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ABSTRACT 

Locally unbiased tests with maximal power curvature are determined as the 
solutions of an optimization problem which turns out to be of dual type as compared 
to the optimal design problem. In both cases the proper optimization problem is 
concerned with matrices only, and the transition from the matrix problem to the 
original variables is a separate second step. This approach provides a novel, statistical 
interpretation of the dual problem that arises with the optimal design problem. 

1. INTRODUCTION AND SUMMARY 

In this paper we present a duality relationship between the problem of 
finding tests with maximal power curvature, and the problem of characteriz- 
ing optimal experimental designs. This duality seems to have gone unnoticed 
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despite the fact that, for instance, Kiefer [S, p. 6831 discusses the two 
problems side by side. 

Duality has been applied to the optimal design problem for quite a while. 
To date, the interpretation of the ensuing dual problem has been geometrical, 
as a problem of minimal covering cylinders, due to Silvey and Titterington 
[12, 131. Thus the present paper contributes a statistical interpretation in the 
sense that it is an optimal test problem which, together with the optimal 
design problem, forms a dual pair. The statistical appeal of this interpretation 
is evident: In the optimal test problem we fix a particular design, namely a 
differentiable model, and seek an optimal test procedure, whereas in the 
optimal design problem we fix the procedure, namely an F-test, and look for 
an optimal design. 

Both problems share the feature that they come in two parts. The first 
part is completely in terms of the matrices which appear in the problem, and 
the second part is a transition to the original quantities. We now give a brief 
summary of this paper, and also point out some cross-references to other work 
in the literature. 

The matrix part of the optimal test problem is given in Section 2. In 
Lemma 2 we derive for the matrix function J(A) = (K’A K)- i a novel 
closure property which is needed for duality considerations, and which 
complements the convexity and monotonicity behavior of J as set out by 
Pukelsheim and Styan [9]. (In the definition of J, a prime denotes transposi- 
tion and a superscript minus sign generalized inversion.) 

In Section 3 we discuss the duality relation between the matrix parts of 
the optimal test problem and the optimal design problem. This essentially 
parallels Section 3 of [7], but the additional closure operation on J calls for a 
few additional arguments, which are supplied for the convenience of the 
reader. The main result is the linearization of the problem inherent in the 
equivalence theorem (Theorem S), with application to p-means (Corollary 
5.2) and local admissibility (Corollary 5.3). 

A very useful sufficient condition for the existence of an optimal matrix 
solution is obtained in Corollary 5.1; it is based on duality considerations and 
only requires the polar information functional to be strictly isotone. The latter 
assumption has been found useful also in Section 4 of [lo]. Theorem 5 is a 
generalization of the particular case of maximizing Gaussian curvature, as 
discussed by Giri and Kiefer [3, p. 301. 

In Section 4 we make the transition to the original quantities in the 
optimal test problem; the corresponding step for the optimal design problem 
was carried through in Section 4 of [7]. Theorem 6 gives the O-l form of a 
locally optimal test, thus generalizing the Neyman-Pearson fundamental lemma 
for the Gaussian curvature case of Isaacson [4, p. 2211. For this particular case 
a development along our lines was already given in [6], with applications to 
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sequential and nonparametric testing problems. Here we conclude the paper 
with an example which is based on the smallest eigenvalue of the Hesse 
matrix of the power function, showing that a locally admissible test whose 
Hesse matrix is positive definite has an acceptance region which is, not just 
convex, but even ellipsoidal. 

2. THE OPTIMAL TESTING PROBLEM 

By NND( k) and PD( k) we denote the sets of all k X k matrices which are 
nonnegative definite and positive definite, respectively. 

Let K be some k X s matrix which is kept fixed. When the null hypothesis 
O(K) = { 9 E 0 1 K’9 = 0) is of “linear type” and H is the k x k Hesse 
matrix of the power function of a test ‘p at 9 E O(K), the part of interest is 
the s X s matrix K’HK. Nonnegative definiteness of this matrix still leaves 
open the possibility that at 9 the power function of cp has a saddle point, 
rather than a minimum. The following notions seek to exclude this possibility. 

DEFINITION 1. Let K be a fixed k X s matrix of rank s. Define the set 

.3?(K)= { BENND(k)lnullspaceBnrangeK=O}. 

In other words, K’HK is positive definite if and only if H lies in g(K). It 
is easily seen that 9?(K) is a convex cone whose relative interior is PD( k), 
and whose closure is NND( k). If s < k then PD( k) c L@(K) c NND( k) and 
both inclusions are proper; if s = k then PD(k) = 9?(K). Obviously 9?(K) 
plays a role similar to the convex cone 

d(K)= { AENND(k)IrangeAIrangeK} 

in optimal design theory; we have d(K) c 93(K). The function Z to be 
defined next yields the reduction from the grand Hesse matrix of order k X k 
to the smaller null hypothesis Hesse matrix of order s x s. 

DEFINITION 2. The function Z from NND(k) to NND(s) is defined by 
mapping B E NND(k) into K’BK if B E L%‘(K), and into 0 otherwise. 

Evidently Z is concave and isotone; in the testing model Z(H) can be 
interpreted as a measure of curvature off the null hypothesis at the point 
6 E O(K) and thus serves as a measure of information. In order to obtain a 
scalar measure of curvature we shall use the same information functionals j as 
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in optimal design theory, i.e. real functions j on NND(s) which are 

(1) nonnegative on NND(s) and positive on PD(s), 
(2) positively homogeneous, and 
(3) superadditive. 

Thus assume ~9’ to be a compact convex subset of NND(k) which 
intersects S?(K). Any member of X will be called a Hesse matrix. The 
matrix part of the optimal test problem then reads: 

(P) Maximize j 0 Z(H) subject to H E 2. 

The optimal value v = sup,,, j 0 Z(H) is the maximal j-curvature at 
9 E O(K) which can be achieved over 2; any optimal matrix will be said to 
have &nuximul j-curuature at I? E O(K). 

LEMMA 1. The composition j 0 I is nonnegative on NND( k), positive on 
g(k), positively homogeneous, superadditive, concave, and isotone, and 
satisfies j 0 Z(0) = 0. Furthermore j 0 I is closed if and only if j vanishes 
outside PD( s). 

Proof. Only the last statement needs proof. Assuming j 0 Z to be closed, 
let Da E NND(s) be singular and for E > 0 define DE = D, + &I,. The Moore- 
Penrose inverse K + satisfies K + = (K’K)- ‘K. Thus we obtain K’K + ‘D,K + K 
= DC and K + ‘0, K + E .G?( K ), but K + ‘D, K + 4 99( K ). Therefore 

!rnj(DE)= frnj 0 Z((l- X)K+‘K+ + AK+‘D,K+) 

= j 0 Z(K+‘D,K+) = j(0) = 0. 

Conversely, assume j vanishes outside PD(s). If B E G@(K) then K’BK is a 
continuity point of j, and therefore 

If B G 93(K) then j 0 Z(B) = j(0) = 0. On the other hand the matrices DE = 
K’(B + eZ,)K tend to a singular limit matrix D, = K’BK, and so 
lim ,,,j~Z(B+~Z~)=lirn,~,j(D,)=O. w 

The continuity behavior of j 0 I has the following obvious consequence 
for the existence of optimal Hesse matrices. 
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THEOREM 1 (Existence). Zfj vanishes outside PD(s) or i_fX is a subset 
of .93(K), then there exists a Hesse matrix in 2’ which has .%%uximal 
j-curvature at 9 E O(K). 

An alternative and more interesting existence result will be established in 
Corollary 5.1, based on duality correspondences. 

Simultaneous optimality of a matrix H E X with respect to all informa- 
tion functionals is easily seen to be equivalent to unifm optimality in the 
sense that the matrix K’HK is #maximal in the Loewner matrix ordering; cf. 
Theorem 1 in [7]. 

Our development in the sequel closely parallels that of the optimal design 
problem, as it will turn out that the optimal test problem and the optimal 
design problem are of dual type. However, dual problems are closed, and 
therefore we need the closures of the objective functions. The closure cl j of 
an information functional j is given by ordinary convex analysis through 

(cl j)(c) = fnlj(C + ED), ZSPD(s); 

see [ll, pp. 307, 571. 
Though the function Z from Definition 2 is not real-valued, linearity 

makes it so simple that the only sensible “closure” definition is 

(cl Z)(B) = K’BK forall BENND(~). 

Its counterpart in the optimal design problem needs slightly more attention. 
There, a function .Z is defined on NND( k) which maps A into (K ‘A _ K ) - ’ if 
A E .z?( K ), and into 0 otherwise. Now define, for A E NND( k), 

(cl J)(A) = ~$(A + EB), BEPD(~). 

LEMMA 2. The function cl I is well defined, i.e., for A E NND(k) the 
limit lim EIO.Z(A + EB) exists and does not depend on BE PD(k). Zf A E 
d(K), then the matrix (cl I)( A) is equal to _l( A), and is nonsingular; and if 
A P LS’( K), then the matrix (cl J)(A) is singular. 

Proof. For AENND(k) and E>O set A,=A+eIk. For BEPD(k) 
monotonicity of J yields 

J(A + &,,,(B)Z,) < J(A + EB) < J(A + +,,,,(B)Z& 

Thus if .Z( A,) converges so does _Z( A + EB), and the limits coincide. 



24                                               

In case A E d(K), Lemma 5.6.3 of Bandemer et al. [l] establishes 
&A,) + J(A). It remains to consider the case A P ti( K). The proof of 
Lemma 1 of [7] shows that 

for some A > 0, some nonzero R’-vector z, and some singular s X s matrix C,. 
It follows that J( AF) stays bounded in norm and has singular cluster 

points as E tends to 0. Along appropriate subsequences the monotonicity 
behavior of J shows that any two cluster points C, and C, satisfy C, < C, and 
C, < C,, and therefore coincide. Thus lirneJ 0 J( A,) exists and is a singular 
matrix. n 

For the particular choice A = KCK’, with an arbitrary matrix C E NND(s), 
we obtain (cl J)( KCK’) = C. 

We note that (cl J)(A) does not, in general, coincide with (K’A+K)+; for 
instance, in Example 6.2.5 in [7] we have 

Now we turn to duality results. 

3. DUALITY RESULTS 

The polar set %‘” of 2 and the polar function j” of j are given by 

&‘o= { A~R~~~l(A,H)<lforall HEX}! 

i”(c)=inf( $$-~D~PD(s)), 

respectively, where (A, H) = trace AH. Because of the monotonicity proper- 
ties inherent in the present problem it suffices to replace the set &‘” by the 
smaller set 

9 = .%“nNND(k). 
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We are now in a position to formulate the dual problem of the optimal test 
problem: 

(D) Minimize l/j’ 0 (cl J)(G), subject to G E 9. 

Duality of these problems is established in two steps, by first showing that 
the two problems “bound each other” and then establishing Fenchel duality. 

THEOREM 3 (Mutual boundedness). Fur every Hesse matrix H E X and 
for every matrix G E 9 one has j 0 Z(H) < l/j” 0 (cl J)(G), with equality if 
and only if H lies in .%7(K) and the following conditions are satisfied with 
C = (cl J)(G) and D = K’HK: 

(1) trace GH = 1, 
(2) GH = KCK’H, 
(3) j”(C)j( D) = trace CD. 

Proof. The proof of Theorem 3 in [7] carries over from J to cl J, with the 
following modifications. Suppose H E .S?( K). Observe that the relative inter- 
ior of ‘9 consists of positive definite matrices. Choose a matrix B in the 
relative interior of 9, and for E E [0, l] define G, = (1 - E)G + EB E PD(k). 
Then 

and a transition to the limit as E tends to 0 establishes 

12 (G, H) 2 (C, 0) > j”(C). j( 0). 

Equality in the first and third inequalities is equivalent to conditions (1) and 
(3). Obviously (2) implies (G, H) = (C, D), and so it remains to establish the 
converse direction. Assume, then, that (G, H) = (C, 0). Then, as E tends 
to 0, 

0= lim(G,, H) - (J(G,), K’HK) 

= lim/lG,‘/2H1/2 _ Gp I2 
F I KJ(G,)K’H’/21[z, 

and 

0 = lim G1”H ‘/’ - GE- ‘/‘KJ( G,) K’H ‘j2. E 

Premultiplication with G ‘1’ = lim G ‘I2 and postmultiplication with H ‘I2 F 
then yields (2). n 
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THEOREM 4 (Duality). supHE#j~Z(H)= mincEYl/joO(cl.Z)(G). 

Proof. The result is a special case of the Fenchel duality theorem, as is 
Theorem 4 in [7]. n 

The following reformulation eliminates the explicit appearance of the dual 
problem. 

THEOREM 5 (Equivalence). Let H E %’ be a Hesse matrix which lies in 
S?(K), and set D = K’HK. Then H has &%aximal @mature at 9 E O(K) 
if and only if there exists a matrix C E NND(s) with the properties that 

j”(C)j(D)= traceCD=l, 

and 

trace CK’BK < 1 for all B E 2. 

Proof. For the direct part, let G E 9 be an optimal solution of the dual 
problem. Take C = (cl J)(G). Then conditions (l), (2) (3) yield j”(C)j( D) = 
trace CD = 1. The inequalities trace CK’BK < trace GB Q 1, for all B E .F, 
were established in the course of the proof of Theorem 3. 

For the converse direction, define G = KCK’. By assumption then G E 9; 
we have (cl J)(G) = C. But then j” 0 (cl J)(G) = j”(C) = l/j(D), whence 
both G and H are optimal solutions of their respective problems. n 

We now draw a number of useful conclusions from these duality results. 
First we give a new sufficient condition for the existence of optimal solutions, 
based on duality. 

COROLLARY 5.1 (Existence). Zf j” is strictly isotone, then there exists a 
Hesse matrix in ~‘6 which has A%uximal j-curvature at 9 E O(K). 

Proof. Consider the “closure” of the primal problem: There always 
exists some matrix H E X which maximizes (cl j)( K’BK) for B E &‘. We 
shall show that D = K’HK is positive definite, whence H E .S?( K). Then 
(clj)(K’HK)= j(K’HK)=joZ(H), and therefore H has Smaximal jcurva- 
ture at I? E O( K ), as asserted. 

Recall that (cl j)” = j” ( see [8] Section 3). Thus for the “closure” of the 
primal problem the equivalence theorem states that for H to be optimal it is 
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necessary that there exists a matrix C E NND(s) such that j”(C)(cl j)( 0) = 
trace CD. Now suppose z E R” is a null vector of D, i.e., Dz = 0. Then, for all 
(Y > 0, 

j”(C+ cyzz’)(clj)(D)< (C+ LYZZ’, D) = (C, D) = j”(C)(cl j)(D) 

~j”(C+azz’)(clj)(D). 

But in view of strict monotonicity of j”, the function h(a) = j”(C + azz’) can 
be constant only if z = 0. Hence D is positive definite. W 

As an illustration consider the information functionals jr,, i.e. the gener- 
alized means of order p of the eigenvalues. Their polar function is sjp, where 
9 is determined from p9 = p + 9. Therefore j, has a strictly isotone polar 
function provided p E [ - co, + 1). In other words, for p < 1 there always 
exists a Hesse matrix H E &’ with *maximal j,-curvature at 9 E O(K). 

REMARK. A similar statement holds true for the existence of optimal 
information matrices in the optimal design problem. Indeed, the examples in 
[7] on the nonexistence of optimal designs all utilize the information func- 
tional j, whose polar function sj _ m fails to be strictly isotone. Notice the 
difference in assumptions as compared to Corollary 5.3 in [7] on multiplicity 
of optimal designs: There strict monotonicity is a property which pertains to 
the primal objective functional, whereas here we have imposed it on the dual 
objective functional. 

COROLLARY 5.2 (j,-optimality). Let H be a Hesse matrix which lies in 
.%7(K). Zf p > - 00, then H has Akaximal j,-curvature at 8 E O(K) if and 
only if 

trace(K’HK)P-’ K’BK < trace(K’ZZK)P for all B E X. 

Zfp= -c~andSisthesetofalls~smutricesofthefmzz’suchthatzis 
a rwrmalized eigenvector of K’HK corresponding to h ,,( K’HK), then H has 
.X%uximul j_,-curvature at I? E O(K) if and only if there exists a matrix 
F E convS such that 

trace FK’BK < A,,( K’HK) fmall BEX. 

Simultaneous j,-optimality and universal optimality in the optimal test 
problem may now be discussed quite similarly to those in the optimal design 
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problem. Let H be a Hesse matrix which lies in 2( K ), and suppose that H 
is balanced, i.e., K’HK = pZ, for some p > 0. If H has optimal j,,l-curvature 
for some p, > - CO, then it has optimal j,-curvature simultaneously for all 
p E [ - co, + 11. If H has optimal j,-curvature, i.e., trace-curvature, then it is 
universally optimal in a sense quite similar to Kiefer’s notion of universal 
optimality for optimal designs. 

Finally we list the corresponding results on admissibility. We shall call a 
Hesse matrix H E 2 locally admissible if no other Hesse Matrix B E 2’ 
satisfies B > H. 

COROLLARY 5.3 (Admissibility). Let H E %’ be a Hesse matrix. Zf there 
exists a positive definite matrix G E 9 such that trace GH = 1, then H is 
locally admissible. Zf H is locally admissible and has maximal rank in .%, 
then 

(i) H has .%%aximal j _ ,-curvature at 9 E O(K) whenever K + 'K + = H, 
(ii) there exists a matrix G E 9 such that traceGH = 1, and 
(iii) H has A%axirnal j,-curvature at 6 E O(K) whenever KK’= G. 

Proof. Suppose G E PD(k) is such that trace GB < 1= trace GH for all 
B E A’. If B > H, then 12 trace GB >, trace GH = 1 entails trace G( B - H) 
= 0 and B = 0 = H, whence H is locally admissible. 

Now let H be locally admissible. (i): Let s be the rank of H. The k X s 
matrix K satisfies Kt ‘K+ = H if and only if K satisfies K’HK = I,. Evidently 
H E S?( K ). Let B E J? have Smaximal j ,-curvature at 19 E O( K ), and let 
G be an optimal solution of the dual problem. Then 

1 1 

h,i,I(K’BK) = j-, 0 Z(B) 
=sjlo(clf)(G)<traceGH<l, 

where the first inequality follows from 

Hence 1 < Xmin( K’BK), and I, < K’BK. Postmultiplication by K+ and pre- 
multiplication by its transpose yields H < KK + BKK + = HH+ BHH+ = B, the 
last equality being a consequence of rank maximality. Admissibility forces 
H = B, whence H is j-,-optimal at 6 E O(K), and (ii) traceGH = 1. 

(iii): Let s be the rank of G. We have j, 0 Z(H) = (l/s)trace K’HK = 
(l/s) trace GH = l/s, while at the same time J(G) = (K’G- K)-’ = 
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(K’(KK’))K)-‘= I, entails l/(sj_, 0 J(G)) = l/s. Hence both H and G 
are optimal solutions of their respective problems. n 

The main contribution of the above results is that they provide a lineariza- 
tion of the original, possibly nonlinear problem. Accordingly, when the 
original information function j itself is linear already, as is the case with j, or, 
more generally, with j,( 0) = trace DL, then the results above reduce to mere 
tautologies. For nonlinear functions j, however, this linearization greatly 
facilitates the checking of optimality. In the optimal test problem it opens the 
way for an application of the Neyman-Pearson lemma, and to this we turn 
next. 

4. LOCALLY OPTIMAL TESTS 

Let !@ = { P8 19 E 0 } be a k-parameter family of distributions on a 
sample space X with sigma algebra 9?. Thus the parameter set 0 is taken to 
be a subset of Rk; suppose the null hypothesis O,, lies in the interior of 0 and 
is of “linear type,” i.e., there exists some k X s matrix K of rank s such that 

O,= {IYE@~K’~=O}=O(K), say. 

Denote by @ the set of all tests q, + on (_5?, B). 
We assume !J3 to be twice L,(P,)-differentiable, for all 8 E O(K), with 

first derivative L,(x), a k-vector of Pa-integrable functions, and with second 
derivative E,(x), a symmetric k X k matrix of P,-integrable functions. Defini- 
tions and properties of this type of differentiability are given in [6] and 
discussed in full detail in [14], so we only quote its properties as needed in 
this paper: 

E,[ i+(x)] = 0, E,[&kd] = 0, 

and 

vE&b)l = E,h%+&)l~ 

v VJ%&(~)] = ~T&+)~,(x)l~ 

for all tests 4 E @, where v denotes differentiation with respect to 9. 
Let LY E (0,l) be a given level of significance, and choose an information 

functional j. A locally unbiased level-a test ‘p for O(K) is said to have 
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maximal j-curvature at 9 E O(K) if ‘p is a solution of the problem 

Maximize j4%&(x)G4) 

subject to E,[44)&(41~ 0, 

E&(+,(x)] =O forall YE@(K), 

4J44x)l= o forall nEO(K), 

If there happens to be an optimal solution ‘p which is the same for all 
9 E O(K), then q will be called locally j_optimaZ for O(K); in the one- 
parameter case (k = 1) such a test cp is locally most powerful for 8 = 0. 

The relation to the matrix maximization problem in Section 2 becomes 
evident upon choosing X’ to be the set of nonnegative definite matrices 
E,[ $(x)i;,(x)] obtained from tests 4 E Cp with 

E,[dx)&(r)] =O and E,[d~(x)l =a for all TJ E O(K). 

There exists at least one such test, namely the constant (Y, giving 0 E X. 
Moreover, 2 is convex and bounded, and a weak compactness argument 
shows that it is also closed. We make the assumption that there exists at least 
one feasible test & whose Hesse matrix at 9 is positive definite: 

XnPD(k)#0. 

This assumption is needed for Theorem 6 below, and it implies that Z 
intersects S?(K), as required in Section 2. 

The basic linearization which helps to determine optimal tests ‘p is given 
by the equivalence theorem (Theorem 5). Namely, put 

H=E,[cp(x)&(x)]; 

assume H E .%7(K), and with the matrix C from Theorem 5 define 

= tra~,CK’E,[J,(r)E,(x)]K. 
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Theorem 5 then requires fc( 4) < 1 = &(‘p). Thus cp has maximal j-curvature 
at 9 E O(K) if and only if 9, is a solution of 

Maximize J%(q) 

subject to E&(r)&(r)l 2 0, 

EJ WLJr)] = 0 forall qEO(K), 

K&WI = a forall nEO(K), 

Since the constraints which force local unbiasedness depend on all of the 
composite hypothesis O(K), an appropriate version of the Neyman-Pearson 
lemma would call for some least favorable mixing distribution on O(K). To 
keep the exposition simple we restrict attention to the case of a simple null 
hypothesis O( Zk) = (0). 

THEOREM 6 (Fundamental lemma). A test rp E Cp is a locally unbiased 
level-a test for 9 = 0 with maximal j-curvature at 6 = 0 if and only if the 
matrix H = E,[cp(x)LO(x)] is positive definite and there exists a matrix 
C E NND( k) with the properties that j”(C) j( H) = trace CH = 1 and that, 
for P,-almost all x, 

cpb9 = 1;) for traceCL,(x)( ~)h’i,(x)+h,, 

where the Lagrangian multipliers X E Rk and A, E R are determined from 

J%Ma&)l = 03 E,[cptx)l = a. 

Proof. As pointed out above, q is optimal if and only if cp has a positive 
definite Hesse matrix H and v solves the auxiliary problem: 

Maximize fc(~)=E,[~(x)traceC~,(x)l 

subject to E&(r)&(r)l~ 0, 

E&t+&)l = 0, 

E, [G(r)] = o, 

GE@. 
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As a first constraint qualification we have assumed that there exists a test 
4 E Cp such that E,[I)] = (Y and E,[ I$&] = 0, with positive definite Hesse 

matrix E,[ I&&]. As a second constraint qualification we need that 
( 1 

i is an 
interior point of the set R of all points 

This is true for k = 1: If i, = 0, then it does not contribute to the 
constraints and there is nothing to show. If & # 0, then R contains the four 
points 

T(O) = ; > i 1 r(l)= : 3 

i 1
r(l[& > 01) = (i), say, 

and 

whence 

For k > 1 we now make the mild assumption that & falls into any one of 
the 2k orthants with positive P,-probability. The foregoing argument then 

easily generalizes and proves z to be in the interior of R. 
i 1 

Now standard duality theory (e.g. [2, Theorem 6.2.41) tells us that ‘p 
satisfies, for every k x k matrix A > 0, every vector X E Rk, and every scalar 
&CR, 

&.(~)~E,[cptraceCi;,]+E,[cptraceRi;,] -E,[cpX’i,]+h,(ol-Eo[cp]) 

<X,a+ supE,[rC/{trace(C+A)&,-Xl&-ha}] 
+sQ 

=X,a+Ea[{trace(C+R)&-A’&,--ha}+] 

= g(A, A, Aa), say. 
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Furthermore, ‘p is an optimal solution of the auxiliary problem if and only if 
&(‘p)= g(R, X, ?,) for some A, X, A,, which, in turn, is equivalent to 
0 = E,[~traceRL,] = traceAH, i.e., A = 0, and cp being of (11 form as 
stated in the theorem. n 

COROLLARY 6.1 ( j,-optima.lity). Let rp E @ be a locally unbiased level-a 
test fir 8 = 0, with positive definite Hesse matrix H = E,[rp(x)&,( x)]. Fix 
p E ( - co, 11. Then ‘p has maximal jp-curvature at 8 = 0 if and only if, for 
some X E Rk, A, E R and for P&most all x, 

for trace H “-‘i,(x){ = )X’i,(x)+X,. 

Applications to tests with maximal Gaussian (i.e., j,) curvature are given 
in [6]. We here only point out another interesting relationship, using j m as a 
measure of curvature. Suppose the underlying family Q is exponential in 8 
and T(x). Let Q and Z, be the mean vector and dispersion matrix of T 
under 8 = 0. Then 

and 

I&)= [T(+~~][T(x)-~~]‘-x~, 

Corollary 6.1 implies that the test with maximal j,-curvature at 9 = 0 has 
ellipsoidal acceptance region consisting for some a E Rk and c E R of all x 
such that 

[T(x) - a]‘Hpp’[T(x) - a] < c. 

If p= -00, then H Pp ’ has to be replaced by some matrix C E conv S as 
in Corollary 5.2, but the acceptance region remains ellipsoidal. This, in 
conjunction with Corollary 5.3, proves that every locally admissible test with 
positive definite Hesse matrix at 9 = 0 has an acceptance region which is, not 
just convex, but ellipsoidal. 
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