt werden. Dies zeigt, dass regionale feuchte Prozesse tatsächlich die

Monsundynamik modifizieren können.
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Abstract

Ein genauerer Blick auf die konvektiven Prozesse zeigt, dass eine explizite anstatt einer parametrisierten

Konvektionsbeschreibung nicht nur die Niederschlagscharakteristiken, sondern auch die model-

lierte Wolkenbedeckung und die damit zusammenhängende einfallende kurzwellige Strahlung

verbessert. Das verdeutlicht, dass Konvektion ein Schlüsselprozess für die Monsunzirkulation

darstellt, da sie den Wasser- und Energiehaushalt sowohl in der Atmosphäre als auch an der

Landoberfläche beeinflusst.

Umgekehrt kann die Partitionierung dieser Energie in latente und sensible Wärmeflüsse an

der Landoberfläche wiederum den Ort und die Häufigkeit der Entstehung von konvektiven

Systemen beeinflussen. Landbedeckung und Vegetation spielen für diese Partitionierung eine

ausschlaggebende Rolle. Um den Effekt beobachteter interannueller Vegetationsänderungen

zwischen den Jahren 2009 und 2010 auf den Monsunniederschlag zu untersuchen, werden neue,

satellitengestützte dynamische Datensätze für die Vegetationsfraktion, die Albedo und den

Blattflächenindex in das WRF Modell implementiert. Die beiden Jahre weisen entgegensetzte

Vegetationsanomalien auf. Im Vergleich zu einer klimatologischen Landoberfläche zeigen die

Vegetationsänderungen den stärksten Effekt für latente Wärmeflüsse und die daran gekoppelten

Landoberflächentemperaturen. Tagsüber werden Feuchtekonvergenz (-divergenz) und weniger

(mehr) Regenstunden über Regionen mit höherer (geringerer) Vegetationsfraktion verzeichnet.

Nachts verhält es sich genau umgekehrt. Diese Effekte scheinen sich, gemittelt über eine größere

Region, gegenseitig aufzuheben, was zu vernachlässigbaren Veränderungen der absoluten Nieder-

schlagsmenge führt. Eine Verbesserung des modellierten Niederschlags durch die Integration der

satellitengestützten Oberflächeninformation im Vergleich zu Beobachtungsdaten war nur in der

Sahelzone feststellbar.

Die präsentierten Ergebnisse legen nahe, dass regionale Prozesse in der Atmosphäre und an

der Landoberfläche signifikante Veränderungen in Niederschlagsmengen oder Verschiebungen

des Monsunregenbandes hervorrufen können, wenn sie den großskaligen Gradienten der Land-

oberflächentemperatur modifizieren. Dies ist automatisch verbunden mit einer Veränderung des

großskaligen Druckgradienten, der den WAM antreibt. Gleichermaßen beeinflussen Temperatur-

veränderungen auf kleineren Skalen die lokale Feuchtekonvergenz und -divergenz, was sich eher

auf die Niederschlagsverteilung als auf absolute Niederschlagsmengen auswirkt.

Diese Arbeit trägt dazu bei das Verständnis über Faktoren, die die Variabilität des WAM

beeinflussen, weiter zu verbessern. Dieses Verständnis bildet die Grundlage für alle praktischen

Maßnahmen, die die Widerstandsfähigkeit der von regengestützter Landwirtschaft abhängigen

westafrikanischen Bevölkerung verbessern könnten.
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Chapter 1

Introduction

1.1 Background

The West African monsoon (WAM) is probably the most prominent feature of the West African

climate. Seasonal rains occur from May to October over the subcontinent where they travel

northward from the Guinean coast to the Sahel, and back again. Accounting for the majority of

the annual precipitation, the WAM is of paramount importance for the West African population

that primarily relies on rain-fed agriculture for food and income. With yearly precipitation rates

ranging from semi-arid to humid conditions, wide areas of West Africa are considered to be

potential breadbaskets (e.g. Morris et al., 2012; Bharati et al., 2008). However, food security

remains an unachieved goal since people frequently suffer from sudden droughts or floods and the

lack of appropriate measures for mitigation and adaptation. West Africa was identified as one of

the worldwide most vulnerable regions to climate change because of the combination of endemic

poverty, complex governance, insufficient infrastructure and technology, strong population growth

and finally, an extreme variability of the WAM (IPCC, 2014).

The WAM system is driven by a complex and not yet fully understood interplay of several

dynamical features and multi-scale factors influencing the precipitation intensity and continental

coverage (e.g. Sultan and Janicot, 2003; Nicholson, 2008). It is characterized by a large variability

at both intra-annual and interannual time scales, especially in the Sahel region (Barbe et al., 2002;

Grist and Nicholson, 2001), which may culminate in severe droughts as in the 1970s and 1980s

(Fig. 1.1). A potential rainfall recovery since the 1990s is still under debate since, although dry

years became less extreme with interspersed positive anomalies, the trend is not yet significant

(L’Hôte et al., 2002; Ozer et al., 2003).
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Figure 1.1: Rainfall anomaly (mm year−1) between 10◦E-10◦W with respect to the average of 1930-2010 in the
Sahel (12-18◦N) from the gridded Global Precipitation Climatology Centre dataset.

Over the south-north gradient, about 30-80% of the rainfall during the WAM arises from

mesoscale convective systems (MCSs) (Fink and Reiner, 2003). Although MCSs extend over

an area of 4000 km2 or more, these organized thunderstorm complexes emerge from formerly

isolated small-scale showers. The mechanisms by which MCSs are initiated and maintained are

manifold and range from atmospheric disturbances in the monsoon dynamics to very small-scale

surface conditions. In the atmosphere, the strength of the low-level monsoon wind that transports

moisture from the Atlantic ocean over land plays a crucial role for wet or dry WAM conditions.

In addition, other dynamical ingredients like the Tropical easterly jet or the African easterly jet

influence the strength of the monsoon. These large-scale factors were found to be mainly governed

by teleconnections to sea surface temperatures (SSTs) that affect the Northern Hemisphere and

therefore impose the overall WAM regime (e.g. Hertig et al., 2015; Nicholson, 2013).

Nevertheless, during recent decades, the investigation of land-atmosphere interactions also evolved

into a focal point of research on WAM variability. By now, a number of studies explored by which

processes, under which conditions and by what magnitude the land surface might impact WAM

rainfall. The picture emerged that soil moisture and particularly its heterogeneities (Taylor et al.,

2011a) may affect the initiation and maintenance of convective systems. Atmospheric models

suggest that large-scale vegetation changes might even have a direct effect on the monsoon

dynamics (Zheng and Eltahir, 1998; Lauwaet et al., 2009). In conclusion, while the large scales

dominate the particular monsoon regime, the land surface may modify, strengthen or buffer its

state (Li et al., 2007). Furthermore, land surface conditions are prone to anthropogenic changes

making their impact on the WAM a sensitive factor for land use planning and future climate.

For a better understanding of how regional large- to small-scale factors affect WAM variability,

limited area models (LAMs) are useful tools in this data sparse region (cf. Fig. 1.2). They

provide gap-free atmospheric fields at high spatio-temporal resolution. LAMs allow to conduct

physically consistent experiments on different components of the WAM system, which would not

be possible with observational data or statistical models alone. Depending on their configuration,

potential applications of LAMs reach from dynamical downscaling of past and present climate to

weather prediction and finally to climate projections.
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1.1 Background

Figure 1.2: Distribution of all weather stations listed by the National Climatic Data Center measuring air
temperature for Europe and West Africa between 2000 and 2015. Only stations with at least one year of data
are shown.

Recent studies demonstrate the ability of state-of-the-art LAMs to represent the WAM for the past

and present: Nikulin et al. (2012) confirm that LAMs can considerably enhance the representation

of WAM precipitation in comparison to coarser reanalyses datasets or global circulation models

(GCMs). They relate this enhancement to an improved representation of regional and local

processes. Sylla et al. (2013) likewise state that LAMs are suitable for the investigation of

the dynamical features and associated precipitation patterns of the WAM. However, they also

emphasize considerable differences in the simulation results for different LAMs in spite of the

same boundary forcing and relate the largest uncertainty to physical parameterizations. First

attempts of regional climate projections for West Africa likewise revealed a large spread and

even diverging rainfall trends in the results for different models and configurations (e.g. Jung and

Kunstmann, 2007; Linden and Mitchell, 2009). This lead Paeth et al. (2011) to the conclusion

that important systematic errors still persist in present-day LAMs over West Africa. They point

out that a regional adjustment of model parameterizations and parameters in comparison to

observations might considerably improve the model performance and provide new insights on

process interactions.

There is an urgent need for weather and climate information in West Africa. A reliable regional

climate modelling system that properly captures the processes that are influenced by regional

particularities could, for example, help to improve the forecasts of extreme events, to narrow

7
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down the critical time period providing suitable conditions for crop planting (e.g. Laux et al.,

2010; Waongo et al., 2014), to ensure the transfer of water from wet to dry periods or to develop

strategies for sustainable farming systems under climate change. (e.g. Salack et al., 2015). This

would ultimately improve the resilience of the West African population.

Therefore, programs like WASCAL (West African Science Service Center on Climate Change

and Adapted Land Use), in which this thesis is embedded, aim at establishing a regional climate

modelling system that can be used for process and impact studies in West Africa by various

disciplines. Within this highly interdisciplinary framework, this thesis intends to broaden our

understanding of the sensitivity of WAM rainfall to regional atmospheric processes and land

surface states by dynamically downscaling the WAM with the Weather Research and Forecasting

(WRF) model. The thesis furthermore contributes to the evaluation of the uncertainties in

simulating the WAM with WRF and assesses potential performance improvements by a regional

model adjustment.
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1.1 Background

1.1.1 Motivation

The WAM is thought to be mainly governed by large scale teleconnections. It is known that

these large scale factors drive regional processes that ultimately create a certain monsoon regime.

However, it is still unclear which regional processes are most important for determining WAM

characteristics such as inland movement, extent or rainfall patterns. It is also an open question

to which degree regional processes might in turn modify the large scales. In the following,

our current state of knowledge regarding two main actors potentially determining the WAM

characteristics is discussed: atmospheric moist processes including convection and land surface

conditions with associated land-atmosphere interaction processes.

Moist processes are of crucial importance for the maintenance of the WAM. Without the latent

heat of condensation, the driving atmospheric pressure gradient between ocean and land would

quickly drop after monsoon onset due to surface cooling by other moist processes: the generation

of cloud cover and rainfall (Levermann et al., 2009). Regional moist processes therefore play a

critical role for the monsoon regime.

Most notably, convection deserves attention because it is the key element for vertical transport

and rainfall production during the WAM. Several LAM studies suggest that it interacts with

the AEJ that is weakened when convective activity is weak or missing (e.g. Sylla et al., 2011;

Cornforth et al., 2009). However, it is not yet clear whether moist processes also modify other

dynamical features like the TEJ. If yes, it remains the question whether changes of different

dynamical features like the monsoon wind, the AEJ and the TEJ are necessarily interlinked and

how these changes translate into rainfall characteristics.

Besides atmospheric processes, land surface conditions such as soil moisture and vegetation were

found to potentially affect monsoon precipitation and even its dynamics (e.g. Lauwaet et al.,

2009; Li et al., 2007). However, a limiting factor of these studies is that many rely on LAMs

where surface changes are set arbitrarily or where modelled land use scenarios are used. Although

recent satellite-based observational studies (Taylor et al., 2011a, 2012) indeed find a statistical

relationship between surface conditions and local rainfall probabilities, they lack a process-based

analysis of these findings. Therefore, there is a need for studies that combine the application of

a LAM with satellite-based observations of surface changes to profit from both: the ability to

analyse land-atmosphere interaction processes while prescribing more realistic surface changes. In

particular, the potential effect of natural year-to-year variability of vegetation on WAM rainfall

received no attention so far.

To address the above mentioned research gaps, feedback studies are necessary. For this, LAMs

are especially helpful since they allow to artificially separate cause and effect by turning a variable

into a fixed forcing which is why WRF is used in this thesis. However, a factor hampering a

robust evaluation of the effect of moist processes or of land surface changes on the WAM system is

their crude representation in most state-of-the-art LAMs. Microphysical processes or turbulence

that vertically transports water vapour have to be parameterized since they are too small-scale to

be physically resolved. Since the parameterization choice considerably affects the model results, it
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is a common approach to test physics schemes by try and error to receive a favourably behaving

model set-up (e.g. Flaounas et al., 2011a; Noble et al., 2014). This favourable set-up is usually

neither well-behaving for all variables nor necessarily transferable to other applications (e.g.

Fersch and Kunstmann, 2013), calling for a methodology that provides generalizable informations

on parameterization performances. In addition, the uncertainty in model results related to a

certain parameterization choice is often neglected.

In the case of convection, most LAM studies over West Africa use a parameterization although this

could be avoided if the horizontal resolution of the LAM allows a physically explicit representation.

However, very high model resolutions (<4 km, Weisman, 1997) are considered necessary to

explicitly represent convection, which is computationally expensive and thus limits the models

applicability in space and time. So far, only a few studies, all relying on the same model and

dataset, discuss the positive effects of explicit convection on the representation of the modelled

WAM (Marsham et al., 2013; Birch et al., 2014). Therefore, the advantages of an explicit

treatment of convection, its importance for a correct representation of the WAM and the upper

scale limit for its applicability are not well established.

Regarding the land surface conditions, LAM standard applications often use satellite-derived

climatologies or even table values for surface parameters like albedo or vegetation cover (e.g. Pohl

et al., 2014; Hagos et al., 2014). Other approaches apply more sophisticated land surface models

(LSMs) that treat these parameters dynamically but suffer from model inherent uncertainties

(e.g. Notaro et al., 2011; Brovkin et al., 2013). Both surface treatments obviously do not allow

to evaluate the effect of observed interannual changes of the land surface. Satellite-derived

surface information could be used to provide an ’observed’ lower boundary condition to the LAM

reducing the uncertainty of the surface state, which could ultimately improve the model results.

Nevertheless, in line with Box and Draper (1987) who stated that ”essentially, all models are

wrong, but some are useful”, it should be emphasized that an erroneous representation of the

’real world’ in a model does not only tell us that the model needs improvement. It also tells us

that the erroneous part of the model is essential for the functioning of the investigated system in

reality. Accordingly, any failure of the WRF model to correctly simulate the WAM that can be

traced back to a simplified or ’false’ implementation of one of the discussed processes gives a

hint on the governing process chains that drive the real WAM system.

Experiments where the representation of a certain process is changed in the model while all other

parameters are kept constant are therefore helpful to potentially improve the representation

of this process and to better understand process interactions within the system. Since LAMs

permit to keep the ’external’ drivers (large-scale boundary conditions) constant while changing

’internal’ drivers (e.g. regional moist processes or vegetation), such experiments also allow to

separate the former from the latter. With this approach, interaction experiments for atmospheric

moist processes and interannual vegetation changes are conducted with WRF to evaluate their

effect on different components of the WAM system, building the content of this thesis.
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1.2 Objectives

This thesis addresses two complementary questions concerning WAM process interactions and

WRF model development:

(i) By which mechanisms and to which extent may moist processes, convection and interannual

vegetation changes modify precipitation characteristics during the WAM in spite of the dominating

role of the large-scale forcing?

(ii) Does a regional adjustment of these processes in the WRF model improve our ability to

correctly model WAM characteristics?

Both questions are separately examined for moist processes, convection and interannual vegetation

changes in different chapters of the thesis. The specific aims for the three corresponding

experiments are:

Interactions of moist processes with the monsoon system

• Evaluating the interactions of regional moist processes with the monsoon dynamics

• Quantifying the uncertainty in the representation of moist processes in the WRF model and

classifying their process-based impact on the WAM regime in order to extract transferable

guidelines to set up the model in West Africa.

The relevance of a physically explicit convection description

• Assessing the deficiencies of parameterized convection as compared to physically explicit

convection and arising consequences for the simulated WAM and rainfall characteristics

• Testing the validity of simulation results with explicit convection in the convective grey

scales above 4 km resolution.

The effect of vegetation-atmosphere feedbacks

• Identifying the processes by which interannual vegetation changes have an effect (if any)

on the atmosphere during the WAM

• Investigating whether the implementation of satellite-derived surface parameters improves

the representation of surface variables and rainfall in WRF.
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1.2.1 Innovation

This thesis uses new methods in order to tackle the open questions and aims defined in Section 1.2:

Different from other ensemble studies, the spread of a mixed-physics WRF ensemble is not only

interpreted as the uncertainty range of the representation of moist processes in the model. It is

also used as an analysis strategy to evaluate to which degree a change in the moist processes is

able to provoke changes in the monsoon dynamics and related precipitation. Although already hy-

pothesized by observational studies, the linear co-variability between different dynamical features

of the WAM presented here was not systematically shown before. Moreover, parameterization

schemes are classified with respect to their effect on different components of the WAM system

instead of following a ’try and error’ approach for model set-up.

This thesis also presents one of the first convection-allowing subcontinental-scale LAM simulations

highlighting the importance of explicit convection for the modelled WAM. Previous studies

focussed on the diurnal cycle of convection, which is extended to intense precipitation events

and MCS propagation. Different from common assumptions, it is shown that explicit convection

can give reasonable results in the convective grey scales and outperforms a parameterization.

Regarding parameterization deficiencies, most studies concentrate on rainfall. Here, the often

neglected importance of cloud cover for the modelled WAM regime is emphasized.

In addition, it is relatively new to implement satellite-derived surface information into a LAM

due to a lack of satellite data at sufficient spatio-temporal resolution and quality in the past.

To my knowledge, the potential of such high-resolution satellite-derived information for a LAM

improvement was not tested before in West Africa. With this approach, the effect of realistic,

natural interannual changes of vegetation on the WAM characteristics could be investigated. This

is not possible with the land surface treatment in standard LAM applications. The adjusted WRF

allowed to trace land-atmosphere interactions even in the Sudanian zone, which is something

observational studies failed to do due to the strong dynamical forcing in this region.

This thesis incorporates two peer-reviewed papers:

Klein, C., Heinzeller, D., Bliefernicht, J., Kunstmann, H.: Variability of West African monsoon

patterns generated by a WRF multi-physics ensemble, Clim Dyn, 45(9), 2733-2755, 2015

Klein, C., Bliefernicht, J., Heinzeller, D., Gessner, U., Klein, I., Kunstmann, H.: Feedback of

observed interannual vegetation change: A regional climate model analysis for the West

African monsoon, Clim Dyn, doi:10.1007/s00382-016-3237-x, 2016

In both publications, I was responsible for the experimental design, the numerical simulations,

data pre- and post-processing, the analysis, all figures and the writing. The co-authors contributed

by helping to define research gaps, by proposing methodological approaches and by discussing

the study results. They were also responsible for corrections and proofreading. For the second

paper, U. Gessner and I. Klein provided pre-processed satellite-based surface data and took part

in writing Section 6.2.1.
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1.2.2 Structure of the thesis

After a general introduction into the study region and the WAM system in Chapter 2, Chap-

ter 3 gives some background on dynamical downscaling with a focus on the WRF model and

shortly presents sensitivity studies that were performed in order to define a first WRF baseline

configuration that was used for following studies.

The scientific core of this thesis, consisting of Chapter 4, Chapter 5 and Chapter 6, presents

the three main experiments. The experiments required further adjustment of the model set-up

and of the analysis strategies, some of which directly arose from preceding analyses. Therefore,

each of these chapters starts with an introduction on the particular background followed by a

description of the experimental WRF set-up and reference datasets and ends with an individual

conclusion.

Finally, the identified interactions of the WAM system with regional atmospheric and surface

processes are discussed and the potential for further analyses and regional adjustments of the

WRF model are outlined in the concluding Chapter 7.
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Chapter 2

The West African monsoon

West Africa denotes the westernmost region of the African continent between 15◦E-16◦W and

4-28◦N, which is north of the Gulf of Guinea and reaches up into the central Sahara. It consists

of 16 countries with Mauritania, Mali and Niger constituting the northern boundary. From the

Guinea coast to the Sahara desert, West Africa is characterized by east-west oriented climate

zones. These climatic zones can be divided into four main regions: the tropical Guinea coast

(4-8◦N), the sub-humid Sudano-Sahel (8-14◦N), the semi-arid Sahel (14-18◦N) and the Saharan

desert in the North (Fig. 4.1, Meynadier et al., 2010).

When referring to the West African summer monsoon, people usually think of its most obvious

perceptible feature: rainfall. The monsoon rainfall that occurs during the boreal summer

constitutes the only significant atmospheric water source for regions situated above approximately

10◦N. Most parts of West Africa exhibit a distinct dry and rainy season, resulting from the

interaction of two migrating air masses: the dry and dusty Harmattan wind from the Northeast

and the moist monsoon wind from the Southwest. The confluence of these two air masses is

known as the intertropical front (ITF, black dashed line in Fig. 2.1, Nicholson, 2013).

The Harmattan is part of the trade wind system and is mainly composed of dry desert air from

the Sahara. From November to February, it sweeps over the whole West African subcontinent,

sometimes reaching the Guinea coast (Cornforth, 2013, Fig. 2.1a).

However, during summer from July to September, the belt of maximum net solar radiation and

related maximum surface temperatures move northward in response to the solar zenith angle.

This results in the migration of the region of maximum moisture convergence, convection and

rainfall termed here the inter-tropical convergence zone (ITCZ):
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Figure 2.1: 1998-2013 climatology of ERA-Interim
reanalysis 10 m wind vectors (m s−1) and Tropical
Rainfall Measuring Mission (TRMM) precipita-
tion (mm day−1) for January, May and August.
Dashed lines indicate the position of the inter trop-
ical front (ITF) and the circle marks the center of
the Saharan Heat Low (SHL). The rainband rep-
resents the intertropical convergence zone (ITCZ).
One line extra to push this sentence.

Differential heating of the ocean and land surface

acts to initiate and maintain a moist low-level

southwesterly monsoon flow (Fig. 2.1c). This char-

acteristic seasonal change of the large-scale wind

systems is comparable to a large sea breeze, where

the land-sea pressure gradient leads to the advec-

tion of relatively cool moist air from the Gulf of

Guinea onto the hot dry continent (Sultan and

Janicot, 2003; Janicot et al., 2008). The resulting

rainband travels from the Guinea Coast to the

Sahel and back again.

There is no characteristic climatological wind pat-

tern during the transition time in May, when wind

directions just start to change (Fig. 2.1b). During

this time, SSTs decrease in the southern parts

of the Gulf of Guinea establishing the Atlantic

cold tongue (ACT) that is visible in Fig. 2.2(a)

as a phase of increased sea level pressure reaching

up to the Guinea coast. At the same time, the

Saharan heat low (SHL), a large low-pressure re-

gion of dry convection that forms due to surface

heating, strengthens and moves northward to a

position close to 20◦N (Fig. 2.1c) where it resides

throughout the summer (Fig. 2.2a).

It is not until the end of June that this pressure

gradient between ocean and land reaches a thresh-

old that causes an abrupt shift of the ITCZ from

∼ 5◦N to 10◦N, referred to as the ’monsoon jump’,

which marks the onset of the rainy season in the

Sahel (Fig. 2.2 b, dashed line). In the Sahel, the

rainy season is shortest with a concentration of

rainfall in August. The duration of the rainy sea-

son gradually increases equatorward with finally

humid conditions at the Guinea coast. Rainfall

amounts exhibit a peak in August in the Sahel

and a bimodal distribution with the so-called ’lit-

tle dry season’ in August at the Guinea coast

(cf. Fig. 2.1 c), which is related to the inland

movement and subsequent retreat of the monsoon

rainband.
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Months

a

b

Sea level pressure

Precipitation

SHL

ACT

Figure 2.2: Hovmöller diagrams for 1989-2009 ERA-I (10◦W-10◦E) zonal mean (a) sea level pressure (hPa) and
(b) precipitation of the Global Precipitation Climatology Project (mm day−1) and 700 hPa wind (m s−1).
The dashed black line depicts the monsoon jump. The red line marks the West African coast. Adapted from
Thorncroft et al. (2011).

Different from the classical picture of converging trade winds directly causing the tropical

rainband, the ITF and the ITCZ do not coincide during the WAM. Instead, the ITCZ resides

about 1000 km south of the ITF (Fig. 2.1c), indicating the complexity of mechanisms governing

the WAM circulation. This revised picture of the WAM was extensively discussed by Nicholson

(2013), who emphasized the diminished importance of the ITF compared to other atmospheric

features like the SHL, the African easterly jet (AEJ), the tropical easterly jet (TEJ) and the

predominance of organized convection that is fostered by strong wind shear in the region.

2.1 Atmospheric features

The atmospheric circulation maintaining the WAM resembles a moist Hadley-type meridional

overturning as is depicted in Fig. 2.3 (blue arrows). During the pre-monsoon phase (Fig. 2.3,

top), maximum precipitation amounts are located over the coastal region where warm SSTs and

frictional uplift foster convection (Nicholson, 2008). Atmospheric features that become driving

factors during the peak monsoon phase are already visible but less pronounced (Thorncroft et al.,

2011). The SHL is still weak and resides further south. Figure 2.1 illustrates that it is part of

the ITF with the Harmattan passing at its northwestern flank and the monsoon winds joining at
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2 The West African monsoon

the southeastern side. On basis of rain gauge and reanalysis data, Sultan and Janicot (2003)

found the position and strength of the SHL affecting the timing and extent of the monsoon jump

since it represents the pressure minimum of the pressure gradient driving the monsoon.

When the monsoon sets in, the meridional circulation and its atmospheric features shift polewards

(Fig. 2.3, bottom). Precipitation is now strongly controlled by dynamical features such as the

two strengthened jet streams that frame the region of maximum rainfall:

The TEJ is a high-level jet (∼ 200 hPa) and emerges from the Asian monsoon region (Flaounas

et al., 2011a). It shows high interannual variability in wind velocities. By inducing upper-level

divergence, it fosters moisture convergence at the surface and therefore deep convection.

The AEJ is a mid-tropospheric jet at ∼ 600 hPa that exhibits strong interannual variability in

position. The AEJ forms to adjust for the thermal wind balance between the approximately

moist-adiabatic monsoon air mass and the dry-adiabatic Saharan air mass that create a baroclinic

zone. The latitudinal position of the AEJ therefore coincides with the largest surface temperature

gradient, as illustrated in Fig. 2.4. The core of the AEJ develops at the altitude where the

temperature gradient between the two air masses reverses and near-surface southwesterly winds

change to northeasterly winds, creating strong vertical shear. The reversal of the temperature

gradient occurs due to latent heating in the zone of moist convection and marks the point

where moist adiabatic and dry adiabatic lapse rates cross (Parker et al., 2005a). The AEJ is

a source of African Easterly Waves (AEWs), which are an important factor for the initiation

and maintenance of organized convection (Fink and Reiner, 2003). AEWs are atmospheric

disturbances with wave-lengths of 3000-5000 km and periods of 3-5 days that often develop over

regions of complex topography to the East, such as the Jos Plateau, the Darfur region or the

Ethiopian highlands (Noble et al., 2014). The waves propagate westward where they interact

with deep convection and provide a favourable dynamical forcing for intense and/or long-lived

MCSs over land and for tropical cyclones over the Atlantic (Mohr and Thorncroft, 2006).

As shown in Fig. 2.4 (right), the westerly monsoon wind layer reaches far inland but is thickest

between 5-10◦N where most of its moisture is rained out. The ocean-land pressure gradient

considerably influences how far it may penetrate. From the North, the monsoon layer is overrun

by the Harmattan forming the Saharan Air Layer (SAL). The extent of the warm and dust-laden

SAL is influenced by the SHL-driven shallow convection depicted in red in Fig. 2.3. The SAL is

capping the cooler, moist monsoon layer and thus imposes convective inhibition, which is why

the WAM shows a pronounced diurnal cycle: during the day, surface warming creates thermals

that may break through the convective inhibition. Resulting convection then drives a strong

vertical transport. In turn, convection ceases during the night, which allows a strengthening of

meridional circulations and horizontal moisture advection (Parker et al., 2005b).

Figure 2.5 summarizes the main dynamical features that affect the strength of the WAM. It also

illustrates why the Sahel is especially prone to large rainfall variability: depending on the inland

expansion of the WAM system, the Sahel is either situated in the region of deep convection or it

is affected by large-scale subsidence of dry air belonging to the circulation of the ITF.
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Figure 2.3: Schematic cross section of the WAM with position of atmospheric features during the pre-monsoon
phase (April-June) and the peak monsoon phase (July-September) with the TEJ and the AEJ with the grey
color indicating less pronounced jet streams. The yellow (weaker) and red (stronger) bar in the North indicates
the SHL. Warmer (green to red) and cooler (blue) sea surface temperatures are also depicted. Solid lines mark
convergence zones while dashed lines mean divergence. Adapted from Thorncroft et al. (2011), their Fig. 12.

Figure 2.4: Example of August 1999 2m temperature (Global Historical Climatology Network) with ERA-Interim
reanalysis wind (m s−1) (left) and the crossection of latitudinal averages (10◦W-10◦E) of the u-wind component
(m s−1). Vertical black lines indicate the latitudinal position of the 2m temperature in steps of 1◦C (right).
The arrow depicts the position of the largest temperature gradient.
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2.2 Teleconnections
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Figure 2.5: Schematic cross section of the revised picture
of the WAM during the peak season (August) with all
governing atmospheric features after Nicholson (2013).

The main modes of WAM precipitation

variability are known to be closely linked

to teleconnections with SSTs (e.g. Gian-

nini et al., 2005; Douville et al., 2007;

Paeth and Friederichs, 2004). However,

the exact contribution of any particular

ocean and related atmospheric oscillations

is often difficult to ascertain due to the

large number of competing physical mech-

anisms and drivers acting on different

time scales (Nicholson, 2013).

There is a well documented non-

stationary interannual relationship be-

tween anomalies of tropical SSTs and

WAM precipitation: from 1900 until the

1970s, the correlation of WAM rainfall

and tropical Pacific SSTs was found to

be slightly negative but insignificant (e.g.

Camberlin et al., 2001; Janicot et al.,

2001). For the same time period, warm

anomalies of the tropical Atlantic (also called the Atlantic Equatorial Mode or the Atlantic Niño,

Lutz et al., 2015) were identified to cause a significant southward shift of the WAM precipitation,

leading to wetter conditions (positive correlation) at the Guinea Coast and drier conditions

(negative correlation) in the Sahel (’dipole situation’) (Losada et al., 2010).

Until then, Atlantic SSTs seemed to have a stronger relationship with WAM precipitation than

Pacific SSTs. Since the 1970s however, the correlation of Sahel rainfall with Atlantic SST became

extremely weak while it grew stronger with Pacific SSTs, significantly relating negative (positive)

precipitation anomalies to El Niño (La Niña) events. GCM experiments revealed that this is

caused by the interference of the effect of the two tropical basins combined with the frequent

co-occurence of Atlantic Niños and Pacific La Niñas since the 1970s. By imposing anomalies on

only one tropical basin at a time, Losada et al. (2012) were able to reproduce the known dipole

situation for warm Atlantic SSTs and the increase of WAM precipitation for cold Pacific SSTs.

They found the sum of these independently produced rainfall anomalies closely corresponding to

a third simulation with prescribed anomalies in both basins. They concluded a primarily linear

response of WAM precipitation to tropical SST anomalies that is relatively stationary over time

for each single basin, which was also suggested in other studies (e.g. Joly et al., 2007; Mohino

et al., 2011; Rodŕıguez-Fonseca et al., 2011).
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2.3 The role of the surface

A further factor for interannual variability is the Mediterranean sea, showing positive correlations

between SSTs and Sahel rainfall (Rowell, 2003). However, Camberlin et al. (2001) point out

that the interannual relationships are further complicated by slow decadal SST changes, either

globally or of single basins.

For example, the Atlantic Multidecadal Oscillation (the average temperature of the North

Atlantic) shows a positive correlation with low-frequency Sahel rainfall variations on a temporal

scale of 30-50 years (Rodŕıguez-Fonseca et al., 2011). In the Pacific, the Pacific Decadal Oscillation

describes a phenomenon where the extratropical Pacific Ocean remains in an El Niño-like state

over decades, imposing drier conditions over the Sahel, which was the case in the last two decades

of the 20th century (Mantua and Hare, 2002; Rodŕıguez-Fonseca et al., 2011).

Proposed mechanisms by which SSTs ultimately affect WAM rainfall are for example the

weakening of the inter-hemispheric temperature gradient (Atlantic Niño) favouring a southward

shifted ITF (Hoerling et al., 2006), an increased moistening of the Harmattans favouring moisture

convergence and rainfall over the Sahel (warm Mediterranean sea) or an anomalous Walker-

type equatorial circulation over the Atlantic leading to less moisture advection and large-scale

subsidence over West Africa (El Niño) (Janicot et al., 2001).

The current state of knowledge on the impact of SSTs on WAM rainfall at different time scales

was recently summarized by Rodŕıguez-Fonseca et al. (2015).

2.3 The role of the surface

The land surface is the link between the incoming solar radiation and the transfer of this energy

back into the atmosphere, which is described by the surface energy balance

Rnet = SWin(1−ALB) + LWin − εσ TS4 = LH + SH +G, (2.1)

where SWin and LWin are the incoming shortwave (Wm−2) and longwave radiation (Wm−2)

and ε, σ and TS are the surface emissivity, the Stefan-Boltzmann constant and the surface

temperature (K), respectively. The left-hand side of this equation represents the budget of

incoming and outgoing solar radiation and gives the available net radiation Rnet (Wm−2) at the

ground. The net radiation is balanced by outgoing fluxes of latent heat (LH, Wm−2), sensible

heat (SH, Wm−2) and the ground heat flux (G, Wm−2).

Both sides of this equation are directly affected by the surface: surface conditions determine the

albedo (e.g. bare light soil vs. dark vegetation), surface temperatures (e.g. wind speed adjustment

due to surface roughness, evaporation) and the partitioning between latent, sensible and ground

heat flux (e.g. vegetation, wet/dry soil, soil type). Therefore, the surface can considerably modify

the energy budget of the overlying atmosphere and in which form, as sensible or latent heat,

this energy actually enters the atmosphere. The partitioning of the turbulent fluxes of heat and

moisture foster convection in different ways: The SH flux increases planetary boundary layer
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2 The West African monsoon

(PBL) temperatures and leads to PBL growth while the LH flux provides moisture to the PBL

and helps to lower the lifted condensation level where clouds start to form (Findell and Eltahir,

2003). Furthermore, while the SH flux directly warms the lower troposphere, LH is released in

the mid and high levels making it the dominant source of energy for tropical deep convection

(Goosse, 2015).

Interactions between the land surface and the atmosphere take place on a wide range of spatio-

temporal scales. Surface features may vary over scales of a few metres up to continental scales

and may affect the evolution of the atmosphere on a temporal scale of days to decades (Zheng

and Eltahir, 1998). However, generally, land-atmosphere interactions were found to play a minor

role under strong synoptic forcing (strong advection) (Eltahir, 1998; Ferguson and Wood, 2011)

or for soils that are saturated/at the wilting point (Seneviratne et al., 2010), rising the question

which conditions actually favour the interaction.

Koster et al. (2004) identified regions of the world where strong gradients of soil moisture,

vegetation and surface temperature prevail as especially prone to surface-atmosphere feedbacks.

West Africa, and especially the semi-arid Sahel, is such a transition zone between wet and

dry regimes, where surface anomalies have the potential to affect precipitation distributions.

Several studies propose different governing process chains that link surface heterogeneities to

precipitation depending on the spatio-temporal scale that is looked at (e.g. Taylor et al., 2011b,

their Table 1). For example, mesoscale horizontal circulations induced by differential heating

between wet and dry patches can generate moist updrafts that trigger deep convection (Anthes,

1984; Wang and Eltahir, 2000; Emori, 1998). On local scales, the surface specific partitioning of

net radiation into latent and sensible heat fluxes contributes to spatial variations in PBL growth

and moistening, which sets the conditions for potential convection (Kohler et al., 2010).

However, favourable surface and atmospheric conditions first have to coincide in order to actually

produce a feedback. Therefore, the persistence of surface heterogeneities is an important factor for

the probability that the atmosphere actually reaches a state that is sensitive for surface conditions

within the time that the surface anomaly prevails (Dirmeyer, 2006). If either atmospheric or

surface conditions are not favourable, no feedback can occur.
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Chapter 3

Framework for the dynamical downscaling

experiments

In this thesis, a LAM is used to investigate the interaction of regional processes with the West

African monsoon system. LAMs are used to simulate only portions of the Earth (e.g. the

West African subcontinent) by dynamically downscaling information from global datasets: At

its boundaries, a LAM is usually driven by atmospheric forcing data of coarser scale, either

derived from a GCM or from reanalysis data (Section 3.1), which is often referred to as the

LAM being nested into the coarser-scale surroundings. This has the advantage that for the same

computational expense, LAMs can be run at higher horizontal resolutions over the region of

interest (∼1-50 km) as compared to GCMs whose resolution often ranges between 100 to 300 km.

In this context, the horizontal resolution refers to the grid size of the model: The partial

differential equations that describe the continuous field of the atmospheric flow need to be

discretized to be numerically solvable. One possible approach is to ’put the atmosphere in

boxes’ (cf. Fig. 3.1) between which the equations can be approximated by finite differences

(Mesinger and Arakawa, 1976). The model solves the equations at specific locations of a regular

Cartesian grid that are separated by a spatial step ∆x (Goosse, 2015). Therefore, it is only able

to explicitly resolve atmospheric phenomena that are of considerably larger size than ∆x (Thunis

and Bornstein, 1996), which explains the frequent application of high-resolution LAMs.

However, the LAM performance is known to be sensitive to potential biases in the forcing data

(Rockel et al., 2008). The ultimately added value of a LAM simulation, in spite of such biases,

therefore depends on its ability to produce higher resolved, physically-based spatial details of

the observed atmospheric patterns compared to the coarser forcing datasets, i.e. to dynamically

downscale atmospheric features (Paeth et al., 2011).
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LAM
Reanalysis / GCM

Spatial 
resolution

Figure 3.1: Schematic of a nested LAM with infor-
mation from the larger scales depicted as arrows.
Adapted from (Stensrud, 2009).

This improvement is on one hand related to a

higher resolution of surface characteristics in the

model such as topography, coastlines, vegetation,

soil moisture, rivers and lakes. On the other

hand, it emerges from the LAM’s ability to better

capture mesoscale atmospheric phenomenons (e.g.

MCSs and thunderstorms, fronts, low-level jets

and land/sea breezes) and related processes (e.g.

turbulence, convection), which are either crudely

simulated or have to be parameterized in GCMs.

The added value by utilizing LAMs is largest over

complex terrain, where an increased detail in the

representation of mountain ranges and valleys re-

sults in a more realistic simulation due to strong

orographic forcing (Feser et al., 2011). The resolution advantage might be less obvious over

relatively flat terrain like in West Africa.

However, most convective phenomena also fall into the mesoscale from 2-200km (e.g. Thunis and

Bornstein, 1996). Since convection is the dominating process for the generation of precipitation

during the WAM, the correct representation of convective processes and of surface characteristics

that could foster convection are important small-scale factors, which are therefore evaluated in

detail in Chapter 5 and 6, respectively.

3.1 Boundary conditions

In this thesis, the LAM is purely used for a ’refinement of the past’ at seasonal to interannual

scales meaning that no predictions or projections are conducted. Instead, the LAM is continuously

provided with available information on the past state of the atmosphere from a global reanalysis

dataset at its lateral and surface boundaries. This allows to conduct LAM experiments on the

WAM system with a ’perfect’ external driver, as opposed to a GCM. Another advantage is that

the model results can actually be compared to observational data for validation.

The reanalysis procedure merges all available observations of the past (e.g. radiosoundings,

weather stations, radar, satellites) with a short-range GCM forecast from a previous analysis

time to produce a superior state estimate of the atmosphere in space and time (Saha et al.,

2010). The results are spatio-temporally coherent, gridded fields of variables: some of which

were directly constrained by observations (e.g. temperature, wind) and others that were mostly

unknown because no observations exist and are therefore pure model products (e.g. soil moisture,

evaporation). The main difference between atmospheric analyses and reanalyses is that the

former were created to serve as initial condition for subsequent real-time forecasting.

Only fast available observations are used in the analysis data assimilation system and methods

24



3.2 Internal model variability

or model are changed if this promises any improvement in the forecasts. Reanalyses on the

other hand are revisited analyses from the past with assimilated non-realtime observations and,

more importantly, with a temporally uniform analysis strategy that should prevent e.g. artificial

trends (Trenberth et al., 2008; Bengtsson, 2004). Reanalyses usually span several decades and

are therefore a precious data archive for any kind of climate research of the past.

Nevertheless, it should be noted that regionally, there can be large differences between different

reanalysis products (Decker et al., 2012; Lorenz and Kunstmann, 2012; Cook and Vizy, 2015;

Siam et al., 2013) and temporal inconsistencies can still emerge from changes in the observation

systems or from model biases (Rienecker et al., 2011; Trenberth et al., 2001). Therefore, although

reanalyses might represent ’the best known state of the atmosphere’, they should not be blindly

trusted.

3.2 Internal model variability

Although the results of atmospheric models are based on deterministic equations, they exhibit a

sensitive dependence on initial conditions due to the non-linear chaotic nature of the climate

system. This death sentence for any long-term weather forecasting was first discovered by

the pioneer of chaos theory, Edward Lorenz (1963), who demonstrated that any deterministic

nonperiodic (turbulent) flow is unstable with respect to modifications, even of small amplitude.

This means that a parts per thousand difference in the initial conditions or during subsequent

calculations (e.g. due to numerical uncertainties; Freitas, 2002) between two otherwise identical

model simulations perturbs all following model solutions and leads to a considerable divergence of

the model results after some integration time steps, which is called the internal model variability.

Nevertheless, the statistics of different model simulations can remain similar because of existing

boundary conditions (e.g. SST) imposed on the model (Shukla, 1998). Boundary conditions

prescribe the internal model variability to a certain range of possible states, which is why climate

projections with imposed increasing CO2 concentrations allow the detection of increasing global

mean surface temperature (a reproducible, forced variability) in spite of intrinsically unpredictable

temperature fluctuations on small time scales (an unreproducible, internal variability) (Knutti

and Hegerl, 2008; Goosse, 2015). Similarly, a LAM cannot completely diverge from its boundary

forcing, but it can generate its own weather that exhibits internal variability. This is especially

critical for regional analyses at high temporal resolutions, since the day-to-day model solution is

strongly influenced by this variability with a strong effect on e.g. the spatio-temporal occurrence

of heavy precipitation events (Giorgi and Bi, 2000).

Consequently, when utilizing a LAM or any other kind of atmospheric model, the experimental

modelling set-up and/or the analysis strategy should always consider the internal model variability

in order to avoid a misinterpretation of the internal variability as a response to a forcing.
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3.3 Ensemble approaches

Ensembles consist of a suite of simulations either produced with several models (GCM/LAM)

and/or by using ensembles of perturbed initial conditions or model parameterizations. Ensemble

approaches help to quantify uncertainties in the model results (the modelled response to a forcing)

through the ensemble spread (e.g. Knutti and Hegerl, 2008). They are also useful to attribute

uncertainty to different model components and to natural or internal model variability (Tebaldi

and Knutti, 2007; Teutschbein and Seibert, 2010; Murphy et al., 2004).

With respect to the applicability of LAMs over West Africa, ensemble approaches can help to

reduce uncertainties in the simulation of WAM characteristics and variability (Sylla et al., 2013).

Research initiatives like the Coordinated Regional Downscaling Experiment (CORDEX, Giorgi

et al., 2009) Africa aim at satisfying the demand for standardized LAM simulations over the

West African region with diverse models, which facilitates a joint analysis of model performance

and uncertainties.

Here, parameterization (Chapter 4) and perturbed initial condition (Chapter 6) ensembles are

used to evaluate the uncertainty in the representation of the WAM introduced by moist physics

and to ensure that an identified land-atmosphere interaction signal is larger than internal model

variability, respectively.

3.4 Regional adjustment

LAMs are used to simulate only specific parts of the world, which allows them to take into

account regional peculiarities as opposed to GCMs. For example, parameterizations usually do

not work similarly well for every region on Earth since they were often adapted to reproduce an

observed process in a specific region (Stensrud, 2009). While for a GCM, a ’global compromise’

has to be found, a LAM can be regionally optimized.

In this thesis, the adjustment includes for example the evaluation of parameterization combi-

nations that produce reasonable results in the study region (Chapter 4), to take into account

increased aerosol concentrations (Section 3.5.5), to use model resolutions that allow the explicit

treatment of convection (Chapter 5) or to adjust land surface parameters to better match the

actual surface conditions in West Africa (Section 3.5.6, Chapter 6).
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3.5 The Weather Research and Forecasting model

The WRF model is a non-hydrostatic LAM that was originally designed for numerical weather

prediction but was gradually extended to fulfil the needs of regional climate research alike.

Its development is an open source project with a large and active community but is mainly

coordinated between the National Center for Atmospheric Research (NCAR), the National Center

for Environmental Prediction (NCEP), the Forecast Systems Laboratory, the Air Force Weather

Agency and the Oklahoma University.

Certain WRF systems and extensions are also suitable for data assimilation, for atmospheric

chemistry or hydrological research, which however will not be discussed here. The WRF model

is free to download1.

3.5.1 Technical background

The WRF software package has grown extremely large and consists on one hand of the dynamical

solver, in this case the Advanced Research WRF, and on the other hand of various model physics

that come in more or less independent modules. The WRF code is entirely written in parallelized

Fortran90/95.

The schematic in Fig. 3.2 illustrates how the different parts of WRF intertwine. Details on

the following descriptions of the dynamical core and different model physics can be found in

(Skamarock et al., 2008) and references therein. Detailed information on exact software require-

ments, installation and the manifold WRF options is given in the WRF user guide (NCAR, 2015).

Dynamical core

Here, the heart of the WRF model is the ARW dynamical core2 where the Euler equations

with the integration of moisture are solved (Skamarock et al., 2008). This set of equations

approximates the atmospheric motion by describing the spatio-temporal evolution of the zonal,

meridional and vertical wind velocities (u,v,w), pressure, temperature, specific humidity and

density and constitutes of:

(i) the continuity equation representing the conservation of mass (and moisture)

(ii) the conservation of momentum for each velocity component u,v,w

(iii) the conservation of energy

(vi) the ideal gas law, giving the relationship of pressure, density and temperature

(see e.g. Goosse, 2015, pp. 85 for details)

The dynamic solver also handles diffusion3 and the spatial and temporal discretization.

1 http://www.mmm.ucar.edu/wrf/users
2WRFV3/dyn em/module big step utilities em.F
3WRFV3/dyn em/module diffusion em.F
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Figure 3.2: Schematic of the main WRF components and their interconnections. Adapted from (NCAR, 2015).

Discretization

The spatial discretization takes place on an Arakawa-C staggered horizontal grid with the velocity

vectors u,v,w being calculated at the centres of the left/right, front/back, bottom/top grid cell

faces, respectively. These vectors are positive for westerly, southerly and upward winds.

All other variables are calculated at the mass points at the center of each grid cell box (Skamarock

et al., 2008).

On this grid, the vertical coordinate (η) is terrain-following and uses the hydrostatic pressure to

define a horizontal model layer that coincides with the grid cell mass points:

η =
Ph − Ph(top)

Ph(bottom)− Ph(top)
, (3.1)

where Ph is the hydrostatic pressure at an arbitrary elevation, Ph(top) denotes the value at the

model top (can be chosen and is fixed) and Ph(bottom) is the hydrostatic pressure surface value.

Therefore, η ranges from 0 (top) to 1 (bottom) (Skamarock et al., 2008).

For temporal discretization, the 3rd order Runge-Kutta integration scheme1 is used.

1WRFV3/dyn em/solve em.F and the related time-stepping routines
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Parameterizations

WRF is only able to explicitly resolve atmospheric phenomena that are larger than its grid

resolution. Even at a horizontal resolution of 1 km, there are processes that have an effect on

the atmosphere, but cannot be ’seen’ by the model, e.g. small cumulus clouds or turbulence.

For example, turbulence could be explicitly resolved only when applying WRF in a large eddy

simulation set-up at < 200 m (e.g. Moeng et al., 2007).

In this context, a parameterization is a translation of the effect of an ’unseen’ sub-grid process

to the scale that is resolved by the model. Another reason why parameterizations are necessary

is the fact that not all physical processes are yet sufficiently understood to be implemented

by exact physical laws (e.g. cloud microphysics) but can be described by empirical laws. A

further argument for a parameterization is the pure simplification of otherwise extremely complex

processes, rendering their explicit implementation computationally too expensive.

The most recent WRF version 3.7.1 allows a total of about 78 different parameterization schemes

to include the effects of

• Cloud microphysics: water phase changes, resolved cloud and precipitation processes

• Short- and longwave radiation: external solar forcing including absorption, reflection and

scattering in the atmosphere and the surface; infrared and thermal radiation absorbed and

emitted by gases and surfaces

• Convection (cumulus parameterization): sub-grid scale effects of clouds and shallow and

deep convection (vertical transport of heat and moisture)

• Surface physics (the LSM): calculates the turbulent surface fluxes of sensible and latent

heat with respect to the given radiative forcing and precipitation

• Surface layer: interface between LSM and atmosphere, where friction velocities and exchange

coefficients are calculated

• Turbulence (planetary boundary layer) scheme: vertical fluxes due to eddy transport

Figure 3.2 gives an overview on the links between the different parameterizations1 in WRF and

in which direction information is passed on (NCAR, 2015). Several parameterization schemes

provide detailed options2 that have to be chosen for each simulation in the namelist.input3

configuration file.

1WRFV3/phys
2WRFV3/run/README.namelist
3WRFV3/run/namelist.input
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Nesting strategies

The technique of nesting a high-resolution grid into a coarser grid is not only a common technique

for implementing a LAM into a global dataset but it can also be used within the same LAM.

This is necessary if the resolution of the global dataset is too coarse to be directly downscaled to

the target model resolution (Chapter 5). According to Denis et al. (2003), the resolution jump

should not exceed a factor of 12 to ensure a realistic relaxation of the finer to the coarser grid.

Generally, two nesting strategies are available with WRF: one- and two-way nesting. Driving

WRF with a global dataset inevitably represents a one-way nesting, meaning that information of

the coarse grid enters the WRF domain, but WRF cannot give a feedback to the global scales.

The same approach may be used when a higher resolution WRF domain (also called the child) is

nested into a coarser resolution WRF domain (also called the parent): the parent feeds the child

domain, but does not get back any information from the child.

Between two WRF domains, two-way nesting would be an alternative, which refers to an

information exchange in both directions. It is in principle more realistic than one-way nesting

since it accounts for the possibility that small-scale perturbations lead to changes at the larger

scales. This is especially important for global scale impact studies with GCMs. However, when

using reanalysis data, which is supposed to represent the large scales as realistic as possible

(already including potential effects of the small scales), the sense of two-way nesting is debatable

since it might lead to a larger divergence of WRF from the ’perfect’ forcing data (Lorenz and

Jacob, 2005). Furthermore, two-way nesting creates artefacts in the parent domain where the

boundaries of the child are located, rendering the parent simulation unusable. Therefore, only

one-way nesting is used here.

3.5.2 Baseline set-up

For all experiments in this thesis, WRF is driven by the European Center for Medium range

Weather Forecasting (ECMWF) Re-Analysis-Interim (ERA-I) data (Dee et al., 2011) at its lateral

boundaries (temperature, u/v wind, geopotential height, relative humidity, pressure). ERA-I

also provides data for the lower boundaries in form of SST and estimates for soil moisture and

temperature. All boundary conditions are provided every 6 hours at a resolution of 0.75◦.

Previous experiments with the Climate Forecast System Reanalysis (Saha et al., 2010) at 0.5◦

worsened the simulation of WAM rainband characteristics. In addition, Siegmund et al. (2015)

reported deficiencies of WRF to capture the rainband movement when driven with the Climate

Forecast System real-time forecast version 2. Other reanalysis products were excluded due

to considerably coarser resolutions (e.g. NCEP Reanalysis 2 at 2.5◦). By now, the Modern

Era Restrospective-Analysis for Research and Applications (MERRA, Rienecker et al., 2011)

product at 0.5◦ would be another interesting alternative to ERA-I, but was relatively new and

not thoroughly tested when the presented experiments were conducted.
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As a baseline set-up, WRF version 3.5.1 is used in an ’out of the box’ state for climate simulations

given in the WRF user guide (NCAR, 2015). This includes the Noah LSM (Chen and Dudhia,

2001) with the 21-category Moderate Resolution Imaging Spectroradiometer (MODIS) land-use

classification (cf. Appendix A), the Kain-Fritsch cumulus scheme (Kain, 2004), the Yonsei

University PBL scheme (Hong and Lim, 2006) and the WRF Single Moment 6 microphysics

scheme (Hong et al., 2004). The only difference is that the shortwave radiation scheme by Dudhia

(1989) and the Rapid Radiative Transfer Model longwave radiation scheme (Mlawer et al., 1997)

are used instead of the Community Atmosphere Model radiation scheme options. The latter

provided extremely dry conditions in the WAM region during test simulations.

Surface information for broadband black-sky albedo, leaf area index and vegetation fraction are

taken from climatological values available for the region from the WRF pre-processing system

(Section 3.5.3, see Table 6.1 for references). Static classification maps for land use (dominant

vegetation type) and dominant soil types are used to read the corresponding values for e.g.

soil moisture capacity, root depth or surface roughness length from fixed tables1 provided by

WRF. These maps also identify the location of lakes, whose temperature is interpolated from

SST per default. Here, the average of surrounding surface temperatures is used for lake surface

temperatures instead, as described in the WRF user guide (NCAR, 2015), to avoid extremely cold

inland lake temperatures. All static terrestrial lower-boundary conditions, including topography,

are part of the pre-processing package.

3.5.3 Data processing and visualization

WRF pre-processing system

The WRF software comes with a whole data pre-processing system (WPS) consisting of different

programs that facilitate the conversion of lateral and surface boundary data into a format that

WRF is able to read. In Fig. 3.3, the WPS work flow is illustrated consisting of the programs:

• ungrib.exe: extracts global input data from gridded binary files to be readable by metgrid.

• geogrid.exe: Defines the domain position and extent, horizontal model resolution and

interpolates static terrestrial information onto the WRF grid for all nests such as land use

and soil maps, topography, albedo, vegetation fraction etc.

• metgrid.exe: Horizontally interpolates the global data extracted by ungrib onto the WRF

grid and combines it with the terrestrial data.

The result of WPS are metgrid files in the temporal resolution of the global input data (here:

6-hourly). Finally, real.exe is the WRF-ARW data pre-processor and reads the WPS metgrid

files to vertically interpolate the information onto all vertical WRF levels. It provides files for

the initial state and the (6-hourly) surface and lateral boundary conditions for WRF.

1WRFV3/run/ : SOILPARM.TBL, LANDUSE.TBL, VEGPARM.TBL
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Figure 3.3: Data flow between the programs of the WRF pre-processing system (NCAR, 2015).

Default New
°C

Figure 3.4: Metgrid interpolated ERA-I SST for 15-03-1999 for the default and new interpolation (see text) to a
horizontal resolution of 10 km.

Interpolation at coastlines

There are various options for the horizontal interpolation of variables in the metgrid configuration

table that can make an important difference, especially for the interpolation of SST close to

coastlines.

Senatore et al. (2014) found for WRF simulations conducted in the Mediterranean that certain

interpolation approaches might produce artefacts in the SST field that considerably affect rainfall

patterns close to the coast. The interpolation technique along the coastline has to be able to cope

with masked values and therefore to cope with a reduced number of available values surrounding

the point to be interpolated since land pixels have to be excluded.

By default, WRF uses a sixteen points parabolic (sixteen pt) or four point bi-linear (four pt)

interpolation method that do not handle masked points (NCAR, 2015). In case of the ERA-I

data, these approaches indeed lead to artefacts at the coast in the north-eastern part of the Gulf

of Guinea (cf. Fig. 3.4, left). Several performed tests gave a smoothly interpolated coastline

(Fig. 3.4, right) with the following entry for SST interpolation in the metgrid configuration table

substituting the old entry below:
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WRFV3/WPS/metgrid/METGRID.TBL, line 531 and following

# New

name=SST

interp option=sixteen pt+four pt+wt average 4pt

interp mask=LANDSEA(1)

masked=land

missing value=-1.E30

fill missing=0.

flag in output=FLAG SST

# Default

# name=SST

# interp option=sixteen pt+four pt

# fill missing=0.

# missing value=-1.E30

# flag in output=FLAG SST

The list of interpolation options (interp option) is tested for applicability one after another. Since

with the new entry, the land-sea mask from ERA-I is defined as interpolation mask (interp mask)

with the land masked out, metgrid will use the last interpolation method (wt average 4pt) that

can handle masked values when they are encountered along the coast. This third interpolation

method creates a weighted average of all valid points surrounding the point to be interpolated.

Generally, it is advisable to always check the metgrid interpolation results in the WRF lower

boundary file1 before starting a WRF simulation.

Data post-processing and visualization

WRF output is usually spread over several files to avoid too large single files. For convenient

data analysis, each single variable in the WRF files is extracted and merged temporally to obtain

one single file over the analysis period for each variable, which is realized with netCDF operators

implemented in Linux bash scripts.

Here, the interpolation of 3D-variables from η to pressure levels (1000, 975, 925, 900, 850, 800,

750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200, 150, 100, 75 hPa) is directly performed

by WRF by using the pressure level diagnostics (p lev diags) option in the namelist.input.

The 3-hourly to hourly single-variable files are additionally aggregated to daily and monthly files.

This aggregation step and all visualizations in this thesis are performed with the Interactive

Data Language (IDL) with the latter based on the Coyote Graphics library by David Fanning2.

1wrflowinp*
2http://www.idlcoyote.com/documents/programs.php
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3.5.4 Computing environment

Since WRF simulations are computationally expensive and computing time on any high perfor-

mance computing system is usually limited, the question may arise whether model simulations

can be spread over different computing systems. The computing systems in question are most

likely not identical but differ in hardware components, number of threads (the number of simulta-

neously executed processes) or the installed compilers, among other. This can lead to numerical

differences (e.g. round-off errors) in the WRF simulations.

Experimental set-up

To test the margin of the uncertainty in simulated rainfall amounts that is induced by numerical

errors, an identical case-study is conducted on four different computing systems with the WRF

configuration described in Chapter 3.5.2 for April 1999 with one month of spin-up time. The

domain extent is shown in Fig. 3.5 and encompasses the whole WAM region at a resolution of

24 km. In addition, the margin of numerical errors within the Volta basin (∼400,000 km2) is

analysed as a test case for the impact at a large catchment scale.

Tested system differences

Besides for different computing systems, the reproducibility of the WRF simulation is also tested

for varying numbers of threads (nb threads) and different compiling optimizations1 (opt) on the

same system as well as with or without adaptive time stepping2 (ats).

10W 0E 10E 20E

10S

Eq.

10N

20N

Figure 3.5: Extent of the WRF domain and the Volta basin (red)

1Optional, compiler specific optimizations for the interpretation of the WRF source code that can ultimately
speed up the model and therefore shorten the simulation time

2Instead of being fixed, the model time step is variable allowing longer time steps (less computations) if stability
criteria are not violated, which speeds up the simulation (Hutchinson, 2007)
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3.5 The Weather Research and Forecasting model

Three high performance computing systems and one workstation are used for the experiment:

• ”Linux Cluster” of the Leibniz Computing Centre (Leibniz Rechenzentrum, LRZ), Munich:

MPP Cluster, Intel compiler, 178 nodes, 64 threads per node

• ”Blizzard” of the German Climate Computing Centre (Deutsches Klimarechenzentrum,

DKRZ), Hamburg: IBM Power6 , IBM (AIX) compiler, 264 nodes, 64 threads per node

• ”Kea” (KEA) of the Institute of Meteorology and Climate Research, Karlsruhe Institute of

Technology, Garmisch-Partenkirchen: Intel Sandy Bridge (Intel Xeon Processor E5-2643),

Intel compiler, 10 nodes, 16 threads per node

• Linux workstation (WS) of the Institute of Meteorology and Climate Research, Karlsruhe

Institute of Technology, Garmisch-Partenkirchen: Intel i7-3630QM (quad-core), gfortran

compiler, 1 node, 8 threads per node

The conducted experiments are summarized in Table 3.1. The set-ups for the experiment same

constitute the baseline set-ups for each system. The last column identical indicates whether the

two simulations compared in the experiment provide exactly identical results (yes) or not (no).

In the case of experiment comp sys, four simulations (DKRZ, KEA, LRZ, WS) are compared.

Table 3.1: Conducted comparison experiments on the same computing system with: identical configurations
(same), a different number of threads (nb threads), with or without compilation optimization (opt), with or
without adaptive time stepping (opt). In addition, the reproducibility between completely different computing
systems (comp sys) is tested. A yes for identical means that the simulation was reproduced for the compared
experiments. Overall, six simulations were conducted on each computing system. For details on the computing
systems, see text.

Simulation1 Simulation2
Test case System ats 1 opt 1 nb threads1 ats 2 opt 2 nb threads2 identical
same

DKRZ yes yes 128 yes yes 128 yes
KEA yes yes 12 yes yes 12 yes
LRZ yes yes 128 yes yes 128 yes
WS yes yes 8 yes yes 8 yes

nb threads
DKRZ yes yes 128 yes yes 64 yes
KEA yes yes 12 yes yes 24 no
KEA yes no 12 yes no 24 yes
LRZ yes yes 128 yes yes 64 no
LRZ yes no 128 yes no 64 yes
WS yes yes 8 yes yes 4 yes

opt
DKRZ yes yes 128 yes no 128 no
KEA yes yes 12 yes no 12 no
LRZ yes yes 128 yes no 128 no
WS yes yes 8 yes no 8 no

ats
DKRZ yes no 128 no no 128 no
KEA yes no 12 no no 12 no
LRZ yes no 128 no no 128 no
WS yes no 8 no no 8 no

comp sys
ALL no no 8-128 - - - no
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Simulation differences

Overall, the experiments in Table 3.1 reveal that the WRF simulations are not reproducible

on different computing systems, even if no compiling optimization or adaptive timestepping is

used (comp sys). However, the simulations are always identical when just repeating a simulation

(identical configuration) on the same system (same).

The picture is more complicated when a different number of threads is used on the same computing

system (nb threads), where DKRZ and WS never show a change in simulation results, but KEA

and LRZ show differences if a compiling optimization is used. This could be specifically related

to the Intel compiler, which is used on both systems. Only when no optimization is used, KEA

and LRZ are able to reproduce the simulation with any number of threads. The experiments

for compiling optimization (opt) and adaptive time stepping (ats) finally show that a change in

these options always leads to different simulation results on the same computing system.

Figure 3.6 illustrates that for non-identical simulations, the difference of monthly average

rainfall shows spatially random patterns for all the test cases and frequently reaches over

±100 mm month−1 per grid cell.

Figure 3.6: Examples of April 1999 rainfall differences for: DKRZ and LRZ (comp sys), compilation optimization
on/ off for DKRZ (opt), adaptive time stepping on/ off for DKRZ (ats) and a different number of threads with
opt on for KEA (nb threads).
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Table 3.2 summarizes the monthly precipitation averages of the different simulations for the whole

WRF domain and for the Volta basin: While for the domain average, the maximum difference in

precipitation amounts remains small (∼3 mm month−1), it reaches about 19 mm month−1 in

the Volta basin, which corresponds to a standard deviation (SD) of ± 6 mm month−1 or to a

relative SD (RSD) of ± 6 % with respect to the average modelled rainfall of 96 mm month−1

during April. The relative SD remains comparable even if only the DKRZ machine is considered,

indicating that the numerical error introduced on one machine by compiler or computational

options (opt/ats) is about the same as the numerical error between different machines. The

maximum rainfall difference for the Volta basin average on a specific day for DKRZ is 15 mm

day−1, basically reflecting the effect of a displaced convective event.

Table 3.2: Overview of April 1999 average rainfall (Mean, mm month−1) and its range (maximum-minimum,
mm month−1), standard deviation (SD, mm month−1) and relative SD (RSD, %) over the whole WRF domain
and over the Volta basin (cf. Fig. 3.5). To separate the effect of a completely different computing system, all
includes all conducted simulations while DKRZ only includes only test simulations that were run on the DKRZ
machine. Only simulations that are different from each other are considered.

Number Mean Range SD RSD
Domain
all 14 93.01 3.07 0.94 1.01
DKRZ only 4 92.73 1.27 0.71 0.76
Volta basin
all 14 96.12 18.88 5.98 6.22
DKRZ only 4 99.40 12.50 6.32 6.36

Reproducibility of model results

Generally, the WRF output is not reproducible on different computing systems. Neither is it

reproducible on the same system when changing the compilation optimization or the adaptive

timestep option in WRF. If compilation optimization is used, even a change in the number of

computing nodes might perturb the simulation on some systems, as shown for KEA and LRZ.

The variations between the simulations in this experiment represent the error margin inherent

to numerical modelling that ultimately emerges from a combination of rounding errors and

discretization errors i.e. the approximation of a continuous system by a finite length. Hong

et al. (2013) found the system dependency of simulations to be comparable to the internal model

variability induced by minimal perturbations / different initial conditions (cf. Section 3.2). They

point out that simulations from different systems can adequately be used to increase the number

of members for ensemble approaches working with perturbed initial conditions.

Usually, numerical errors are regarded as negligible since the induced differences are much smaller

than other uncertainties, for example from model parameterizations (Freitas, 2002). Nevertheless,

the above findings have critical implications for the experimental set-up of analyses that rely

on pointwize comparisons, for example with weather station data but also for catchment-scale

hydrological studies. The uncertainty however decreases when averaging larger spatio-temporal

scales as shown in Table 3.2 when comparing the results for the Volta basin (RSD≈6%) with the

domain average (RSD≈1%).
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3 Framework for the dynamical downscaling experiments

For practical reasons, all following experiments in this thesis were computed on the DKRZ

machine Blizzard with compiling optimization and adaptive time stepping turned on. While

this assigns the same numerical error to all following simulations and makes virtually similar

simulations indeed identical, it does not mean that internal model variability can be ignored

when using the same computing system and model set-up. On contrary, the model response to

a forcing can only be trustworthy if the extracted signal is significantly larger than the model

variability induced by small perturbations. Therefore, ensemble approaches are used in this

thesis to ensure a robust signal detection (Chapter 4 and 6).

3.5.5 Cumulative radiation and atmospheric scattering

By WRF default settings, long- and shortwave radiation of the Dudhia radiation scheme as

well as latent, sensible and ground heat fluxes are provided as instantaneous values only. This

leads to an error in the temporal averages of the continuous variables and in the identification

of extreme values, especially if model output is written at 3-hourly intervals only, as is done in

Chapter 4 and Chapter 5. Therefore, all radiation and surface flux variables were redefined to

be cumulative variables for the Noah LSM in the LSM driver. The exemplary formulation in

Fortran for accumulated incoming shortwave radiation reads

WRFV3/phys/module surface driver.F, subroutine: surface driver, line 2624 and following

DO j=j s t a r t ( i j ) , j end ( i j )

DO i=i s t a r t ( i j ) , i end ( i j )

IF (PRESENT(ACSWDOWN) )ACSWDOWN( I , J)=ACSWDOWN( I , J)+SWDOWN( I , J )∗DT

ENDDO

ENDDO

where SWDOWN is the array of instantaneous values (W m−2) and DT is the model time step

(seconds). SWDOWN is accumulated in ACSWDOWN (J m−2) for every model time step and

every i,j coordinate in the model domain.

The effect of this formulation for incoming shortwave radiation with hourly model output in

August 2013 at 24 km horizontal resolution is shown in Fig. 3.8. The instantaneous approach

(WRF def) shows higher values until 13h with the maximum one hour too early at noon when

compared to the cumulative approach (WRF cum). The latter is in phase with the diurnal cycle

obtained from three WASCAL Eddy Covariance (EC) stations (Appendix B) situated at the

border of Ghana and Burkina Faso (Fig 3.7). This confirms a more realistic representation of

the incoming shortwave radiation.

In conclusion, the advantage of cumulative instead of instantaneous radiation and flux variables

is the general independence of model output intervals to derive exact temporal averages, which

better matches the high-frequency flux and radiation measurements of EC stations.
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Figure 3.7: Positions of the WASCAL EC stations in (1) Sumbrungu (Ghana), (2) Kayoro (Ghana) and (3)
Nazinga (Burkina Faso).

The same should be kept in mind for other WRF variables that are instantaneously provided, such

as temperature, humidity or wind speed. To be able to compare WRF output with frequently

measuring weather stations, it should either be written at an hourly basis or the WRF out-

put diagnostics option in the namelist.input should be used. This option automatically provides

averages and minimum/maximum values for various variables over a defined time period, e.g.

daily, which was used here.

Adjustment of the atmospheric scattering

The comparison between the EC stations and WRF cum in Fig. 3.8 shows an overestimation of

incoming solar radiation by WRF with the baseline set-up (Section 3.5.2). This bias is especially

problematic because the incoming shortwave radiation is the external forcing, the ’engine’, for

our modelled system. The overestimation of incoming solar radiation leads to an exaggeration of

available energy in the climate system subsequently affecting all other processes.

Indeed, first experiments with WRF in the framework of this thesis involved testing its behaviour

with different parameterizations for shortwave radiation revealing a much larger model sensitivity

to this choice than to any other parameterization tested later on. This is in line with other WRF

studies over West Africa (Li et al., 2014) and East Africa (Pohl et al., 2011), where the largest

uncertainty in model results is attributed to the radiation physics.

Large differences exist in how the radiation parameterizations treat clouds (resolved and un-

resolved), which probably has some part in this uncertainty. In addition, only certain WRF

parameterization combinations (e.g. Thompson microphysics, RRTMG shortwave scheme, NCAR,

2015) take aerosols into account, which are not used here. Therefore, the lacking representation

of the dusty SAL could be one reason for the positive radiation bias in Fig. 3.8.
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Figure 3.8: Average diurnal cycle of incoming shortwave radiation at hourly resolution during August 2013 for
the EC station mean (EC-stations) and WRF for the default approach with instantaneous radiation (WRF def),
the cumulative approach (WRF cum) and the optimized solar radiation with adjusted optical depth (WRF opt).
For comparability, only the 24x24 km WRF grid cells that enclose the three EC station positions are chosen
and averaged.

Other WRF compartments could be tuned to cancel out this bias but this would mean to optimize

the model to work with an originally faulty energy source. Therefore, it makes sense to first of

all adjust the incoming shortwave radiation to make sure that it is, on average, in an acceptable

range.

The Dudhia scheme allows an adjustment with a scattering tuning parameter1 that can be set at

runtime in the namelist.input. Figure 3.8 illustrates the result of this tuning: by default, the

parameter is set to 1 (WRF cum, 10% scattered) and was raised to 3 (WRF opt, 30% scattered)

after different experiments. This implicitly takes into account the increased effect of aerosols

in this region and leads to a better correspondence to the EC measurements. However, the

parameter changes scattering homogeneously and is not able to represent a meridional gradient

in dust concentrations, leaving a positive bias over the Sahara (cf. Fig. 5.10).

1swrad scat
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3.5 The Weather Research and Forecasting model

3.5.6 Implementation of remote-sensing data

In this thesis, new satellite-derived surface variables are implemented into WRF (see Chapter 6

for details on these datasets). For this, the static climatological surface variables for albedo, leaf

area index (LAI) and vegetation fraction as well as the existing land use map from geogrid need

to be substituted. For implementation, the metgrid files are rewritten with an IDL routine to

include the updated variables.

Surface variable overview

There are various WPS and WRF surface variables, some of which need to be externally updated

for the implementation of new surface information. Table 3.3 summarizes the affected variables

with their names in the metgrid (WRF input1) files. Most surface information in the metgrid

files originally stems from the terrestrial information provided by geogrid except for VEGCAT,

which is provided from the global forcing dataset, if available (extracted by ungrib).

Table 3.3: Overview of WPS/WRF variables that play a role for implementing new albedo, vegetation fraction,
LAI and land use information. The names corresponding to a certain variable in metgrid and in the WRF
input files is given. The source indicates the program that creates the variable. The variables are only taken
into account by WRF if the corresponding namelist.input option is set to the value given here.

Metgrid WRF input Source Namelist.input option Description

ALBEDO12M ALBBCK geogrid usemonalb= .true.
Monthly albedo
climatology (12 months)

GREENFRAC VEGFRA geogrid sst update=1
Monthly vegetation fraction
climatology (12 months)

LAI12M LAI geogrid rdlai2d=.true.
Monthly leaf area index clima-
tology (12 months)

LU INDEX LU INDEX geogrid surface input source=3
Dominant
land use category

VEGCAT VEGCAT ungrib surface input source=2
Dominant
land use category

LANDUSEF LANDUSEF geogrid surface input source=1
Fractional
land use category

- SHDMAX real -
Maximum climatological
vegetation fraction

- SHDMIN real -
Minimum climatological
vegetation fraction

- IVGTYP real -
Dominant
land use category

1wrflowinp*, wrfbdy*, wrfinput*
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3 Framework for the dynamical downscaling experiments

Substitution of the land use classification map

To include the new land use classification map, the functions of the surface input source option

in the namelist.input is used: WRF contains three different variables for the dominant land use

category (cf. Table 3.3) and handles an additional variable for fractional land use (percentage of

land use class per grid cell). The surface input source option determines which of these variables

are read by WRF by distinguishing between three cases1 :

• surface input source=1: the fractional land use information (LANDUSEF) from geogrid is

used. The dominant land use category is recomputed by the real program2 (IVGTYP).

All other existing dominant land use variables (LU INDEX, VEGCAT) are overwritten by

IVGTYP.

• surface input source=2: the global driving dataset provides a dominant land use map that

was read by ungrib. If such a variable was available from the global dataset, and only

then, the VEGCAT variable exists in the metgrid files. In this case, VEGCAT overwrites

LU INDEX and IVGTYP.

• surface input source=3: the dominant land use information (LU INDEX) from geogrid

is used and is not recomputed by the real program. In this case, LU INDEX overwrites

VEGCAT and IVGTYP.

By default, WRF uses option 1. With this option, a new land use map will be overwritten if

it is only implemented as LU INDEX or IVGTYP (or both). The real program changes both

variables to the default land use map using LANDUSEF.

Therefore, the way to externally define a dominant land use map and to prevent it from being

overwritten is to declare it as ’LU INDEX’ in the metgrid files and to set ’surface input source=3’.

Here, the real program is used for computing the dominant land use map in order to apply

the same procedure for defining a dominant class with both, the default and the new land use

map. Therefore, fractional land classes of the new land use map (native resolution of 250 m)

are externally computed at WRF resolution to form an array of the dimensions [X x Y x 21].

In this case, X and Y are the dimensions of the WRF domain and 21 represents the number

of MODIS land use classifications (see Annex A), which is used throughout this thesis and for

which corresponding surface parameters can be found in WRF tables3.

1/WRFV3/dyn em/module initialize real.F
2/WRFV3/share/module soil pre.F ; SUBROUTINE process percent cat new
3/WRFV3/run/LANDUSE.TBL and /WRFV3/run/VEGPARM.TBL: the LSM reads the LANDUSE.TBL

first, but any value is overwritten afterwards by VEGPARM.TBL if there is an overlap in variables.

42



3.5 The Weather Research and Forecasting model

Substitution of climatological surface parameters

To implement new fields for albedo, vegetation fraction and LAI, they have to be mapped to the

WRF grid and can then substitute the existing variable arrays in the metgrid files. However, the

variables are expected to be of [X x Y x time] dimension, where time has twelve entries for the

default annual climatologies. The subsequently called real program uses these climatologies to:

• compute the climatological maximum (SHDMAX) and minimum (SHDMIN) vegetation

fraction for each grid point. This information is later used by the LSM to e.g. approximate

the surface emissivity.

• linearly interpolate the monthly values to the chosen time step in which the boundary

information is updated (here: 6-hourly).

The real routine for the temporal interpolation of the surface variables only handles monthly

data. Therefore, this interpolation has to be done externally for new surface datasets of higher

temporal resolution. Here, an IDL routine is used to interpolate 10-daily values to the targeted

6-hourly values. To bypass the interpolation of the real program, the interpolated 6-hourly

value field is written twelve times into the corresponding metgrid file to form the expected

[X x Y x 12 months] array. Like that, the interpolation from real takes place but has no effect.

Furthermore, SHDMAX and SHDMIN are also externally derived from climatological monthly

means for the available time period (2007-2012, cf. Chapter 6) and each grid cell. A step further

would be to make these variables interannually dynamic.

To avoid the necessity of defining new variables in various WPS routines, SHDMAX and

SHDMIN are introduced via the already existing variable names SOILCAT and VEGCAT as

’vehicles’. The computation of the monthly climatological min/max values by the real program

(monthly min max ) is changed to be called only if the configuration flag in the namelist.input

(config flag) is set to surface input source=1 :

WRFV3/dyn em/module initialize real.F, line 1128 and following

IF ( c o n f i g f l a g s%s u r f a c e i n p u t s o u r c e .EQ. 1 ) THEN

CALL monthly min max ( . . . )

ELSE

DO j = j t s , MIN( j t e , jde−1)

DO i = i t s , MIN( i t e , ide −1)

g r id%shdmax ( i , j ) = gr id%vegcat ( i , j )

g r i d%shdmin ( i , j ) = gr id%s o i l c a t ( i , j )

g r i d%vegcat ( i , j ) = 0

gr id%s o i l c a t ( i , j ) = 0

END DO

END DO

ENDIF
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Else, SHDMAX and SHDMIN are read from the ’vehicle variables’ VEGCAT and SOILCAT.

surface input source=3 was adjusted to act exactly like surface input source=1, except that the

computation of SHDMAX and SHDMIN by the real program is omitted due to the formulation

above. The adjusted WRF therefore allows the implementation of new surface variables with

surface input source=3 and can still be used with the default climatological datasets with sur-

face input source=1.

Definition of barren land surfaces

In the Noah LSM, barren land surfaces are defined very strictly with a formulation in

WRFV3/phys/module sf noahmplsm.F, line 868

IF (VEGTYP == ISURBAN .OR. VEGTYP == ISBARREN) FVEG = 0.0

and line 1100

IF ( VEGTYP == ISBARREN ) . or . ( VEGTYP == ISURBAN) ) THEN

LAI = 0 .

ENDIF

meaning that any grid cell classified as ’barren’ (VEGTYP == ISBARREN) is defined to

have a vegetation fraction (FVEG) and LAI of zero. The marker ’ISBARREN’ is set in the

VEGPARM.TBL and reads ’BARE 16’ in case of the MODIS land use classification used

here. This means that the land use classification map overwrites any information from the

satellite-derived vegetation fraction/LAI if the particular grid cell is classified as barren.

While this might be acceptable when the vegetation fraction/LAI dataset and land classification

map correspond perfectly (which is usually not the case when using datasets from different

sources) and indeed match the ’barren’ land class description (cf. Appendix A, MODIS: not more

than 10% vegetated cover during any time of the year), this is definitely not the case any more

after an upscaling. Therefore, the ’barren’ class should not force the vegetation fraction/LAI

to zero. It also leads to an unrealistically abrupt change between vegetated and less vegetated

areas.

The behaviour can be removed, either by changing the VEGPARM.TBL or by recompiling WRF

with the formulation above commented out.
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Chapter 4

Interactions of moist processes with the monsoon

system

In the WRF model, many processes affecting how moisture is distributed in the atmosphere have

to be parameterized when they are too small-scale to be physically resolved at grid-scale. Different

from many other LAMs, WRF incorporates a vast number of physical parameterizations for

microphysical processes, for turbulence that vertically transports water vapour or for convection,

making it highly adaptable. At the same time, it is challenging to set up the model since such

parameterizations are usually a key source of uncertainty, which limits the ability to make robust

statements on moist process interactions (Flaounas et al., 2011b). The different formulations

in the parameterization schemes change their sensitivity to resolved drivers, potentially leading

to process interactions of different intensity. It is well-known that the results of a model can

change considerably with the choice of the model physics. With its large number of available

parameterizations, the WRF model is ideal to assess this introduced uncertainty.

So far, only a small number of studies applied WRF in the West African region. These studies

demonstrate the skill of the WRF model and its predecessor, the Mesoscale Meteorology Model

5 (Grell et al., 1994) in representing specific features of the West African climate (e.g. Vizy

and Cook, 2002; Bliefernicht et al., 2013; Hagos and Cook, 2007; Sijikumar et al., 2006), for

LAM-based climate projections (Jung and Kunstmann, 2007; Vigaud et al., 2011), for the

investigation of tropical storms triggered over the region (Vizy and Cook, 2009; Druyan et al.,

2009; Chiao and Jenkins, 2010) and for evaporation tagging (Knoche and Kunstmann, 2013).

These studies either simply mention which model parameterizations were employed, or include a

pragmatic testing of model physics to minimize the bias against observations. However, they

rarely discuss uncertainties introduced by their choice of parameterizations for moist processes.
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Flaounas et al. (2011b) conducted a first comprehensive study of the sensitivity of WRF for

three convective and two turbulence parameterizations during the WAM 2006. They investi-

gate the behaviour of the tested schemes by analysing their capability in representing surface

variables and some dynamical monsoon features. While they indeed identify large differences

between model results, they do not evaluate what is causing the differences. Noble et al. (2014)

compared AEW occurrences of 64 WRF configurations with those of two reanalysis datasets

and radiosonde observations for 12-days time slices over ten years. They give valuable insights

into the development of these atmospheric disturbances and reveal deficiencies of the model in

reproducing them but likewise do not explain the process interactions that govern the change in

model performance.

Accordingly, the goal of this experiment is to use a multi-physics ensemble approach for an

uncertainty assessment but also as an analysis strategy to investigate the interaction of moist

processes with the WAM system. The different parameterization descriptions are perturbations

that allow to investigate to which degree a change in the moist processes is able to provoke

changes in the monsoon dynamics and related precipitation. In addition, the multi-physics

ensemble will be used to generalize the process-based impact of individual parameterization

schemes in the WRF model.

The members of the multi-physics ensemble represent all possible combinations of three schemes

per parameterization of cumulus convection (CU), microphysical cloud processes (MP) and

planetary boundary layer turbulence (PBL), totalling 27 different CU MP PBL combinations.

These parameterizations modulate the atmospheric moist processes and thus can be used to

indirectly assess the impact of changing moisture distribution on the WAM dynamics, while

the large-scale forcing at the domain boundaries remains the same for all simulations (ERA-I).

Analysing all possible combinations of parameterizations rather than taking an iterative approach

allows to identify the impact of each scheme, since it reveals robust tendencies for changing

parameterization partners. This experiment therefore gives insights into the feedback of the

WAM system to local and regional moist processes, as represented by the model physics schemes.

It can further help to trace back bad model behaviour to a certain process, and suggest which

parameterization scheme to change in order to improve the WAM representation in the WRF

model.
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4.1 Experimental set-up and reference datasets

4.1.1 Model configuration and analysis strategy

The simulations in this experiment are conducted with WRF version 3.5.1. The selected physics

schemes should (i) directly be linked to moisture transport and moisture redistribution in the

atmosphere, and (ii) differ in complexity or methodology to represent a particular process.

The investigated CU, MP and PBL schemes (see Table 4.1) include the effects of latent heat

release through deep and shallow convection, microphysical cloud and precipitation processes, and

vertical turbulent mixing due to eddy transports, respectively. The PBL scheme is determining

the flux profiles of temperature and moisture within the whole atmospheric column, hence

generating tendencies that serve as input for the CU and MP scheme at every model time step.

The CU scheme is responsible for releasing instabilities in the atmospheric sounding, preventing

the MP scheme from generating potentially unrealistic grid-scale convection. As a side-effect of

the redistribution of temperature and moisture towards a stable profile, the CU scheme produces

convective precipitation. In a last step, the MP scheme removes excess atmospheric moisture in

case the air is still saturated, which will be referred to as non-convective precipitation.

For the CU, MP, and PBL groups, parameterization schemes that follow different approaches to

represent the same physical effects are combined. The CU group includes a mass-flux type cloud

model (KF), a sounding-adjustment type model (BMJ) and a mass-flux type model based on

a stochastic approach, providing an ensemble mean (GF). For the KF scheme, the alternative

trigger function (option 2) based on moisture advection was used instead of the default option

because of reduced precipitation overestimations in preceding experiments.

The MP schemes used here differ in their classification of hydro-meteors. The WSM3 differentiates

between three classes: cloud water/ice, rain/snow and vapour, depending on the temperatures

being above or below freezing. LIN and TH take into account all six classes of hydro-meteors:

cloud water, cloud ice, rain, snow, vapor and graupel. The more sophisticated TH scheme

additionally predicts number concentrations for rain and ice species.

Table 4.1: Cumulus, microphysics and planetary boundary layer schemes used for the ensemble members.

Abbreviation References
Cumulus schemes CU
Betts-Miller-Janjic BMJ Janjic (1994), Janjic (2000)
Grell-Freitas GF Grell and Freitas (2014)
Kain-Fritsch, convection trigger 2 KF Kain (2004), Ma and Tan (2009)
Microphysics schemes MP
Lin Purdue LIN Lin et al. (1983)
New Thompson TH Thompson et al. (2008)
WRF Single Moment 3 WSM3 Hong et al. (2004)
Planetary boundary layer schemes PBL
Asymmetrical Convective Model V.2 ACM2 Pleim (2007)
Mellor-Yamada-Janjic MYJ Janjic (1994)
Yonsei University YSU Hong and Lim (2006)
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The PBL schemes can be divided into 1.5th order closure schemes based on prognostic turbulent

kinetic energy (MYJ), and schemes which treat the turbulent mixing by a first order closure

(YSU, ACM2). While the MYJ only considers local mixing into vertically adjacent grid cells, the

YSU and ACM2 schemes consider non-local mixing through large convective eddies. In YSU, this

is expressed by adding a counter-gradient term to non-local gradients of heat and momentum.

ACM2 changes smoothly from local eddy diffusion in stable environments to combined local

(downward fluxes) and non-local (upward fluxes) transport for heat, momentum and moisture

components in unstable conditions. Further details about these schemes can be found in the

literature listed in Table 4.1 and in Skamarock et al. (2008). All possible combinations of the

schemes are included in the multi-physics ensemble, resulting in a total of 27 members. Analyses

of the ensemble or sub-ensembles always refer to the mean value.

The model domain as shown in Fig. 4.1 encompasses the entire WAM system and its important

features. If not specified otherwise, analyses are carried out for the study region depicted by

the black box and for the three sub-regions with the sea masked out. To avoid problems with

the convective grey zone (∼4-20 km, Molinari and Dudek, 1992), the model is operated at a

medium horizontal resolution of 24 km, with 36 vertical levels and a model top of 50 hPa. The

integration time step is 120 s and model results are stored every three hours. The rest of the

model set-up corresponds to the baseline configuration in Section 3.5.2.

Figure 4.1: WRF model domain and elevation (m) at 24 km horizontal resolution. The study region (10◦W–10◦E,
4◦N–18◦N) is depicted by the black box. Sub-regions indicate the humid Guinea Coast (4◦N–8◦N), the Sudano-
Sahel (8◦N–14◦N) and the semi-arid Sahel (14◦N–18◦N).
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Figure 4.2: (a) JAS 1999 average precipitation (mm day−1) for TRMM (left) and GPCC (right) (b) Annual
cycle of 1999 monthly average precipitation for TRMM and GPCC. In addition, the GPCC climatological mean
(GPCC CLIM) for 1979-2010 is given. (c) Annual precipitation amounts for the study region with respect to
the climatological mean for 1979-2010 from GPCC

Simulation period

The rainy season of the wet year 1999 is simulated from March to September, including one month

of spin-up time. This time span covers the two monsoonal phases as described by Thorncroft

et al. (2011): the coastal phase from April to June (AMJ), and the continental phase from July

to September (JAS). A wet year is chosen to investigate the ensemble spread under a boundary

forcing that favours moist conditions to ensure that the monsoon regime simulated by the LAM

is not constrained by low incoming moisture fluxes and remote effects that dictate a weak WAM.

The year 1999 is characterized by an extraordinarily wide monsoon rainband with an extended

zone of maximum precipitation (Fig. 4.2a). At the same time, an above-average northward

transition of the monsoon rainband leads to very wet conditions in the Sahel and the Guinea

Coast, as can be seen from Fig. 4.2(b). The year is among the three wettest years in the reference

period since 1979 (Fig. 4.2c), for which the ERA-I dataset is available.
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4 Interactions of moist processes with the monsoon system

4.1.2 Reference Datasets

The model simulations are compared to satellite and observational data in order to evaluate the

skills and physical plausibilities of the different model configurations.

Precipitation For precipitation, the Global Precipitation Climatology Centre (GPCC) 0.5◦

gridded full data reanalysis product (Schneider et al., 2011) and the NASA Tropical Rainfall

Measuring Mission (TRMM) 0.25◦ resolution 3B42V7 (3-hourly, daily) and 3B43V7 (monthly)

rainfall estimates (Huffman et al., 1995, 1997) are used. The GPCC product provides interpolated

precipitation fields over the land surface based on a total of ∼64,400 rain gauges globally for the

period 1901-2010. TRMM on the other hand is a blended product based on satellite and GPCC

gauge reanalysis information for 1998-2015: The 3B42V7 product merges multiple independent

precipitation estimates from microwave and infrared sensors of the TRMM satellite. The monthly

averages of 3B42V7 are weighted against GPCC to form a monthly best-estimate precipitation

rate (3B43V7). The 3-hourly 3B42V7 product is then scaled to match the monthly sums of

the 3B43V7 product. The implementation of GPCC into TRMM results in a good agreement

of the two dataset in capturing the wet regime at the Guinea Coast and over the Sahel with

respect to the climatological mean from 1979-2010 (Fig. 4.2a, b). Thus, the two datasets are

not independent but their combination makes the TRMM product more robust: Nicholson

et al. (2003a,b) conducted a validation study for the GPCC and TRMM products as well as

for non-blended satellite products against a large set of independent gauge data for different

years over West Africa. They find largest systematic errors in the satellite-only analyses but

also considerable limitations in the gauge-based GPCC product due to the insufficient spatial

coverage of considered rain gauges. The 3B43V7 TRMM gauge-merged analysis product on the

other hand shows very good agreement with the independent gauge data on monthly to seasonal

time scales and averaged over 1◦ latitude/longitude boxes. This gives some confidence in the

performance of TRMM to capture precipitation amounts and patterns of the WAM.

Surface temperatures Surface temperatures are compared to the Merged Land-Ocean

Surface Temperature Analysis product by the National Oceanic and Atmospheric Administration

(NOAA). This 5◦ monthly gridded temperature product is based on the Global Historical

Climatology Network (GHCN) Version 3 with about 7,000 locations worldwide (Lawrimore et al.,

2011) and will be termed GHCN here. Although this dataset shows consistent results with other

datasets for global analyses, the regional validity can strongly vary since it relies on station

information only (Vose et al., 2012). The lack of stations renders the interpolated temperature

estimates and their patterns very uncertain (cf. Fig. 1.2). Therefore, GHCN is in the first place

used to obtain large-scale temperature gradients in this experiment.

Atmospheric dynamics To address the question to which degree regional processes modify

the large-scale patterns, the ERA-I forcing data is taken as reference for the atmospheric dynamics

and surface fluxes. Since the surface fluxes of ERA-I are a pure model product, they are not

used for validation but merely for a model intercomparison with WRF.
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4.2 Precipitation

Seasonality of precipitation

WRF captures the seasonal cycle, as can be seen from the Hovmöller diagrams (Fig. 4.3) for

the WRF ensemble mean (ENS) in comparison to TRMM. For both, the area of maximum

precipitation from April to June is situated at the coast at about 5◦N.

According to Hagos and Cook (2007), the SHL reaches its maximum by the end of June when

it is positioned around 20◦N, and when the ACT in the Gulf of Guinea is established, which

induces a pressure gradient strong enough to trigger the monsoon jump. Here, the date of the

monsoon jump is defined as the first occurrence of two consecutive days with rainfall amounts

within the 0.9 percentile for the period May-July between 9 -11◦N. For TRMM, the monsoon

jump takes place on 1st of July, as can be seen in Fig. 4.3 from the extension and subsequent

relocation of the precipitation maximum from the coast to ∼ 12◦N. ENS is also capturing the

monsoon jump, although three days earlier. Most ensemble members are able to capture the

monsoon jump close to the observed date with a mean absolute deviation (MAD) of 4.3 days

and a maximum shift of 16-20 days for three of the members.
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Figure 4.3: Time-latitude Hovmöller diagrams of 1999 daily precipitation for TRMM (top), ERA-I (middle)
and the WRF ensemble mean (ENS, bottom)

51



4 Interactions of moist processes with the monsoon system

Intense precipitation events are better represented in ENS than in ERA-I, because of the higher

horizontal resolution of WRF. The rainband is slightly shifted to the south over the whole rainy

season in comparison to TRMM, but less than for ERA-I. The shift is especially pronounced in

August, when the monsoonal rainfall is at its peak and TRMM shows precipitation throughout

the whole month in the northern Sahel between 16-20◦N, while ERA-I and ENS are not able to

capture all of these events. This also applies to all individual ensemble members. The retreat of

the rainband to the Guinea Coast sets in by mid-August for TRMM and ERA-I. This movement

is delayed in ENS, which results in a too dry coast in the late summer. On the other hand, the

observed dry period at the coast during August, i.e., before the retreat of the rainbelt, is not

very well represented in ENS, since for some members the rainband remains too far south for the

whole period. All ensemble members show a seasonal relocation of the rainband, but strongly

differ in the extent, intensity and width, which will be discussed in the following sections.

4.2.1 Spatial distribution of precipitation

In order to reveal the differences in precipitation with respect to certain physics influences,

Fig. 4.4 (c) shows the bias against the ensemble mean of the spatial average of JAS precipitation

for each of the nine parameterization groups (following the approach of Pohl et al., 2011, their

Fig. 16), where one particular scheme is fixed for each group. For example, the KF ensemble

consists of the average of the nine simulations that utilize the KF cumulus scheme, and so forth.

The rainband of ENS shown in Fig. 4.4(a) is mostly too narrow with excessive precipitation in

its core zone and in Central Africa in comparison to TRMM. A persistent dry bias in the eastern

part of the Gulf of Guinea is introduced, which stretches into the continent (Fig. 4.4b). This

might be caused by too low SST estimations in this area.

The intensities of the rainbands in Fig. 4.4(c) cover the entire range from dry conditions (ACM2,

WSM3) to wet conditions (TH, KF). None of the groups is able to capture the exceptional

northward extension of the rainband in 1999, especially visible over Mali, which leads to a dry

bias in the northern Sahel. Since this dry bias is also found for ERA-I, one might assume that

the bias of the WRF simulations is caused by the bias of the driving data. However, in ERA-I

the reason for the dry bias is a shift of the relatively broad rainband to the south, while in WRF

it is the small North-South extent of the rainband. For GF and MYJ, the rainband is especially

narrow with a daily precipitation of only 1-2 mm at the coast. ACM2 and WSM3 show very low

precipitation intensities and induce an overall dry bias. BMJ shows closest rainfall amounts to

TRMM, outperforming ENS with more precipitation at the coast and less overprediction in the

Sudano-Sahel.
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Figure 4.4: JAS 1999 average precipitation (a) for TRMM, ERA-I, the ensemble mean (ENS), (b) the bias of
ERA-I and ENS against TRMM and (c) the bias against ENS of each of the nine parameterization groups.
Each group consists of nine members using the respective scheme Central
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4 Interactions of moist processes with the monsoon system

4.2.2 Parameterization influences on rainband intensitiy and position

In the following, the contribution of the three parameterization groups (CU, MP, PBL) to the

above-mentioned differences in spatial rainfall distribution is analysed. Figure 4.5 shows boxplots

of the parameterization groups, compared to the ensemble mean for the whole rainy season.

The spread of the boxes indicates the tendency of a scheme towards a dry or a wet regime.

Small boxes imply that the scheme is the dominating factor, since the resulting regime is hardly

changed by different configuration partners.
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Figure 4.5: Boxplots of the bias in average precipitation from April-September 1999 with respect to the ensemble
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4.2 Precipitation

Differentiated regions are (i) the Guinea Coast, where peak precipitation occurs during the

continental phase before monsoon onset, (ii) the Sudano-Sahel, where the center of the rainbelt

and thus the precipitation maximum are found after monsoon onset is found, and (iii) the Sahel,

where precipitation depends on the northernmost extent of the rainband (Fig. 4.1). With respect

to the blue line that indicates the TRMM mean, ENS underestimates precipitation both, at the

Guinea Coast and in the Sahel. However, except for the dry parameterization groups WSM3

and ACM2, there is an overestimation in the Sudano-Sahel. The largest bias reaches from -3.5

to 1.7 mm day−1 at the Guinea Coast, -2.1 to 3.2 mm day−1 in the Sudano-Sahel, and -1.4 to

0.5 mm day−1 in the Sahel, indicated by the whisker difference of ENS to TRMM.

The MP schemes show the same overall tendencies for the three regions, with a clear order

(TH being the wettest and WSM3 being the driest). The mean precipitation difference between

WSM3 and TH is 1.5 mm day−1 at the Guinea Coast, 2.4 mm day−1 in the Sudano-Sahel and

0.7 mm day−1 in the Sahel. Thus, the average intra-ensemble spread induced by the MP schemes

is close to the magnitude of the bias to TRMM, which underlines the considerable impact of the

MP schemes. Looking at the PBL schemes, the picture is more diverse for the different regions:

While MYJ is dry at the Guinea Coast and wet in the Sahel, ACM2 behaves the opposite way.

This indicates a shift of the monsoon rainband, dependent on the choice of the PBL scheme.

YSU shows an almost as strong northward shift as MYJ, but with much wetter conditions at

the Guinea Coast due to a generally wider rainband as can be seen from Fig. 4.4. In terms of

northward shift of the monsoon rainband, the order of the PBL schemes is ACM2 < YSU < MYJ.

The interquartile ranges of the ACM2 and MYJ parameterization groups do not intersect for

any of the three regions, which underlines the opposing impact they have on the position of

the rainband. However, the strongest northward shift does not necessarily coincide with largest

precipitation amounts: YSU instead of MYJ shows largest values in the Sudano-Sahel, where

the core of the rainband is situated.

The CU schemes show the largest interquartile-spreads and on average only weak dry/wet

tendencies with respect to ENS. They also show the smallest mean difference in precipitation

of only 0.6 mm day−1 at the Guinea Coast, 0.9 mm day−1 in the Sudano-Sahel and 0.4 mm

day−1 in the Sahel. This suggests an inferior role for the generation of precipitation in the

model. However, this depends on the region: In the Sahel, KF (GF) shows a neutral (restrictive)

behaviour, but a restrictive (neutral) behaviour at the Guinea Coast. BMJ dampens the effect

of other schemes in both regions, indicated by the consistently smaller inter-quartile spread.
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4 Interactions of moist processes with the monsoon system

4.2.3 Convective and non-convective precipitation

The ability of an atmospheric model to simulate convective processes is crucial and at the same

time a limiting factor for the quality of model precipitation in the tropics and sub-tropics. In

the WRF model, precipitation from unresolved deep convection is generated by the CU scheme,

while the MP scheme produces grid-scale precipitation in case the air is still super-saturated

after the instabilities are released. Thus, the convective fraction of the model is artificial and

related to the model resolution. Nevertheless, the partitioning into convective and non-convective

precipitation helps to identify the impact of either scheme on the representation of convection.

The amount of non-convective precipitation (Fig. 4.6a) follows the same order found earlier for

the MP schemes (WSM3 < LIN < TH), with a total spread of 93 mm month−1 exceeding

the spread of convective precipitation (68 mm month−1). There is no clear correlation between

the CU schemes and the amount of convective precipitation. Model configurations with KF or

BMJ generate convective precipitation from 40 mm month−1 to 110 mm month−1, depending

on the choice of MP and PBL scheme, while GF generates less convective precipitation and

never exceeds 80 mm month−1. In particular, ACM2 leads to small amounts of convective

precipitation for all CU schemes and results in a very dry regime. The impact of a particular CU

scheme depends on the chosen PBL scheme and vice versa: for the MYJ PBL scheme, maximum

convective precipitation is achieved in combination with KF, while for the YSU and ACM2

PBL schemes, BMJ produces almost consistently the largest amounts of convective precipitation.

The mean convective fraction over the whole domain of the individual ensemble members varies

between 24-63%, with consistently lower values for ACM2 and higher values for BMJ and YSU

configurations.

Figure 4.6(b) illustrates more clearly the sensitivity of precipitation amounts with respect to each

parameterization type. Each box consists of the nine precipitation spreads between ensemble

members for which only the indicated parameterization type is rotated. For example, one of the

nine spreads for CU is computed between [KF LIN YSU, GF LIN YSU, BMJ LIN YSU],

another between [KF TH MYJ, GF TH MYJ, BMJ TH MYJ] and so forth.

For non-convective precipitation, CU and PBL schemes show an average spread of about

20 mm month−1 compared to ∼60 mm month−1 for MP, which indicates only minor influence.

The average spread in convective precipitation is larger for configurations that differ in their

PBL scheme than for those that differ in their CU scheme. However, the large inter-quartile

spread of both illustrates their non-linear interplay for the production of convective rainfall.

Here, the MP scheme is of minor importance. The sensitivity of total precipitation amounts to

the MP and PBL choice is almost equal with average spreads of 67 ± 13 mm month−1 and 62 ±
11 mm month−1, respectively. The importance of the CU schemes is reduced and highly variable

with a spread of 31 ± 21 mm month−1.
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4.2 Precipitation

Figure 4.6: (a) Scatterplot of non-convective precipitation over convective precipitation for JAS 1999 over the
whole study region for all ensemble members. (b) Boxplots of spreads (max-min) of each parameterization
type for total precipitation (left), convective precipitation (middle) and non-convective precipitation (right).
Each box consists of the nine spreads derived from the three members that differ in one parameterization
scheme only (see text). ENS indicates the total ensemble spread for the respective precipitation fraction (mm
month−1).
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4 Interactions of moist processes with the monsoon system

Figure 4.7: Average diurnal cycle of JAS precipitation over the whole study region for CU and PBL parameteri-
zation groups and for TRMM (a) for total precipitation and (b) for convective and non-convective precipitation.
Parameterization groups comprise of configurations that differ in the MP scheme but use the same CU and
PBL scheme

However, the impact of the CU schemes becomes stronger on finer temporal scales: KF and GF

have difficulties to reproduce the amplitude of the diurnal cycle (Fig. 4.7a), which results in a

large overestimation of precipitation in the morning hours. BMJ produces the convective peak

about 3 h too early, but is close to the amplitude of TRMM, especially in combination with

the YSU PBL scheme. However, the phase of the diurnal cycle is somewhat better captured by

GF and KF with the convective peak at 18h for most configurations (Fig. 4.7b). Nikulin et al.

(2012) report a shift of the phase of the diurnal cycle for almost all models in an ensemble of

CORDEX-Africa regional climate simulations that includes the WRF model. They relate this

deficiency to the formulation of the cumulus parameterizations. In line with the findings here,

their WRF-KF configuration captures the phase of the diurnal cycle reasonably well, but with

a stronger amplitude. Figure 4.7(b) confirms that differences in phase and amplitude mainly

arise from the convective precipitation fraction. Non-convective precipitation amounts mostly

show a uniform phase and the amplitude is closely related to the respective CU scheme activity.

BMJ is almost inactive during night hours, as was also found by Pohl et al. (2014), leading to an

underestimation of precipitation compared to TRMM. According to Marsham et al. (2013) and

confirmed by the experiment presented in Chapter 5, the explicit treatment of convection greatly

improves the representation of the diurnal cycle and removes the phase shift.
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4.3 Parameterization influences on large-scale dynamics

4.3 Parameterization influences on large-scale dynamics

The WAM precipitation is strongly tied to the characteristics of several dynamical ingredients

(Section 2.1). The differences in rainfall between the parameterization groups raise the question

whether these can be related to changes in the dynamics and whether these changes correspond

to mechanisms known to cause interannual monsoon variability.

Figure 4.8 shows a cross section of the zonal wind for August 1999 for ERA-I, ENS and the

parameterization groups. All groups show the major components of the WAM such as the mid-

tropospheric AEJ (∼600 hPa), the high-level TEJ (∼200 hPa) and the near-surface south-westerly

monsoon winds, but with clear differences in velocity and position.
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Figure 4.8: August 1999 cross section of zonal wind for ERA-I, ENS and the parameterization groups
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4 Interactions of moist processes with the monsoon system

The degree to which WRF alters these features in comparison to ERA-I illustrates how regional

processes can affect large-scale features. This section concentrates on August only, since August

contributes most to the interannual variability in precipitation (Dennett et al., 1985; Nicholson,

2013) and marks the maximum of the northward movement of the monsoon rainband over the

continent.

4.3.1 The south-westerly monsoon wind

WRF captures the unusually thick monsoon layer that reaches up to over 750 hPa, but generally

over-predicts the westerly winds with up to 6-8 m s−1, compared to 3 m s−1 for ERA-I. The

overestimation in WRF is due to a deeper SHL by approximately 2 hPa, connected to higher

near-surface temperatures north of 15◦N (Fig. 4.9a, b) and a resulting stronger land-sea surface

pressure gradient. Figure 4.10 compares the monsoon wind velocity of the 27 ensemble members

given as a function of sea level pressure (SLP) difference between the sea and two different

regions on the continent. There is no correlation between the monsoon wind velocities and the

land-sea SLP difference for the region north of 15◦N where the SHL is positioned and where

little to no rainfall occurs (Fig. 4.10a), but a clear correlation for the the moist region south of

15◦N (Fig. 4.10b), r2=0.63, p-value (P) ≤ 0.01). This denotes that moist processes are causing

the inter-member spread in monsoon wind strength.

4.3.2 The tropical easterly jet

Configurations with stronger monsoon winds tend to have a stronger core of the TEJ. For ERA-I,

the maximum winds in the core exceed 20 m s−1 at 200 hPa. The ensemble spread ranges from

20 m s−1 for configurations using ACM2 to extensive cores with maximum winds exceeding

24 m s−1 for MYJ (Fig. 4.8). While not yet fully understood, the intensity and interannual

variability of the TEJ is usually related to non-local phenomena: the strength of the Indian

summer monsoon (Flaounas et al., 2011a), the El Niño/ Southern Oscillation (Chen and van

Loon, 1987), the intensity of the extratropical Southern Hemisphere westerlies (Dezfuli and

Nicholson, 2013), and latitudinal temperature gradients (Nicholson, 2008). The impact of the

TEJ on the WAM is mainly thought to be a causal one. The existence of the TEJ is linked to the

Asian monsoon outflow and enhances the meridional Hadley-type overturning between sea and

land by upper-level divergence over the West African subcontinent. This divergence promotes

vertical uplift and rainfall. Figure 4.11(a) illustrates that the strength of the westerly monsoon

winds and the velocity of the TEJ are indeed correlated with r2=0.72 (P ≤ 0.01). Since non-local

effects are prescribed by ERA-I at the domain boundary, this suggests that the intensity of the

TEJ can also be modified by local processes. These processes change the monsoon flow and thus

the moisture supply that feeds the TEJ via latent heating, which, in turn, can further intensify

the monsoon winds.
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4 Interactions of moist processes with the monsoon system

Figure 4.11(d) summarizes the information by parameterization group. It demonstrates that the

different schemes can be classified according to the strength of the TEJ (weaker <stronger):

CU: BMJ < KF < GF

MP: WSM3 < LIN < TH

PBL: ACM2 < Y SU < MY J

Schemes like TH (WSM3) that favour (dampen) deep vertical motion and trigger rapid (slow)

precipitation are reinforcing (weakening) the TEJ because of efficient (inefficient) moisture

transport and recycling. The vertical velocities in Fig. 4.12 correspond well to this ranking.

Vertical motion between the axes of the TEJ and AEJ (contours) connects the upper troposphere

with the lower troposphere and completes the meridional circulation which promotes rainfall:

Sahel precipitation amounts in Fig. 4.11(c) likewise show a linear relationship with the monsoon

winds although it is weaker, related to a non-linear behaviour of the CU schemes in generating

precipitation (Fig. 4.11f). Nevertheless, the above ranking is in good agreement with the

classification of a scheme as dry or wet (cf. Fig. 4.4).

These correlations denote the strength of the moist meridional overturning as the main factor

for the variability of the ensemble members in monsoon strength, and explain the governing

role of the resulting SLP south of 15◦N (Fig. 4.10b). This is consistent with the findings of

Sultan and Janicot (2003), who suggest an increased importance of the Hadley-type meridional

circulation and deep convection for the prevailing atmospheric circulation as soon as the monsoon

is established.

4.3.3 The African easterly jet

The mid-level AEJ is located at about 600 hPa for ERA-I and for the WRF simulations (Fig. 4.8).

GF, KF and ACM2 are not able to capture the core wind speed, which exceeds 12 m s−1. This

jet develops to adjust for thermal wind balance and as such moves with the position of the

maximum surface temperature gradient between the monsoon rainband and the periphery of the

SHL. This gradient is caused by the different thermal properties of moist/vegetated and desert

land surface (Cook, 1999). According to Nicholson (2009), the position of the AEJ is typically

far to the south (north) for dry (wet) years when the monsoon is weak (strong). The dry and

wet ensemble members of the WRF ensemble follow the same pattern: There is a significant

correlation (r2=0.82, P ≤ 0.01) between the maximum strength of the monsoon winds and the

position of the AEJ in Fig. 4.11(b).

The classification by scheme in Fig. 4.11(e) reveals the same order as for the velocity of the TEJ.

Schemes which favour extreme southward or northward displacements of the AEJ tend to dictate

the strength of the monsoon flow, independent of the configuration partners, as indicated by the

standard deviation of their respective parameterization group. Moderate schemes show a larger

standard deviation and can be pushed to either side.
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Figure 4.10: Scatterplots of August 1999 average monsoon wind velocity at 850 hPa (positive meridional wind)
versus the mean sea level pressure difference (∆SLP) between the sea (Atlantic cold tongue: 10◦W-10◦E;
5◦S-0◦N) and (a) the region of the SHL (10◦W–10◦E, 15◦N-25◦N), (b) the region of continental monsoon
rainfall (10◦W-10◦E; 4◦N-15◦N).
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Figure 4.11: Scatterplots of August 1999 average monsoon wind velocity at 850 hPa (positive meridional wind)
versus (a) the maximum wind velocities at 250 hPa between 4 and 15◦N representing the TEJ, (b) the
latitudinal position of the AEJ for all ensemble members, (c) Sahel precipitation. (d,e,f) Same as (a,b,c) but
for each parameterization group with error bars indicating the standard deviation. The latitudinal position of
the AEJ is defined as the first occurrence of the zonal wind velocity surpassing 10 m s−1 between 650 and
550 hPa. The purple triangle denotes corresponding variables derived from ERA-I for the wind and from
GPCC for precipitation.
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4 Interactions of moist processes with the monsoon system

The impact of a parameterization scheme on the position of the AEJ comes from the displacement

of the temperature gradient maximum, which is modified by the strength of the moisture advection

from the ocean. The AEJ positions shown in Fig. 4.9(c) (depicted as points) correspond well to

the regions of maximum temperature gradients for the member groups and ENS. The temperature

gradient maximum seems to be shifted northward for ERA-I and is not in agreement with the

AEJ position, which corresponds better to GHCN.

In accordance to the dry bias in the Sahel (cf. Fig. 4.4), WRF generally exhibits a southward shift

of the maximum temperature gradient compared to GHCN. Furthermore, parameterizations that

show a weaker monsoon flow (ACM2, WSM3, BMJ) tend to have larger temperature gradients

further to the South and correspondingly show the AEJ and the monsoon rainband further to

the South, too. This is especially pronounced for the PBL group with clearly shifted temperature

gradient maxima in accordance to their monsoon regime. These findings are in agreement with

Cornforth et al. (2009), who found moist processes contributing to the meridional extent and

intensity of the temperature gradient. It can be concluded that the position of the AEJ is a

result of the northernmost extent of the rainband as described by Cook (1999), who attributes

the maintenance of the jet to the negative meridional soil moisture gradient and the associated

hydrodynamical response of the atmosphere. In her GCM experiments, the development of the

AEJ was suppressed when a uniform soil moisture, corresponding to savanna conditions, was

prescribed over the whole subcontinent.

The AEJ plays a crucial role for the rainfall production by triggering AEWs. Especially along

their southern track around 10◦N, AEWs interact with convective processes and are amplified by

them (Berry and Thorncroft, 2012). At the same time they foster convective initiation and are

thus strongly associated with the formation and the life cycle of MCSs (Fink and Reiner, 2003;

Sultan and Janicot, 2000). Current theory relates the formation of such atmospheric disturbances

in the vicinity of the AEJ to a barotropic-baroclinic energy conversion process (Cornforth et al.,

2009; Hagos and Cook, 2007). Therefore, wet years usually show a weaker AEJ, since more

precipitation is related to a stronger wave activity, while dry years usually show a stronger AEJ

(Grist and Nicholson, 2001).

The WRF ensemble members do not display such a relationship between the strength of the

AEJ (cf. Fig. 4.8) and the AEW activity, represented by the 3-5 days bandpass filtered variance

of the meridional wind vector in Fig. 4.13. For example, LIN and KF show comparable wave

activity, but KF has a weaker jet. This suggests that other factors that were found to maintain

the AEJ might influence the modelled AEJ such as the surface temperature gradient in the

vicinity of the jet and the (parameterized) atmospheric turbulence transporting the gradient

into the atmosphere (e.g. Cook, 1999). However, there is a correlation (r2=0.69, P ≤ 0.01, not

shown) between the wave activity and the vertical velocities in the region of strong convective

activity at 10-15◦N (cf. Fig. 4.12). This is in line with Hsieh and Cook (2005), who found the

AEW activity to be more closely related to instabilities induced by convection in the area of

vertical motion, than to shear instabilities caused by the AEJ.

64



4.3 Parameterization influences on large-scale dynamics

ERA-I exhibits two distinct tracks of AEW at ∼ 20◦N and at the Guinea Coast, with a maximum

in the west of West Africa. The WRF ensemble members show a different pattern: The main

wave activity follows a single track and originates in the area of maximum rainfall in the eastern

Sudano-Sahel. In comparison to ERA-I, the AEWs are overestimated over the Sahel and Sudano-

Sahel by parameterizations that over-predict rainfall in the monsoon rainband with respect to

TRMM (cf. Fig. 4.4). Sylla et al. (2013) also reported stronger AEW activity over the Sahel

for several LAMs in comparison to ERA-I and attribute this to the internal representation of

convection in the LAMs. Therefore, the different wave patterns visible for WRF with respect to

ERA-I could be related to a minor importance of the energy transfer between AEJ and AEWs

and a higher sensitivity to vertical velocities and associated convective processes.
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4.4 Discussion

The results show that the examined parameterizations can be classified according to their impact

on the modelled WAM regime. While the quantitative skill of a certain scheme in comparison to

observations might change under different conditions (e.g. time period, driving data, domain size,

chosen evaluation criteria), their individual qualitative impact on monsoon dynamics is assumed

to be more universal. For overlapping analyses, the model internal tendency to produce more/

less precipitation or to enhance/ weaken the dynamic features with certain parameterizations

are in agreement with Flaounas et al. (2011a), which gives confidence in their robustness.

Microphysics schemes

The identified ranking for the MP schemes is in line with the findings of Hong and Lim (2006),

who report that the amount of precipitation is correlated with the complexity of the microphysics

scheme. While they suggested that at resolutions of about 25 km, a simple ice-scheme should

be sufficient to resolve the mesoscale features, it is shown here that, even at that scale, the

representation of cloud processes has a strong impact on precipitation amounts. The simple

3-class scheme WSM3 consistently leads to drier conditions in the model. During the monsoon

season essentially all rainfall is associated with deep convection for which ice processes play a

major role in the generation of precipitation. LIN and TH separately include cloud ice, snow

and graupel, and TH additionally predicts the number concentration for cloud ice. For these two

schemes, cloud particles may penetrate deeper above freezing level. According to Hong and Lim

(2006), the conversion from clouds to rain is more efficient at producing precipitation than the

ice phase alone in the case of WSM3. Furthermore, Hong et al. (2004) found that the interaction

between ice clouds and long-wave radiation has a strong impact on the amount of precipitation

because of enhanced radiative heating. In their case, precipitation was decreased with more

cloud ice and vice versa.

Different from other WRF studies that evaluated microphysics schemes in other regions (e.g.

Pohl et al., 2011; Crétat et al., 2012; Evans et al., 2012), the chosen MP scheme was found to be

of major importance for simulated precipitation amounts. For ENS, non-convective precipitation

contributes around 40 % during the pre-monsoon phase and up to 60% after the monsoon

onset in July. During the WAM, MCS contribute most to the precipitation and the fraction of

stratiform rainfall increases (Schumacher and Houze, 2006), which WRF is able to partly resolve

explicitly. This is confirmed by Marsham et al. (2013), who compare two model simulations

at 12 km horizontal resolution with explicit and parameterized convection during the WAM.

Because of the large fraction of organized convection, they report a better performance of the

explicit simulation and relate their findings to a better representation of the diurnal cycle and

the associated monsoon dynamics. Here, the impact of different MP formulations proved to be

non-negligible even at a medium horizontal resolution (24 km) and can be expected to increase

with increasing horizontal model resolution.
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4 Interactions of moist processes with the monsoon system

Planetary boundary layer schemes

With respect to the PBL schemes analysed here, the results may seem to be counterintuitive.

Several studies (e.g. Hu et al., 2010; Shin and Hong, 2011; Xie et al., 2012) suggest that the

mixing rates and surface drag are highest for ACM2 and lowest for MYJ. Enhanced mixing and

the associated improved transport of surface fluxes into the atmosphere should lead to a stronger

monsoon and inversely. However, here, this is not the case since the local, weak mixing in MYJ

produces the strongest monsoon winds. Figure 4.14 reveals that the strong impact of the PBL

scheme is due to their influence on the incoming shortwave radiation at the surface, which is

lower for ACM2 than for MYJ at the Guinea Coast and in the Sudano-Sahel.

10W 0E 10E 20E

ERA−I

150
175

200

225

250

275

300

10W 0E 10E 20E

ENS

 −75

 −50

 −25

 −10

  −5

   5

  10

  25

  50

  75

10W 0E 10E 20E
Eq.

10N

20N

BMJ − ENS

10W 0E 10E 20E

GF − ENS

10W 0E 10E 20E

KF − ENS

10W 0E 10E 20E
Eq.

10N

20N

LIN − ENS

10W 0E 10E 20E

TH − ENS

10W 0E 10E 20E

WSM3 − ENS

10W 0E 10E 20E
Eq.

10N

20N

ACM2 − ENS

10W 0E 10E 20E

MYJ − ENS

10W 0E 10E 20E

YSU − ENS

a)

b)

W
 m

−
2

W
 m

−
2

Figure 4.14: August 1999 incoming shortwave radiation at the surface (a) for ERA-I, the WRF ensemble mean
(ENS) and (b) the difference between the parameterization groups and ENS

At the 700-500 hPa levels, ACM2 produces more mid-level clouds, which reflect the incident

shortwave radiation (Fig. 4.15a). Meanwhile, MYJ produces less low- and mid-level clouds than

ACM2 which consequently leads to larger solar irradiation and higher near-surface temperatures

(cf. Fig. 4.9). The differences of the vertical moisture profiles of the three PBL schemes in

Fig. 4.15(b) indeed show very dry conditions for MYJ in the lower troposphere.
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4.4 Discussion

The moist conditions in the mid-troposphere for ACM2 lead to a rapid saturation of the

atmosphere and consequently to a build-up of clouds by the MP scheme. With MYJ and YSU,

more moisture is transported into the higher levels above 400 hPa. This is presumably due to

the different promotion of convective processes (CU scheme activity) by the PBL schemes, as

described in Section 4.2.3. The strong mixing in ACM2 seems to generate unfavourable conditions

for releasing instabilities by the CU schemes. ACM2 therefore lacks the efficient drying of the

atmosphere through deep convective processes and the associated strong precipitation events,

which in turn leads to an excess of moisture in the planetary boundary layer.

This ultimately attributes the largest spread in monsoon dynamics between the ensemble members

to modifications of the incoming radiation, caused by the vertical moisture distribution in the

PBL scheme. This is an important result, since the focus often remains on the energy transport

via latent heat as main source of monsoon variability. This raises the question whether the

interannual variation in cloudiness, and especially the amount and prevalence of low-level clouds,

are key parameters for the surface energy budget and thus for the monsoon variability, as

discussed by Knippertz et al. (2015). They also point out that the development of certain cloud

types is strongly coupled to aerosol concentrations and composition that have already been

considerably changed by anthropogenic emissions. They argue that air pollution from the rapidly

growing cities in West Africa could be an important factor for WAM variability in the future

though is often not taken into account by current climate models. Cloud-radiation interactions

remain one of the least understood processes and, together with the representation of clouds, are

highly difficult to parameterize in atmospheric models with potentially devastating impact on

the validity of modelled monsoon dynamics.
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4 Interactions of moist processes with the monsoon system

Cumulus schemes

The effects of the cumulus parameterizations are difficult to interpret since they are the result

of a complex interplay of processes as illustrated in Fig. 4.6(b). This applies especially to

the ensemble approach of GF. However, the dampening effect for precipitation and monsoon

dynamics of BMJ could be related to it being a sounding adjusting scheme, which will transform

any atmospheric profile it starts from into a plausible, but pre-determined post-convection sound-

ing. This might eliminate special and extreme characteristics of the vertical atmospheric structure.

Representation of monsoon dynamics

The simulations reproduce the dependency of TEJ velocity and AEJ position on the strength

of moisture advection from the Atlantic Ocean (westerly monsoon winds) as reported from

studies that investigate the different dynamics of wet or dry years (e.g. Sultan and Janicot,

2003; Nicholson, 2008). A drier (wetter) monsoon in the Sahel is often related to a weaker

(stronger) TEJ and a southward (northward) displacement of the AEJ, reproduced here by the

dry (wet) ensemble members. The identified correlations between these dynamical components

are of comparable magnitude as in reanalysis studies. For example, Nicholson (2008, 2009) use

NCEP reanalysis data for an analysis of the relationship between monsoon wind velocity and

SLP gradient (r2=0.84), and between the monsoon wind velocity and Sahel rainfall (r2=0.75),

respectively. Since the Sahel rainfall depends on the position of the AEJ, this also implicitly

describes the relationship of the monsoon winds and the AEJ position. Table 4.2 further evaluates

this picture, showing GPCC August precipitation in the Sahel of dry and wet year composites

from 1979-2010, and related ERA-I dynamics in comparison to the driest and wettest WRF

ensemble member. The maximum precipitation is strongly overestimated by WRF, indicating

an artificial origin. Although all WRF ensemble members use the same ’wet year forcing’, their

spread in the AEJ position and TEJ velocity is comparable to the mean interannual range.

However, compared to ERA-I, stronger monsoon winds and thus an increased moisture supply from

the ocean is necessary to reach the same TEJ velocity and AEJ position in WRF (cf. Fig. 4.11).

Configurations that show comparable monsoon flows to ERA-I suffer from an equatorward

displaced AEJ (maximum temperature gradient) and from overall dry conditions. The two main

sources for moisture during the WAM are the south-westerly monsoon flow and local moisture

recycling (Gong and Eltahir, 1996; Thorncroft et al., 2011). The latter process contributes

about 30 % to the precipitation over the West African subcontinent. However, the evaporative

fraction (EF) presented in Fig. 4.16 is much lower for the WRF ensemble than for ERA-I and

for NCEP/ NCAR reanalysis data (Levermann et al., 2009). For both reanalysis datasets, the

EF in August reaches about 70-90 % south of 15◦N, where the rainband passed or still resides.

For WRF, the EF only reaches about 60-80 % over a considerable smaller area. The high EF in

the reanalysis data might just as well be related to model errors, but it nevertheless implies that

local evaporation contributes less to the atmospheric moisture in WRF. This could partly explain

the need for stronger monsoon winds as source of moisture to achieve comparable monsoon

dynamics.
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Table 4.2: Comparison of the observed range of a wet/dry year composite for August 1979–2010 for precipitation
in the Sahel (Fig. 4.1), TEJ velocity and latitudinal AEJ position (as in Fig. 4.11) with the wet/dry WRF
ensemble members in 1999. The ∆ gives the observed and modelled difference between all dry and wet cases.

GPCC/ERA-I
dry

GPCC/ERA-I
wet

∆ GPCC/ERA-I WRF dry WRF wet ∆ WRF

Precipitation 61 150 89 64 268 204
TEJ 16 22 6 20 26 6
AEJ 10.9 14.0 3.1 11.7 15.1 3.4
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Figure 4.16: August 1999 mean evaporative fraction (EF) for ERA-I and the WRF ensemble mean (ENS). EF
is the ratio of the latent heat flux to the sum of latent and sensible heat fluxes

4.5 Summary and conclusions

In this experiment, a WRF physics ensemble was employed to investigate the impact of moist

process parameterizations on the WAM for the rainy season 1999 with the aim to (Section 1.2):

• evaluate the interactions of regional moist processes with the monsoon dynamics

• quantify the uncertainty in the representation of moist processes in the WRF model and

to classify their process-based impact on the WAM regime in order to extract transferable

guidelines to set up the model in West Africa

Three different CU, MP and PBL parameterizations were combined, resulting in an ensemble of

twenty-seven members (cf. Table 4.1) whose spread was used as a quantitative measure for model

uncertainty. The effects of each parameterization group on precipitation and the representation

of dynamical WAM features (monsoon wind, TEJ, AEJ) were analysed and ranked accordingly.

The MP and PBL schemes introduced the largest ensemble spread (147 mm month−1) in

total precipitation over the study region. For the ensemble mean, non-convective precipitation

generated by the MP schemes contributes 50-60 % of the total rainfall during the WAM, when

mesoscale convective systems prevail. Larger amounts of precipitation are associated with more

complex MP schemes, which alter atmospheric dynamics by the release of latent heat.

PBL schemes have a strong influence on the movement of the WAM rainband because of their

impact on the cloud fraction for which the ensemble spread ranges from 8 to 20 % at 600 hPa
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4 Interactions of moist processes with the monsoon system

during August. More (less) low- and mid-level clouds with ACM2 (MYJ) result in less (more)

incoming radiation and a southward (northward) shift of the monsoon rainband.

The choice of the CU scheme has minor influences on the total amount of precipitation over

the study region, but alters the spatial distribution and thus the width of the rainband and

the location of intense rainfall events. Moreover, the CU schemes have a strong impact on the

representation of the diurnal cycle. Ultimately, the inter-member differences in the strength

of the monsoon wind and in the northward transition of the rainband could be traced back to

the enhancement or weakening of the moist Hadley-type meridional circulation that connects

the monsoon winds to the Tropical easterly jet. This leads to the following ranking of the

parameterization schemes (weak <enhanced meridional circulation):

CU: BMJ < KF < GF , MP: WSM3 < LIN < TH, PBL: ACM2 < Y SU < MY J

The produced rainfall amounts are accordingly except that KF (YSU) produces slightly more

total precipitation than GF (MYJ) because of respective promotion of convective precipitation,

that is not always linearly related to the intensity of the dynamics.

The differences between the ensemble members illustrate that the WRF model captures the

characteristic interdependencies of monsoon dynamics and rainfall that were also found for years

with differing monsoon regime. The spread of the ensemble for the simulated monsoon dynamics

during August 1999 is comparable to the observed interannual spread (1979-2010) in August

between dry and wet years with a change of 6 m s−1 for TEJ velocities and a latitudinal shift of

the AEJ by ∼3◦, in spite of the same boundary forcing.

This illustrates that regional moist processes do affect the dynamical features of the WAM, for

which the modification of the large-scale surface temperature gradient, shading from clouds

and latent heat release were found to be major factors. With an ensemble spread in August

precipitation of 204 mm month−1 for the Sahel, these results also underline the need for a careful

selection of model parameterizations and justify the frequent ensemble applications in that region.

On basis of the above findings, the moist model physics can be combined with respect to their

distinct impact on monsoon mechanisms and further schemes could be classified into this picture

in the future. For subsequent experiments within this thesis, the BMJ cumulus scheme and the

YSU planetary boundary layer scheme are used. Both schemes do not foster an extreme behaviour

of the monsoon dynamics, lead to a preferable wider rainband and showed the diurnal cycle closest

to observations. Furthermore, BMJ showed best performance in precipitation distribution and

YSU supports favourable cloud development. In addition, YSU was identified to be a ’moderate’

scheme that does not impose strong wet or dry tendencies which gives some confidence on its

suitability for the representation of changing monsoon regimes. The MP parameterization was

found to be well suited to adjust overall precipitation amounts and should be chosen according to

existing biases in the particular application. Here, the moderate LIN scheme is used for further

analyses since it showed the smallest precipitation bias with respect to TRMM.
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Chapter 5

The relevance of an explicit convection description

for precipitation characteristics

West African monsoon precipitation is dominated by convective processes that are not explicitly

resolved in LAM applications at horizontal resolutions of approximately > 10 km. Instead,

they are taken into account by parameterizations. However, at even higher resolutions that

are often referred to as the convective grey scales, convective parameterizations start to violate

their assumptions. Between approximately 4-12 km (Weisman, 1997; Gerard, 2007), convective

systems just start to be resolved but parametrising convection becomes less and less appropriate

(Bélair and Mailhot, 2001): Processes that are implicitly taken into account by a parameterization

within one grid column may spread over several grid cells, such as up- and downdrafts of an MCS,

which is not supported by most of the current parameterizations. Therefore, the specific range of

the grey scales and the ’degree of violation’ for either approach, parameterized or explicit, also

depends on the individual sizes of convective systems (Molinari and Dudek, 1992).

The correct representation of convection is crucial for modelling West African monsoon patterns

and local precipitation amounts (Lafore et al., 2011). Reported shortcomings of the parameteri-

zations of convection include a shifted diurnal cycle (e.g. Nikulin et al., 2012; Marsham et al.,

2013), the incapability to capture propagating convective systems (Davis and Manning, 2003;

Correia et al., 2008) or a flawed representation of land-atmosphere interactions (Hohenegger

et al., 2009; Taylor et al., 2012). Further studies note an extreme sensitivity of precipitation

patterns and amounts to the choice of a specific cumulus parameterization (e.g. Flaounas et al.,

2011a, Chapter 4). Such shortcomings might be improved or avoided with an explicit approach,

ultimately leading to a better representation of the WAM.
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5 The relevance of an explicit convection description for precipitation characteristics

Since today’s computer resources allow higher and higher model resolutions, high-resolution

modelling gains of importance not only for numerical weather prediction but also for climatological

approaches. Different regional studies for the United Kingdom (Kendon et al., 2012), the Alps

(Zaengl, 2007; Hohenegger et al., 2009), the United States (Done et al., 2004; Klemp, 2006) or Asia

(Oouchi et al., 2009) report that the explicit treatment of convection is able to reduce or remove

mentioned major parameterization-induced shortcomings of atmospheric models. However, this

is not always the case, as shown by Pohl et al. (2014), who use WRF to downscale the South

African climate from 55 km down to an explicit case at 3.6 km with a nesting approach and

compare it to a simulation at 18 km with parameterized convection. They find an aggravation in

precipitation amounts and no improvement of the diurnal cycle for the explicit domain. However,

it is not clear whether the nesting approach and therefore biases of the 55 km parent domain

might have influenced these results.

During the West African monsoon, the correct representation of the diurnal cycle of rainfall and

therefore of cloudiness is of special importance, since it critically affects the energy budget and

the circulation of the monsoon, as was reported by Marsham et al. (2013), who were the first

to apply a LAM at convection-allowing scales over whole West Africa. They used the UK Met

Office Unified Model to simulate one week during the WAM at 4 km with explicit convection and

at 12 km with explicit and parameterized convection within the Cascade project. They generally

found the explicit convection being more realistic than the parameterized one. Both explicit cases

improve the diurnal rainfall cycle. Using the same Cascade project data, Pearson et al. (2014)

state that the improvement in the representation of convection between the two simulations at

12 km (parameterized) and 4 km (explicit) stems mainly from the employed parameterization

rather than the increase in resolution since, in their case, the 12 km simulation outperforms the

4 km if no parameterization is used. Birch et al. (2014) finally extended the study of Marsham

et al. (2013) to 40 days and report that both explicit simulations react more realistically to

AEWs in terms of rainfall generation.

Except for this Cascade project study that was conducted with the same model and for the

similar time period, all other subcontinental-scale LAM studies over West Africa use coarser

horizontal resolutions with a cumulus parameterization. So far, explicit approaches are usually

only used on smaller spatio-temporal scales in the form of large eddy simulations, catchment-scale

simulations or 2-D models (e.g. Garcia-Carreras et al., 2011; Knoche and Kunstmann, 2013).

Therefore, there is a need to extend the few existing continental-scale studies that mainly focus

on the diurnal cycle. Here, the whole rainy season 1999 is simulated at resolutions that span

the typical range of LAM applications: from 24 km, as a representative for resolutions where

parameterizations are generally accepted and valid, down to 4 km, which is usually thought to

be the upper limit for the reasonable simulation of explicit convection. In between, a simulation

at 7 km resolution with explicit convection is conducted to compare results produced in the

convective grey scales to both ends of the scale. The relevance of the explicit treatment of

convection is evaluated for total precipitation amounts and intense events, MCS propagation as

well as the diurnal cycle of rainfall and cloud cover.
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5.1 Experimental set-up and reference datasets

5.1.1 Model configuration

Four simulations are conducted with the WRF version 3.5.1 for 1999 from March to September:

24 km (WRF24) and 12 km (WRF12) horizontal resolution with cumulus parameterization and

7 km (WRF7) and 4 km (WRF4) horizontal resolution with explicit convection.

The domain set-up for all simulations is shown in Fig. 5.1. WRF4 is nested into the larger

WRF12 domain since a direct downscaling from ERA-I at ∼80 km to WRF4 was found to be

numerically unstable for this set-up. This illustrates potential problems with resolution jumps

over a too large range of scales, as was mentioned in Section3.5.1. WRF7 is of coarser resolution

and can therefore be directly downscaled from ERA-I. It encompasses a larger domain than

WRF4 to allow the WRF model to develop its own circulations.

The WRF physics set-up includes the Rapid Radiative Transfer Model/Dudhia long and shortwave

radiation schemes (Dudhia, 1989), the LIN Microphysics scheme (Lin et al., 1983) and the YSU

planetary boundary layer scheme (Hong and Lim, 2006), which is a configuration that was found

to capture the WAM without showing an extreme wet or dry behaviour in Chapter 4 (Klein

et al., 2015). All simulations are operated with 36 vertical levels and a model top of 20 hPa. The

WRF output is written every three hours. If not indicated otherwise, all analyses are done for

the grey box depicted in Fig. 5.1(b).
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Figure 5.1: WRF domains for (a) WRF24, WRF12 and WRF4 with study domain (grey) and position of used
weather stations. (b) Domain of WRF7 with study domain (-10◦W-10◦E; 4-16◦N) and sub-regions Guinea
Coast (4-8◦N) and Sudano-Sahel (8-16◦N).
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5.1.2 Reference datasets

Precipitation Modelled precipitation is compared to TRMM 3B42V7 0.25◦ (3-hourly, daily)

rainfall estimates (Huffman et al., 1995, 1997). Additionally, daily measurements of 62 weather

stations are used, located in Burkina Faso and Ghana (cf. Appendix B), which were provided by

the national meterological services.

Cloud fraction To qualitatively evaluate the modelled vertical cloud fraction over West Africa,

the 2006-2012 monthly climatology of the GCM-Oriented Cloud-Aerosol Lidar and Infrared

Pathfinder Satellite Observation (CALIPSO) Cloud Product (GOCCP), gridded at latitude-

longitude boxes with a vertical resolution of 480 m and 40 levels, is used. It was specifically

developed to facilitate the comparison of satellite-derived cloud fraction with model output by e.g.

a noise reduction in the vertical layers (Chepfer et al., 2010). However, the quantitative vertical

cloud fraction is highly sensitive to the actual definition of clouds and detection thresholds, which

varies among different observation instruments but also in comparison to models. Differences in

horizontal and vertical averaging introduce additional uncertainties in the comparison of observed

and modelled clouds (Chepfer et al., 2013). Therefore, GOCCP has been designed to be fully

consistent with a cloud observation simulator that can be used with GCM output, ensuring

similar conditions for the resulting cloud fractions from observations and GCMs. However,

this simulator is not used here, rendering a quantitative comparison of GOCCP and WRF

questionable. Therefore, GOCCP is only used for a qualitative assessment of vertical cloud

distribution and extent as compared to modelled cloud cover by WRF. Chepfer et al. (2013)

showed that the overall picture of the GOCCP vertical cloud cover is qualitatively consistent

with other CALIPSO-based cloud products derived with a different algorithm. Stein et al.

(2011) assessed the four-year-average vertical cloud structure of the WAM with a combination of

CALIPSO and CloudSat profiling radar data, proving the suitability of these rather new datasets

to robustly evaluate the vertical cloud structure in West Africa. The CloudSat and CALIPSO

satellites were co-launched in 2006 and now allow relatively robust measurements of zonal cloud

fraction profiles for the first time (Chepfer et al., 2013). Since this experiment is conducted for

1999, only the GOCCP climatology can be used for an approximate estimation of the model

performance in capturing the cloud cover characteristics during the WAM.

Incoming solar radiation Information on incoming shortwave radiation is taken from the

Meteorological satellite (METEOSAT) Solar Surface Irradiance Dataset at ∼ 3 km horizontal

resolution for 1983-2005 with a regional coverage of Europe, Africa, the Atlantic Ocean and parts

of South America. The product is available at monthly, daily and hourly averages. The dataset

is based on the the METEOSAT Visible and Infrared Imager and is explicitly suitable for climate

studies or the evaluation of global and regional models (Posselt et al., 2011). (Posselt et al., 2012)

report that the dataset achieves the target accuracy for monthly and daily means in comparison

to ground observations and reveals a better performance than other often used datasets, among

other ERA-I. It also captures the seasonal and interannual variability of incoming shortwave

radiation, making it suitable for climate monitoring and the analysis of extremes.
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5.2 The average added value

In the following, it is assessed whether explicit convection improves the representation of

monsoon rainfall in comparison to parameterized convection over the peak monsoon season

(June-September, JAS). Figure 5.2 shows the bias of all WRF simulations with respect to TRMM

revealing little impact of the resolution on the bias patterns for the simulations that share the

same outer domain boundaries (WRF24, WRF12, WRF4). In the case of WRF7, the bias

is comparable poleward of 10◦N, but is distinctly wetter close to the coast where the other

simulations exhibit a dry bias.
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Figure 5.2: JAS 1999 average precipitation for TRMM and the bias of the four WRF simulations at their native
resolution with respect to TRMM. TRMM values are bilinearly interpolated onto the corresponding WRF grid.

The fact that only WRF7 shows such a clear difference suggests that, in this case, the change of

the position of the outer domain boundaries has a stronger impact on the average rainfall patterns

than a change in model resolution and the choice of any or none convective parameterization

(cf. WRF12 and WRF4). Browne and Sylla (2012) showed that a change of the portion of

included Atlantic Ocean in the LAM domain may considerably affect the monsoon wind and
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5 The relevance of an explicit convection description for precipitation characteristics

moisture transport. By just altering the model domain size, they provoked changes in modelled

precipitation leading to a bias range relative to TRMM from -7.5% to +4% with the Regional

Climate Model. This suggests that the northward shift of the southern domain boundary in

WRF7 is the most likely cause for the different bias pattern.

In consequence, WRF7 shows an overall positive precipitation bias of about 0.9 mm day−1 while

it is negative for the other simulations (Table 5.1). The negative bias further increases with

increasing resolution from -0.14 mm day−1 (WRF24) to -0.63 mm day−1 (WRF4), implying a

drying trend with higher resolution. The spatial coefficient of determination for WRF24, WF12

and WRF4 with TRMM steadily increases with increasing resolution but generally remains

comparable, revealing no distinct improvement in the explicit convection case.

Interestingly, although WRF7 shows the worst results in terms of absolute precipitation amounts

with the highest bias and an MAD of 2.2 mm day−1, it provides the best correspondence of the

monthly precipitation pattern with a coefficient of determination of 0.7 in comparison to TRMM.

In summary, the improvement of rainfall patterns by explicit convection is small for spatio-

temporally averaged precipitation. Here, a shift of the lateral boundaries of the WRF domain

provokes a more pronounced difference than a change from parameterized to explicit convection.

Another reason why WRF4 performs worse than WRF7 might be the nesting approach, which

imposes any errors introduced by the cumulus parameterization in WRF12 onto WRF4. The

close correspondence between WRF12 and WRF4 shows that, on average, WRF4 is not able to

diverge much from its outer parent. WRF7 on the other hand is directly forced by ERA-I which

avoids the potentially negative effects of a parent domain.

Table 5.1: JAS 1999 average precipitation bias (mm day−1), mean absolute deviation (MAD) and coefficient of
determination (r2) of the WRF simulations against TRMM.

Simulation Bias MAD r2

WRF24 -0.14 2.05 0.54
WRF12 -0.53 1.95 0.60
WRF7 0.91 2.20 0.70
WRF4 -0.63 1.90 0.63
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5.3 Precipitation frequency and intense events

The previous section showed that simulated average rainfall patterns show only a slight im-

provement when using explicit instead of parameterized convection. However, the advantage of

the explicit approach becomes more apparent when looking at the frequency of daily rainfall

intensities (Fig. 5.3). There is a very good correspondence to station data between 1-50 mm day−1

for WRF4 and WRF7, while with parameterized convection, WRF12 and WRF24 overestimate

(underestimate) the occurrence of precipitation rates below (above) 10 mm day−1. This illustrates

the lacking ability of the simulations using a cumulus parameterization to properly capture more

intense precipitation events. ERA-I shows an even larger discrepancy to the observed datasets

with a clear overestimation of weak precipitation events while no events above 20 mm day−1 can

be captured at its resolution of 0.75◦.
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Figure 5.3: Frequencies of daily rainfall during JAS 1999 for TRMM, station data, ERA-I and WRF. The
stations (cf. Fig. 5.1a) are compared to the smallest-distance grid cell values for each dataset.
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Figure 5.4: Correlation maps of JAS 1999 daily precipitation between the location of the weather station in
Boura (red circled point) and the other station locations for the station dataset and TRMM (nearest grid cells).
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Interestingly, the frequency distribution of TRMM closely matches that of the stations in spite

of a relatively coarse resolution of 0.25◦ (∼ 27 km). This suggests that in many cases, the daily

mean precipitation over 30x30=900 km2 (approximately TRMM resolution) is representative

for the daily rainfall intensity at a certain point in this area (point measurements, e.g. weather

stations). An explanation might be the predominance of MCSs during the WAM since these are

characterized by contiguous precipitation areas of at least 2000 km2 (or 100 km in one direction)

(Houze, 2004). To get an impression of the scale that is affected by similar rainfall events, Fig. 5.4

shows the temporal correlation of daily rainfall during JAS 1999 of the station Boura with all

other station locations for station data and for TRMM. Although this is just an example for one

station location, it illustrates that the daily rainfall at one location can be closely correlated with

regions at a distance of 30 km and more, which could explain the good correspondence between

the station data and TRMM.

To further evaluate how well regional differences in intense events are captured, Fig. 5.5 shows

the number of days that are needed to reach 50% of the total precipitation during JAS for

TRMM and all WRF simulations. For each pixel, the days are sorted from the highest to the

lowest rainfall amount, which are then cumulated in this order until 50% of the total rainfall

during the whole time period is reached. The number of days that are accumulated until the

50% value per pixel is reached is shown in the figure.

From TRMM, only 3-9 days of rainfall make up half of the total rainfall at the edges of the

monsoon rainband to the North (∼ 14◦N) and to the South (∼ 7◦N), while in the center around

10◦N the number increases to 9-15 days. WRF24 and WRF12 are not able to reproduce this

meridional distribution but tend to generally overestimate the number of days that is necessary

to reach the 50% threshold, which is in line with their overestimation (underestimation) of weaker

(intense) precipitation events (Fig. 5.3). Similarly in line with Fig. 5.3 is the relatively good

accordance of WRF4 and WRF7 to TRMM, in which WRF4 however shows a weaker performance

than WRF7. This could again be related to the already mentioned nesting disadvantage of

WRF4.

In summary, although the added value of convection-allowing simulations might not always be

significant for spatio-temporally aggregated applications, there is a distinct improvement in the

representation of daily precipitation intensities and its spatial distribution with explicitly treated

convection.
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Figure 5.5: Number of days needed to reach 50% of the total precipitation amount during JAS 1999 for TRMM
and WRF.
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5.4 Propagation of mesoscale convective systems

Different from single, typically short-lived convective cells, MCSs consist of several organized

deep-convective cells with a shared circulation system that has a much longer lifetime than its

constituent clouds. The apparent forward movement of these large convective clusters, which is

often referred to as MCS propagation, is not only the result of single convective cells moving

with the mean wind but is also determined by the development of new cells at the flanks of the

cluster (Corfidi, 2003). The evolution of new convective cells and subsequent MCS propagation

during the WAM is often coupled to large-scale forcings such as AEWs on the one hand but on

the other hand it is influenced by boundary layer states, cold pools and small-scale circulations.

In spite of the fact that convective parameterizations cannot directly take into account the latter

effects, Stensrud et al. (2000) point out that most of them are nevertheless able to reproduce

the path of an MCS. However, this ability seems to be case-dependant: Davis and Manning

(2003) note that convective parameterizations used at grid spacings > 10 km have difficulties in

simulating propagating convection since they act independently in individual model columns and

therefore cannot properly maintain organized convection.

The ability of WRF to reproduce rainfall propagation with parameterized (WRF24, WRF12)

and explicit (WRF7, WRF4) convection is assessed by comparing the meridionally averaged

daily rainfall for two example periods during August and September to TRMM in Fig. 5.6 and

5.7. Indeed, WRF24 captures three propagating MCS events between 01.-15. September visible

in TRMM (Fig. 5.6). However, the performance is worse for the period from 01.-15. August,

where a lot of slight drizzle is produced and the rainfall track is barely visible. For comparison,

the same time periods are given for WRF7, by which the storm propagations are quite well

captured during both months.

The fact that both, WRF24 and WRF7, are able to capture the approximate point in time

when MCSs occur, though sometimes with a positive/ negative lag of one day depending on

the simulated propagation speed, implies that these systems are mainly dynamically driven via

the ERA-I boundary forcing. The meridional averaging visualizes the propagation of convective

activity rather than the propagation of a certain MCS, which is ultimately related to AEWs

passing through the domain. However, the resulting convection seems to be better captured by

WRF7. In comparison to WRF4, WRF7 shows slightly higher rainfall intensities (Fig. 5.7), which

might be related to the attempt of the model to create convective circulations at 7 km resolution:

Weisman (1997) found that convective circulations are too slow and their size and mass transport

are spatially overestimated in low resolution simulations (8-12 km) when compared to convective

up- and downdrafts at realistic length-scales. This overestimation of convective updrafts, and

therefore of transported latent heat, can ultimately lead to an MCS intensification and increased

rain rates. Nevertheless, they point out that their 8-12 km simulations are able to qualitatively

capture the grid-scale circulations and propagation of the investigated MCSs, as is also found

here.
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A higher resolution can also help to better capture the storm propagation when a convective

parameterization is used, as shown by WRF12 outperforming WRF24 (cf. Fig. 5.7 and 5.7).

WRF12 captures all four rainfall tracks in September but the event that travelled through the

domain from 12.08-15.08 was not simulated at all. In the case of the nested WRF4, certain

propagation features are better resolved than in WRF12 (e.g. 10.-15.08), proving that the child

can improve the representation of convective systems even if driven by an imperfect parent.

As already mentioned, the analysis of MCS propagation by meridionally averaging rainfall over a

box does not identify single MCSs. Although the propagating rainfall is a good indicator for

a convective activity continuously moving forward, the approach gives no information on the

consistent simulation of an MCS (the averaged rainfall actually consists of disconnected ’splotchy’

MCS) and therefore masks the real number of MCSs and potential problems of the convective

parameterization to simulate them.
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Figure 5.6: Longitude-time diagrams of meridionally averaged daily rainfall between 7-16◦N for TRMM, WRF24
and WRF7 (mm day−1) for the time periods 1.-15. August and 1.-15. September 1999.
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Figure 5.7: Same as Fig. 5.6 but for the nested pair WRF12 and WRF4.

An alternative to averaging over a region is to indeed track the particular convective system, as

is shown exemplarily for two weeks in August in Fig. 5.8 for TRMM and WRF24. At 3-hourly

time steps and averaged onto the TRMM grid, all continuous regions with rainfall of more than

1 mm h−1 are defined as a single system and are followed along as long as the rainfall overlaps

for the following time step. If a system splits up (overlaps with two following systems), the

tracker takes into account the larger system only. If a system merges, the smaller system from

the previous time step is considered to have dissipated. Only systems that reach an extent of at

least 10.000 km2 and a lifetime of 6 hours are kept. The minimum area is larger than the usual

definition for an MCS (∼ 4000 km−2) to take into account that, as the system moves forward

within one time step, the 3-hourly average gives a stretched area of rainfall instead of the size of

an instantaneous system. Figure 5.8 indicates the identified center point of the particular MCS

at a certain point in time.
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Figure 5.8: MCS tracks for TRMM and WRF24 from 1.-15. August 1999. Different colors indicate different
systems. The circle size gives an impression of the average rainfall intensity (mm h−1).

Table 5.2: August-September 1999 MCS number, lifetime (hours) and intensity (mm hour−1) for TRMM and
all WRF simulations.

Number Lifetime Intensity
Simulation
WRF24 255 9.7 2.2
WRF12 262 9.5 2.1
WRF7 219 10.9 2.6
WRF4 225 11.3 2.8
TRMM 196 11.1 3.2

With this method, WRF24 and WRF12 exhibit a comparable number of MCS during August

and September but more than the explicit cases (Table 5.2). At the same time, the average

MCS lifetime is about 1.5 hours shorter than for WRF4 and WRF7. The fact that both, system

number and lifetime, corresponds better to TRMM for the explicit than for the parameterized

cases suggests that the mechanisms that lead to a continuous, propagating system are indeed

better captured with explicit convection. If the parameterization fails to trigger convection in

the adjacent grid cells, a convective system might dissipate too early or might be triggered again

at some distance where the tracker is not able to attribute the precipitation to the previous MCS.

This would ultimately lead to higher tracked MCS numbers but shorter lifetimes.
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5 The relevance of an explicit convection description for precipitation characteristics

5.5 Clouds and incoming solar radiation

It was demonstrated in Section 4.4 that turbulence parameterizations modify the evolution of

clouds and related incoming solar radiation, which can significantly influence the modelled WAM

state. The question remains whether the model resolution and the utilization of a convective

parameterization also affect the modelled distribution of clouds.

The comparison of the meridional cross sections of the cloud fraction for the WRF simulations in

Fig. 5.9 shows that there are distinct differences between the cases with and without convective

parameterization. Since there exists no observational dataset for cloud fraction in 1999, the

GOCCP cloud fraction climatology from 2006-2012 is used as an indicator for the average

characteristics of vertical cloud distribution. The overall patterns are reasonably captured in all

simulations, although WRF24 and WRF12 exhibit a second cloud fraction maximum at 650 hPa.

This is visible neither in GOCCP nor in the two explicit WRF simulations. On contrary, the

layer around 650 hPa constitutes a minimum in cloud cover for GOCCP. This is also in line

with (Stein et al., 2011, their Fig. 6), who combined CloudSat and CALIPSO data and analysed

the cloud fraction climatology from 2006-2009 over West Africa, suggesting that the 650 hPa

maximum in WRF24 and WRF12 is a parameterization artefact. There is however a second

maximum in GOCCP in the low-levels situated at 5-7◦N above the coast, indicating increased

cloud cover from frictional uplift when the monsoon winds hit the continent. Such a maximum

is also visible in WRF7 and WRF4, although it is weaker and shifted northward further inland.

Generally, the cloud cover for WRF7 and WRF4 is spatially extended above 550 hPa in comparison

to WRF24 and WRF12. The maximum average cloud cover of 20-25% coincides for all simulations

between 250-150 hPa, but likewise covers a larger area for the simulations with explicit convection.

Different from WRF4, the higher values of cloud fraction reach into the mid-levels at about

500 hPa for WRF7. This could again be related to the resolution-dependent underestimation of

the velocity of convective updrafts, as discussed in the previous section. For example, Bélair

and Mailhot (2001) conducted simulations at 6 km resolution with the Mesoscale Compressible

Community model and also find overestimated condensation in the mid-levels.

However, both, WRF4 and WRF7 improve the northward extent of cloud cover with respect to

GOCCP. Although the WRF simulations cannot be directly compared to the GOCCP climatology,

the modelled northward extent of clouds should display a maximum positive anomaly since the

WAM was extraordinarily strong in 1999.

Additionally, an elongated region of increased cloud cover north of 17◦N is simulated between

450-550 hPa in WRF4, comparable to GOCCP. Ansmann et al. (2008) identify these clouds as a

layer of altocumulus that form at the top of the SAL, especially under high dust concentrations.

Since WRF does not take into account any effects of Saharan dust this might be a reason why

the cloud fraction is underestimated over this region. The reason why only WRF4 captures these

altocumulus clouds more clearly might be that it better resolves the shallow convection over the

Sahara region (cf. Fig. 2.3).
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Figure 5.9: Meridional cross sections of the zonal averaged cloud fraction over 10◦W-10◦E for the JAS 2006-2012
GOCCP climatology and for all WRF simulations in JAS 1999.

Stein et al. (2011) point out that the Saharan cloud cover is a critical factor for climate models,

since they usually have difficulties to simulate any attenuation of solar radiation in that region,

which negatively affects the radiation budget at the surface. A look at the simulated shortwave

incoming radiation for WRF24 and WRF12 in comparison to METEOSAT in Fig. 5.10 confirms

a positive bias of mostly 25-50 W m−2 in the Saharan region, which might negatively affect the

simulated monsoon circulation (Marsham et al., 2013). To the South, for which the incoming

radiation was already adjusted and validated in Section 3.5.5, the bias remains either small or

is negative in mountainous regions. The positive bias north of 15◦N is significantly reduced

in many regions for WRF7 and even more so for WRF4, underlining the importance of cloud

representation in that region and the positive impact of an explicit treatment of convection.
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The white area for WRF4 indicates the end of the WRF4 domain.
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5.6 Representation of the diurnal cycle

5.6 Representation of the diurnal cycle

A typical problem of convective parameterizations is their inability to correctly capture the

diurnal cycle of rainfall (e.g. Nikulin et al., 2012). For WRF24, it was already shown in Fig. 4.7

that all three tested cumulus parameterizations in Chapter 4 either showed the convective peak

too early during the day or were generally underestimating the diurnal cycle.

Since only BMJ is used for this analysis, WRF24 and WRF12 exhibit the already identified shift

of the convective minimum and maximum of 9h and 15h, as opposed to 12h and 18h for TRMM

(Fig. 5.11). In the Sudano-Sahel however, the rainfall amount remains constant after 15h, while

at the Guinean coast, rainfall amounts drop, inducing a considerable bias compared to TRMM.

The overall diurnal cycle is similar for WRF24 and WRF12 with somewhat less precipitation in

the case of WRF12.

Here, both explicit simulations remove the phase shift in rainfall in the Sudano-Sahel and capture

the distribution of rainfall amounts during the day similarly well (Fig. 5.11). At the Guinean

Coast, only WRF7 is able to reproduce the diurnal cycle with an average overprediction of

0.04 mm h−1, while precipitation in WRF4 remains weak with almost no diurnal cycle. This is

most likely linked to the distinct coastal dry bias in WRF24, WRF12 and WRF4 (cf. Fig.5.2)

and correspondingly to the wet bias for WRF7.
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Figure 5.11: JAS 1999 average diurnal cycle of precipitation (mm hour−1) in the Sudano-Sahel and at the
Guinean coast (cf. Fig. 5.1) for TRMM and the WRF simulations with parameterized (solid lines) and explicit
(dashed lines) convection.
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5.7 Discussion and conclusions

This experiment investigated the representation of rainfall, clouds and related incoming solar

radiation in the WRF model with parameterized and explicit convection during the WAM 1999

with the aim to (Section 1.2):

• assess the deficiencies of parameterized convection as compared to physically explicit

convection and arising consequences for the simulated WAM and rainfall characteristics

• test the validity of simulation results with explicit convection in the convective grey scales

above 4 km resolution

Two simulations at 24 and 12 km horizontal resolution (WRF24, WRF12) with parameterized

convection were compared to two simulations at 7 and 4 km horizontal resolution (WRF7, WRF4)

with explicit convection, all driven by ERA-I. WRF4 is nested into WRF12 while WRF7 is

directly driven by the reanalysis data.

Since the study of Weisman (1997), 4 km is considered to be the minimum horizontal resolution at

which convective structures can be sufficiently resolved while conserving a reasonable transport of

momentum and heat for large convective systems. They investigated the development of a squall

line in a three-dimensional nonhydrostatic numerical cloud model with horizontal resolutions

from 1 to 12 km. In their simulations, the net state of the system was well captured at 1-4 km

but they point out that these resolutions are sufficient only for the representation of mesoscale

structures of the squall line and not for the analysis of cellular-scale structures. At 8 and 12 km,

they found overall aspects of the circulation still reasonably well represented but report a slower

convective evolution with an overestimated heat transport and rainfall rates as opposed to the

finer resolutions.

The findings here generally agree to those of Weisman (1997): compared to WRF4, WRF7 seems

to produce unrealistically slow convective circulations that lead to increased cloud formation in

the mid-levels of the troposphere and ultimately produces increased rainfall amounts.

Nevertheless, WRF7 performs surprisingly well given that the representation of rainfall patterns,

intense precipitation events, the diurnal cycle and the propagation of MCSs is similar and

sometimes superior to that of WRF4. In addition, both explicit simulations improve the

representation of cloud cover, partly correcting a strong positive bias of incoming solar radiation

that is found for the simulations that use a convective parameterization (WRF24, WRF12). At

the coarser scales with a convective parameterization, the WRF simulations are not capable to

correctly represent the distribution of clouds, the diurnal cycle of rainfall or to capture observed

rainfall intensities, which is in line with Marsham et al. (2013). They emphasized the importance

of the diurnal cycle of cloudiness and rainfall for the correct representation of the monsoon

circulation. The explicit approach corrects the diurnal cycle by shifting the rainfall peak to later

times during the day, as was found here. In their explicit simulations, this leads to more incoming
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solar radiation and higher temperatures that strengthens the monsoon circulation during the

day, while cold pools from convective systems during the night weaken the circulation. Opposed

to that, their parameterized simulation exhibits a weakened monsoon during the day due to a

too early rainfall peak and a too strong meridional circulation during the night.

Here, it was also found that the used convective parameterization, the BMJ scheme, seems to

have problems with continuously simulating the propagation of MCSs, since WRF24 and WRF12

exhibit shorter MCS lifetimes than WRF4, WRF7 and the observational dataset. However,

for a more robust tracking analysis, observed and modelled data should at least be available

at time steps of one hour and in the best case exhibit a higher spatio-temporal resolution

than the observational data used in this analysis (27 km, 3-hourly). Absolute numbers for any

MCS characteristic (e.g. number of MCSs, size, lifetime) have proven to be very sensitive to

the spatio-temporal resolution of the data, such that here, the method could just be used for

comparative purposes but not for identifying de-facto MCS lifetimes, for example. In addition,

rainfall instead of cloud cover or outgoing longwave radiation were used for tracking, such that

the method is also sensitive to (dis-)continuous rainfall fields and therefore gives only a vague

impression on correspondences / differences between the simulations.

A further factor that encourages the use of at least convection-allowing model set-ups, although

not evaluated here, is the lacking ability of convective parameterizations to correctly represent

interactions between the surface and the atmosphere. Hohenegger et al. (2009) analysed the

simulated soil moisture-precipitation feedback of the Consortium for Small-Scale Modeling Model

in Climate Mode at 25 and 2.2 km with and without convective parameterization, respectively,

for one month over the Alps. They found a positive feedback for the 25 km case while it was

negative for the explicit 2.2 km. They attribute the positive feedback to a missing sensitivity

of the parameterization to stable air layers and a too strong dependence on moisture, while

strong thermals over dry soils than can foster convection are underestimated. Taylor et al. (2012)

likewise found a generally positive soil moisture-precipitation feedback during daytime for three

evaluated GCMs with convective parameterizations during the WAM, while observational data

suggested the opposite. This suggests that land-atmosphere interaction studies should generally

avoid parameterized convection.

In summary, although WRF7 shows limitations in cloud formation and rainfall amounts, it

seems nevertheless to be able to capture the mesoscale structures of the convective systems

and considerably outperforms the parameterized approaches. The 7 km resolution allows a

direct downscaling from ERA-I for a relatively large WRF domain. This avoids potential errors

introduced by a parent domain in which parameterized convection is active. At the same time,

the strong coastal dry bias visible in WRF24, WRF12 and WRF4 does not exist in WRF7.

WRF7 therefore seems to be a reasonable compromise between a truly convection-resolving

simulation that also allows land-atmosphere interaction studies and a computationally feasible

set-up that can be directly driven by reanalysis data. It will thus be used for the following

experiment as new WRF baseline set-up.
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Chapter 6

The effect of vegetation-atmosphere feedbacks

on precipitation

Current research on land-atmosphere interactions in West Africa often focuses on the impact of

soil moisture on precipitation due to changed surface fluxes, imposed surface heterogeneities or

the pure amount of evaporated water increasing the atmospheric moisture.

Eltahir (1998) suggests that vegetation cover and soil moisture content might play the same role

in the concept of land-atmosphere interactions. The important difference is that soil moisture

anomaly patterns may only last for several days to weeks. Vegetation on the other hand is able

to mobilize root zone soil moisture that would otherwise not be in contact with the atmosphere.

Its anomaly patterns can last over weeks to months. It therefore imposes a lower boundary

condition on the atmosphere that is effective over much longer time scales and furthermore reacts

much slower to single precipitation events than surface soil moisture. Taylor (2008) hypothesizes

that such slow intra-seasonal modulations could be especially important in the densely vegetated

southern regions of West Africa as opposed to the barren Sahel, where the main response in

latent heat fluxes is within a few days.

Several studies report a distinct sensitivity of WAM rainfall on vegetation changes at climatological

time scales, where a positive vegetation-precipitation feedback dominates and results in an

increased natural rainfall variability compared to cases without dynamic vegetation (e.g. Alo

and Wang, 2010; Kucharski et al., 2012; Zheng and Eltahir, 1998). Besides natural land cover

changes, anthropogenic vegetation perturbations are another important factor that can lead to

considerable vegetation changes over a few years. Taylor et al. (2002) used a land use model to

generate land use change scenarios for the Sahel between 1960 and 2015 that were implemented

in a GCM to quantify the impact of land use change. The predicted increase of cropland by
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6 The effect of vegetation-atmosphere feedbacks on precipitation

9% and the loss of forest cover by 28% lead to a rainfall decrease of 8.7%. Hagos et al. (2014)

fed an estimation of the land degradation in the Sahel between 1950 and 2010 to WRF and

likewise found a rainfall reduction. They attribute the decrease to a southward shift of the AEJ

associated with a modification of the meridional moisture and temperature gradients by the land

use changes.

The often identified importance of vegetation variability on longer time scales rises the question

whether this holds true for the interannual and seasonal scales, for which the quantitative

vegetation changes are usually relatively small. Other than for soil moisture, the mechanisms by

which vegetation patterns might directly affect the atmosphere and precipitation distribution are

little discussed although such studies could profit from satellite-derived information on vegetation

changes nowadays available at very high spatial resolution (e.g. Camacho and Cernicharo, 2015).

Li et al. (2007) used satellite-derived data at a rather coarse resolution of 1◦ to investigate the

influence of LAI and green vegetation fraction (VF) on the annual and interannual modulation of

the WAM between 1987 and 1988 with a GCM at ∼ 300 km horizontal resolution. In accordance

with mentioned climatological studies, they find a northward shift of the AEJ related to a

modulation of the meridional temperature gradient. However, the coarse resolution in their

study does not allow an investigation of vegetation impacts below the spatial scales of monsoon

dynamics.

This experiment uses a new set of satellite-derived data for VF, albedo (ALB) and LAI at high

spatial resolution to address the question how interannual changes of vegetation patterns may

affect surface variables, atmospheric circulations and ultimately rainfall patterns at a local to

regional scale. This surface data set has been recently generated specifically for the West African

region including a novel high-resolution land use map.

The surface information is provided to the WRF model version 3.61 for the years 2009 and 2010

during the WAM. A control simulation with a fixed climatological annual cycle for VF, ALB and

LAI during both years is used to remove the large-scale signal from the interannual changes of

surface and atmospheric variables.
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6.1 Experimental set-up and datasets

6.1.1 Analysis strategy

Two WRF ensemble experiments are conducted with (i) the observed state of surface variables

(ALB, VF, LAI), that was derived from remote-sensing (DYN) and (ii) default climatological

datasets with a fixed annual cycle (CLIM) for the rainy seasons April-September 2009 and 2010,

including one month of spin-up. These two consecutive years show a negative and positive VF

anomaly of ∼4% in the Sahel (cf. Fig. 6.3), making them a good test case for the impact of

vegetation changes on the WAM. The two rainy seasons were simulated separately instead of

conducting a continuous simulation in order to have the same integration time after the first soil

moisture initialization for both years and to receive eight independent simulations per ensemble.

The two ensemble groups DYN and CLIM each consist of four members per year, for which the

initial starting date is shifted by -0, -1, -2 and -3 days. This approach is taken to account for the

fact that a surface-driven atmospheric signal is not straightforward to extract. Given the chaotic

character of convection, feedbacks on rainfall might or might not occur in response to a surface

change. Therefore, if not indicated otherwise, all analyses use the average of the perturbed DYN

and CLIM four-member ensembles in order to reduce the noise from internal model variability

and thus to get a more robust signal of the mean changes related to the new dynamical surface

dataset. The analysis focusses on the representation of the interannual difference 2010-2009 (∆Y)

for the dynamical DYN (∆YDyn) and the static CLIM (∆YClim) surface case. The difference

between the two ensembles then gives the impact of the dynamical land surface (Srfc):

∆YSrfc = ∆YDyn −∆YClim. (6.1)

∆YSrfc represents a ’vegetation-induced modulation of the large-scale driven changes’ between

2009 and 2010. For example, a temperature change from 25 to 30◦C in CLIM and a change from

25 to 26◦C in DYN equals to -4◦C for the vegetation signal ∆YSrfc, which means that ∆YSrfc

can be negative although DYN exhibits an effective net warming.

The significance of ∆YSrfc is given when the means of ∆YClim and ∆YDyn are significantly

different from each other as estimated with a Student’s t-test. The CLIM and DYN sample

populations consist of 16 members each that arise from the 2010-2009 differences of all possible

member combinations (the cartesian product of a 2010 and a 2009 vector). Note that the ∆YSrfc

for the surface variables ALB, LAI and VF correspond to ∆YDyn since ∆YClim is zero.
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6.1.2 Model set-up

The model domain encompasses the whole WAM region as can be seen in Fig. 6.1. If not indicated

otherwise, all analyses are carried out for the domain (9◦W-9◦E, 7 − 16◦N), focussing on the

Sudanian zone and the Sahel to reduce effects from the ocean and the coastline.

Different model configurations and their impact on the representation of the WAM dynamics

were already investigated by Klein et al. (2015) (Chapter 4). On this basis, the WRF model

is run with the RRTM/Dudhia Long and Shortwave Radiation schemes (Dudhia, 1989), the

LIN MP scheme (Lin et al., 1983) and the YSU PBL scheme (Hong and Lim, 2006). This

configuration reproduces the WAM without showing an extreme wet or dry behaviour. The

horizontal resolution is 7 km without using a CU scheme to explicitly capture the diurnal cycle

of cloudiness and rainfall, which showed better results than simulations with CU schemes in

Chapter 5. In addition, the explicit treatment of convection is crucial for the available energy

at the surface (Marsham et al., 2013) as well as to represent certain processes impacting the

land-atmosphere feedback, which are not taken into account by current CU parameterizations

(Hohenegger et al., 2009).

6.1.3 The coupled land surface model

The choice of the LSM is a critical point in assessing land-atmosphere interactions since it

solves the surface energy balance, whose partitioning strongly depends on the prevailing surface

conditions:

Rnet = SWin(1−ALB) + LWin − εσ TS4 = LH + SH +G, (6.2)

where SWin and LWin are the incoming shortwave (Wm−2) and longwave radiation (Wm−2)

and ε, σ and TS are the surface emissivity, the Stefan-Boltzmann constant and the surface

temperature (K), respectively. The left-hand side of this equation represents the budget of

incoming and outgoing solar radiation and gives the available net radiation Rnet (Wm−2) at the

ground. The net radiation is balanced by outgoing fluxes of latent heat (LH, Wm−2), sensible

heat (SH, Wm−2) and the ground heat flux (G, Wm−2).

Hagos et al. (2014) investigated the uncertainty in modelled changes of surface flux partitioning

and precipitation changes due to land use change in West Africa for three different LSMs that are

available in the WRF model. They found that an LSM that favoured a drier or wetter monsoon

regime showed a lower sensitivity to land use changes in comparison to the intermediate case,

since the evaporation from soils that are close to saturation or close to the wilting point does

not vary significantly, even under land use change conditions. In their simulations, the Noah

LSM showed an intermediate behaviour and the best performance with respect to observations

for the modelled precipitation amounts and the meridional gradient of the evaporative fraction.

Therefore, the WRF configuration used here still employs the Noah LSM.
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The atmospheric part of the WRF model forces the Noah LSM with atmospheric variables such

as incoming long- and shortwave radiation, near surface temperature, pressure, humidity and

precipitation. The Noah LSM then calculates the outgoing radiation with respect to ALB and TS

of the previous time step and thus provides the radiative forcing Rnet at the ground (cf. Eq. 6.2).

Altogether, four variables are fed back to the atmosphere: (i) LH (evapotranspiration), (ii) SH ,

(iii) outgoing longwave radiation (via calculation of TS) and (iv) upward shortwave radiation

(reflected portion given by surface albedo).

To derive LH, the Penman potential evaporation Ep (kg m−2s−1, evaporation from an open water

surface) is computed and adjusted according to the bare and vegetated portion of a model grid

cell, which is determined by the green vegetation fraction VF. The actual evapotranspiration is

the sum of the partial fluxes for direct evaporation Edir (kg m−2s−1) from soil and the total plant

transpiration Et (kg m−2s−1) (evaporation from canopy and snow sublimation are neglected in

this example) that are defined as

Edir = (1−VF)βEp (6.3)

and

Et = VF EpPc(1− (
Wc

S
)0.5), (6.4)

where Wc is the amount of water intercepted by the canopy and S is the maximum water capacity

of the canopy (set to 0.5 mm). In these equations, β and Pc represent resistance factors that

act to reduce Ep. Both take into account the soil hydraulic properties and corresponding soil

moisture availability but the plant coefficient Pc additionally includes plant type and root depth,

the influence of heat stress, the water vapour deficit and incoming solar radiation and therefore

incorporates the canopy resistance. In this framework, LAI is used to upscale the parameters

incorporated in Pc that represent leaf stress (due to solar radiation, humidity, soil moisture, air

temperature) to the entire canopy, where a higher LAI results in a lower canopy resistance (see

Chen and Dudhia, 2001 for a detailed description). Consequently, Et depends on all available

moisture within the root zone while for bare soil, Edir is simply a function of relative soil moisture

availability in the first soil layer. The new surface temperature TS is computed iteratively in a

linear approach and arises from the surface energy balance equation in the form of

SH = Rnet − LH −G (6.5)

with

SH = ρCpChU(TS−Θair) (6.6)

with the air density ρ (kg m−3), the heat capacity of dry air Cp (Jm−3K−1), the surface exchange

coefficient Ch, the wind speed U (m s−1) and the potential temperature Θair (K).
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Substituting SH in Eq. 6.5 with Eq. 6.6 and solving for TS then gives

TS =
Rnet − LH−G

ρCpChU
+ Θair. (6.7)

This summary of variable dependencies describes how state variables and surface fluxes directly

react on changes in ALB, VF or LAI: ALB has a direct effect on Rnet and therefore impacts the

available energy for the turbulent surface fluxes. VF is the key parameter for the partitioning

between bare soil evaporation and plant transpiration. The efficiency of the latter, and therefore

the actual difference between bare soil evaporation and plant transpiration, is modified by the

canopy resistance and thus by LAI. However, here, the objective is not to disentangle the separate

effects of these intrinsically connected surface parameters, but to investigate whether their ’bulk

effect’ leaves an imprint on the atmosphere. As an approximation, the presented feedback

analyses therefore use VF changes as a proxy for associated changes of all three variables.

6.1.4 Reference datasets

The model simulations are compared to different satellite, observational and reanalysis data to

evaluate their capability to capture the monsoon regime and interannual differences between

2009 and 2010.

Precipitation Reference datasets comprise TRMM 0.25◦ resolution 3B42V7 and 3B43V7

(monthly) rainfall estimates (Huffman et al., 1997), the African Rainfall Estimate version 2 (RFE)

(NOAA CPC, 2013) 0.1◦ resolution product and the 0.25◦ resolution global Climate Prediction

Center Morphing technique (CMORPH, Joyce et al., 2004) dataset. All three are comparably

high-resolution datasets and available at daily resolution. RFE is a combined satellite-gauge

data product, operationally provided by the Climate Prediction Center (CPC). It is available

for the African continent starting in 2001. RFE rainfall is merged from three satellite datasets

and afterwards fitted to gauge measurements. It is used for operational hazard warnings with

a focus on daily rainfall development where it however tends to show a consistent dry bias

compared to other precipitation datasets (Novella and Thiaw, 2013). Different from the other

datasets, the CMOPRH ’morphing technique’ is not an algorithm for precipitation estimation.

It describes a technique to combine motion vectors derived from geostationary satellite infrared

imagery with precipitation estimates from passive microwave data such as the TRMM sensor

(Joyce et al., 2004). It is therefore especially reliable in capturing the position and the track

of precipitation systems while the absolute amounts are rather overestimated in West Africa

(Wolters and Roebeling, 2011). It is available starting from 2003 on a near real-time basis.

Surface temperature Model surface temperatures are again compared to the GHCN 5◦

gridded temperature product Version 3 (Lawrimore et al., 2011). In addition, the University of

Delaware (UDEL) 0.5◦ station-analysis product (Legates and Willmott, 1990) and the station-data

based Climatic Research Unit (CRU) time series 3.21 0.5◦ product (Harris et al., 2013) are used.
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All three datasets are available at only monthly resolution starting in 1900 and being continued at

an irregular basis. The CRU dataset is based on more than 4000 meteorological stations, which

are converted to anomalies with respect to 1961-1990, before being gridded to 5◦ resolution. After

interpolation, the temperatures are adjusted to actual values by adding on the climatological

normals. Interpolation is performed by considering the correlation decay distance. UDEL is

primarily based on station observations from GHCN. It is produced through interpolation of

station anomalies, which are then combined with an equivalent gridded climatology to produce

estimates of the monthly temperature. All three temperature datasets rely entirely on station

data, making them relatively unreliable in West Africa, especially at smaller scales. There is also

a considerable dependance between the datasets due to the small number of stations, attributing

differences mainly to differing interpolation techniques (Vose et al., 2012). Therefore, the datasets

are only used for analyses of the subcontinental-scale averages here.

Turbulent surface fluxes Due to the small amount of available flux tower data in West

Africa, the information on surface fluxes is probably the most uncertain. One of the few gridded

products for latent and sensible heat fluxes is the FLUXNET Multi-Tree Ensemble (MTE)

at 0.5◦ (Jung et al., 2011). MTE is a machine learning technique that is trained to predict

turbulent fluxes based on remote sensing indices, land use information and meteorological data.

The resulting flux fields are available from 1982 to 2008 and were validated in cross-validation

procedure with EC measurements. However, since there are only eight active flux towers in

whole West Africa contributing to FLUXNET (DAAC, 2013), the MTE results primarily rely on

the machine learning algorithm interpreting other available informations. Hence, the quality of

this dataset in West Africa is highly uncertain. Therefore, the reanalysis-based products ERA-

Interim/LAND (Balsamo et al., 2015), available from 1979-2010, and MERRA-Land (Reichle

et al., 2011), starting in 1979, are additionally used for comparison. Both are land-only reanalysis

products from offline simulations with updated land surface models and a new precipitation

forcing from gauge data, especially created for land surface and flux studies. Both datasets are

relatively new and were not specifically validated in West Africa yet. Lorenz and Kunstmann

(2014) note a consistent overestimation of LH for MERRA-Land in different regions of the world

but did not include West Africa.

Soil moisture Soil moisture estimates are taken from the 0.5◦ gridded CPC soil moisture

(V2) dataset (Van Den Dool et al., 2003). This dataset is calculated at real time starting in 1984

by a one-layer bucket water balance model using independent precipitation and temperature

datasets that are not used here. The model results compare well to the limited number of in-situ

measurements in the United States, China, India, Mongolia and Russia, capturing the annual

cycle and interannual variability (Fan, 2004). In addition, first comparisons to the Gravity

Recovery and Climate Experiment dataset reveals close similarity.

Atmospheric dynamics The monsoon dynamics are compared to ERA-I data.

If not indicated otherwise, all data, including WRF, is transformed (averaged) onto the grid of

coarsest resolution of the different datasets used for the analyses.
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6.2 The dynamical land-surface parameters

In order to represent spatio-temporal land surface changes in the WRF model, new dynamical

land-surface parameters for ALB, VF and LAI (DYN) are integrated to replace the default

monthly climatological datasets (CLIM). The used surface datasets are summarized in Table 6.1.

6.2.1 Generation and implementation of the dynamical datasets

The LAIDyn and VFDyn time series were created by fusing LAI and VF datasets derived from data

of the Spinning Enhanced Visible and Infrared Imager (SEVIRI, LSA SAF, 2013) and Satellite

Pour l’Observation de la Terre-VEGETATION (SPOT VGT, Baret and Weiss, 2010; Camacho

and Cernicharo, 2015). The SPOT VGT-based datasets provide good quality information on

LAI and VF in 10-day intervals at 1 km spatial resolution, but show frequent cloud gaps

during the rainy season, while the SEVIRI-based daily datasets exhibit fewer cloud gaps but

at a coarser spatial resolution of 3 km (Gessner et al., 2013). Both datasets were aggregated

to a spatio-temporal resolution of 1 km and 10-daily intervals. The SEVIRI datasets were

matched to SPOT VGT values based on slope and offset of three linear regressions fitted for gap

unaffected areas and three seasons (Jan-Mar, Apr-Sep and Oct-Dec). Finally, the cloud gaps

in the SPOT VGT products were filled with the adapted SEVIRI-based LAI and VF values.

Remaining outliers in the time series were removed and remaining gaps were filled by temporal

linear interpolation.

Table 6.1: Land surface datasets for albedo (ALB), green vegetation fraction (VF) and leaf area index(LAI)
used in the WRF model: dynamical datasets for the region (9°W-10°E ; 4-16°N) (DYN), dynamical global
datasets (GLOB) and the global default WRF climatology datasets (CLIM).

Name Time step Resolution Time period Source Reference
DYN
ALBDyn monthly ∼ 1km 2000-2014 MCD43B3 LP DAAC (2014)

VFDyn 10-daily ∼ 1km 2007-2012 SEVIRI/
SPOT VGT

Camacho and Cernicharo
(2015), Gessner et al. (2013)

LAIDyn 10-daily ∼ 1km 2007-2012 SEVIRI/
SPOT VGT

Camacho and Cernicharo
(2015), Gessner et al. (2013)

GLOB
ALBGlob 10-daily ∼ 1km 1999-2015 SPOT VGT Camacho and Sánchez (2015)
VFGlob 10-daily ∼ 1km 1999-2015 SPOT VGT Camacho and Cernicharo (2015)
LAIGlob 10-daily ∼ 1km 1999-2015 SPOT VGT Camacho and Cernicharo (2015)
CLIM
ALBClim monthly ∼ 17km 1985-1991 AVHRR Csiszar and Gutman (1999)
VFClim monthly ∼ 17km 1985-1991 AVHRR Gutman and Ignatov (1998)
LAIClim monthly ∼ 3km 2001-2010 MODIS Kumar et al. (2014)
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Figure 6.1: (a) WRF domain with indicated study region and sub-regions in the box (9◦W − 9◦E, 7 − 16◦N), (b)
left: regionally optimized land use classification (DLC) for the simulations with dynamical surface parameters
(DYN), right: MODIS land use classes (MLC) for the WRF default case (CLIM).

The ALBDyn time series is based on the bi-hemispherical reflectance (white-sky albedo) for the

shortwave spectral range of the MODIS MCD43B3 product (LP DAAC, 2014). The MCD43B3

is a composite product based on 16-day intervals at 1 km spatial resolution. Like for LAI and

VF, the product features gaps, especially during the wet season. To generate a gap free input,

the product was aggregated to monthly composites by calculating the mean of corresponding

months. The remaining data gaps were filled with long-term monthly mean values (15 years:

2000-2014). Finally, the time series underwent temporal smoothing using the Savitzky-Golay

filter (William et al., 1992).

The DYN datasets for ALB, VF and LAI only span the focus study region 9◦W-9◦E, 4− 16◦N.

In the rest of the WRF domain, global datasets (GLOB, Table 6.1) for broadband white-sky

ALB, VF and LAI from SPOT VGT are used to provide dynamical surface information. These

datasets were found to correspond well to the DYN datasets. Sporadic remaining gaps due to

cloud cover in GLOB are filled with the GLOB long-term mean value for the respective pixel

and month.

All datasets shown in Table 6.1 are linearly interpolated to 6-hourly timesteps to act as boundary

input for the WRF model. Spatially, the datasets are interpolated (coarser datasets) or regridded

and averaged (finer datasets) to the model grid at 7 km resolution.
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Other necessary land surface parameters (e.g. surface roughness, root zone depth) rely on table

values that are associated with a certain land use classification. Therefore, a regionally optimized

land use classification (DLC, Table A.2) map at 250 m spatial resolution, based on the year 2006

(Gessner et al., 2015), is additionally implemented in the model in order to ensure consistency of

the assigned table values with the new DYN datasets. Figure 6.1(b) shows the 7 km upscaled

maps of DLC and the WRF default 1 km MODIS land classification map based on 2002 (MLC,

Table A.1, Friedl et al., 2010). The 7 km upscaled DLC and MLC consider the dominating land

class only.

6.2.2 Comparison of dynamical and climatological datasets

There is a considerable albedo offset between DYN and CLIM, illustrated in Fig. 6.2, with a

mean deviation of 2.4% in the Sahel and 1.9% in the Sudanian zone which arises because ALBDyn

is based on MODIS shortwave broadband white-sky albedo, while ALBClim represents Advanced

Very High Resolution Radiometer (AVHRR) broadband black-sky albedo.
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Figure 6.2: Annual cycles of the dynamical datasets (DYN) in comparison to WRF default climatologies (CLIM)
in (a) the Sahel and (b) the Sudanian zone for the available time period of the DYN datasets. Additionally,
the mean deviation between CLIM and DYN (MD) and the standard deviation (SD) for each dataset are given.
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While the black-sky albedo represents the directional surface reflectance at local solar noon under

clear sky conditions (100% directional light source), the white-sky albedo is the reflectance for

diffuse conditions (100% diffuse light source). The actual albedo emerging from a mixture of

directional and diffuse light (blue-sky albedo) would be the fractional sum of the two, depending

on the fraction of incoming diffuse light during the examined time period.

Here, only white-sky albedo was available for DYN. The emerging offset between the black- and

white-sky albedos and their physical effects hinders a direct comparison of the DYN and CLIM

simulations. Instead, the interannual change of the respective simulation case (cf. Section 6.1.1)

is compared, assuming that for the interannual difference ∆Y, the effect of this offset is negligible.

Differences between VFDyn, LAIDyn and the climatological dataset are smaller, but show pro-

nounced higher maxima during the rainy season. As expected, the standard deviations are

generally higher for DYN datesets compared to the climatological annual cycles.

6.2.3 Consistency of the dynamical datasets

The DYN monthly anomalies for the Sahel in Fig. 6.3 show good agreement with each other as

well as with observed precipitation (PCP) and soil moisture estimates (SM), giving confidence in

their quality. In the Sahel, SM and VFDyn anomalies show maximum correlations with PCP

anomalies of 0.71 and 0.74 with a lag of one month (Fig. 6.4). Even after two months, the

correlations do not drop below 0.55.

In the moister and more densely vegetated Sudanian zone, VF reacts with a smaller temporal

lag to PCP anomalies shown by similar correlations for a lag of 0 and 1 month. However,

corresponding to Camberlin et al. (2007), vegetation changes are less sensitive to PCP anomalies

in this region (r ∼ 0.47) since water availability is a weaker constraint than in the Sahel.

Nevertheless, this illustrates that vegetation may retain a long-term memory of preceding rainfall

anomalies over the whole region. Here, it is hypothesized that surface patterns that were induced

by precipitation in the early months of the rainy season may affect the patterns of rainfall in the

late rainy season. The focus lies therefore on the period from August to September (Aug-Sep),

when vegetation anomalies reach their maximum (cf. Fig. 6.3).

The years 2009 and 2010 show a transition from a negative (-4.6 %) to a positive (4 %) VF

anomaly in the Sahel and are therefore suitable to assess the potential contribution of the

changing land surface to this transition as compared to a climatological case. The regional

patterns of ∆YDyn in Fig. 6.5 show that differences in VF locally reach over 10 % with more

vegetation in the Sahel but lower values in the eastern parts of the Sudanian zone. In the Sahel,

which is especially prone to interannual PCP variations and where the bare sand is considerably

brighter than vegetation, the albedo locally decreases by more than 3 %. The Aug-Sep spatial

correlation of ∆Y(VF)Dyn with the observed ∆Y(PCP) from June is still about 0.3 and confirms

the local lagged co-variation of rainfall and vegetation.
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Figure 6.3: Monthly anomalies of dynamical albedo (ALBDyn), dynamical green vegetation fraction (VFDyn),
CPC soil moisture (SM) and TRMM precipitation (PCP) with respect to the average annual cycle for 2007-2012.
Correlations (r) represent +1 month time-lagged correlations with PCP.
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Figure 6.4: Monthly time-lagged anomaly correlations with PCP for dynamical albedo (ALBDyn), dynamical
leaf area index (LAIDyn), dynamical green vegetation fraction (VFDyn), soil moisture (SM) and precipitation
(PCP) in (a) the Sahel and (b) the Sudanian zone with respect to the 2007-2012 average annual cycle.
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Figure 6.5: Average interannual differences 2010-2009 (∆Y) for June-July precipitation (PRCP, average of
TRMM, RFE and CMORPH, mm month−1) and August-September dynamical albedo (ALBDyn, %), vegetation
fraction (VFDyn, %) and leaf area index (LAIDyn, %). Spatial correlations (r) are with respect to ∆Y(PCP).

6.3 Large-scale impact of interannual vegetation changes

6.3.1 Domain averages

The following section investigates the plausibility of the modelled effect of year-to-year vegetation

changes for Aug-Sep domain-wide averages with respect to observations. As presented in Table 6.2,

WRF correctly captures more PCP in 2010 than in 2009 in both the DYN and CLIM case. This

illustrates that the general monsoon regime is already determined by remote drivers that are fed

to the WRF model via the domain boundaries from ERA-I.

DYN shows higher LH because of higher maxima in VFDyn (cf. Fig. 6.2) which reduces the

bias for both surface fluxes with respect to the reference data and indicates a more realistic flux

partitioning. For both years, the ratio of evapotranspiration to precipitation is 6% higher than

for CLIM and also 2 % higher than for the reference datasets. SH generally remains too high.

DYN also decreases the precipitation bias because of less absolute rainfall of about 12 mm month−1

for both years. This distinct change is most likely due to the higher values of ALBDyn (+1.8 %

on average) in comparison to ALBClim (cf. Fig. 6.2) leading to more reflected solar energy

(countering the bias in incoming shortwave radiation), overall lower TS of about -0.6 K and

smaller SH of 6 W m−2. However, these improvements are related to technical differences in the

albedo dataset instead of realistic surface changes and are thus purely artificial (cf. 6.2.2).
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6 The effect of vegetation-atmosphere feedbacks on precipitation

Table 6.2: Area-averaged total values for DYN and CLIM and their bias with respect to the mean values obtained
from the reference datasets (REF) for precipitation (PCP, mm month−1: TRMM, RFE, CMORPH), surface
temperature (TS, °C: GHCN, UDEL, CRU) and latent (LH) and sensible heat flux (SH) (W m−2: MTE, ERA
Interim/LAND, MERRA-Land) for the box (9°W-9°E ; 7-16°N). ∆Y is the respective interannual difference
(2010-2009).

PCP TS LH SH
REF DYN CLIM REF DYN CLIM REF DYN CLIM REF DYN CLIM

Total
2009 174.8 170.1 183.2 27.1 27.0 27.5 81.8 81.8 78.0 37.0 59.3 65.2
2010 192.4 188.7 200.5 26.7 26.5 27.1 83.2 84.0 77.9 34.5 52.0 58.0
∆Y 17.6 18.6 17.3 -0.4 -0.5 -0.4 1.4 2.2 -0.1 -2.5 -7.3 -7.2
Bias
2009 174.8 -4.7 8.4 27.1 -0.1 0.4 81.8 0 -3.7 37.0 22.3 28.2
2010 192.4 -3.7 8.1 26.7 -0.2 0.4 83.2 0.8 -5.2 34.5 17.5 23.5
∆Y 17.6 1 -0.3 -0.4 -0.1 0 1.4 0.8 -1.5 -2.5 -4.8 -4.7

To exclude the effect of such artificial offsets, it is helpful to compare the change in ∆Y , the

modelled interannual difference for any variable, instead of comparing the change for a specific

year. The absolute ∆Y in Table 2 is generally larger for DYN than for CLIM, as could be

expected under the influence of the two opposing vegetation anomalies during 2009 and 2010.

To get an impression on the significance of the difference between ∆YDyn and ∆YClim (=∆YSrfc,

cf. Eq. 6.1), ∆YSrfc is compared to the spread of ∆Y per ensemble in Fig. 6.6. Interestingly, the

spread of ∆Y for the corresponding reference datasets (blue) is always smaller than the spread of

the WRF ensembles, in this case attributing larger uncertainty to the model’s internal variability

than to the choice of a certain reference dataset.

For PCP and SH, the WRF ensemble spreads for ∆Y strongly overlap. This means that, for

the study region average, instead of changing the surface information, the initial conditions of

the WRF model could have been changed to produce differences of the same or an even larger

margin for these two variables, rendering ∆YSrfc insignificant. The spread in PCP increases by

83% from 12 mm month−1 for ∆YClim to 22.3 mm month−1 for ∆YDyn, suggesting that the

dynamical surface considerably increases the internal variability of precipitation generation in

the model.

Other than for PCP, the ∆YSrfc cooling signal of -0.1 K for TS and the related LH (+3.3 Wm−2)

is significant (P ≤ 0.01), estimated by a two-tailed t-test. In accordance to the observations, DYN

shows a positive ∆Y(LH), although overestimates. CLIM does not produce a clear difference in

LH between the two years suggesting that the dynamical vegetation improves the models ability

to represent the interannual difference of LH in this case. Associated with LH, the decrease in TS

is too strong for DYN, indicating a too large sensitivity of surface fluxes on changing vegetation

conditions in the WRF model that leads to a larger ∆Y than observed.
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Figure 6.6: Aug-Sep ∆Y boxplots for precipitation (PCP), surface temperature (TS), sensible (SH) and latent
(LH) heat flux that span the spread (S) in ∆Y of the WRF ensembles (DYN, CLIM) and for the reference
datasets over the study area. The whiskers indicate minimum and maximum ∆Y. For the WRF ensembles, the
spread of ∆Y is computed via the cartesian product of the four 2009/2010 pairs. Therefore, each box consists
of 16 ∆Y. For the observations, the box spread consists of three ∆Y values of three single reference datasets.
∆YSrfc is the difference of the mean values (red lines: ∆YDyn − ∆YClim).

6.3.2 Meridional distributions

The clear impact of vegetation changes on TS raises the question whether the monsoon dynamics,

such as the AEJ, could also be affected. Being a thermal wind, the AEJ follows the largest

temperature gradient over the continent that can be modulated by vegetation patterns. Dis-

turbances of the AEJ may trigger or support MCSs in its proximity and a shift of the jet may

therefore change the meridional distribution of precipitation (Cook, 1999).

The normalized meridional cross-sections in Fig. 6.7(a) reveal a broadened but weaker maximum

of the Sahelian temperature gradient between 11-15◦N in 2010 compared to CLIM. The resulting

northward shift of the AEJ leads to a better representation of the difference between the 2010/2009

AEJ positions with respect to ERA-I. Accordingly, the precipitation peak in the Sahel for ∆YDyn

is broadened to the north (Fig. 6.7b) and directly coincides with the largest ∆YDyn for VF and

LH (cf. Fig. 6.7c). This PCP increase is however not visible in the reference datasets. Instead,

WRF generally overestimates ∆Y in the Sahel and DYN further increases this positive bias via

a positive feedback between LH and PCP.
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Figure 6.7: (a) The Aug-Sep meridional gradient of surface temperature (TS) for DYN/ CLIM (WRF) in 2009
and 2010 compared to GHCN (REF) and the resulting ∆YSrfc. The TS gradient is computed between zonal
averages of 50 km zonal slices. Additionally, the position of the AEJ (circles) is shown for each year. The
latitudinal position of the AEJ is defined as the first occurrence of the zonal wind velocity surpassing 10 m s−1

between 650 and 550 hPa. (b,c) Aug-Sep meridional cross-sections of ∆Y and ∆YSrfc for the zonal average
of precipitation (PCP) and latent heat flux (LH) for DYN/ CLIM (WRF) compared to the PCP reference
datasets (REF: TRMM, RFE, CMORPH) and the LH reference datasets (REF: MTE, ERA Interim/LAND,
MERRA-Land). Additionally, ∆YSrfc for the vegetation fraction (VF) or the VF gradient (VFgradient) are
given for comparison. All variables are normalized with respect to their value range (max-min) and are therefore
dimensionless. The mean absolute deviation (MAD, PCP:mm day−1, LH:W m−2) and r2 are with respect to
REFMean.

108



6.4 Regional and local effects of vegetation patterns

The vegetation-induced change in ∆Y(LH) is proportional to ∆Y(VF), as the overlapping curves

for ∆YSrfc in Fig. 6.7(c) illustrate. However, such a simple relationship does not exist for

∆Y(PCP)Srfc: Although ∆Y(VF)Srfc is generally positive, there is a negative effect on PCP

between 10-12◦N (Fig. 6.7b, ∆YSrfc) that is only shown by CMORPH amongst the observations.

An examination of ∆YSrfc in Fig. 6.7(a) reveals that in this region, the temperature (and pressure)

gradient is weakened by the stronger VF gradient, suggesting a relatively lower near-surface

moisture convergence that leads to reduced rainfall. Correspondingly, areas with a positive

feedback on PCP are marked by a stronger temperature (pressure) gradient (positive ∆YSrfc).

This confirms that large-scale differential heating due to vegetation heterogeneities can affect

the dynamics and related precipitation even on continental scale. However, in this case, DYN

reduces the correspondence of modelled LH and PCP with the average of the observational

datasets, shown by higher MADs and lower r2. Again, the change in LH with vegetation and the

resulting lower surface temperatures seem to be overestimated, especially in the Sahel, leading

to an exaggerated effect on the meridional gradients.

In summary, CLIM is able to capture the domain wide interannual differences of variable averages

and meridional gradients as good or better than DYN. While the dynamical vegetation even exerts

a clear influence on the modelled monsoon dynamics, the magnitude seems to be overestimated.

It is therefore concluded that large-scale drivers dominate the observed interannual changes

and that a dynamical surface description does not add clear value at this spatio-temporal scale

within the uncertainty range of observations. It remains to be answered whether the vegetation

patterns exhibit a regional or local effect that cannot be captured by CLIM.

6.4 Regional and local effects of vegetation patterns

In the previous section it was shown that, even on a larger scale, vegetation can lead to significant

changes of LH and TS. Changes in both should be even more pronounced on regional and local

scales and might, under favourable atmospheric conditions, affect PCP.

To get an impression of regional vegetation-induced changes of TS, LH and the evaporative

fraction (EF), Fig. 6.8 shows their ∆YSrfc and their spatial correlation with ∆Y(VF)Srfc. Locally,

TS decreases (increases) by over 1 K with increasing (decreasing) VF. The changes in LH mostly

range between -10 and +20 Wm−2. A distinct increase of EF of more than 9% is only visible in

the Sahel and at the southern border of the domain. The difference patterns match those of VF

with correlations of -0.74 for TS, 0.72 for LH and 0.7 for EF.

However, the slopes of the zonal linear fit between the variables and VF in the right panels

in Fig. 6.8 reveal latitudinal differences in the strength of the response per unit of VF change.

Especially around 10◦N, where the monsoon precipitation peaks for both years (cf. meridional

precipitation distribution, Fig. 6.8 a), the effect of vegetation on the moist surface variables is

smaller than at the northern or southern borders of the study domain.
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6.4.1 Surface response and the evaporative regime
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Figure 6.8: Left : Aug-Sep maps of ∆YSrfc for (a) vege-
tation fraction (VF, %), (b) surface temperature (TS,
K), (c) latent heat flux (LH, W m−2) and (d) evapo-
rative fraction (EF, %). EF is defined as the ratio of
latent heat flux to the sum of latent and sensible heat
fluxes. Only significant ∆YSrfc are shown (P ≥ 0.01) and
taken into account to compute the spatial correlation
r. Right : (a) the meridional average precipitation (mm
day−1, 2010: solid, 2009: dashed) and (b,c,d) the coef-
ficients a (the slope) of the zonal slices linear fit (ax+b)
between ∆Y(VF)Srfc and ∆Y(TS)Srfc, ∆Y(LH)Srfc and
∆Y(EF)Srfc, respectively. Missing values indicate no
correlation for the zonal slice.

The meridional differences in the surface re-

sponse to vegetation changes are an expected

result if two factors are considered that mod-

ify the impact of vegetation on spatial LH

variability: (i) the evaporative regime and

thus the variable that limits evapotranspira-

tion, (ii) the actual difference between tran-

spiration and bare soil evaporation.

Regarding the first factor (i), Seneviratne

et al. (2010) distinguish between moisture-

limited regimes, where soil moisture (SM)

changes have a maximum effect on the tur-

bulent surface fluxes, and energy-limited

regimes where SM is plenty and these fluxes

are limited by incoming solar radiation.

Only in the moisture-limited regime, veg-

etation (root zone soil moisture) can act as

a first-order constraint for LH changes, anal-

ogous to moist bare soil.

In the moist region of the monsoon rainband

however, the frequent cloud cover limits the

available energy for evapotranspiration and

LH patterns are therefore predominantly

controlled (limited) by incoming shortwave

radiation, reducing the secondary effect of

spatial variations in vegetation. For the in-

vestigated time period, the transition zone of

the two regimes lies approximately between

12-14◦N, as depicted in Fig. 6.9(a). In the

Sahel, positive daily correlations between

∆Y(LH)Srfc and ∆Y(SM)Srfc illustrate the

moisture-limited region, while throughout

the Sudanian Zone, ∆Y(LH)Srfc variability

is controlled by incoming shortwave radia-

tion.
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Figure 6.9: Maps of Aug-Sep temporal correlations of
daily ∆YSrfc between the latent heat flux (LH) and (a)
incoming shortwave radiation (SW-in), (b) soil moisture
(SM), (c) surface temperature (TS) and (d) sensible
heat flux (SH). Only significant correlations (P ≤ 0.01)
are shown.

The second factor (ii) that affects the ra-

tio of LH and VF changes is related to the

fact that vegetation exhibits an evaporative

advantage compared to bare soil. The ad-

vantage exists because the volume of water

in the soil that is available for vegetation

transpiration is larger than for soil evapo-

ration. This is especially important in the

Sahel, where the surface soil layer dries out

quickly and where vegetation provides a pro-

found longer-lasting moisture supply to the

atmosphere, resulting in a higher ratio of

LH and VF changes. This effect is less im-

portant in the Sudanian zone, where surface

soil moisture is replenished more frequently.

Nevertheless, an increased sensitivity to vege-

tation changes can be identified at the south-

ern border of the domain in Fig. 6.8, where

there is an LH increase of 1 W m−2 (0.04

mm day−1) per unit VF, comparable to the

moisture-limited Sahel. This is because the

evaporative advantage also increases when

vegetation density increases due to a larger

evaporative surface as compared to the bare

ground. The canopy is much more dense in

the Sudanian zone as illustrated in Fig. 6.2

with a more than two times higher LAI than

in the Sahel. Consequently, a high amount

of available root zone soil moisture in dry

regimes as well as a high canopy density in

wet regimes contribute to a stronger increase

of LH per increase of unit VF.

Interestingly, ∆Y(TS)Srfc does not repro-

duce the behaviour of LH in the Sahel

(Fig. 6.8 b). While the decrease in TS per

unit VF is indeed somewhat stronger (-0.09

K) in the southern Sudanian zone, the re-

lationship varies around -0.05 K in the rest

of the domain. One reason for this is that

on smaller time-steps, a net-warming in the
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6 The effect of vegetation-atmosphere feedbacks on precipitation

vegetated areas may occur when soil moisture is not sufficient to supply transpiration. In these

cases, the heating effect of lower vegetation albedo takes over and consequently weakens the time

averaged overall cooling by increased VF.

In agreement with LH, the temporal variability of TS is affected by the predominant evaporative

regime. Figure 6.9(c,d) reveals that only north of the transition zone at about 12◦N, changes in

temperature and turbulent heat flux partitioning are dominantly controlled by LH (negatively

correlated).

Opposed to that, the positive correlation between ∆Y(LH)Srfc and ∆Y(TS)Srfc in the energy-

limited Sudanian zone is a spurious correlation that is actually linked to the dependence of both

variables on solar radiation which also applies to the relationship of LH and SH (Fig. 6.9d). Surface

temperatures and both turbulent fluxes increase simultaneously (positive LH/ SH correlation)

with higher incoming solar radiation, explaining the weaker response of EF to VF changes in

Fig. 6.8(d).

These two different process pathways of dominant temperature control via soil-moisture anomalies

(terrestial control) or via radiation anomalies (atmospheric control) were also identified by Berg

et al. (2015) in a comparison of a set of climate simulations with and without interactive soil

moisture. They conclude that land-atmosphere feedbacks in energy-limited regions can only play

a minor role, since solar radiation determines temporal surface temperature variability. This

drives latent heat flux variability which then drives soil moisture variability. This finding is

supported by Dirmeyer (2011), who points out that the identification of strong surface-atmosphere

coupling (e.g. a high correlation of the surface state and the atmospheric response) is only valid

if there is surface (e.g. soil moisture) variability in time.

However, this purely temporal definition of land-atmosphere coupling does not take into ac-

count that persistent spatial surface characteristics might also have a considerable effect on the

atmosphere. In the case of vegetation, Fig. 6.8 shows that, although solar radiation controls

the temporal changes of the surface variables in the Sudanian zone, the long-lasting vegetation

patterns lead to aggregated spatial characteristics of TS and LH. Here, it is assumed that

such persistent surface gradients may force the atmosphere to reoccurring states just like, for

example, a cold lake surface may impose frequent subsidence on the overlying air masses such that

precipitation is suppressed. In the following, the land-atmosphere feedback is therefore defined

as the spatial correlation of atmospheric characteristics with the surface over an aggregated time

period as opposed to the temporal correlation approach.
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6.4.2 The modelled atmospheric footprint

This section investigates whether the vegetation-driven patterns of the surface variables have a

local effect on the atmosphere. Since these patterns are relatively static with respect to atmo-

spheric time scales, a land-atmosphere feedback should manifest itself in a spatial accumulation

of certain atmospheric states if the vegetation anomaly is strong enough to force the atmosphere.

The significant spatial correlations between ∆Y(VF)Srfc and the ∆YSrfc of the different atmo-

spheric variables (ranging from 0.46 to -0.76, P ≤ 0.01) in Fig. 6.10 (a-d) indeed show that

the surface characteristics modify the conditions in the PBL. The correlation coefficients are

generally lower than for the surface variables, not only because the atmospheric sensitivity is

ultimately determined by large-scale conditions, but also because this method can only capture

pixelwise coinciding interactions between VF and the atmosphere. Therefore, it is not possible

to relate any downstream changes in the atmosphere to their origin at the surface, for example.

Another factor for lower spatial correlations is the small-scale spatial heterogeneity of VF as

compared to the well-mixed PBL conditions. To remedy this scale discrepancy, VF was upscaled

to a length scale of 15 km, which is supposedly at the lower end at which PBL anomalies might

persist and impact convection (Clark and Taylor, 2004).

In accordance to surface temperatures, the height of the PBL is anti-correlated with VF, which

is most pronounced in regions where ∆Y(VF)Srfc surpasses 10% (cf. Fig. 6.8 a). More vegetated

areas with lower PBL heights show an increase of daytime hours in which the lifted condensation

level (LCL) lies within the PBL (Fig. 6.10 b). This is because more moisture (higher LH) trapped

in a lower PBL increases the relative humidity which ultimately lowers the LCL and leads to

cloud formation. Note that this cloud formation process via PBL moistening is less frequent in

the Sahel (local increases of 20-40 hours), where the air is usually far from saturated due to less

moisture advection (see also Findell and Eltahir, 2003 for a description of the surface-driven

mechanisms of cloud formation via moistening or warming of the PBL).

Although there is a tendency to more frequent cloud cover over regions with more vegetation

during the day, this does not necessarily imply an increase in precipitation. For example, in the

South of Mali, ∆Y(VF)Srfc is strongly positive and locally causes over +60 hours in which the

LCL lies within the PBL. This could indicate more favourable conditions for deep convection.

However, a look at the convective available potential energy (CAPE) in Fig. 6.10 a reveals that

there is no increased growth potential for the clouds in this region: CAPE is a measure for the

buoyant energy of an air parcel close to the surface (here: lowest model level). It is computed as

the integral of the difference between the potential virtual temperature of the rising air parcel

and its environment between the level of free convection (the first level where the parcel is

warmer than its environment) and the equilibrium level (the level where the air parcel reaches the

environmental temperature and loses its buoyancy). In Fig. 6.10 a, there is no significant increase

of CAPE for ∆YSrfc, suggesting that there is no additional destabilization of the atmosphere

that would imply a higher probability for strong updrafts and deep convection.
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Figure 6.10: Maps for Aug-Sep: (a) ∆Y(CAPE)Srfc (J kg−1), (b) ∆YSrfc for the number of daytime hours in
which the PBL height reaches the lifted condensation level (LCL). Stripes in (a) and (b) mark insignificant
changes of CAPE. (c,d) ∆YSrfc for 2m temperature (T2, K), PBL height (m) and 10 m wind vectors (m s−1).
(e,f) ∆YSrfc of rainy hours during the day (0700-1800 UTC)/ night (≥ 1 mm h−1), (g) pixels showing a shift
of the precipitation maximum from night to day (”Day”) or vice-versa (”Night”) between 2009 and 2010 in
DYN. No shift or a shift corresponding to CLIM are ignored. The percentage is the portion of pixels where
a shift to ”Day” (”Night”) falls together with a negative (positive) change in vegetation fraction (VF) (h)
∆YSrfc precipitation (PCP, mm day−1). Only significant ∆YSrfc are shown. Spatial correlations (r) are with
respect to ∆Y(VF)Srfc (cf. Fig. 6.8 a) and are significant (P ≥ 0.01) except for (h).
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On the contrary, the number of daytime rainy hours is decreased over this region (Fig. 6.10 e),

indicating that higher VF fosters the formation of shallow clouds but decreases the potential

for initiation of deep convection in the afternoon. Hohenegger et al. (2009) suggest that the

development of shallow clouds is an important ingredient for the negative vegetation-precipitation

feedback due to higher stability of the air above the PBL related to the longwave radiative

cooling at the cloud tops. Garcia-Carreras et al. (2011) analysed convective cloud distributions

over crop land and forests with large eddy simulations and attribute the suppressed initiation of

convection over forests to a stabilizing capping layer of warm air due to subsidence above the

mixed layer. They found this subsidence to be part of mesoscale flows initiated by temperature

gradients between the two vegetation classes.

Such mesoscale horizontal flows are also visible in our simulations between cooler and warmer

surface patches in Fig. 6.10(c, d), where cooler near surface temperatures and shallower mixing

layers correspond to a ∆YSrfc signal of diverging winds that induce a negative VF-PCP feedback.

The converging wind vectors over warmer regions indicate a moisture convergence from the

surroundings that favours the initiation of convection and ultimately increases the number of

rainy hours during the day (Fig. 6.10e).

During the night however, there is a distinct increase of rainy hours over the positive ∆Y(VF)Srfc

in southern Mali (Fig. 6.10f). This signal is weaker in the rest of the domain but the correlation

coefficients in Fig. 6.10(e, f) indeed indicate a dominating negative VF-PCP feedback during the

day and a positive feedback during the night. Overall, for 62% of the pixels (n=3990) that show

a shift of the diurnal maximum PCP from night (day) to day (night) between 2009 and 2010,

this shift coincides with negative (positive) ∆Y(VF)Srfc, which is 12% more likely than what

would be expected by chance (Fig. 6.10g). The absolute ∆YSrfc of rainy hours (positive and

negative) in the Sahel is 10% higher during the night than during the day, indicating a slightly

stronger effect of the positive VF-PCP feedback on nocturnal rainfall. In the Sudanian zone, the

absolute ∆YSrfc of rainy hours are similar for night and day.

Our findings are in line with Taylor et al. (2010), who analysed a MCS that was observed during

the African Monsoon Multidisciplinary Analysis (AMMA) special observing period (Redelsperger

et al., 2006) and report deepest convection over wet surface patches during its mature stage

during the night (2130 UTC) while all areas of new convection emerged over drier soils. While

the afternoon initiation of new convective cells is favoured over drier soil patches where thermals

are more vicious, nighttime PCP mostly falls from already existing convective systems that are

enhanced by moist surfaces (Gantner and Kalthoff, 2010). Wet soils have a stronger effect on the

lifetime and strength of the MCS in the Sahel where moisture is limited, which might explain

the enhanced positive feedback of vegetation in that region.

Due to the existence of these positive and negative VF-PCP feedbacks, especially in the Sudanian

Zone, there is no correlation for ∆Y(PCP)Srfc in Fig. 6.10(h). On average, the significant local

changes reach ± 2.2 mm day−1, for which the sign largely depends on whether the daytime or

the nighttime VF-PCP feedback dominates.
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6 The effect of vegetation-atmosphere feedbacks on precipitation

6.4.3 Observed and modelled feedback on precipitation

The previous section showed that an atmospheric signal that is related to the interannual

vegetation changes can be extracted not only for variables that characterize the state of the PBL,

but also for rainfall. The question remains whether the simulated vegetation-driven adjustments

are realistic and if so, whether the signal is detectable in the observations for which the dominating

large-scale signal cannot be removed i.e. it is not possible to determine a ∆YSrfc.

Nevertheless, the daily PCP statistics in Fig. 6.11 for 2009 and 2010 show a small but consistent

increase of the Heidke skill score (HSS) for DYN for thresholds below 40 mm day−1 during both

years. The HSS measures the improvement of the forecast skill over a random forecast and is

computed for different thresholds over the whole study domain for every grid cell and every day.

The HSS for both WRF cases is relatively low, but it should be kept in mind that WRF is only

forced at the domain boundaries and is otherwise allowed to create its own weather. Reasons

why these free running simulations can perform better in capturing precipitating systems in

space and time than a random process (HSS >0) must therefore be related to strong atmospheric

boundary conditions (e.g. atmospheric waves travelling through the model domain) or, to a

lesser extent and only in the case of DYN, by the introduced land surface information. Since

there is no substantial difference between DYN and CLIM in the frequency distribution or in the

ability to capture daily mean PCP, the slightly higher HSS for DYN most likely stems from a

surface-driven improvement in the spatio-temporal localisation of precipitating systems.

To test the impact of changes in VF, Fig. 6.12 shows the strength of the relationship between

∆Y(VF)Dyn and the ∆Y(PCP) of DYN, CLIM and the reference datasets. Only pixels where

∆Y(PCP)Srfc is significant are included (cf. Fig. 6.10h) presuming that these regions have the

potential for considerable land-atmosphere feedbacks (sufficient surface change) and to therefore

strengthen the surface signal.

The difficulty here is to extract a vegetation-precipitation feedback from the obvious precipitation-

vegetation forcing. The idea is to consider the correlation between ∆Y(PCP)Clim and ∆Y(VF)Dyn

as the baseline relationship between large-scale driven PCP changes and resulting VF patterns.

Any correlation surplus (strengthened relationship) for DYN or the reference datasets in compar-

ison to CLIM should be an indicator for an effect of the surface on the PCP patterns.

This approach works well in the Sahel (Fig. 6.12a), which shows a ∆Y(VF)Dyn-∆Y(PCP)Dyn

correlation of 0.23 corresponding to correlations between 0.16 and 0.23 for the reference datasets.

This relationship cannot be explained by large-scale interannual variability alone as illustrated

by a very small correlation of 0.08 for ∆Y(PCP)Clim, which confirms an improved spatial PCP

distribution for DYN.

The correlations of the reference datasets range from 0.16 to 0.23 in the Sahel, meaning that

∆Y(VF)Dyn explains at most 5% spatial variance (r2 = 0.232 = 0.05 for RFE) of the average

PCP changes between Aug-Sep 2009 and 2010. Note that this is valid only for the regions where

a potentially strong feedback was detected.
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Figure 6.11: Aug-Sep precipitation (top) time series, (middle) Heidke skill score (HSS) and (bottom)
precipitation frequency for daily values in (a) 2009 and (b) 2010 for DYN and CLIM with respect to the
reference datasets (REF) TRMM, RFE and CMORPH over the study domain. HSS is computed as the average
HSSMean per threshold from the complete spatio-temporal array with respect to all three references. r2 is with
respect to the reference dataset average REFMean. The grey area indicates the spread of the reference datasets.
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Figure 6.12: Aug-Sep density scatterplots between the ∆Y for the dynamical vegetation fraction (VFDyn) and
average precipitation (PCP) for DYN, CLIM and the reference dataset RFE (a) in the Sahel, (b) in the
Sudanian zone. Only regions where ∆YSrfc precipitation is significant (cf. Fig. 6.10 h) are included in the
spatial correlation (r). Significant r are marked with a star and are also displayed for TRMM and CMORPH
for comparison. Contours indicate the 75th, 50th and 25th percentile of the maximum density. The binsize is
0.75 mm day−1 for PCP and 1 % for VF.

In the Sudanian zone, there is no correlation for the WRF simulations but small positive correla-

tions for the reference datasets most likely due to the precipitation-vegetation forcing (Fig. 6.12 b).

WRF has difficulties to capture the observed patterns of large-scale driven PCP differences in

that region, which might explain the complete lack of a correlation with ∆Y(VF)Dyn. Ultimately,

the strong predominance of the large-scale monsoon dynamics in determining interannual pre-

cipitation differences in the Sudanian zone seems to inhibit any signal detection directly from ∆Y.
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6.4.4 Discussion and conclusions

This experiment examined the feedback of land surface and atmospheric variables in response to

year-to-year vegetation changes between two consecutive years (2009, 2010) during the WAM in

August and September with the aim to (Section 1.2):

• identify the processes by which interannual vegetation changes have an effect (if any) on

the atmosphere during the WAM

• investigate whether the implementation of satellite-derived surface parameters improves

the representation of surface variables and rainfall in WRF

Satellite-derived dynamical information for albedo, LAI and vegetation fraction were implemented

into the WRF model. A control case used default surface parameters that follow a climatological

annual cycle during both years and therefore represents the large-scale driven changes. The

dynamical surface data exhibits a peak correlation of vegetation with rainfall with a lag of about

one month in both, the Sahel and the Sudanian zone. The vegetation patterns during August-

September still show a correlation with pre-monsoon rainfall patterns in June of ∼0.3, illustrating

a long-term memory that might affect subsequent monsoon rainfall via land-atmosphere feedbacks

with potential implications for seasonal predictions (Dirmeyer, 2006).

However, the impact on precipitation was found to be scale-dependant since, at the continental

scale, total precipitation amounts are insensitive to vegetation changes, which is in line with

previous feedback studies that focused on realistic surface changes (e.g. Lauwaet et al., 2009;

Taylor et al., 2002).

The importance of vegetation changes increases at regional scale, shown by a significant response

of surface temperatures and turbulent surface fluxes to vegetation patterns that is especially

pronounced at the outskirts of the monsoon rainband. Related to lower surface temperatures and

higher latent heat fluxes, shallower and moister PBLs reside over positive vegetation anomalies.

In these regions, the PBL reaches the lifted condensation level more frequently but the number of

daytime rainy hours is decreased in comparison to PBLs over less vegetated areas. The initiation

of mesoscale horizontal circulations between cooler and warmer surfaces decreases the potential

for initiation of deep convection in the afternoon, which Garcia-Carreras et al. (2011) attribute

to the formation of a stabilizing capping layer above the PBL. Over the warmer (less vegetated)

areas, on the other hand, moist air converges and stronger thermals may more easily break

through the stable layer, which ultimately favours deep convection.

Comparable mechanisms were also suggested in observational studies on the development of

convective clouds elsewhere, e.g. USA and Amazonia (Rabin et al., 1990; Chagnon et al., 2004).

Wang et al. (2009) identify mesoscale circulations in the Amazon from forested to deforested

patches as an important lifting mechanism that leads to frequent initiation of convection over

deforested regions while there was no deep convection over uniform forest in spite of sufficient

CAPE.
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6 The effect of vegetation-atmosphere feedbacks on precipitation

The results showed an opposite signal for nighttime precipitation, with rain falling more often

over areas with more vegetation. This positive feedback is presumably related to a strengthening

of mature propagating MCSs that are triggered upstream in the afternoon (Mathon and Laurent,

2001) and that feed on the moist boundary layer as was proposed by Gantner and Kalthoff (2010).

Using the LAM of the Consortium for Small-scale Modelling, they conducted a MCS case-study

over West Africa and found dry surfaces embedded in moist surroundings favouring the initiation

of convection, while mature systems were weakened over these surfaces. A global study by

Taylor et al. (2012) based on remote sensing data likewise showed that daytime (afternoon)

precipitation falls preferentially over drier soils, while during the night, the picture is reversed

with precipitation being more likely over wetter soils.

Correspondingly, the probability for maximum precipitation to be shifted to nighttime over

increased VF and to daytime over decreased VF between the two years was found to be 12%

higher than by chance. These findings suggest that vegetation patterns essentially foster the same

atmospheric processes like soil moisture. They also confirm the often emphasized complexity of

vegetation-rainfall interaction due to the existence of positive as well as negative feedbacks (e.g.

Kunstmann and Jung, 2007; Findell and Eltahir, 2003; Hohenegger et al., 2009; Taylor et al.,

2012; Gantner and Kalthoff, 2010), which was found here to be directly connected to the time of

day and to the typical lifecycle of mesoscale convective systems (initiation during the afternoon

versus westward propagation during the night).

Interestingly, a feedback could be detected in the Sudanian zone where soil moisture is plentiful

and the monsoon dynamics are strong, which is thought to disfavour land-atmosphere interactions.

This feedback might be related to the long-lasting nature of vegetation anomalies (as opposed to

frequently changing soil moisture patterns) that could be more important for land-atmosphere

interactions in the more densely vegetated Sudanian zone as opposed to the Sahel (Taylor et al.,

2010): Firstly, the atmosphere may adapt to vegetation patterns whenever the atmospheric

conditions are favourable. Secondly, the signal is spatially relatively stable such that the spatial

accumulation of a certain atmospheric state can actually be detected with our approach.

Kohler et al. (2010) correspondingly found that during the mature monsoon stage July-August,

vegetation instead of soil moisture becomes the dominating factor for surface processes impacting

the boundary layer. This implies that land-atmosphere coupling can be identified based on a

covariance of surface and atmospheric variables at temporal scale (e.g. soil moisture variance at

a point, Dirmeyer, 2011) or at spatial scale (e.g. persistent vegetation patterns). Here, the latter

definition suggests a feedback even under conditions where soil moisture is not limited.

However, for observed rainfall, the feedback was only traceable in the Sahel where a shift of

a convective system can be a matter of ’any or none’ precipitation for that location. Since it

is impossible to remove the large-scale signal from observational data, the vegetation-rainfall

feedback must be a considerable contribution to the large-scale driven precipitation patterns

in order to be detectable, which is not given in the core of the monsoon rainband. Hence, the

validity of the modelled feedback in this region remains uncertain.
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In conclusion, on interannual time scales, the implementation of satellite-derived dynamical

vegetation into an atmospheric model predominantly improves the simulations at the edges of the

monsoon rainband. Future studies should concentrate on the dry and pre-monsoon season, when

the synoptic forcing and moisture advection are weaker and the impact of prevailing vegetation

patterns could quantitatively be more important. Furthermore, it should be mentioned that there

is an imbalance of observational studies addressing the impact of soil moisture and vegetation

patterns in West Africa, with the latter receiving much less attention. The development of

methods to extract signals of vegetation-atmosphere feedbacks from measurements or satellite

data will greatly help to validate modelled feedbacks.
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Chapter 7

Conclusions and outlook

The overarching aim of this thesis was

(i) to investigate by which mechanisms and to which extent moist processes, convection and

interannual vegetation changes may modify precipitation characteristics during the WAM in

spite of the dominating role of the large-scale forcing.

(ii) to evaluate whether a regional adjustment of these processes in the WRF model improves

our ability to correctly model WAM characteristics.

(i) It was shown that the WAM is a system where interactions across scales generally take place

in both directions - from large to small scales and vice versa. Imposed large-scale information

can regionally be transformed from wet year to dry year characteristics if the regional moisture

distribution changes. This clearly proves that regional processes forming the WAM are not only

driven by the large scales but strongly interact with them. It was found that any significant

change in precipitation is linked to modified monsoon dynamics: an approximately linearly

coupled change of the strength of the near-surface monsoon wind and of the tropical easterly

jet as well as of the African easterly jet position. The fact that the complete range of dry to

wet monsoon states with corresponding dynamical features can be reproduced by changing the

representation of moist processes in WRF suggests that any change in the monsoon regime can

theoretically be triggered by a change in the water cycle. In particular, the connection between

water and energy cycle via the effect of clouds on the surface energy balance turned out to play

a key role for strengthening or weakening the meridional monsoon circulation.

The moist processes experiment revealed that clouds can ultimately have two opposing effects on

the meridional temperature gradient and therefore on the monsoon circulation: a strengthening

due to deep convection and high clouds most likely linked to latent heat release and a positive or

neutral cloud albedo effect (warming tendency) or a weakening linked to a decrease in incoming
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shortwave radiation and a negative cloud albedo effect for shallow convection and thus mid-level

clouds (cooling tendency).

Compared to atmospheric moist processes, interannual vegetation changes only play a secondary

role for determining the monsoon regime but nevertheless leave a distinct imprint on the atmo-

sphere that gains of importance at the local scale.

Vegetation influences the local wind field determining regions of convergence over warmer and

divergence over cooler surfaces leading to either higher probabilities of maximum rainfall during

the day or during the night, respectively. Natural year-to-year vegetation changes may shift

such regions of convergence or divergence and therefore alter local rainfall likelihood. It was

shown for the first time that such natural interannual vegetation changes are a significant driver

for interannual changes of precipitation patterns in the Sahel where a net positive (nighttime)

vegetation-rainfall feedback dominates. Rainfall events during the early monsoon season initiate

the seasonal plant growth in this arid region and therefore predetermine vegetated regions

that can reinforce subsequent rainfall suggesting that vegetation may lock certain precipitation

patterns throughout a season.

Different from the impact of moist processes, vegetation heterogeneities mainly have the po-

tential to modify the spatial distribution of rainfall events rather than total rainfall amounts.

However, an overestimation of the modelled latent heat fluxes in the Sahel provoked a slight

northward shift of the African easterly jet. This suggests that vegetation changes at a scale

of hundreds of kilometres that are large enough to affect the meridional temperature gradi-

ent and therefore the monsoon dynamics could lead to significant large-scale precipitation changes.

(ii) Different compartments of the WRF model were adjusted to potentially improve the

representation of the WAM. A typical but cumbersome first step in the model adjustment is to

choose a favourable set of model parameterizations that is however often not transferable to other

applications. Here, a process-based classification of the analysed parameterizations with respect to

their effect on the monsoon dynamics and the related monsoon regime was proposed. It was found

that microphysics, planetary boundary layer and cumulus parameterizations mostly influence

the total precipitation amounts, the rainband position and the diurnal cycle of precipitation,

respectively, for which causal mechanisms were suggested. With this kind of classification, weak

model behaviour can more easily be traced back to a certain parameterization choice and provides

a systematic guideline to set-up changes in order to improve the WAM representation in the WRF

model. This process-oriented approach greatly simplifies the identification of favourable WRF

set-ups for new applications over West Africa. Here, it provided a robustly well-behaving set-up

for different years in the subsequently presented experiments. In addition, the approach was

already successfully used for a systematic adjustment of WRF for long-term climate simulations

and projections conducted within WASCAL.

It was also shown that WRF is able to relate variations in the monsoon dynamics to the

corresponding dry or wet monsoon states comparably to what is observed. This gives confidence
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in the model’s capability to capture the whole range of WAM variability. However, since this

whole range of monsoon states was modelled by just changing moist process parameterizations,

this also illustrates the high uncertainty in the description of these processes. It underlines the

great potential for a model improvement with a regionally adjusted set of parameterizations

but also justifies the frequent ensemble applications in West Africa. Of all processes, the

representation of radiation was identified to be the most sensitive factor for model performance.

Therefore, the capability of the model to correctly capture cloud cover and the overall radiation

budget should be a focus of any thorough performance assessment.

In this context, the explicit treatment of convection revealed an improvement in modelled cloud

cover and of incoming shortwave radiation compared to parameterized convection. This illustrates

the potential of avoiding cumulus parameterization shortcomings with the explicit approach.

In addition, the cases with explicit convection also improved the rainfall characteristics and

frequencies, even in the convective grey zone. The large size of convective systems during the

WAM allows reasonable model results with explicit approaches at resolutions coarser than 4 km.

For land-atmosphere interaction studies, the explicit approach is the only possibility to reduce

the artificial links between surface fluxes and convection to the PBL parameterization only. This

should be preferred in view of remaining uncertainties with the PBL parameterization, the choice

of an LSM and prescribed surface conditions.

The reduction of uncertainty in surface conditions by implementing satellite-derived surface

parameters into WRF realised a limited model improvement: In the Sahel, precipitation patterns

were enhanced but total amounts were overestimated. This was partly related to WRF exaggerat-

ing the modelled latent heat flux associated with a vegetation increase. The experiment illustrated

that the implementation of observed surface conditions does not necessarily lead to a significant

model improvement although realistic processes governing land-atmosphere interactions were

simulated. This might be on one hand related to the Noah LSM being tuned to work reasonably

well with the default climatological surface data, which provokes biases with new datasets even if

these are more realistic. On the other hand, the land surface is not of considerable importance

under all circumstances. Under strong dynamical forcing, simulations using climatological surface

data corresponded similarly well to observations, rendering the implementation of satellite data

for ’model improvement’ unnecessary. Nevertheless, this implementation allowed to better define

the processes that are driven by natural vegetation changes.

In conclusion, it is not possible to find a ’one-for-all’ WRF set-up. Depending on the application

and study aims, requirements regarding the represented processes, horizontal resolution or model

performance change - and so does the ’ideal model set-up’. However, it proved helpful to be

aware of the process interactions at the surface and in the atmosphere that affect the WAM

variability. This knowledge gives the capability to approximately predict the model behaviour

when a certain screw is turned in one or the other direction, which greatly facilitates the process

of model adjustment.
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Outlook

From the atmospheric perspective, future WRF model set-ups should consider parameterizations

that allow the implementation of aerosol concentrations for different regions. This will help

to improve the representation of incoming solar radiation as well as of rainfall generation.

Furthermore, the sensitivity of the WAM system to clouds is an especially critical point in view

of changing aerosol concentrations caused by spreading urban areas in West Africa. This calls

for studies evaluating the potential impact of current and future aerosol concentrations on cloud

cover in this region.

The explicit treatment of convection at only convection-allowing scales should be considered

an intermediate solution for cases where high-resolving simulations below 4 km are not feasible.

Scale-aware cumulus schemes (e.g. Grell and Freitas, 2014) could be tested in the convective grey

zone to avoid the shortcomings of explicit convection that only captures mesoscale circulations.

For the evaluation of the impact of vegetation changes on the atmosphere, the already presented

object tracking method might be a useful tool: besides rainfall, other subjacent variables in the

atmosphere could be tracked. This would give the opportunity to evaluate typical atmospheric

states before, during and after rainfall events and to identify up- or downstream effects of surface

changes.

Regarding the implementation of satellite data into WRF, the introduced uncertainty by in-

consistencies between prescribed surface parameters and interactive soil moisture (e.g. high

vegetation fraction but dry soil) is an open question. Simulations additionally prescribing soil

moisture could be conducted to assess related errors in the representation of the land-atmosphere

feedback.

In the future, the evaluation of land-atmosphere interactions could also be extended from

vegetation patterns to actual land use changes that are extensively taking place in West Africa.

This was not possible here because reliable land use information was available only for a single

year. MODIS land use maps are available1 from 2001 to 2012 but would need a quality control

before being used to evaluate land use changes over longer time periods. Connected to this, the

performance of grid cell tiling in the LSM could be considered in order to take into account

sub-grid heterogeneities of the surface instead of the dominant land class only. Subsequently,

land use scenarios could be developed to assess the impact of future land use changes under

climate change.

However, for a robust quantitative analysis of the effect of vegetation or land use changes on

the WAM, especially for climate projections, it will be necessary to use an LSM ensemble. The

LSM translates a new surface forcing into a response in form of turbulent fluxes, which can

considerably vary between different LSMs. The proceedings of the AMMA Land Surface Model

Intercomparison Project (Boone et al., 2009) give a good impression on these differences. For

retrospective land-atmosphere interaction studies, it could be checked whether the coupling of

1http://glcf.umd.edu/data/lc/
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WRF to NASA’s Land Information System1 might provide a more flexible framework for using

LSM ensembles and for implementing different observational surface data than WRF standalone.

An alternative to an LSM ensemble would be to extensively test and tune one specific LSM in

comparison to observations. However, this would have to be done for all important land surface

classifications and all major climate zones in West Africa to make sure that the model is able to

transfer its performance from one surface state to another and to different climate conditions.

The lack of spatio-temporally sufficient flux measurements to properly validate the LSM strongly

limits the single model approach to small scale applications where measurements are available

and questions its applicability to climate change studies with land use scenarios.

Generally, new approaches for regional modelling across scales using Voronoi meshes could help

to overcome some of the identified shortcomings of a dynamical downscaling with common LAMs

like WRF. For example, the Model for Prediction Across Scales is an Earth System modelling

package that allows global simulations while further refining chosen regions with a finer mesh

without nesting. A pilot study by Heinzeller et al. (2016) already showed that this model is

able to reproduce the WAM dynamics and the rainband movement. Since the model does not

depend on boundary conditions and allows a seamless transition between scales including a

scale-aware cumulus scheme, it does not suffer from inconsistencies or scale jump limitations at

the boundaries of nested domains as was shown for WRF. Furthermore, such a model allows to

assess the impact of regional characteristics (e.g. land use changes) at the global scale, which is

not possible with a LAM that is constrained by lateral boundary conditions.

1https://modelingguru.nasa.gov/community/atmospheric/lis
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A Land use classification tables

The MODIS Land Cover

Table A.1: MODIS land cover classification and corresponding numbers in WRF. The land classification and
description is based on the International Geosphere Biosphere Program (IGBP) DISCover Data Set Land Cover
Classification System (Belward, 1996)

MODIS land cover classes WRF number Description

Evergreen Needleleaf Forest 1
Needleleaf trees covering > 60% and height > 2m. Almost all
trees remain green all year.

Evergreen Broadleaf Forest 2 Same as 1 but with broadleaf trees

Deciduous Needleleaf Forest 3
Needleleaf trees covering > 60% and height > 2m. Consits of
seasonal needle leaf tree communities with an annual cycle of
leaf-on and leaf-off periods.

Deciduous Broadleaf Forest 4 Same as 3 but with broadleaf trees

Mixed Forests 5
Trees covering > 60% and height exceeding 2m. Consists of
tree communities and mixtures or mosaics of the other four
forest types. None of the forest types exceeds 60% of landscape

Closed Shrublands 6
Woody vegetation less than 2m tall with shrub canopy cover
> 60%. The shrub foliage can be either evergreen or deciduous

Open Shrublands 7 Same as 6 but with shrub canopy cover between 10-60%.

Woody Savannas 8
Herbaceous/understory systems and with forest canopy cover
between 30-60%. The forest cover height exceeds 2m.

Savannas 9 Same as 8 but with forest canopy cover between 10-30%.

Grasslands 10 Herbaceous types of cover. Tree and shrub cover < 10%.

Permanent Wetlands 11
Mixture of water and herbaceous or woody vegetation. The
vegetation can be present in either salt, brackish or fresh water

Croplands 12
Covered with temporary crops followed by harvest and a bare
soil period. Perennial woody crops will be classified as the
appropriate forest or shrub land cover type.

Urban and Built-up 13 Land covered by buildings and other man made structures.

crop/natural veg. mosaic 14
Mosaic of croplands, forests, shrubland and grasslands i which
no one component coprises more than 60% of the landscape

Snow and Ice 15 lands under snow/ice cover throughout the year.

Barren/sparsely vegetated 16
Exposed soil, sand rocks or snow and never has more than 10%
vegetated cover during any time of the year

Water 17 Oceans, seas, (lakes) and rivers). Fresh or salt-water bodies.

Woody Tundra 18
Lands with herbaceous/understory systems with forest canopy
cover between 30-60%. The forest cover height exceeds 2 m.

Mixed Tundra 19 Mixture of Tundra occurrences where any type occupies less
than two-thirds of area.

Barren Tundra 20
Less than one third vegetated. Considerable areas of exposed
rock, sand, or gravel and low herbaceous and shrubby plants.

Lakes 21 In-land water bodies

132



The West African Land Cover (WALC)

Creator: Ursula Gessner, German Aerospace Center (DLR)

Data basis: MODIS, ASAR, TerraSAR-X

Table A.2: Translation table for WALC and MODIS (WRF) classification. The MODIS translation is a DLR
suggestion on basis of classification descriptions. The finally used translations in WRF partly differ due to
individually specified reasons (see footnotes).

WALC classes Number Description
MODIS
translation

Used

Evergreen forest 1
Broadleaved trees with a cover > 80%. Almost
all trees remain green all year.

2 2

Evergreen woodland 2
Broadleaved trees with a cover of 10-80%. Al-
most all trees remain green all year. Usually
agriculturally used

14 14

Deciduous forest 3
Broadleaved trees with a percent cover > 60%.
Seasonal tree communities with an annual cycle
of leaf-on and leaf-off periods

4 4

Open woodland, deciduous 8
Land with herbaceous/understory systems and
with tree canopy cover between 10-60%

8 / 9 91

Closed to open shrubland 6
Shrub vegetation with a woody canopy cover
> 10%. Can be evergreen or deciduous

6 / 7 92

Grassland 9
Dominated by herbaceous types of cover. Tree
and shrub cover is < 10%

10 10

Cropland 11
Temporary crops followed by harvest and a
bare soil period

12 12

Sparse vegetation 14 Land with vegetation cover of 1-10% 16 103

Bare areas 23 Land with vegetation cover < 1% 16 16

Dry season vegetation 24

Land with vegetation during dry season where
moisture is available in the absence of sufficient
rainfall. Comprises irrigated agriculture and
wetlands

11 / 12 114

Permanent water bodies 15 Water covers the surface > 9 months per year 17 17

Seasonal water bodies 16 Water covers the surface < 9-4 months per year 17 17

Medium-/High-density
urban area

25
Buildings and other man-made structures cover
50-100%

13 13

Low-density urban area 26
Buildings and other man-made structures cover
30-49%

13 13

1: Savannas (9) instead of woody savannas (8) since the MODIS table values for woody savannas

produce unrealistically low latent heat fluxes.

2: Savannas (9) instead of shrub land classes (6/7) to be more consistent with the MODIS land

classification map, which does not attribute ’closed shrublands’ to any region in West Africa and

’open shrublands’ are considered almost barren (cf. Fig. 6.1(b)).

3: Grassland (10) instead of barren (16) since these areas show sometimes more than 10%

vegetation cover during the year. An ’appropriate’ sparse vegetation classification is missing in

MODIS classification. Without code change, WRF handles ’barren’ as zero vegetation.

4: Wetlands (11) instead of crop lands (12) to ensure moisture supply during dry season

(’irrigation’ not implemented in WRF)
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B Weather stations

Table B.1: Used automatic weather stations and eddy covariance stations in Burkina Faso and Ghana.

Name Lon Lat Source
0 Sumbrungu -0.917 10.847 WASCAL EC-station
1 Kayoro -1.321 10.918 WASCAL EC-station
2 Nazinga -1.586 11.152 WASCAL EC-station
3 Tamale -0.850 9.417 Burkina Faso Meteorological Service
4 Bam Tourcoing -1.500 13.333 Burkina Faso Meteorological Service
5 Bousse -1.883 12.667 Burkina Faso Meteorological Service
6 Diebougou -3.250 10.968 Burkina Faso Meteorological Service
7 Kete-Krachi -0.033 7.819 Burkina Faso Meteorological Service
8 Kpandu-Prisons 0.300 7.000 Ghana Meteorological Service
9 Abidome -0.517 6.067 Ghana Meteorological Service
10 Agogo -1.083 6.786 Ghana Meteorological Service
11 Akuse 0.134 6.101 Ghana Meteorological Service
12 Atebubu -0.983 7.750 Ghana Meteorological Service
13 Baraboule -1.850 14.217 Ghana Meteorological Service
14 Gorom-Gorum -0.233 14.450 Ghana Meteorological Service
15 Bomborokuy -3.984 13.051 Ghana Meteorological Service
16 Kassoum -3.300 13.083 Ghana Meteorological Service
17 Seguenega -1.967 13.434 Ghana Meteorological Service
18 Bani -0.167 13.717 Ghana Meteorological Service
19 Tiogo -2.683 12.183 Ghana Meteorological Service
20 Yako -2.267 12.967 Ghana Meteorological Service
21 Bilanga -0.017 12.550 Ghana Meteorological Service
22 Kourouma -4.800 11.617 Ghana Meteorological Service
23 Bobo-Dioulasso -4.300 11.168 Ghana Meteorological Service
24 Bagassi -3.300 11.750 Ghana Meteorological Service
25 Dano -3.067 11.151 Ghana Meteorological Service
26 Boromo -2.917 11.734 Ghana Meteorological Service
27 Boura -2.500 11.050 Ghana Meteorological Service
28 Betare -1.367 11.433 Ghana Meteorological Service
29 Ouargaye 0.017 11.533 Ghana Meteorological Service
30 Mahagada 1.747 11.663 Ghana Meteorological Service
31 Baguera -5.417 10.533 Ghana Meteorological Service
32 Banfora Agri -4.767 10.633 Ghana Meteorological Service
33 Ouo -3.833 10.400 Ghana Meteorological Service
34 Kampit -3.467 10.134 Ghana Meteorological Service
35 Botou 2.046 12.621 Ghana Meteorological Service
36 Garu -0.180 10.850 Ghana Meteorological Service
37 Goaso -2.516 6.803 Ghana Meteorological Service
38 Ho 0.460 6.594 Ghana Meteorological Service
39 Koforidua -0.250 6.086 Ghana Meteorological Service
40 Lawra -2.866 10.652 Ghana Meteorological Service
41 Navrongo -1.100 10.902 Ghana Meteorological Service
42 Tumu -1.983 10.867 Ghana Meteorological Service
43 Wenchi -2.100 7.750 Ghana Meteorological Service
44 Yendi -0.017 9.450 Ghana Meteorological Service
45 Bui -2.266 8.286 Ghana Meteorological Service
46 Berekum -2.583 7.453 Ghana Meteorological Service
47 Bolgatanga -0.867 10.800 Ghana Meteorological Service
48 Bole -2.483 9.033 Ghana Meteorological Service
49 Batié -2.917 9.884 Ghana Meteorological Service
50 Kpeve 0.333 6.679 Ghana Meteorological Service
51 Ada 0.640 5.781 Ghana Meteorological Service
53 Saltpond -1.056 5.194 Ghana Meteorological Service
54 Tamale -0.860 9.491 Ghana Meteorological Service
55 Tema 0.001 5.609 Ghana Meteorological Service
56 Kaya -1.058 13.062 Ghana Meteorological Service
57 Manga -1.046 11.652 Ghana Meteorological Service
58 Niaogho -0.777 11.760 Ghana Meteorological Service
59 Ouahigouya -2.428 13.554 Ghana Meteorological Service
60 Sideradougou -4.240 10.620 Ghana Meteorological Service
61 Tema2 -1.755 13.045 Ghana Meteorological Service
62 Zabre -0.603 11.164 Ghana Meteorological Service
63 Gourcy -2.316 13.179 Ghana Meteorological Service
64 Ejura -1.379 7.400 Ghana Meteorological Service
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4.3 Hovmöller diagrams of 1999 daily precipitation for TRMM, ERA-I and the WRF

ensemble mean (ENS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Average precipitation for TRMM, ERA-I, ENS and biases against TRMM and ENS 53

4.5 Parameterization spread of the precipitation bias against ENS at the Guinea

Coast, the Sahel and the Soudano-Sahel . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Scatterplot of JAS 1999 non-convective and convective precipitation and boxplots

of spreads in total precipitation for all parameterizations . . . . . . . . . . . . . . 57

4.7 Average diurnal cycle of precipitation of CU/PBL parameterizations and TRMM 58

4.8 Cross section of zonal wind for ERA-I, ENS and parameterization groups . . . . 59

4.9 Near-surface temperature, temperature gradients and sea level pressure for GHCN,

ERA-I and ENS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.10 Scatterplots of August 1999 monsoon wind speed against the SLP gradient . . . 63

137



List of Figures

4.11 Scatterplots of August 1999 monsoon wind speed against AEJ position, TEJ wind

speed and Sahel precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.12 Cross section of vertical wind for ERA-I, ENS and the parameterization groups . 65

4.13 African easterly wave activity for ERA-I, ENS and the parameterization groups . 66

4.14 Incoming shortwave radiation for ERA-I, ENS and the parameterization groups . 68

4.15 Vertical profile PBL parameterization groups for cloud fraction and water vapor

difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.16 Mean evaporative fraction for ERA-I and ENS . . . . . . . . . . . . . . . . . . . 71

5.1 WRF domains for simulations of different resolution with indicated study region

and weather stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 JAS 1999 TRMM average precipitation and WRF bias at different resolutions . . 77

5.3 Daily rainfall frequencies during JAS 1999 for TRMM, station data, ERA-I and

WRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Spatial correlation of precipitation for TRMM and WRF at different resolutions 79

5.5 Number of days needed to reach 50% of the total precipitation amount during

JAS 1999 for TRMM and WRF. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Longitude-time diagrams of meridionally averaged daily rainfall for TRMM,

WRF24 and WRF7 (mm day−1) for the time periods 1.-15. August and 1.-15.

September 1999. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.7 Same as Fig. 5.6 but for the nested pair WRF12 and WRF4. . . . . . . . . . . . 84

5.8 MCS tracks for TRMM and WRF24 from 1.-15. August 1999 . . . . . . . . . . . 85

5.9 Meridional cross sections of the zonal averaged cloud fraction over 10◦W-10◦E for

the JAS 2006-2012 GOCCP climatology and for all WRF simulations in JAS 1999. 87

5.10 JAS incoming shortwave radiation for Meteosat and the biases for all WRF

simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.11 JAS 1999 average diurnal cycle of precipitation in the Sudano-Sahel and at the

Guinean coast for TRMM and the WRF simulations at different resolutions . . . 89

6.1 WRF domain with indicated study region and sub-regions and old/new land use

classification maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Annual cycle of dynamical satellite-based surface datasets in comparison to WRF

default climatologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Monthly anomalies of satellite-derived albedo, vegetation fraction, soil moisture

and precipitation with respect to 2007-2012 . . . . . . . . . . . . . . . . . . . . . 104

6.4 Monthly time-lagged anomaly correlations for satellite-derived precipitation and

surface variables with respect to the 2007-2012 average annual cycle . . . . . . . 104

6.5 Interannual differences (2010-2009) for pre-monsoon precipitation and peak mon-

soon surface variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

138



List of Figures

6.6 Boxplots for the Aug-Sep spread of the interannual difference in precipitation,

surface temperature, sensible and latent heat for the perturbed WRF ensembles

(CLIM, DYN) and observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.7 Meridional cross sections of ∆YSrfc of temperature gradients, precipitation and

latent heat for CLIM, DYN and observations . . . . . . . . . . . . . . . . . . . . 108

6.8 Aug-Sep maps of ∆Y of vegetation fraction, temperature, latent heat and evapo-

rative fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.9 Maps of Aug-Sep temporal correlation of ∆YSrfc of latent heat flux with shortwave

incoming radiation, soil moisture, temperature and sensible heat . . . . . . . . . 111

6.10 Maps of Aug-Sep ∆YSrfc for different atmospheric variables and rainfall charac-

teristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.11 Aug-Sep precipitation time series, Heidke-Skill score and frequency for CLIM and

DYN in 2009 and 2010 against observations . . . . . . . . . . . . . . . . . . . . . 117

6.12 Aug-Sep density scatterplots of ∆Y of the dynamical vegetation fraction against

CLIM, DYN and observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

139





List of Tables

3.1 Conducted comparison experiments for testing of simulation reproducibility . . . 35

3.2 Differences in rainfall produced on different computing systems . . . . . . . . . . 37

3.3 Overview of WPS/WRF surface variables . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Cumulus, microphysics and planetary boundary layer schemes used for the en-

semble members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Comparison of observed ranges of wet/dry August composties for GPCC/ERA-I

in comparison to WRF for precipitation, TEJ and AEJ . . . . . . . . . . . . . . 71

5.1 JAS 1999 average precipitation bias, mean absolute deviation and coefficient of

determination of WRF against TRMM . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 August-September 1999 MCS number, lifetime and average intensity . . . . . . . 85

6.1 Land surface dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Area-averaged totals and biases for the WRF ensembles against observed precipi-

tation, temperature, latent and sensible heat fluxes . . . . . . . . . . . . . . . . . 106

A.1 MODIS land cover classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.2 Translation table for WALC and MODIS (WRF) classification. The MODIS

translation is a DLR suggestion on basis of classification descriptions. The finally

used translations in WRF partly differ due to individually specified reasons (see

footnotes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.1 List of used weather stations and eddy covariance stations. . . . . . . . . . . . . 136

141





Bibliography

Alo, C. A. and Wang, G.: Role of dynamic vegetation in regional climate predictions over western

Africa, Climate Dynamics, 35, 907–922, doi:10.1007/s00382-010-0744-z, 2010.

Ansmann, a., Tesche, M., Althausen, D., Müller, D., Seifert, P., Freudenthaler, V., Heese, B.,

Wiegner, M., Pisani, G., Knippertz, P., et al.: Influence of Saharan dust on cloud glaciation

in southern Morocco during the Saharan Mineral Dust Experiment, Journal of Geophysical

Research, 113, D04 210, doi:10.1029/2007JD008785, 2008.

Anthes, R. A.: Enhancement of Convective Precipitation by Mesoscale Variations in Vegetative

Covering in Semiarid Regions, Journal of Climate and Applied Meteorology, 23, 541–554, 1984.

Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E.,
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Rodŕıguez-Fonseca, B., Janicot, S., Mohino, E., Losada, T., Bader, J., Caminade, C., Chauvin,
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