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Abstract

Hyperbolic a¢ ne-linear �ows on vector bundles possess unique bounded
solutions on the real line. Hence they are topologically skew conjugate to
their linear parts. This is used to show a classi�cation of inhomogeneous
bilinear control systems.
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1 Introduction

The main subject of this paper are topological conjugacies of a¢ ne-linear control
systems in Rd. In particular, we will generalize the classical result (see e.g.
Robinson [8]) that, in case of hyperbolicity, two linear autonomous di¤erential
equations are topologically conjugate if and only if the dimensions of the stable
subspaces coincide. Here we consider control systems of the form

_x = A0x+ a0 +
mX
i=1

ui(t)[Aix+ ai]; u = (u1; :::; um) 2 U ; (1)

where Ai are in the set gl(d;R) of real d � d-matrices; ai 2 Rd, and U := fu 2
L1(R;Rm); u(t) 2 U for all t 2 Rg is the set of admissible control functions
with values in a set U 2 Rm. The solutions are in the Carathéodory sense; i.e.
they satisfy the corresponding integral equation. We denote the solutions with
initial condition x(0) = x0 2 Rd by  (t; x0; u); t 2 R.
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Frequently, systems of this form are called inhomogeneous bilinear control
systems in contrast to the homogeneous case where ai = 0 for all i (D. Elliott [7]
proposes to call systems of the form (1) �bia¢ ne�). Control system (1) de�nes
a dynamical system (or �ow) on U � Rd by

	 : R� U � Rd ! U � Rd; 	t(u; x) = (�tu;  (t; x; u)); (2)

where (�tu)(s) := u(t+ s); s 2 R; is the shift on U . In fact, 	 satis�es the �ow
properties 	0 = id and 	t+s = 	t � 	s for t; s 2 R. If the control range U
is compact and convex, the set U of admissible control functions is a compact
metrizable space endowed with the weak� topology of L1 and 	 is a continuous
skew product �ow (cf. Colonius and Kliemann [5] for details on this construc-
tion). We require that topological conjugacies of such �ows respect the skew
product structure; i.e., also for the topological conjugacies on the vector bundles
U � Rd the �rst component should be independent of the second component;
cf. also the monograph Cong [6] which includes an exposition of equivalences
and normal forms for nonautonomous linear di¤erential equations (emphasizing
results based on the ergodic theory). For linear skew product �ows (which cover
the homogeneous case with ai = 0 for all i in (1)), such topological skew conju-
gacies have been characterized by Ayala, Colonius, and Kliemann in [3]. Here
we generalize their results to the a¢ ne case. Note that linear control systems
_x = Ax+Bu do not de�ne linear �ows, but a¢ ne �ows. The work by Baratchart,
Chyba, and Pomet [4] uses a similar notion of conjugacy for control systems (cf.
Remark 3.5). This paper also contains a discussion of various conjugation no-
tions for control systems. Here we only note that our notion of conjugacy is
di¤erent from the notion of state equivalence, where the state transformations
are not allowed to depend on the control functions (cf. Agrachev and Sachkov
[1, Section 9.2].)
In Section 2, we discuss in the more general context of a¢ ne-linear �ows on

vector bundles the existence of unique solutions e0 which are bounded on the real
line; this holds provided that the �ows are hyperbolic. Here we rely on methods
from Aulbach and Wanner [2], where general nonautonomous di¤erential equa-
tions of Carathéodory type are treated. This is used to prove that hyperbolic
a¢ ne-linear �ows are topologically skew conjugate to their linear part provided
that an additional continuity property holds. In Section 3 we show that control
systems of the form (1) de�ne a¢ ne-linear skew product �ows and that they are
topologically skew conjugate to their homogeneous parts. In particular, using
the classi�cation for homogeneous bilinear control systems from [3], we obtain
a classi�cation for these inhomogeneous bilinear control systems.

2 Bounded Solutions for a¢ ne-linear �ows

The purpose of this section is to show that for hyperbolic a¢ ne-linear �ows there
exist unique bounded solutions depending continuously on the base points. Then
skew conjugacy is characterized.
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We start by de�ning a¢ ne-linear �ows on vector bundles. Recall that a
linear skew product �ow � = (�; ') on a vector bundle B � Rd with compact
metric base space B is a continuous map

� : R�B � Rd ! B � Rd

with the �ow properties �0 = id and �t+s = �t � �s for t; s 2 R, and

�t(b; x) = (�tb; '(t; b; x)) for (t; b; x) 2 R�B � Rd;

where � is a continuous �ow on the base space B and '(t; b; x) is linear in x; i.e.
'(t; b; �1x1+�2x2) = �1'(t; b; x1)+�2'(t; b; x2) for �1; �2 2 R and x1; x2 2 Rd.

De�nition 2.1 Let B � Rd be a vector bundle with compact metric base space
B. A continuous map 	 = (�;  ) : R�B�Rd ! B�Rd is called an a¢ ne-linear
Carathéodory skew product �ow on B � Rd if there are a linear skew product
�ow � = (�; ') and a function f : B ! L1(R;Rd) such that f satis�es

f(b; t+ s) = f(�s(b); t) for all b 2 B and almost all t; s 2 R; (3)

and for all (t; b; x) 2 R�B � Rd

	t(b; x) = �t(b; x) +

Z t

0

�t�s(�sb; f(b; s))ds: (4)

Here we write f(b; s) := f(b)(s); s 2 R. For brevity, we call the �ows de�ned
above just a¢ ne-linear �ows. The base �ows of 	 and � coincide and the
integral in (4) is a Lebesgue integral in the Rd-component only. Hence, in terms
of  , this equation means

 (t; b; x) = '(t; b; x) +

Z t

0

'(t� s; �sb; f(b; s))ds; (5)

and the �ow property of 	 is expressed by the cocycle property

 (t+ s; b; x) =  (t; �sb;  (s; b; x)):

The following proposition shows that De�nition 2.1, in fact, de�nes a �ow.

Proposition 2.2 Let 	 be an a¢ ne-linear �ow as de�ned above. Then 	 sat-
is�es the �ow properties

	0 = id and 	t+s = 	t �	s for t; s 2 R:
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Proof: The property 	0 = id is obvious and one computes

	t+s(b; x)

= �t+s(b; x) +

Z t+s

0

�t+s�� (�� b; f(b; �))d�

= �t � �s(b; x) +
Z s

0

�t+s�� (�� b; f(b; �))d� +

Z t+s

s

�t+s�� (�� b; f(b; �))d�

= �t � �s(b; x) +
Z s

0

�t � �s�� (�� b; f(b; �))d� +
Z t

0

�t�� (��+sb; f(b; � + s))d�

= �t � �s(b; x) +
Z s

0

�t � �s�� (�� b; f(b; �))d� +
Z t

0

�t�� (��+sb; f(�sb; �))d�

= �t(	s(b; x)) +

Z t

0

�t�� (��+sb; f(�sb; �))d�

= 	t(	s(b; x)):

Remark 2.3 Continuity of the map 	 de�ned in (4) is equivalent to the prop-
erty that the inhomogeneous term

a(t; b) :=

Z t

0

�t�s(�sb; f(b; s))ds; t 2 R; b 2 B; (6)

is continuous. Su¢ ciency follows from continuity of�, necessity follows by
setting x = 0 in (4).

Remark 2.4 In De�nition 2.1, the range of the map f is taken as L1(R;Rd).
This is due to our intention to treat control system (1) with bounded control
range U . Certainly, the consideration of a¢ ne-linear �ows with other ranges
of the a¢ ne termf makes sense; e.g. one could require that the values of f
are locally integrable functions. Furthermore, consideration of general vector
bundles, which only locally are products, is certainly worthwhile.

Next we clarify the relation between the homogeneous equation described
by the linear �ow � and the inhomogeneous equation.

Lemma 2.5 Let 	 be an a¢ ne-linear �ow on the vector bundleB � Rd and
consider initial values (b; x1); (b; x2) 2 B � Rd. Then the di¤erence of the cor-
responding solutions is a solution of the homogeneous system with initial value
(b; x1 � x2) 2 B � Rd; i.e. it satis�es

	t(b; x1)�	t(b; x2) = �t(b; x1 � x2) for all t 2 R:
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Proof: This is immediate from the de�nition (4) and linearity of �t(b; x) in the
second argument.

The next lemma, which is a modi�cation of Aulbach and Wanner [2, Lemma
3.2], shows existence and continuous dependence of bounded solutions provided
that exponential stability holds. We start with the following notational remarks
and assumptions.
For an a¢ ne-linear �ow (4) suppose that the bundle B � Rd admits a de-

composition into the Whitney sum of two vector subbundles

B � Rd = V1 � V2; (7)

where V1 and V2 are invariant under the linear �ow �. Thus for every b 2 B
we have a decomposition

Rd = V1b � V2b
into linear subspaces V1b and V2b which have dimensions independent of the base
point b 2 B. We identify fbg�Vib with Vib and note that the linear �ow � leaves
the subbundles invariant in the following sense:

�t(b; x) 2 Vi�tb for x 2 V
i
b and t 2 R:

We denote the restricted linear �ows on Vi by �it and write


�1t (b; �)

 for the

norm of the linear map x 7! '1t (b; x) : V1b ! Vi�tb. Decompose the a¢ ne term
accordingly,

f(b; s) = f1(b; t) + f2(b; t) (8)

with f i(b; t) 2 Vib; t 2 R; b 2 B. If f i satis�es property (3), then Vi is also
invariant under the a¢ ne-linear �ow	i de�ned by

	it(b; x) = �
i
t(b; x) +

Z t

0

�it�s(b; f
i(b; s))ds: (9)

Lemma 2.6 Consider the a¢ ne-linear �ow (4) and assume that the following
conditions are satis�ed:
(i) the linear part � of 	 admits a decomposition (7) into invariant subbun-

dles V1 and V2, where V1 is stable: there are constants � > 0 and K � 1 such
for the restricted �ow �1 on V1

�1t (b; �)

 � Ke��t for all t � 0 and all b 2 B; (10)

(ii) the a¢ ne termf1 de�ned by (8) satis�es property (3), and there is
M > 0 with 

f1(b)

1 �M for all b 2 B: (11)

Then for every b 2 B there is a unique bounded solution e1(b; t); t 2 R; for
the �ow 	1.
If the map

b 7!
Z 0

�1
'1(�s; �sb; f1(b; s))ds : B ! Rd (12)

is continuous, then the map e1 : B � R! Rd is continuous.
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Proof: The proof consists of two steps.
(I) The linear �ow � has only the trivial bounded solution on R. In fact, let

'(t; b; x) be a bounded solution on R. Then for t � 0

kxk = k'(0; b; x)k = k'(t; ��tb; '(�t; b; x))k
�


�1t (��tb; �)

 k'(�t; b; x)k

� Ke��tsups2R k'(s; b; x)k :

The right hand side converges to 0 for t!1 and hence x = 0 follows.
(II) Now suppose that f1(b; t) is given by (8). Uniqueness of the bounded

solution follows immediately from step (I), since by Lemma 2.5 the di¤erence of
two bounded solutions is a bounded solution of the homogeneous equation. In
order to show existence, de�ne

e1 : B � R! Rd by e1(b; t) :=
Z t

�1
'1(t� s; �sb; f1(b; s))ds: (13)

Note that the integral indeed exists, since for all b 2 B and s � t

'1(t� s; �sb; f1(b; s))

 � 

�1t�s(�sb; �)

 supf

f1(b; s)

g � KMe�(t�s):

In order to show the continuity property, �x t0 2 R and b0 2 B. Then, denoting
the characteristic function of the interval (�1; t] by �(�1;t], one �nds��e1(b; t)� e1(b0; t0)��

=

����Z t

�1
'1(t� s; �sb; f1(b; s))ds�

Z t0

�1
'1(t0 � s; �sb0; f1(b0; s))ds

����
�
����Z
R
�(�1;t](s)'

1(t� s; �sb; f1(b; s))ds�
Z
R
'1(t0 � s; �sb; f1(b; s))ds

����
+

����Z t0

0

'1(t0 � s; �sb; f1(b; s))ds�
Z t0

0

'1(t0 � s; �sb0; f1(b0; s))ds
����

+

����Z 0

�1
'1(t0 � s; �sb; f1(b; s))ds�

Z 0

�1
'1(t0 � s; �sb0; f1(b0; s))ds

����
For (t; b) ! (t0; b0), the �rst summand converges to 0 by Lebesgue�s theorem
on dominated convergence, since

�(�1;t](s)'
1
t�s(�sb; f

1(b; s))! �(�1;t0](s)'
1
t0�s(�sb0; f

1(b0; s)) for all t; s;

and the integrands are bounded. The second summand converges to 0 by the
same arguments. The third summand equals����Z 0

�1
'1(t0; b; '

1(�s; �sb; f1(b; s)))ds�
Z 0

�1
'1(t0; b0; '

1(�s; �sb0; f1(b0; s)))ds
����

=
���'1(t0; b; R 0�1'1(�s; �sb; f1(b; s))ds)� '1(t0; b0; R 0�1'1(�s; �sb0; f1(b0; s))ds)��� :
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Then the continuity assumption for the map (12) together with continuity of
'1 shows that this converges to 0.
Now let us show that the function e1(b; t) de�ned in (13) is a solution for

the �ow 	1. In fact, formula (4) is satis�ed for f1, since

e1(b; t) =

Z t

�1
'1(t� s; �sb; f1(b; s))ds

=

Z t

0

'1(t� s; �sb; f1(b; s))ds+
Z 0

�1
'1(t� s; �sb; f1(b; s))ds

=

Z t

0

'1(t� s; �sb; f1(b; s))ds+ '1(t; b;
R 0
�1'

1(�s; �sb; f1(b; s))ds)

=

Z t

0

'1(t� s; �sb; f1(b; s))ds+ '1(t; b; x)

for

x := e(b; 0) =

Z 0

�1
'1(�s; �sb; f1(b; s))ds:

Next we generalize this result to hyperbolic systems.

Corollary 2.7 Consider the a¢ ne-linear �ow	 in (4) and assume that the
following conditions are satis�ed:
(i) the linear part � of 	 is hyperbolic. Thus it admits a decomposition

(7) into invariant subbundles V1 and V2, where V1 is stable and V2 is unstable
such that the restrictions �1 and �2 of � to V1 and V2, respectively, satisfy for
constants � > 0 and K1;K2 � 1 and for all b 2 B

�1t (b; �)

 � K1e

��t for t � 0 and


�2t (b; �)

 � K2e

�t for t � 0;

(ii) the a¢ ne termsf1 and f2 de�ned by (8) satisfy property (3), and there
is M > 0 with

kf(b)k1 �M for all b 2 B:

Then for every b 2 B there is a unique bounded solution e(b; t); t 2 R; for
the �ow 	.
If the maps B ! Rd

b 7!
Z 0

�1
'1(�s; �sb; f(b; s))ds and b 7!

Z 0

�1
'2(s; ��sb; f(b;�s))ds (14)

are continuous, then the map e : R�B ! Rd is continuous.

Proof: Since


f i(b; t)

 � kf(b; t)k, property (11) holds for f1 and f2. Hence

Lemma 11 implies the existence of unique bounded solutions e1(t; b) t 2 R; b 2
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B. Applying this lemma to the time inverse of 	2, one also �nds unique bounded
solutions e2(t; b). This yields bounded solutions

e(b; t) := e1(b; t) + e2(b; t)

for 	. Conversely, a bounded solution for 	 projects down to bounded solutions
of 	1 and 	2. This shows uniqueness of e(b; t). Step (II) of the proof for Lemma
11 applied to the �ow 	1 and the time inverse of 	2 implies continuity of the
map (t; b) 7! e(b; t).

Corollary 2.7 will allow us to derive results on topological conjugacy. More
speci�cally, we use the following notion of topological conjugacy which respects
the skew product structure (cf. [3, De�nition 2.3]).

De�nition 2.8 Let 	1 = (�1;  1) and 	2 = (�2;  2) be a¢ ne linear �ows on
vector bundles B1�Rd and B2�Rd , respectively. We say that 	1 and 	2 are
topologically skew conjugate if there exists a skew homeomorphism

H = (hB ; h) : B
1 � Rd ! B2 � Rd

such that H(	1t (b; x)) = 	
2
t (H(b; x)); i.e., hB : B

1 ! B2; h : B1�Rd ! Rd are
maps with

hB(�
1
t b)) = �2t (hB(b)) for all t 2 R and b 2 B1; (15)

h(�1t b;  
1(t; b; x)) =  2(t; hB(b); h(b; x)) for all t 2 R; b 2 B1; and x 2 Rd:

(16)

Thus topological skew conjugacy requires that the base �ows are topologi-
cally conjugate via the homeomorphism hB and (16) holds. The next theorem
shows that hyperbolic a¢ ne-linear �ows are skew conjugate to their linear part.

Theorem 2.9 Consider the a¢ ne-linear �ow 	 in (4) and assume that the
following conditions are satis�ed:
(i) the linear part � of 	 is hyperbolic with stable subbundle V1 and unstable

subbundle V2;
(ii) the a¢ ne termsf1 and f2 de�ned by (8) satisfy property (3), and there

is M > 0 with
kf(b)k1 �M for all b 2 B:

(iii) The maps : B ! Rd

b 7!
Z 0

�1
'1(�s; �sb; f(b; s))ds and b 7!

Z 0

�1
'2(s; ��sb; f(b;�s))ds

are continuous.
Then 	 and its linear part � are topologically skew conjugate. Moreover,

consider two a¢ ne-linear �ows	 and 	̂ satisfying assumptions (i), (ii), and
(iii). Then they are topologically skew conjugate, if and only if the base �ows
are topologically conjugate and the dimensions of the stable subbundles coincide.
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Proof: The second assertion follows from the �rst one and [3, Corollary 3.4],
which states that two hyperbolic linear �ows are topologically skew conjugate
i¤ their base �ows are topologically conjugate and the dimensions of their stable
subbundles coincide. Hence it remains to show that 	 and its linear part � are
topologically skew conjugate. Their base �ows coincide, hence we can take hB
as the identity on B. De�ne h as the translation with respect to the unique
bounded solutions e, which exist by Corollary 2.7:

h(b; x) = x� e(b; 0); (b; x) 2 B � Rd;

The map H : B � Rd ! B � Rd de�ned by

H(b; x) = (b; h(b; x)); (b; x) 2 B � Rd;

is continuous and bijective with continuous inverse

H�1(b; x) = (b; x+ e(b; 0)); (b; x) 2 B � Rd:

Hence it is a skew homeomorphism. By Lemma 2.5, the di¤erence of the solu-
tions for the initial values x and e(b; 0) is a solution of the homogeneous system
with initial value (b; x� e(b; 0)) 2 B � Rd,

	t(b; x)�	t(b; e(b; 0)) = �t(b; x� e(b; 0)) for all t 2 R:

Since e(�tb; 0) = e(b; t), we �nd

h(�1t b;  (t; b; x)) =  (t; b; x)� e(�tb; 0)
=  (t; b; x)� e(b; t)
=  (t; b; x)�  (t; b; e(b; 0))
= '(t; b; x� e(b; 0))
= '(t; b; h(b; x)):

Hence equality (16) holds and H = (idB ; h) is the desired conjugacy.

3 Conjugacy in a¢ ne control system

In this section we show that control systems of the form (1) de�ne a¢ ne-linear
�ows. In case of hyperbolicity, they satisfy the assumptions of Theorem 2.9
and hence we obtain a classi�cation of these control systems with respect to
topological skew conjugacy.
Consider an a¢ ne control system

_x = A0x+ a0 +

mX
i=1

ui(t)[Aix+ ai]; u = (u1; :::; um) 2 U ; (17)

given by f(A0; a0); � � � ; (Am�1; am�1)g, where Ai 2 gl(d;R), ai 2 Rd for i =
0; : : : ;m, and the control range U � Rm is assumed to be compact and convex.
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Remark 3.1 A special case of (1) is

_x = A0x+ a0 +

m1X
i=1

ui(t)Aix+Bu0(t); (18)

where B is a d�m2 matrix with columns bi 2 Rd. This follows by de�ning m =
m1+m2; Ai = 0 for i = m1+1; :::;m1+m2; and ai = 0 for i = 1; :::;m1; ai = bi
for i = m1 + 1; :::;m1 +m2. Note also that

_x = A0x+ u(t)A1x+ u(t)a1

is not of the form (18).

System (17) can be written as

_x = A(u(t))x+ a(u(t));

where

A(u) := A0 +
mX
i=1

Aiui and a(u) :=
mX
i=1

uiai + a0; u 2 Rm:

For u 2 U , the fundamental solution Xu(t; s) of the homogeneous equation is
given by

d

dt
Xu(t; s) = A(u(t))Xu(t; s); Xu(s; s) = I; t; s 2 R:

Then the solutions x(t) =  (t; s; x0; u) of (17) with initial condition x(s) = x0
are given by

x(t) = Xu(t; s)x0 +

Z t

s

Xu(t; �)a(u(�))d�; t 2 R:

If s = 0 we omit this argument, i.e.,  (t; x0; u) :=  (t; 0; x0; u):

Proposition 3.2 Under the assumptions above, control system (17) de�nes an
a¢ ne-linear �ow	 given by (2) on the vector bundle U�Rd, where U is endowed
with a metric compatible with the weak� topology on L1(R;Rm) which can be
identi�ed with the dual space of L1(R;Rm).

Proof: Since this system is control-a¢ ne, [5, Lemma 4.3.2] implies that the
corresponding �ow 	 on U�Rd is continuous, uniformly on bounded t-intervals.
De�ne

f : U ! L1(R;Rd); f(u; t) := a(u(t)) =
mX
i=1

ui(t)ai + a0; u 2 U ; t 2 R.

Then f(u; t + s) = a(u(t + s)) = f(�s(u); t). We can write the variations-of-
constants formula as

 (t; x0; u) = Xu(t; 0)x0 +

Z t

0

Xu(t; s)f(u; s)ds:
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Observe that the columns of Xu(t; s) are the solutions of the bilinear control
system

_x = A(u(t))x with x(s) = ei;

where ei is the ith standard basis vector in Rd. Thus they depend continuously
on (t; u). Furthermore, Xu(t; s) = Xu(s+�)(t� s; 0). We see that 	 and the �ow
� associated with the homogeneous system _x = A(u(t))x; u 2 U , satisfy

	t(u; x) = �t(u; x) +

Z t

0

�t�s(�su; f(u; s))ds for (t; u; x) 2 R� U � Rd:

The following theorem is the main result of this paper. It presents a clas-
si�cation of a¢ ne (or inhomogeneous bilinear) control systems with respect to
topological skew conjugacy.

Theorem 3.3 Consider a¢ ne control system (17) with compact and convex
control range U � Rm, and its homogeneous part

_x = A0x(t) +
mX
i=1

ui(t)Aix(t) = A(u(t))x(t) (19)

with associated �ows 	 and � on U � Rd, respectively. Assume that the linear
�ow � is hyperbolic. Then 	 and � are topologically skew conjugate. Moreover,
consider two a¢ ne control systems of the form (17). Then the associated a¢ ne-
linear �ows are topologically skew conjugate if and only if the shift �ows on the
sets of control functions are topologically conjugate and the dimensions of the
stable subbundles coincide.

Proof: We only have to verify the assumptions of Theorem 2.9. The hyper-
bolicity condition (i) holds by assumption. Concerning condition (ii), the a¢ ne
term is here given by

f(u; t) := a(u(t)) =
mX
i=1

ui(t)ai + a0;

and, as noted in the proof of Proposition 3.2, property (3) holds:

f(u; t+ s) = a(u(t+ s)) =
mX
i=1

ui(t+ s)ai + a0 = f(�s(u); t):

The projections to the stable and unstable subbundles are linear. Since f(u; t) is
a linear combination of the ai, its projections are determined by the projections
of the ai. Then property (3) also holds for the projections of f to the stable
and the unstable subbundles. Uniform boundedness follows by compactness of
the control range U .
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It remains to show the continuity properties in (iii). The integrand inZ 0

�1
'1(�s; �su; f(u; s))ds =

Z 1

0

'1(s; ��su;
Pm

i=1ui(s)ai + a0)ds

is bounded by�����'(s; ��su;
mX
i=1

ui(s)ai + a0)

����� = ���1s(��su; �) [Pm
i=1ui(�)ai + a0]

��
�


�1s(��su; �)

 jPm

i=1ui(�)ai + a0j
� K1e

��tsupu2U j
Pm

i=1uiai + a0j :

Hence, invoking Lebesgue�s theorem on dominated convergence, continuity fol-
lows if the integrand converges pointwise for u! u0 weak� in U . One has��'(s; ��su; f(u; s))� '(s; ��su0; f(u0; s))��

�
��'(s; ��su;Pm

i=1ui(s)ai + a0)ds� '(s; ��su
0;
Pm

i=1ui(s)ai + a0)ds
��

+
��'(s; ��su0;Pm

i=1ui(s)ai + a0)� '(s; ��su
0;
Pm

i=1u
0
i (s)ai + a0)

�� :
The variation-of constants formula shows that the �rst summand equalsZ s

0

[X��su(t; �)�X��su0(t; �)]a(u(�))d�

�
Z s

0



X��su(s; �)�X��su0(s; �)


d� supu2U jPm

i=1uiai + a0j :

The integrand is bounded and converges pointwise to 0. Hence the �rst sum-
mand converges to 0 for u! u0.
The second summand equalsZ s

0

X��su0(s; �)[a(u(�))� a(u0(�))]d�

=

Z
R
�[0;s](�)X��su0(s; �)[a(u(�))� a(u0(�))]d�:

Since a is a¢ ne linear, weak� convergence of u to u0 implies that also a(u(�))
converges weak� to a(u0(�)) in L1(R;Rd), hence also the second summand con-
verges to 0 and continuity of the �rst map in (iii) is established. Analogously,
one shows continuity of the second map.

Remark 3.4 Criteria for topological conjugacy of the shift �ows on the base
space of control functions are given in [3, Corollary 6.3].

Remark 3.5 Theorem 3.3, in particular, applies to linear control systems _x =
Ax+Bu with compact convex control range. For hyperbolic matrix A, it follows
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that these control systems are topologically conjugate to the uncontrolled system
_x = Ax; the conjugacy map h : U � Rd ! Rd is h(u; x) = x � e(u; t), where
e(u; t) := �A�1Bu(t). This is similar to the Hartman-Grobman theorem by
Baratchart, Chyba, and Pomet [4, Theorem 3.7], who show that (locally around
an equilibrium and for small control ranges) control systems are conjugate to
the uncontrolled system obtained by linearization about the equilibrium.
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