Topological conjugacy for affi ne-linear fbws and control systems

Fritz Colonius
Institut für Mathematik, Universität Augsburg
86135 Augsburg, Germany, fritz.colonius@math.uni-augsburg.de
Alexandre J. Santana*
Departamento de Matemática, Universidade Estadual de Maringá
Maringá, Brazil, ajsantana@uem.br

September 13, 2009

Abstract

Hyperbolic affi ne-linear fbws on vector bundles possess unique bounded solutions on the real line. Hence they are topologically skew conjugate to their linear parts. This is used to show a classification of inhomogeneous bilinear control systems.

Keywords: Topological conjugacy, affi ne-linear fbws, bilinear control systems,

Subject classification: 37B55, 37N35, 93B10

1 Introduction

The main subject of this paper are topological conjugacies of affi ne-linear control systems in \mathbb{R}^{d}. In particular, we will generalize the classical result (see e.g. Robinson [8]) that, in case of hyperbolicity, two linear autonomous differential equations are topologically conjugate if and only if the dimensions of the stable subspaces coincide. Here we consider control systems of the form

$$
\begin{equation*}
\dot{x}=A_{0} x+a_{0}+\sum_{i=1}^{m} u_{i}(t)\left[A_{i} x+a_{i}\right], u=\left(u_{1}, \ldots, u_{m}\right) \in \mathcal{U} \tag{1}
\end{equation*}
$$

where A_{i} are in the set $\mathfrak{g l}(d, \mathbb{R})$ of real $d \times d$-matrices, $a_{i} \in \mathbb{R}^{d}$, and $\mathcal{U}:=\{u \in$ $L_{\infty}\left(\mathbb{R}, \mathbb{R}^{m}\right), u(t) \in U$ for all $\left.t \in \mathbb{R}\right\}$ is the set of admissible control functions with values in a set $U \in \mathbb{R}^{m}$. The solutions are in the Carathéodory sense; i.e. they satisfy the corresponding integral equation. We denote the solutions with initial condition $x(0)=x_{0} \in \mathbb{R}^{d}$ by $\psi\left(t, x_{0}, u\right), t \in \mathbb{R}$.

[^0]Frequently, systems of this form are called inhomogeneous bilinear control systems in contrast to the homogeneous case where $a_{i}=0$ for all i (D. Elliott [7] proposes to call systems of the form (1) biaffi ne). Control system (1) defines a dynamical system (or fbw) on $\mathcal{U} \times \mathbb{R}^{d}$ by

$$
\begin{equation*}
\Psi: \mathbb{R} \times \mathcal{U} \times \mathbb{R}^{d} \rightarrow \mathcal{U} \times \mathbb{R}^{d}, \Psi_{t}(u, x)=\left(\theta_{t} u, \psi(t, x, u)\right) \tag{2}
\end{equation*}
$$

where $\left(\theta_{t} u\right)(s):=u(t+s), s \in \mathbb{R}$, is the shift on \mathcal{U}. In fact, Ψ satisfies the fbw properties $\Psi_{0}=$ id and $\Psi_{t+s}=\Psi_{t} \circ \Psi_{s}$ for $t, s \in \mathbb{R}$. If the control range U is compact and convex, the set \mathcal{U} of admissible control functions is a compact metrizable space endowed with the weak ${ }^{*}$ topology of L_{∞} and Ψ is a continuous skew product fbw (cf. Colonius and Kliemann [5] for details on this construction). We require that topological conjugacies of such fbws respect the skew product structure; i.e., also for the topological conjugacies on the vector bundles $\mathcal{U} \times \mathbb{R}^{d}$ the first component should be independent of the second component; cf. also the monograph Cong [6] which includes an exposition of equivalences and normal forms for nonautonomous linear differential equations (emphasizing results based on the ergodic theory). For linear skew product fbws (which cover the homogeneous case with $a_{i}=0$ for all i in (1)), such topological skew conjugacies have been characterized by Ayala, Colonius, and Kliemann in [3]. Here we generalize their results to the affi ne case. Note that linear control systems $\dot{x}=A x+B u$ do not define linear fbws, but affi ne fbws. The work by Baratchart, Chyba, and Pomet [4] uses a similar notion of conjugacy for control systems (cf. Remark 3.5). This paper also contains a discussion of various conjugation notions for control systems. Here we only note that our notion of conjugacy is different from the notion of state equivalence, where the state transformations are not allowed to depend on the control functions (cf. Agrachev and Sachkov [1, Section 9.2].)

In Section 2, we discuss in the more general context of affi ne-linear fbws on vector bundles the existence of unique solutions e_{0} which are bounded on the real line; this holds provided that the fbws are hyperbolic. Here we rely on methods from Aulbach and Wanner [2], where general nonautonomous differential equations of Carathéodory type are treated. This is used to prove that hyperbolic affi ne-linear fbws are topologically skew conjugate to their linear part provided that an additional continuity property holds. In Section 3 we show that control systems of the form (1) define affi ne-linear skew product fbws and that they are topologically skew conjugate to their homogeneous parts. In particular, using the classification for homogeneous bilinear control systems from [3], we obtain a classification for these inhomogeneous bilinear control systems.

2 Bounded Solutions for affi ne-linear fbws

The purpose of this section is to show that for hyperbolic affi ne-linear fbws there exist unique bounded solutions depending continuously on the base points. Then skew conjugacy is characterized.

We start by defining affi ne-linear fbws on vector bundles. Recall that a linear skew product fbw $\Phi=(\theta, \varphi)$ on a vector bundle $B \times \mathbb{R}^{d}$ with compact metric base space B is a continuous map

$$
\Phi: \mathbb{R} \times B \times \mathbb{R}^{d} \rightarrow B \times \mathbb{R}^{d}
$$

with the fbw properties $\Phi_{0}=\mathrm{id}$ and $\Phi_{t+s}=\Phi_{t} \circ \Phi_{s}$ for $t, s \in \mathbb{R}$, and

$$
\Phi_{t}(b, x)=\left(\theta_{t} b, \varphi(t, b, x)\right) \text { for }(t, b, x) \in \mathbb{R} \times B \times \mathbb{R}^{d}
$$

where θ is a continuous fbw on the base space B and $\varphi(t, b, x)$ is linear in x; i.e. $\varphi\left(t, b, \alpha_{1} x_{1}+\alpha_{2} x_{2}\right)=\alpha_{1} \varphi\left(t, b, x_{1}\right)+\alpha_{2} \varphi\left(t, b, x_{2}\right)$ for $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ and $x_{1}, x_{2} \in \mathbb{R}^{d}$.

Definition 2.1 Let $B \times \mathbb{R}^{d}$ be a vector bundle with compact metric base space B. A continuous map $\Psi=(\theta, \psi): \mathbb{R} \times B \times \mathbb{R}^{d} \rightarrow B \times \mathbb{R}^{d}$ is called an affi ne-linear Carathéodory skew product flow on $B \times \mathbb{R}^{d}$ if there are a linear skew product flow $\Phi=(\theta, \varphi)$ and a function $f: B \rightarrow L_{\infty}\left(\mathbb{R}, \mathbb{R}^{d}\right)$ such that f satisfies

$$
\begin{equation*}
f(b, t+s)=f\left(\theta_{s}(b), t\right) \text { for all } b \in B \text { and almost all } t, s \in \mathbb{R}, \tag{3}
\end{equation*}
$$

and for all $(t, b, x) \in \mathbb{R} \times B \times \mathbb{R}^{d}$

$$
\begin{equation*}
\Psi_{t}(b, x)=\Phi_{t}(b, x)+\int_{0}^{t} \Phi_{t-s}\left(\theta_{s} b, f(b, s)\right) \mathrm{d} s \tag{4}
\end{equation*}
$$

Here we write $f(b, s):=f(b)(s), s \in \mathbb{R}$. For brevity, we call the fbws defined above just affi ne-linear fbws. The base fbws of Ψ and Φ coincide and the integral in (4) is a Lebesgue integral in the \mathbb{R}^{d}-component only. Hence, in terms of ψ, this equation means

$$
\begin{equation*}
\psi(t, b, x)=\varphi(t, b, x)+\int_{0}^{t} \varphi\left(t-s, \theta_{s} b, f(b, s)\right) \mathrm{d} s \tag{5}
\end{equation*}
$$

and the fbw property of Ψ is expressed by the cocycle property

$$
\psi(t+s, b, x)=\psi\left(t, \theta_{s} b, \psi(s, b, x)\right)
$$

The following proposition shows that Definition 2.1, in fact, defines a fbw.
Proposition 2.2 Let Ψ be an affi ne-linear flow as defined above. Then Ψ satisfies the flow properties

$$
\Psi_{0}=\mathrm{id} \text { and } \Psi_{t+s}=\Psi_{t} \circ \Psi_{s} \text { for } t, s \in \mathbb{R}
$$

Proof: The property $\Psi_{0}=\mathrm{id}$ is obvious and one computes

$$
\begin{aligned}
& \Psi_{t+s}(b, x) \\
& =\Phi_{t+s}(b, x)+\int_{0}^{t+s} \Phi_{t+s-\tau}\left(\theta_{\tau} b, f(b, \tau)\right) \mathrm{d} \tau \\
& =\Phi_{t} \circ \Phi_{s}(b, x)+\int_{0}^{s} \Phi_{t+s-\tau}\left(\theta_{\tau} b, f(b, \tau)\right) \mathrm{d} \tau+\int_{s}^{t+s} \Phi_{t+s-\tau}\left(\theta_{\tau} b, f(b, \tau)\right) \mathrm{d} \tau \\
& =\Phi_{t} \circ \Phi_{s}(b, x)+\int_{0}^{s} \Phi_{t} \circ \Phi_{s-\tau}\left(\theta_{\tau} b, f(b, \tau)\right) \mathrm{d} \tau+\int_{0}^{t} \Phi_{t-\tau}\left(\theta_{\tau+s} b, f(b, \tau+s)\right) \mathrm{d} \tau \\
& =\Phi_{t} \circ \Phi_{s}(b, x)+\int_{0}^{s} \Phi_{t} \circ \Phi_{s-\tau}\left(\theta_{\tau} b, f(b, \tau)\right) \mathrm{d} \tau+\int_{0}^{t} \Phi_{t-\tau}\left(\theta_{\tau+s} b, f\left(\theta_{s} b, \tau\right)\right) \mathrm{d} \tau \\
& =\Phi_{t}\left(\Psi_{s}(b, x)\right)+\int_{0}^{t} \Phi_{t-\tau}\left(\theta_{\tau+s} b, f\left(\theta_{s} b, \tau\right)\right) \mathrm{d} \tau \\
& =\Psi_{t}\left(\Psi_{s}(b, x)\right)
\end{aligned}
$$

Remark 2.3 Continuity of the map Ψ defined in (4) is equivalent to the property that the inhomogeneous term

$$
\begin{equation*}
a(t, b):=\int_{0}^{t} \Phi_{t-s}\left(\theta_{s} b, f(b, s)\right) \mathrm{d} s, t \in \mathbb{R}, b \in B \tag{6}
\end{equation*}
$$

is continuous. Suffi ciency follows from continuity of Φ, necessity follows by setting $x=0$ in (4).

Remark 2.4 In Definition 2.1, the range of the map f is taken as $L_{\infty}\left(\mathbb{R}, \mathbb{R}^{d}\right)$. This is due to our intention to treat control system (1) with bounded control range U. Certainly, the consideration of affi ne-linear flows with other ranges of the affi ne termf makes sense; e.g. one could require that the values of f are locally integrable functions. Furthermore, consideration of general vector bundles, which only locally are products, is certainly worthwhile.

Next we clarify the relation between the homogeneous equation described by the linear fbw Φ and the inhomogeneous equation.

Lemma 2.5 Let Ψ be an affi ne-linear flow on the vector bundle $B \times \mathbb{R}^{d}$ and consider initial values $\left(b, x_{1}\right),\left(b, x_{2}\right) \in B \times \mathbb{R}^{d}$. Then the difference of the corresponding solutions is a solution of the homogeneous system with initial value $\left(b, x_{1}-x_{2}\right) \in B \times \mathbb{R}^{d}$; i.e. it satisfies

$$
\Psi_{t}\left(b, x_{1}\right)-\Psi_{t}\left(b, x_{2}\right)=\Phi_{t}\left(b, x_{1}-x_{2}\right) \text { for all } t \in \mathbb{R}
$$

Proof: This is immediate from the definition (4) and linearity of $\Phi_{t}(b, x)$ in the second argument.

The next lemma, which is a modification of Aulbach and Wanner [2, Lemma 3.2], shows existence and continuous dependence of bounded solutions provided that exponential stability holds. We start with the following notational remarks and assumptions.

For an affi ne-linear fbw (4) suppose that the bundle $B \times \mathbb{R}^{d}$ admits a decomposition into the Whitney sum of two vector subbundles

$$
\begin{equation*}
B \times \mathbb{R}^{d}=\mathcal{V}^{1} \oplus \mathcal{V}^{2} \tag{7}
\end{equation*}
$$

where \mathcal{V}^{1} and \mathcal{V}^{2} are invariant under the linear fbw Φ. Thus for every $b \in B$ we have a decomposition

$$
\mathbb{R}^{d}=\mathcal{V}_{b}^{1} \oplus \mathcal{V}_{b}^{2}
$$

into linear subspaces \mathcal{V}_{b}^{1} and \mathcal{V}_{b}^{2} which have dimensions independent of the base point $b \in B$. We identify $\{b\} \times \mathcal{V}_{b}^{i}$ with \mathcal{V}_{b}^{i} and note that the linear fbw Φ leaves the subbundles invariant in the following sense:

$$
\Phi_{t}(b, x) \in \mathcal{V}_{\theta_{t} b}^{i} \text { for } x \in \mathcal{V}_{b}^{i} \text { and } t \in \mathbb{R}
$$

We denote the restricted linear fbws on \mathcal{V}^{i} by Φ_{t}^{i} and write $\left\|\Phi_{t}^{1}(b, \cdot)\right\|$ for the norm of the linear map $x \mapsto \varphi_{t}^{1}(b, x): \mathcal{V}_{b}^{1} \rightarrow \mathcal{V}_{\theta_{t} b}^{i}$. Decompose the affi ne term accordingly,

$$
\begin{equation*}
f(b, s)=f^{1}(b, t)+f^{2}(b, t) \tag{8}
\end{equation*}
$$

with $f^{i}(b, t) \in \mathcal{V}_{b}^{i}, t \in \mathbb{R}, b \in B$. If f^{i} satisfies property (3), then \mathcal{V}^{i} is also invariant under the affi ne-linear fbw Ψ^{i} defined by

$$
\begin{equation*}
\Psi_{t}^{i}(b, x)=\Phi_{t}^{i}(b, x)+\int_{0}^{t} \Phi_{t-s}^{i}\left(b, f^{i}(b, s)\right) \mathrm{d} s \tag{9}
\end{equation*}
$$

Lemma 2.6 Consider the affi ne-linear flow (4) and assume that the following conditions are satisfied:
(i) the linear part Φ of Ψ admits a decomposition (7) into invariant subbundles \mathcal{V}^{1} and \mathcal{V}^{2}, where \mathcal{V}^{1} is stable: there are constants $\alpha>0$ and $K \geq 1$ such for the restricted flow Φ^{1} on \mathcal{V}^{1}

$$
\begin{equation*}
\left\|\Phi_{t}^{1}(b, \cdot)\right\| \leq K e^{-\alpha t} \text { for all } t \geq 0 \text { and all } b \in B \tag{10}
\end{equation*}
$$

(ii) the affi ne term f^{1} defined by (8) satisfies property (3), and there is $M>0$ with

$$
\begin{equation*}
\left\|f^{1}(b)\right\|_{\infty} \leq M \text { for all } b \in B \tag{11}
\end{equation*}
$$

Then for every $b \in B$ there is a unique bounded solution $e^{1}(b, t), t \in \mathbb{R}$, for the flow Ψ^{1}.

If the map

$$
\begin{equation*}
b \mapsto \int_{-\infty}^{0} \varphi^{1}\left(-s, \theta_{s} b, f^{1}(b, s)\right) \mathrm{d} s: B \rightarrow \mathbb{R}^{d} \tag{12}
\end{equation*}
$$

is continuous, then the map $e^{1}: B \times \mathbb{R} \rightarrow \mathbb{R}^{d}$ is continuous.

Proof: The proof consists of two steps.
(I) The linear fbw Φ has only the trivial bounded solution on \mathbb{R}. In fact, let $\varphi(t, b, x)$ be a bounded solution on \mathbb{R}. Then for $t \geq 0$

$$
\begin{aligned}
\|x\| & =\|\varphi(0, b, x)\|=\left\|\varphi\left(t, \theta_{-t} b, \varphi(-t, b, x)\right)\right\| \\
& \leq\left\|\Phi_{t}^{1}\left(\theta_{-t} b, \cdot\right)\right\|\|\varphi(-t, b, x)\| \\
& \leq K e^{-\alpha t} \sup _{s \in \mathbb{R}}\|\varphi(s, b, x)\|
\end{aligned}
$$

The right hand side converges to 0 for $t \rightarrow \infty$ and hence $x=0$ follows.
(II) Now suppose that $f^{1}(b, t)$ is given by (8). Uniqueness of the bounded solution follows immediately from step (I), since by Lemma 2.5 the difference of two bounded solutions is a bounded solution of the homogeneous equation. In order to show existence, define

$$
\begin{equation*}
e^{1}: B \times \mathbb{R} \rightarrow \mathbb{R}^{d} \text { by } e^{1}(b, t):=\int_{-\infty}^{t} \varphi^{1}\left(t-s, \theta_{s} b, f^{1}(b, s)\right) \mathrm{d} s \tag{13}
\end{equation*}
$$

Note that the integral indeed exists, since for all $b \in B$ and $s \leq t$

$$
\left\|\varphi^{1}\left(t-s, \theta_{s} b, f^{1}(b, s)\right)\right\| \leq\left\|\Phi_{t-s}^{1}\left(\theta_{s} b, \cdot\right)\right\| \sup \left\{\left\|f^{1}(b, s)\right\|\right\} \leq K M e^{\alpha(t-s)}
$$

In order to show the continuity property, fix $t_{0} \in \mathbb{R}$ and $b_{0} \in B$. Then, denoting the characteristic function of the interval $(-\infty, t]$ by $\chi_{(-\infty, t]}$, one finds

$$
\begin{aligned}
& \left|e^{1}(b, t)-e^{1}\left(b_{0}, t_{0}\right)\right| \\
& =\left|\int_{-\infty}^{t} \varphi^{1}\left(t-s, \theta_{s} b, f^{1}(b, s)\right) \mathrm{d} s-\int_{-\infty}^{t_{0}} \varphi^{1}\left(t_{0}-s, \theta_{s} b_{0}, f^{1}\left(b_{0}, s\right)\right) \mathrm{d} s\right| \\
& \leq\left|\int_{\mathbb{R}} \chi_{(-\infty, t]}(s) \varphi^{1}\left(t-s, \theta_{s} b, f^{1}(b, s)\right) \mathrm{d} s-\int_{\mathbb{R}} \varphi^{1}\left(t_{0}-s, \theta_{s} b, f^{1}(b, s)\right) \mathrm{d} s\right| \\
& +\left|\int_{0}^{t_{0}} \varphi^{1}\left(t_{0}-s, \theta_{s} b, f^{1}(b, s)\right) \mathrm{d} s-\int_{0}^{t_{0}} \varphi^{1}\left(t_{0}-s, \theta_{s} b_{0}, f^{1}\left(b_{0}, s\right)\right) \mathrm{d} s\right| \\
& +\left|\int_{-\infty}^{0} \varphi^{1}\left(t_{0}-s, \theta_{s} b, f^{1}(b, s)\right) \mathrm{d} s-\int_{-\infty}^{0} \varphi^{1}\left(t_{0}-s, \theta_{s} b_{0}, f^{1}\left(b_{0}, s\right)\right) \mathrm{d} s\right|
\end{aligned}
$$

For $(t, b) \rightarrow\left(t_{0}, b_{0}\right)$, the first summand converges to 0 by Lebesgues theorem on dominated convergence, since

$$
\chi_{(-\infty, t]}(s) \varphi_{t-s}^{1}\left(\theta_{s} b, f^{1}(b, s)\right) \rightarrow \chi_{\left(-\infty, t_{0}\right]}(s) \varphi_{t_{0}-s}^{1}\left(\theta_{s} b_{0}, f^{1}\left(b_{0}, s\right)\right) \text { for all } t, s
$$

and the integrands are bounded. The second summand converges to 0 by the same arguments. The third summand equals

$$
\begin{aligned}
& \left|\int_{-\infty}^{0} \varphi^{1}\left(t_{0}, b, \varphi^{1}\left(-s, \theta_{s} b, f^{1}(b, s)\right)\right) \mathrm{d} s-\int_{-\infty}^{0} \varphi^{1}\left(t_{0}, b_{0}, \varphi^{1}\left(-s, \theta_{s} b_{0}, f^{1}\left(b_{0}, s\right)\right)\right) \mathrm{d} s\right| \\
& =\left|\varphi^{1}\left(t_{0}, b, \int_{-\infty}^{0} \varphi^{1}\left(-s, \theta_{s} b, f^{1}(b, s)\right) \mathrm{d} s\right)-\varphi^{1}\left(t_{0}, b_{0}, \int_{-\infty}^{0} \varphi^{1}\left(-s, \theta_{s} b_{0}, f^{1}\left(b_{0}, s\right)\right) \mathrm{d} s\right)\right| .
\end{aligned}
$$

Then the continuity assumption for the map (12) together with continuity of φ^{1} shows that this converges to 0 .

Now let us show that the function $e^{1}(b, t)$ defined in (13) is a solution for the fbw Ψ^{1}. In fact, formula (4) is satisfied for f^{1}, since

$$
\begin{aligned}
& e^{1}(b, t)=\int_{-\infty}^{t} \varphi^{1}\left(t-s, \theta_{s} b, f^{1}(b, s)\right) \mathrm{d} s \\
& =\int_{0}^{t} \varphi^{1}\left(t-s, \theta_{s} b, f^{1}(b, s)\right) \mathrm{d} s+\int_{-\infty}^{0} \varphi^{1}\left(t-s, \theta_{s} b, f^{1}(b, s)\right) \mathrm{d} s \\
& =\int_{0}^{t} \varphi^{1}\left(t-s, \theta_{s} b, f^{1}(b, s)\right) \mathrm{d} s+\varphi^{1}\left(t, b, \int_{-\infty}^{0} \varphi^{1}\left(-s, \theta_{s} b, f^{1}(b, s)\right) \mathrm{d} s\right) \\
& =\int_{0}^{t} \varphi^{1}\left(t-s, \theta_{s} b, f^{1}(b, s)\right) \mathrm{d} s+\varphi^{1}(t, b, x)
\end{aligned}
$$

for

$$
x:=e(b, 0)=\int_{-\infty}^{0} \varphi^{1}\left(-s, \theta_{s} b, f^{1}(b, s)\right) \mathrm{d} s
$$

Next we generalize this result to hyperbolic systems.
Corollary 2.7 Consider the affi ne-linear flow Ψ in (4) and assume that the following conditions are satisfied:
(i) the linear part Φ of Ψ is hyperbolic. Thus it admits a decomposition (7) into invariant subbundles \mathcal{V}^{1} and \mathcal{V}^{2}, where \mathcal{V}^{1} is stable and \mathcal{V}^{2} is unstable such that the restrictions Φ^{1} and Φ^{2} of Φ to \mathcal{V}^{1} and \mathcal{V}^{2}, respectively, satisfy for constants $\alpha>0$ and $K_{1}, K_{2} \geq 1$ and for all $b \in B$

$$
\left\|\Phi_{t}^{1}(b, \cdot)\right\| \leq K_{1} e^{-\alpha t} \text { for } t \geq 0 \text { and }\left\|\Phi_{t}^{2}(b, \cdot)\right\| \leq K_{2} e^{\alpha t} \text { for } t \leq 0
$$

(ii) the affi ne termsf ${ }^{1}$ and f^{2} defined by (8) satisfy property (3), and there is $M>0$ with

$$
\|f(b)\|_{\infty} \leq M \text { for all } b \in B
$$

Then for every $b \in B$ there is a unique bounded solution $e(b, t), t \in \mathbb{R}$, for the flow Ψ.

If the maps $B \rightarrow \mathbb{R}^{d}$

$$
\begin{equation*}
b \mapsto \int_{-\infty}^{0} \varphi^{1}\left(-s, \theta_{s} b, f(b, s)\right) \mathrm{d} s \text { and } b \mapsto \int_{-\infty}^{0} \varphi^{2}\left(s, \theta_{-s} b, f(b,-s)\right) \mathrm{d} s \tag{14}
\end{equation*}
$$

are continuous, then the map $e: \mathbb{R} \times B \rightarrow \mathbb{R}^{d}$ is continuous.
Proof: Since $\left\|f^{i}(b, t)\right\| \leq\|f(b, t)\|$, property (11) holds for f^{1} and f^{2}. Hence Lemma 11 implies the existence of unique bounded solutions $e^{1}(t, b) t \in \mathbb{R}, b \in$
B. Applying this lemma to the time inverse of Ψ^{2}, one also finds unique bounded solutions $e^{2}(t, b)$. This yields bounded solutions

$$
e(b, t):=e^{1}(b, t)+e^{2}(b, t)
$$

for Ψ. Conversely, a bounded solution for Ψ projects down to bounded solutions of Ψ^{1} and Ψ^{2}. This shows uniqueness of $e(b, t)$. Step (II) of the proof for Lemma 11 applied to the fbw Ψ^{1} and the time inverse of Ψ^{2} implies continuity of the $\operatorname{map}(t, b) \mapsto e(b, t)$.

Corollary 2.7 will allow us to derive results on topological conjugacy. More specifically, we use the following notion of topological conjugacy which respects the skew product structure (cf. [3, Definition 2.3]).
Definition 2.8 Let $\Psi^{1}=\left(\theta^{1}, \psi^{1}\right)$ and $\Psi^{2}=\left(\theta^{2}, \psi^{2}\right)$ be affi ne linear flows on vector bundles $B^{1} \times \mathbb{R}^{d}$ and $B^{2} \times \mathbb{R}^{d}$, respectively. We say that Ψ^{1} and Ψ^{2} are topologically skew conjugate if there exists a skew homeomorphism

$$
H=\left(h_{B}, h\right): B^{1} \times \mathbb{R}^{d} \rightarrow B^{2} \times \mathbb{R}^{d}
$$

such that $H\left(\Psi_{t}^{1}(b, x)\right)=\Psi_{t}^{2}(H(b, x))$; i.e., $h_{B}: B^{1} \rightarrow B^{2}, h: B^{1} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ are maps with

$$
\begin{align*}
\left.h_{B}\left(\theta_{t}^{1} b\right)\right) & =\theta_{t}^{2}\left(h_{B}(b)\right) \text { for all } t \in \mathbb{R} \text { and } b \in B^{1}, \tag{15}\\
h\left(\theta_{t}^{1} b, \psi^{1}(t, b, x)\right) & =\psi^{2}\left(t, h_{B}(b), h(b, x)\right) \text { for all } t \in \mathbb{R}, b \in B^{1}, \text { and } x \in \mathbb{R}^{d} \tag{16}
\end{align*}
$$

Thus topological skew conjugacy requires that the base fbws are topologically conjugate via the homeomorphism h_{B} and (16) holds. The next theorem shows that hyperbolic affi ne-linear fbws are skew conjugate to their linear part.

Theorem 2.9 Consider the affi ne-linear flow Ψ in (4) and assume that the following conditions are satisfied:
(i) the linear part Φ of Ψ is hyperbolic with stable subbundle \mathcal{V}^{1} and unstable subbundle \mathcal{V}^{2};
(ii) the affi ne termsf ${ }^{1}$ and f^{2} defined by (8) satisfy property (3), and there is $M>0$ with

$$
\|f(b)\|_{\infty} \leq M \text { for all } b \in B
$$

(iii) The maps : $B \rightarrow \mathbb{R}^{d}$

$$
b \mapsto \int_{-\infty}^{0} \varphi^{1}\left(-s, \theta_{s} b, f(b, s)\right) \mathrm{d} s \text { and } b \mapsto \int_{-\infty}^{0} \varphi^{2}\left(s, \theta_{-s} b, f(b,-s)\right) \mathrm{d} s
$$

are continuous.
Then Ψ and its linear part Φ are topologically skew conjugate. Moreover, consider two affi ne-linear flows Ψ and $\hat{\Psi}$ satisfying assumptions (i), (ii), and (iii). Then they are topologically skew conjugate, if and only if the base flows are topologically conjugate and the dimensions of the stable subbundles coincide.

Proof: The second assertion follows from the first one and [3, Corollary 3.4], which states that two hyperbolic linear fbws are topologically skew conjugate iff their base fbws are topologically conjugate and the dimensions of their stable subbundles coincide. Hence it remains to show that Ψ and its linear part Φ are topologically skew conjugate. Their base fbws coincide, hence we can take h_{B} as the identity on B. Define h as the translation with respect to the unique bounded solutions e, which exist by Corollary 2.7:

$$
h(b, x)=x-e(b, 0), \quad(b, x) \in B \times \mathbb{R}^{d}
$$

The map $H: B \times \mathbb{R}^{d} \rightarrow B \times \mathbb{R}^{d}$ defined by

$$
H(b, x)=(b, h(b, x)), \quad(b, x) \in B \times \mathbb{R}^{d}
$$

is continuous and bijective with continuous inverse

$$
H^{-1}(b, x)=(b, x+e(b, 0)),(b, x) \in B \times \mathbb{R}^{d}
$$

Hence it is a skew homeomorphism. By Lemma 2.5, the difference of the solutions for the initial values x and $e(b, 0)$ is a solution of the homogeneous system with initial value $(b, x-e(b, 0)) \in B \times \mathbb{R}^{d}$,

$$
\Psi_{t}(b, x)-\Psi_{t}(b, e(b, 0))=\Phi_{t}(b, x-e(b, 0)) \text { for all } t \in \mathbb{R}
$$

Since $e\left(\theta_{t} b, 0\right)=e(b, t)$, we find

$$
\begin{aligned}
h\left(\theta_{t}^{1} b, \psi(t, b, x)\right) & =\psi(t, b, x)-e\left(\theta_{t} b, 0\right) \\
& =\psi(t, b, x)-e(b, t) \\
& =\psi(t, b, x)-\psi(t, b, e(b, 0)) \\
& =\varphi(t, b, x-e(b, 0)) \\
& =\varphi(t, b, h(b, x))
\end{aligned}
$$

Hence equality (16) holds and $H=\left(\operatorname{id}_{B}, h\right)$ is the desired conjugacy.

3 Conjugacy in affi ne control system

In this section we show that control systems of the form (1) define affi ne-linear fbws. In case of hyperbolicity, they satisfy the assumptions of Theorem 2.9 and hence we obtain a classification of these control systems with respect to topological skew conjugacy.

Consider an affi ne control system

$$
\begin{equation*}
\dot{x}=A_{0} x+a_{0}+\sum_{i=1}^{m} u_{i}(t)\left[A_{i} x+a_{i}\right], u=\left(u_{1}, \ldots, u_{m}\right) \in \mathcal{U} \tag{17}
\end{equation*}
$$

given by $\left\{\left(A_{0}, a_{0}\right), \cdots,\left(A_{m-1}, a_{m-1}\right)\right\}$, where $A_{i} \in \mathfrak{g l}(d, \mathbb{R}), a_{i} \in \mathbb{R}^{d}$ for $i=$ $0, \ldots, m$, and the control range $U \subset \mathbb{R}^{m}$ is assumed to be compact and convex.

Remark 3.1 A special case of (1) is

$$
\begin{equation*}
\dot{x}=A_{0} x+a_{0}+\sum_{i=1}^{m_{1}} u_{i}(t) A_{i} x+B u_{0}(t) \tag{18}
\end{equation*}
$$

where B is a $d \times m_{2}$ matrix with columns $b_{i} \in \mathbb{R}^{d}$. This follows by defining $m=$ $m_{1}+m_{2}, A_{i}=0$ for $i=m_{1}+1, \ldots, m_{1}+m_{2}$, and $a_{i}=0$ for $i=1, \ldots, m_{1}, a_{i}=b_{i}$ for $i=m_{1}+1, \ldots, m_{1}+m_{2}$. Note also that

$$
\dot{x}=A_{0} x+u(t) A_{1} x+u(t) a_{1}
$$

is not of the form (18).
System (17) can be written as

$$
\dot{x}=A(u(t)) x+a(u(t)),
$$

where

$$
A(u):=A_{0}+\sum_{i=1}^{m} A_{i} u_{i} \text { and } a(u):=\sum_{i=1}^{m} u_{i} a_{i}+a_{0}, u \in \mathbb{R}^{m}
$$

For $u \in \mathcal{U}$, the fundamental solution $X_{u}(t, s)$ of the homogeneous equation is given by

$$
\frac{d}{d t} X_{u}(t, s)=A(u(t)) X_{u}(t, s), X_{u}(s, s)=I, t, s \in \mathbb{R}
$$

Then the solutions $x(t)=\psi\left(t, s, x_{0}, u\right)$ of (17) with initial condition $x(s)=x_{0}$ are given by

$$
x(t)=X_{u}(t, s) x_{0}+\int_{s}^{t} X_{u}(t, \tau) a(u(\tau)) \mathrm{d} \tau, t \in \mathbb{R}
$$

If $s=0$ we omit this argument, i.e., $\psi\left(t, x_{0}, u\right):=\psi\left(t, 0, x_{0}, u\right)$.
Proposition 3.2 Under the assumptions above, control system (17) defines an affi ne-linear flow Ψ given by (2) on the vector bundle $\mathcal{U} \times \mathbb{R}^{d}$, where \mathcal{U} is endowed with a metric compatible with the weak* topology on $L_{\infty}\left(\mathbb{R}, \mathbb{R}^{m}\right)$ which can be identified with the dual space of $L_{1}\left(\mathbb{R}, \mathbb{R}^{m}\right)$.

Proof: Since this system is control-affi ne, [5, Lemma 4.3.2] implies that the corresponding fbw Ψ on $\mathcal{U} \times \mathbb{R}^{d}$ is continuous, uniformly on bounded t-intervals. Define

$$
f: \mathcal{U} \rightarrow L_{\infty}\left(\mathbb{R}, \mathbb{R}^{d}\right), f(u, t):=a(u(t))=\sum_{i=1}^{m} u_{i}(t) a_{i}+a_{0}, u \in \mathcal{U}, t \in \mathbb{R}
$$

Then $f(u, t+s)=a(u(t+s))=f\left(\theta_{s}(u), t\right)$. We can write the variations-ofconstants formula as

$$
\psi\left(t, x_{0}, u\right)=X_{u}(t, 0) x_{0}+\int_{0}^{t} X_{u}(t, s) f(u, s) \mathrm{d} s
$$

Observe that the columns of $X_{u}(t, s)$ are the solutions of the bilinear control system

$$
\dot{x}=A(u(t)) x \text { with } x(s)=e_{i},
$$

where e_{i} is the i th standard basis vector in \mathbb{R}^{d}. Thus they depend continuously on (t, u). Furthermore, $X_{u}(t, s)=X_{u(s+\cdot)}(t-s, 0)$. We see that Ψ and the fbw Φ associated with the homogeneous system $\dot{x}=A(u(t)) x, u \in \mathcal{U}$, satisfy

$$
\Psi_{t}(u, x)=\Phi_{t}(u, x)+\int_{0}^{t} \Phi_{t-s}\left(\theta_{s} u, f(u, s)\right) \mathrm{d} s \text { for }(t, u, x) \in \mathbb{R} \times \mathcal{U} \times \mathbb{R}^{d}
$$

The following theorem is the main result of this paper. It presents a classification of affi ne (or inhomogeneous bilinear) control systems with respect to topological skew conjugacy.

Theorem 3.3 Consider affi ne control system (17) with compact and convex control range $U \subset \mathbb{R}^{m}$, and its homogeneous part

$$
\begin{equation*}
\dot{x}=A_{0} x(t)+\sum_{i=1}^{m} u_{i}(t) A_{i} x(t)=A(u(t)) x(t) \tag{19}
\end{equation*}
$$

with associated flows Ψ and Φ on $\mathcal{U} \times \mathbb{R}^{d}$, respectively. Assume that the linear flow Φ is hyperbolic. Then Ψ and Φ are topologically skew conjugate. Moreover, consider two affi ne control systems of the form (17). Then the associated affinelinear flows are topologically skew conjugate if and only if the shift flows on the sets of control functions are topologically conjugate and the dimensions of the stable subbundles coincide.

Proof: We only have to verify the assumptions of Theorem 2.9. The hyperbolicity condition (i) holds by assumption. Concerning condition (ii), the affi ne term is here given by

$$
f(u, t):=a(u(t))=\sum_{i=1}^{m} u_{i}(t) a_{i}+a_{0}
$$

and, as noted in the proof of Proposition 3.2, property (3) holds:

$$
f(u, t+s)=a(u(t+s))=\sum_{i=1}^{m} u_{i}(t+s) a_{i}+a_{0}=f\left(\theta_{s}(u), t\right)
$$

The projections to the stable and unstable subbundles are linear. Since $f(u, t)$ is a linear combination of the a_{i}, its projections are determined by the projections of the a_{i}. Then property (3) also holds for the projections of f to the stable and the unstable subbundles. Uniform boundedness follows by compactness of the control range U.

It remains to show the continuity properties in (iii). The integrand in

$$
\int_{-\infty}^{0} \varphi^{1}\left(-s, \theta_{s} u, f(u, s)\right) \mathrm{d} s=\int_{0}^{\infty} \varphi^{1}\left(s, \theta_{-s} u, \sum_{i=1}^{m} u_{i}(s) a_{i}+a_{0}\right) \mathrm{d} s
$$

is bounded by

$$
\begin{aligned}
\left|\varphi\left(s, \theta_{-s} u, \sum_{i=1}^{m} u_{i}(s) a_{i}+a_{0}\right)\right| & =\left|\Phi_{s}^{1}\left(\theta_{-s} u, \cdot\right)\left[\sum_{i=1}^{m} u_{i}(\tau) a_{i}+a_{0}\right]\right| \\
& \leq\left\|\Phi_{s}^{1}\left(\theta_{-s} u, \cdot\right)\right\|\left|\sum_{i=1}^{m} u_{i}(\tau) a_{i}+a_{0}\right| \\
& \leq K_{1} e^{-\alpha t} \sup _{u \in U}\left|\sum_{i=1}^{m} u_{i} a_{i}+a_{0}\right|
\end{aligned}
$$

Hence, invoking Lebesgues theorem on dominated convergence, continuity follows if the integrand converges pointwise for $u \rightarrow u^{0}$ weak * in \mathcal{U}. One has

$$
\begin{aligned}
& \left|\varphi\left(s, \theta_{-s} u, f(u, s)\right)-\varphi\left(s, \theta_{-s} u^{0}, f\left(u^{0}, s\right)\right)\right| \\
& \leq\left|\varphi\left(s, \theta_{-s} u, \sum_{i=1}^{m} u_{i}(s) a_{i}+a_{0}\right) \mathrm{d} s-\varphi\left(s, \theta_{-s} u^{0}, \sum_{i=1}^{m} u_{i}(s) a_{i}+a_{0}\right) \mathrm{d} s\right| \\
& +\left|\varphi\left(s, \theta_{-s} u^{0}, \sum_{i=1}^{m} u_{i}(s) a_{i}+a_{0}\right)-\varphi\left(s, \theta_{-s} u^{0}, \sum_{i=1}^{m} u_{i}^{0}(s) a_{i}+a_{0}\right)\right|
\end{aligned}
$$

The variation-of constants formula shows that the first summand equals

$$
\begin{aligned}
& \int_{0}^{s}\left[X_{\theta_{-s} u}(t, \tau)-X_{\theta_{-s} u^{0}}(t, \tau)\right] a(u(\tau)) \mathrm{d} \tau \\
& \leq \int_{0}^{s}\left\|X_{\theta_{-s} u}(s, \tau)-X_{\theta_{-s} u^{0}}(s, \tau)\right\| \mathrm{d} \tau \sup _{u \in U}\left|\sum_{i=1}^{m} u_{i} a_{i}+a_{0}\right|
\end{aligned}
$$

The integrand is bounded and converges pointwise to 0 . Hence the first summand converges to 0 for $u \rightarrow u_{0}$.

The second summand equals

$$
\begin{aligned}
& \int_{0}^{s} X_{\theta_{-s} u^{0}}(s, \tau)\left[a(u(\tau))-a\left(u^{0}(\tau)\right)\right] \mathrm{d} \tau \\
& =\int_{\mathbb{R}} \chi_{[0, s]}(\tau) X_{\theta_{-s} u^{0}}(s, \tau)\left[a(u(\tau))-a\left(u^{0}(\tau)\right)\right] \mathrm{d} \tau
\end{aligned}
$$

Since a is affi ne linear, weak convergence of u to u^{0} implies that also $a(u(\cdot))$ converges weak ${ }^{*}$ to $a\left(u^{0}(\cdot)\right)$ in $L_{\infty}\left(\mathbb{R}, \mathbb{R}^{d}\right)$, hence also the second summand converges to 0 and continuity of the first map in (iii) is established. Analogously, one shows continuity of the second map.

Remark 3.4 Criteria for topological conjugacy of the shift flows on the base space of control functions are given in [3, Corollary 6.3].

Remark 3.5 Theorem 3.3, in particular, applies to linear control systems $\dot{x}=$ $A x+B u$ with compact convex control range. For hyperbolic matrix A, it follows
that these control systems are topologically conjugate to the uncontrolled system $\dot{x}=A x$; the conjugacy map $h: \mathcal{U} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is $h(u, x)=x-e(u, t)$, where $e(u, t):=-A^{-1} B u(t)$. This is similar to the Hartman-Grobman theorem by Baratchart, Chyba, and Pomet [4, Theorem 3.7], who show that (locally around an equilibrium and for small control ranges) control systems are conjugate to the uncontrolled system obtained by linearization about the equilibrium.

References

[1] A.A. Agrachev and Y. L. Sachkov, Control Theory from a Geometric Viewpoint, Springer 2004.
[2] B. Aulbach and T. Wanner, Integral manifolds for Carathéodory type differential equations in Banach spaces, in Six Lectures on Dynamical Systems, B. Aulbach and F. Colonius, eds., World Scientific, 1996, pp. 45-119.
[3] V. Ayala, F. Colonius and W. Kliemann, On topological equivalence of linear flows with applications to bilinear control systems. J. Dynamical and Control Systems 13(2007), 337-362.
[4] L. Baratchart, M. Chyba, and J.-P. Pomet, A Grobman-Hartman theorem for control systems, J. Dynamics and Differential Equations, 19(2007), 95-107.
[5] F. Colonius and W. Kliemann, The Dynamics of Control, Birkhäuser, Boston, 2000.
[6] Nguyen Dinh Cong, Topological Dynamics of Random Dynamical Systems, Oxford Math. Monogr., Clarendon Press (1997).
[7] D.L. Elliott, Bilinear Control Systems. Matrices in Action. Kluwer Academic Publishers.
[8] C. Robinson, Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, CRC Press, 1999.

[^0]: *Partially supported by CAPES grant n° 4741/07-2

