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1. Introduction

A prominent question in neurophysiology concerns the limiting factors of the reliability of neu-
ronal responses to given stimuli. In this work we focus on a particular aspect of this intricate issue,
namely the impact of channel noise, which is generated by random gating dynamics of the ion
channels in membrane patches of finite size. Since the work of Lecar and Nossal [1,2] it became
clear, however, that not only the synaptic noise but also the randomness of the ion channel gating
itself may cause threshold fluctuations in neurons [3]. Therefore, channel noise which stems from
the stochastic nature of the ion channel dynamics must be taken into account [3]. It impacts such
features as the threshold to spiking and the spiking rate itself [4–6], the anomalous noise-assisted
enhancement of transduction of external signals, i.e., the phenomenon of Stochastic Resonance
[7–12] and related, the efficiency for synchronization [13–15], to name but a few such interesting
phenomena. The origin of the channel noise [3] is basically due to fluctuations of the mean num-
ber of open ion channels around the corresponding mean values. Therefore, the strength of the
channel noise is mainly determined by the number of ion channels participating in the generation
of action potentials.

In this paper we investigate within a stochastic generalization of the Hodgkin–Huxley model
the influence of the channel noise on the mean interspike intervals and on the coherence of the
spiking activity produced within the cell membrane containing a certain amount of ion channels.
This is distinct from the effects of fluctuations due to synaptic noise which were studied within
generalized Hodgkin–Huxley models [16,17]. The effect of coherence resonance describes a phe-
nomena of self-synchronization of a system due to noise. It was observed for single excitable
dynamics, e.g., for the Fitz Hugh–Nagumo model [18] or for a Hodgkin–Huxley model taking
into account the influence of synaptic noise [16], and, as well as for neuronal networks [19,20].
2. The Hodgkin–Huxley model

Starting with the well-established model of Hodgkin and Huxley [21] we consider a cell-mem-
brane patch of area A as an electrical capacitor possessing the specific area capacitance C. The
membrane separates two ionic bath solutions (which in vivo correspond to the interior and the
exterior of the excitable cell) with different concentrations of the ions of different sorts, mainly
potassium, K+, sodium, Na+, and chloride, Cl� ions. The macroscopic concentration differences
are kept constant. In the cell this task is accomplished by ATP-driven ionic pumps. Furthermore,
the ionic baths are on the average electrically neutral. However, due to the different ionic concen-
trations on the opposite sides of the semi-permeable membrane, the membrane becomes charged.
As a consequence, an equilibrium transmembrane electrical potential difference emerges. The lipid
membrane creates an almost impenetrable barrier for the ions. However, they can flow across the
membrane through special ion selective pores created by specialized membrane proteins—the ion
channels [22]. The specific potassium, IK, and sodium, INa, ion currents through the open ion
channels are approximately proportional to the differences of the transmembrane potential V
and the specific (for the particular sort of ions) equilibrium potentials, EK and ENa, respectively.
The stochastically averaged, mean conductances, GNa(m,h) and GK(n), are, however, strongly
nonlinear functions of V. This nonlinearity emerges due to the gating dynamics (see below). There



                                                          237
exists also the leakage current IL. If the membrane is driven by the external current Iext(t), the sum
of the specific ion currents and the capacitive current, IC, must be equal to Iext(t) as a consequence
of the charge conservation. Therefore, the equation for the transmembrane potential V(t) reads
C
d

dt
V þ GKðnÞ ðV � EKÞ þ GNaðm; hÞ ðV � ENaÞ þ GL ðV � ELÞ ¼ IextðtÞ: ð1Þ
For a squid giant axon, the parameters in Eq. (1) read ENa = 50 mV, EK = �77 mV,
EL = �54.4 mV, and C = 1 lF/cm2. Furthermore, the leakage conductance is assumed to be con-
stant, GL = 0.3 mS/cm2. On the contrary, the sodium and potassium conductances are controlled
by the voltage-dependent gating dynamics of single ion channels and are proportional to their
respective numbers. These latter assumptions have been fully confirmed in the single-channel
recordings by Neher, Sakmann, and colleagues which indeed have proven that ion channels
undergo the opening–closing stochastic gating dynamics [23]. In the Hodgkin–Huxley model,
the opening of the potassium ion channel is governed by four identical activation gates character-
ized by the opening probability n. The channel is open when all four gates are open. In the case of
sodium channel, the dynamics is governed by the three independent, identical fast activation gates
(m) and an additional slow, so-termed inactivation gate (h). The independence of the gates implies
that the probability PK,Na of the occurrence of the conducting conformation is PK = n4 for a
potassium channel and PNa = m3 h for a sodium channel, respectively. In the mean-field descrip-
tion, the macroscopic potassium and sodium conductances thus read
GKðnÞ ¼ gmax
K n4; GNaðm; hÞ ¼ gmax

Na m3h; ð2Þ

where gmax

K ¼ 36 mS=cm2 and gmax
Na ¼ 120 mS=cm2 denote the maximal conductances (when all

channels are open). The two-state, opening–closing dynamics of the gates is given by the voltage
dependent opening and closing rates ax(V) and bx(V) (x = m,h,n), i.e.,
amðV Þ ¼
0:1ðV þ 40Þ

1� exp½�ðV þ 40Þ=10� ; ð3aÞ

bmðV Þ ¼4 exp½�ðV þ 65Þ=18�; ð3bÞ
ahðV Þ ¼0:07 exp½�ðV þ 65Þ=20�; ð3cÞ
bhðV Þ ¼f1þ exp½�ðV þ 35Þ=10�g�1

; ð3dÞ

anðV Þ ¼
0:01ðV þ 55Þ

1� exp½�ðV þ 55Þ=10� ; ð3eÞ

bnðV Þ ¼0:125 exp½�ðV þ 65Þ=80�: ð3fÞ
Hence, the dynamics of the opening probabilities for the gates are given by
_x ¼ axðV Þð1� xÞ � bxðV Þx; x ¼ m; h; n: ð4Þ

The voltage equations (1) and (2) and the rate equations of the gating dynamics (3) and (4) define
the original, purely deterministic Hodgkin–Huxley model [21] for the squid giant axon.

The dynamics of the Hodgkin–Huxley model exhibits a complex and rich behavior which sen-
sitively depends on the model parameters. For the squid giant axon parameters, the correspond-
ing, non-driven dynamics possesses a single fixed point and does not exhibit a spiking activity in
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the absence of external stimulus, Iext(t) = 0. However, if a constant stimulus, Iext, is applied, the
fixed point loses its stability with increasing strength Iext upon Iext P I2 � 9.763 lA/cm2 [24,25].
For such a super-threshold current strength, the membrane exhibits a periodic spiking activity
which reflects the presence of a stable limit cycle, see Fig. 1. The period of the solution T is depict-
ed in Fig. 2. It is either zero for the stable fixed point solution or assumes a certain value for the
stable oscillatory solution at given driving strength. At the point I2, where a sub-critical Hopf-bi-
furcation takes place, a jump of the period T occurs. Upon decreasing the driving current
strength, the spiking dynamics still persists below the threshold for excitation, i.e., also for
I < I2, until the diminishing current reaches the sub-critical value I1 � 6.26 lA/cm2. Below this
value, the limit cycle loses stability and the spiking activity vanishes. In conclusion, for I1 <
Iext < I2, both the stable fixed point and the stable limit cycle can coexist.

For a sinusoidal driving, i.e., Iext(t) = A sin(Xt), where A denotes the amplitude and X the
angular driving frequency, the dynamics becomes more intricate as compared to the case with
a constant driving force Iext. What is most important for the generation of action potentials is
Fig. 1. The bifurcation diagram for the emergence of spiking behavior for the deterministic Hodgkin–Huxley model.
Solid lines correspond to stable and dotted lines to unstable solutions. The equilibrium voltage (fixed point) and the
minimal and maximal voltage amplitudes, respectively, of the limit cycle oscillations are plotted against the constant
driving current strength. There exists a hysteretic behavior for the range 6.26 < Iext < 9.763 lA/cm2 where the stable
limit cycle exhibiting firing events and the stable fixed point coexist.

Fig. 2. Periodicity T of the solution of the driven Hodgkin–Huxley model (solid lines: stable solutions, dotted lines:
unstable solutions). For force values larger than 6.26 lA/cm2 a stable periodic spiking solution exists, see in Fig. 1. A
horizontal line at zero indicates the existence of a non-spiking solution.
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the frequency dependence of the threshold amplitude [26]. First systematic studies on this topic
were performed by Aihara and collaborators [27].
3. Stochastic generalization of Hodgkin–Huxley model

Operating with an average number of open channels, disregards the corresponding number
fluctuations, i.e., the so-called channel noise [3,23]. Therefore, the Hodgkin–Huxley model is val-
id, strictly speaking, only within the limit of a very large system size where these fluctuations can
be neglected. In contrast, the role of internal fluctuations in membrane patches of finite size can-
not be neglected a priori. In fact, there are studies which evidence unambiguously that the channel
noise can be functionally important for the excitable dynamics [3–5,9,10].

To account for the effect of channel noise, we use a generalization of the model introduced orig-
inally by Fox and Lu [28] which presents a stochastic generalization of the Hodgkin–Huxley equa-
tions (1–4). Due to the Kramers–Moyal expansion of the corresponding master equations, the
dynamics of the gating variables is given by the following Langevin equation, interpreted here
in the stochastic interpretation of Itô [29–31], reading
_x ¼ axðV Þ ð1� xÞ � bxðV Þ xþ nxðtÞ; x ¼ m; h; n ð5Þ

driven by independent Gaussian white noise sources nx(t) of vanishing mean which take into ac-
count the fluctuations of the number of open gates. The (multiplicative) noise strengths depend on
both, the membrane voltage and the gating variables. In precise terms, the noise correlations as-
sume the following form for an excitable membrane patch with NNa sodium and NK potassium
ion channels:
hnmðtÞnmðt0Þi ¼
2

N Na

amðV Þð1� mÞ þ bmðV Þm
2

dðt � t0Þ; ð6aÞ

hnhðtÞnhðt0Þi ¼
2

N Na

ahðV Þð1� hÞ þ bhðV Þh
2

dðt � t0Þ; ð6bÞ

hnnðtÞnnðt0Þi ¼
2

N K

anðV Þð1� nÞ þ bnðV Þn
2

dðt � t0Þ: ð6cÞ
To ensure that at all times the confinement of the gating variables take on values between 0 (all
gates are closed) and 1 (all gates are open) only, we implemented numerically reflecting boundaries
at 0 and 1. With the assumption of homogeneous ion channel densities, qNa =
6 · 1013 m�2 = 60 lm�2 and qK = 1.8 · 1013 m�2 = 18 lm�2, the ion channel numbers are given by
NNa ¼ qNaA; N K ¼ qKA: ð7Þ
4. Noise-induced spontaneous spiking

We investigate numerically the influence of channel noise for different external stimulation with
respect of the coherence of the resulting spiking behavior. The numerical integration of Eqs. (1)
and (5) is carried out by the standard Euler algorithm with the step size Dt � 2 · 10�3 ms. The
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‘‘Numerical Recipes’’ routine ran2 is used for the generation of independent random numbers [32]
with the Box–Muller algorithm providing the Gaussian distributed random numbers. From the
stochastic voltage signal V(t) we extract a point process of spike occurrences {ti}
Fig. 3
sizes:
(botto
produ
capab
uðtÞ :¼
XN

i¼1

dðt � tiÞ; ð8Þ
where N is the total number of spikes occurring during the elapsed time interval. The occurrence
of a spike in the voltage signal V(t) is detected by upward-crossing a certain detection threshold
value V0 = 0. Notable, the threshold can be varied over a wide range with no effect on the result-
ing spike train dynamics.

For small internal noise strengths, i.e., large patch sizes, the occurrence of an action potential is
very rare in the autonomous, non-driven regime: Iext = 0, see Fig. 3 (bottom panel). Upon
decreasing the patch size A we observe an increasing spiking activity due to the strengthening
of internal channel noise, see Fig. 3.

The interspike intervals Ti are given by the spike occurrences {ti}: Ti: = ti+1 � ti. A quantity
which describes the spiking behavior more quantitatively is the mean interspike interval hTi which
is the inverse spiking rate; i.e.,
hT i ¼ lim
N!1

1

N

X
i

T i: ð9Þ
Channel noise acting on the electric behavior of the cell-membrane patch determines the gen-
eration of action potentials. Some qualitative considerations show that with increasing channel
noise the generation of action potentials raises for sub-threshold driving (Iext < I1). However,
for a supra-threshold driving (Iext > I2), the skipping events gain influence and channel noise could
suppress the generation of action potentials. Then, upon increasing the channel noise strength the
spiking rate is reduced and the mean interspike interval starts rising, starting from the value for
the deterministic case, see Fig. 4. Because for small patch sizes channel noise dominates the spike
generation the mean interspike intervals become shorter as compared to the case of deterministic
. Three simulated realization of the voltage dynamics in absence of external driving (Iext = 0) and for three patch
top panel A ¼ 1 lm2, middle panel A ¼ 16 lm2, and bottom panel A ¼ 128 lm2. With decreasing patch size
m-to-top) the fluctuations of the number of open ion channels gain influence; therefore more action potentials are
ced for the smallest patch size, whereas for very large patch sizes the intrinsic channel noise strength is hardly
le of producing voltage spikes.



a

b

Fig. 4. The dependence of the mean interspike interval hTi vs. patch size A for sub-threshold constant driving currents
(Iext < 6.26 lA/cm2) is depicted in (a): Iext = 0 (solid line), Iext = 2 lA/cm2 (dashed line), Iext = 4 lA/cm2 (dotted line),
Iext = 6 lA/cm2 (dash-dotted line), and for an intermediate driving (Iext = 9 lA/cm2 – dotted line) and a strong driving
(Iext = 11 lA/cm2 – solid line) in (b). As a point of reference we depicted again the curve for the sub-threshold driving
Iext = 6 lA/cm2 (dash-dotted line) in (b). The small arrow placed to the right of (b) depicts the deterministic spiking
period T for Iext = 11 lA/cm2.

                                                          241
driving. As a result, a bell-shaped behavior of the dependence of the mean interspike interval on
the patch sizes is observed. The peak height is more pronounced for weak, but still supra-thresh-
old driving. In case of an intermediate current driving, i.e., (I1<Iext < I2), for which both the fixed
point and the spiking solution coexist, the limiting value of the spiking period in the deterministic
limit A!1 depends on the size of the deterministic basins of attraction and the initial condi-
tions, respectively (not shown).

For a sinusoidal driving, i.e., Iext: = Asin(Xt), a synchronization of the firing events with the
externally applied supra-threshold driving for large patch sizes could be observed. In contrast,
for small membrane patches the channel noise reigns the spiking dynamics [13]. Due to skipping
events, a perfect frequency synchronization could not be attained.
5. Coherence resonance

A quantity that sensitively measures the regularity of a spike train is the so-called coefficient of
variation (CV), or the relative dispersion of the interspike interval distribution. This regularity-
measure reads explicitly,
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CV :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hT 2i � hT i2

q

hT i : ð10Þ
It involves the mean interspike interval, given by Eq. (9), and the mean squared interval
hT 2i :¼ limN!1

P
ðtiþ1 � tiÞ2=N . For a fully uncorrelated sequence of spikes, which corresponds

to the Poissonian spike train, this coefficient of variation would assume the value CV = 1. For
a more ordered spike train, the coefficient of variation assumes values less then one, CV < 1.
For a purely deterministic response, the CV equals zero.

Our Figs. 5 and 6 depict the coefficient of variation versus increasing system size A.
Whereas the firing rate decreases monotonically with respect to the patch area, the CV reveals
the phenomenon of intrinsic coherence resonance [10]: at an optimal dose of internal noise,
i.e., an optimal size of the cell membrane patch near A ¼ 1 lm2, the CV exhibits a minimum,
where the spike train becomes predominantly more ordered. The spiking activity possesses an
internal rhythm which withstands the external disturbances. This phenomenon is revealed for
any sub-threshold driving, but the optimal patch size increases, see in Fig. 5. This shift of the
minimum of CV is due to the competition between externally applied stimulus and the influ-
ence of the intrinsic noise. In contrast, for strong supra-threshold driving, see in Fig. 6, one
finds a crossover towards a deterministic firing dynamics when A!1 with a corresponding
. The dependence of the coefficient of variation CV in Eq. (10) vs. patch size A for sub-threshold constant driving
ts (Iext < 6.26 lA/cm2) is depicted in (a): Iext = 0 (solid line), Iext = 2 lA/cm2 (dashed line), Iext = 4 lA/cm2

d line), Iext = 6 lA/cm2 (dash-dotted line), and for an intermediate (Iext = 9 lA/cm2 – dotted line) and a strong
g (Iext = 11 lA/cm2 – solid line) in (b). As a point of reference we depicted again the curve for the sub-threshold
g Iext = 6 lA/cm2 (dash-dotted line) in (b). The coefficient of variation evidences the phenomenon of intrinsic
ence resonance for both, sub-threshold and supra-threshold driving.



Fig. 6. The dependence of the coefficient of variation CV in Eq. (10) versus increasing patch size A for an oscillatory
driving Iext = Asin (Xt): A = 0.0 lA/cm2 (solid line—absence of driving), A = 1.0 lA/cm2, X = 0.3 ms�1 (dashed line—
below ac-threshold), and A = 3.0 lA/cm2, X = 0.3 ms�1 (dotted line – above ac-threshold). Note, that the threshold
amplitude for sinusoidal driving depends on the frequency. For X = 0.3 ms�1: Athreshold = 1.55 lA/cm2. The
phenomenon of intrinsic coherence resonance is observed.
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vanishing of the coefficient of variation. However, for both, a constant and a sinusoidal, time-
dependent driving a maximum of the CV can be observed at intermediate channel noise
strengths at near threshold driving strengths, note the dotted line in Fig. 6. In this regime,
the noise does not reign the spiking behavior, but still hinders the deterministic spiking due
to skipping events. The irregular spiking activity is more pronounced at weak supra-threshold
signals. For strong driving this region of maximal disordered spiking could not be observed
and a plateau-like structure arises. This indicates a direct cross-over from a totally noise-in-
duced spiking behavior to a purely deterministic spiking regime with decreasing channel noise
strength.
6. Conclusions

In summary, we have investigated the spiking activity in a noisy generalization of the Hodgkin–
Huxley model, which incorporates a constant or sinusoidal time-dependent current driving and
describes the role of spontaneous fluctuations of the membrane conductivity due to the individual
ion channel dynamics—the so-called channel noise. The excitable membrane patch exhibits a
noise-induced, rhythmic spiking activity at an optimal patch size. This effect can be regarded as
intrinsic coherence resonance in presence of an optimal dose of intrinsic noise. In presence of
an externally applied sub-threshold driving that is either constant or temporally sinusoidal, this
phenomena is still detectable, although the most regular spiking behavior is shifted towards larger
patch sizes. For weak supra-threshold driving, i.e., in presence of a stable and oscillatory spiking
solution, a regime of patch sizes with worsening rhythmic spiking behavior shows up. This phe-
nomena occurs due to the noise-induced skipping events at supra-threshold inputs. This behavior
is accompanied by a maximum of the mean interspike period versus increasing patch size.

We share the confident belief that our investigations on the channel noise induced spiking activ-
ity in an archetypal model provide some new insights into the underlying physical principles and
mechanism of neuronal signaling.
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