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Abstract. Skyline processing has received considerable attention in
the last decade, in particular when filtering the most preferred objects
from a multi-dimensional set on contradictory criteria. Most of the work
on Skyline computation focus on conventional databases, but stream
data analysis becomes a high relevant topic in various academic and
business fields. Nowadays, an enormous number of applications require
the analysis of time evolving data and therefore the study of continuous
query processing has recently attracted the interest of researchers all
over the world. In this paper, we propose a novel algorithm called SLS
for evaluating Skyline queries over continuous settings, and empirically
demonstrate the advantage of this algorithm on artificial and real data.
Our algorithm continuously monitors the incoming data and therefore
is able to maintain the Skyline incrementally. For this, SLS utilizes the
lattice structure a Skyline query constructs and analyzes the Skyline in
linear time.

Keywords Streams, Skyline, Preferences, Realtime

1 Introduction

Today, data processed by humans as well as computers is very large, rapidly
increasing and often in form of data streams. Users want to analyze this data
to extract personalized and customized information in order to learn from this
ever-growing amount of data, cp. e.g., [1,2,3]. Many modern applications such
as network monitoring, financial analysis, infrastructure manufacturing, sensor
networks, meteorological observations, or social networks require query processing
over data streams, cp. for example [4,5,6]. Therefore stream data processing is a
highly relevant topic today.

A stream is a continuous unbounded flow of data objects made available over
time. Due to the continuous and potentially unlimited character of stream data,
it needs to be processed sequentially and incrementally. However, queries on
streams run continuously over a period of time and return different results as new
data arrive. That means, looking on stream data twice is not possible. Hence,
analyzing streams can be considered as a difficult and complex task which is in
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the focus of current research. Many scientists all over the world try to process
and to analyze streams to extract important information from such continuous
data flows. Babu and Widom [7], e.g., focus on the problem, how to define and
evaluate continuous queries over data streams.

On the other hand, preference queries [8,9,10,11,3] have received considerable
attention in the past, due to their use in selecting the most preferred items,
especially when the filtering criteria are contradictory. In particular, Skyline
queries [12,13,14], a subset of preference queries, have been thoroughly studied
by the database community to filter high relevant information from a dataset. A
Skyline query, also known as Pareto preference query, selects those objects from a
dataset D that are not dominated by any others. An object p having d attributes
(dimensions) dominates an object q, if p is better than q in at least one dimension
and not worse than q in all other dimensions, for a defined comparison function.
This dominance criterion defines a partial order and therefore transitivity holds.
The Skyline is the set of points which are not dominated by any other point of D.
Without loss of generality, the Skyline with the min function for all attributes is
used in this paper.

Example 1. Figure 1 presents the Skyline of tweets – short messages from Twit-
ter1. Each tweet is represented as a point in the two-dimensional space of activity
status of a user and the hashtag. The first dimension (activity status) is repre-
sented by the status values {active, non-active, unknown} which are mapped
to the scores 0, 1, and 2. The second dimension (hashtag) is an element of
{#pyeongchang2018, #olympics, #olympia2018, #teamgermany, #others} and
is represented with the values 0, . . . , 4.

Now, the objective is to find all tweets, which are Pareto optimal w.r.t. the
activity status and the hashtag, since we assume that very active users using
the hashtag #pyeongchang2018 post the most interesting information on the
Olympic winter games in Pyeongchang. Of course, there are also less active users
using the same hashtag, or users using, e.g., #olympia2018 for their tweets.

Of interest are all tweets that are not worse than any other tweet in both
dimensions w.r.t. to our search preference. Tweet t4 is dominated by the tweets
t1 and t2, t5 by t1, t2 and t3. The tweets t1, t2 and t3, on the other hand, are
not dominated by any other tweets and build the Skyline.

Algorithms proposed for traditional database Skyline computation, e.g.,
[15,12,16,14], are not appropriate for continuous data and therefore new tech-
niques should be developed to fulfill the requirements posed by the data stream
model. The most important property of data streams is that new objects are
continuously appended, and therefore, efficient storage and processing techniques
are required to cope with high update rates. Hence, a stream-oriented algorithm
should satisfy the following requirements (cp. [2]): 1) fast response time, 2) incre-
mental evaluation, 3) limited number of data access, and 4) in memory storage
to avoid expensive disk accesses.

1 Twitter: https://twitter.com/

https://twitter.com/
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Fig. 1: Skyline on Twitter data.

This paper is an extended version of [17,18] and presents implementation
details and comperhensive experiments on the SLS algorithm for real-time Skyline
processing on data streams. The proposed algorithm is based on the lattice
structure representing the better-than relationships that must be built only once
for efficient Skyline computation on continuous data. Our algorithm satisfies all
four requirements on stream-oriented algorithms as mentioned before.

The remainder of this paper is organized as follows: Section 2 recapitulates
essential concepts of Skyline queries. In Section 3, we introduce the Stream
Lattice Skyline algorithm. Our results on comprehensive experiments are shown
in Section 4. Section 5 contains a summary and outlook.

2 Background

2.1 Skyline Queries

The aim of a Skyline query or Pareto preference [3] is to find the best objects in
a dataset D, denoted by Sky(D). More formally:

Definition 1 (Dominance and Indifference.) Assume a set of vectors D ⊆
Rd. Given p = (p1, ..., pn), q = (q1, ..., qd) ∈ D, p dominates q on D, denotes as
p ≺ q, if the following holds:

p ≺ q ⇔ ∀i ∈ {1, ..., d} : pi ≤ qi ∧ ∃j ∈ {1, ..., d} : pj < qj (1)

Two objects p and q are called indifferent on D, denoted as p ∼ q, if and only if
p ⊀ q and q ⊀ p.

Note that following Definition 1 we consider subset of Rd in that we search fo
Skylines w.r.t. the natural order ≤ in each dimension.

Definition 2 (Skyline Sky(D).) The Skyline Sky(D) of D is defined by the
maxima in D according to the ordering ≺, or explicitly by the set

Sky(D) := {p ∈ D | @q ∈ D : q ≺ p} (2)
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In this sense, the minimal values in each domain are preferred and we write p ≺ q
if p is better than q.

Skylines are not restricted to numerical domains. For any universe Ω and
orderings ≺i∈ (Ω × Ω)(i ∈ {1, ..., d}) the Skyline w.r.t. ≺i can be computed,
if there exist scoring functions gi : Ω → R for all i ∈ {1, ..., d} such that
p ≺i q ⇔ gi(p) < gi(q)). Then the Skyline of a set M ⊆ Ω w.r.t. (≺i)i=1,...,d is
equivalent to the Skyline of {(g(p1), ..., g(pd)) | pi ∈M}. That means, categorical
domains like activity status or hashtag as in Example 1 can easily be mapped to
a numerical domain.

Note that there is also the concept of top-k Skyline queries where the aim is
to find the k best objects [19,20].

2.2 Skyline Queries on Data Streams

Skyline processing on data streams require modified algorithms, since a stream is
a continuous dataflow and there is no “final” result after some data of the stream
is processed. The result must be calculated and adjusted as soon as new data
arrive, since new stream objects received later can build a new Skyline compared
with objects already recognized in previously computed (temporary) Skylines. To
the best of our knowledge, only Block-Nested-Loop (BNL) style algorithms (cp.
[12,21,22,23] or [24]) can be adapted to Skyline evaluation on continuous data.
These algorithms follow an object-to-object comparison approach, an expensive
operation with a worst-case runtime of O(n2), where n is the number of objects.

For analyzing a continuous, unbounded data stream, it is necessary to divide
it into a series of (non-overlapping) chunks c1, c2, . . . . A BNL-style algorithm
would evaluate the Skyline on the first chunk, i.e., Sky(c1), cp. Definition 2. Since
c2 could contain better objects w.r.t. the dominance criterion in Definition 1, one
also has to compare the new objects from c2 to the current Skyline, i.e., compute

Sky(Sky(c1) ∪ c2) , (3)

and so on. However, this leads to a computational overhead if c2 is large.

3 The Stream Lattice Skyline Algorithm

Our Stream Lattice Skyline (SLS) algorithm was developed for efficient real-
time Skyline computation on unbounded streams. It does not depend on object
comparisons as BNL algorithms do, but on the lattice structure constructed by
a Skyline query over low-cardinality domains (either inherently small, such as
activity status of a user – or mapped to low-cardinality domains, such as number
of followers in Twitter).
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3.1 The Idea of SLS

Before we describe our SLS algorithm for real-time stream processing, we revisit
the basics of Hexagon [25] and Lattice Skyline [26] our algorithm is based on.

A Skyline query over discrete domains constructs a lattice, a structure where
two objects o1 and o2 of a dataset have a least upper bound and a greatest lower
bound. Visualization of such lattices is often done using Better-Than-Graphs
(BTG) (similar to Hasse diagrams). An example of a BTG is shown in Figure 2.

The nodes in the BTG represent equivalence classes. The idea is to map
objects from the stream to these equivalence classes using some kind of feature
function. All values in the same class are considered substitutable.
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Fig. 2: Stream processing with SLS.

We write [2,4] to describe a two-dimensional domain as well as the maximal
possible values of the feature vector representing objects. For example, the BTG
in Figure 2 could present a Skyline on the tweets activity status of a user ({activ,
non-active, unknown}) (values 0, 1, and 2) and the hashtag which might be an
element of {#pyeongchang2018, #olympics, #olympia2018, #teamdeutschland,
#others} (values 0, . . . , 4). The arrows in the BTG show dominance relationships
between nodes. The node (0, 0) presents the best node, whereas (2, 4) is the worst
node. The bold numbers next to each node are unique identifiers (ID) for each
node in the BTG. Nodes having the same level are indifferent. That means for
example, that neither the objects in the node (0, 4) are better than the objects
in (2, 2) nor vice versa. They have the same overall level 4. A dataset does
not necessarily contain representatives for each BTG node. All gray nodes are
occupied with an element of the data and therefore non-empty, white nodes are
empty.

The elements of the data that compose the Skyline are those in the BTG that
have no path leading to them from another non-empty node. In Figure 2 these are



Real-Time Skyline Computation on Data Streams with SLS 7

the nodes (0,1) and (2,0). All other nodes have direct or transitive edges from
these both nodes, and therefore are dominated.

Our approach in general works as follows: After constructing the BTG, which
only must be done once, all objects of a chunk are mapped to the corresponding
nodes in a consecutive way, e.g., object A is mapped to (2, 0), object B to (2, 2),
and so on. Assume all gray nodes in Figure 2 are occupied with data from the first
chunk. Afterwards, a breadth-first traversal (BFT) runs to find the non-empty
nodes (blue dashed line in Figure 2). For the first non-empty node (here (0, 1)) we
start a depth-first traversal (DFT) (red arrows) to mark all transitive dominated
nodes as dominated. If the DFT reaches the bottom node (2, 4) (or an already
dominated node) it will recursively follow all other edges. Thereafter, the BFT
continues with node (1, 0), which is empty. The next non-empty node is (1, 1), but
dominated. Continue with (2, 0). Since all other nodes are marked as dominated,
the remaining nodes, (0, 1) and (2, 0), present the Skyline.

Note that lattice-based algorithms are developed for Skyline computation
over low-cardinality domains. An attribute domain dom(S) is said to be low-
cardinality if its value is drawn from a set S = s1, ..., sm, such that the set
cardinality m is small. For a low-cardinality domain and si ∈ R, a one-to-one
mapping function f : dom(R)→ N0, f(si) = i− 1, can be defined to get discrete
values as required in our algorithm.

3.2 The SLS Algorithm

In this section we describe our SLS algorithm in detail. Thereby, we follow the
idea depicted in Section 3.1. SLS is based on a series of finite chunks as described
in Section 2.2. We divide SLS into three phases:

1. The Construction Phase (see pseudo code Phase 1) initializes the BTG
which depends on the Skyline query (see [25,26] for details). This has to be
done only once for the first chunk (line 1). For evaluation of the following
chunks, the existing BTG will be reused.
The BTG is represented by an array (line 2) of Nodes in main memory.
A Node is a data structure representing an equivalence class in the BTG,
which may contain objects from the stream. Nodes are identified by their IDs
(cp. [25]), which correspond to their position in the BTG array. A Node also
contains its status empty (initial status), non-empty, or dominated.

Phase 1 Construction Phase

1: if algorithmFirstRun then
2: BTG := array of empty Nodes (equivalence classes)
3: end if

2. In the Adding Phase (see pseudo code Phase 2) we process the input data:
a. Read the next chunk ci from the data stream S.
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b. Iterate through the objects oj of chunk ci (line 3). Each object will be
mapped to one node in the BTG. For this we compute the ID of the
current object oj (line 4) and store it in the BTG array, if the Node is
not dominated (line 5 and 6).

Phase 2 Adding Phase

1: Input: Next chunk ci from data stream S
2: . Add objects oj from chunk ci to the BTG
3: for oj in ci do
4: ID := compute ID for oj
5: if ¬BTG[ID].isDominated() then . Node is not dominated
6: BTG[ID].add(oj)
7: BTG[ID].setStatus = non-empty
8: end if
9: end for

3. Removal Phase (see pseudo code Phase 3): After all objects in the chunk have
been processed, the nodes of the BTG that are marked as non-empty and are not
reachable by the transitive dominance relationship from any other non-empty
node of the BTG represent the (temporary) Skyline. From an algorithmic point
of view this is done by a combination of breadth-first traversal (BFT) and
depth-first traversal (DFT).

We start a BFT at the top of BTG (line 1) and search for the first non-empty
node, which is not dominated. From this node on, we start a DFT to mark
dominated nodes (line 4 and procedure DFT in line 9) recursively. When
processing objects from the next chunk, this ensures that we do not need to
add objects to already dominated nodes in the BTG. This reduces memory
requirements and enhances performance. After processing all nodes in the
DFT, we continue with the BFT until all nodes are visited. The remaining
nodes contain the temporary Skyline set and can be presented to the user.

4. Since there is a continuous data stream, Phase 2 and Phase 3 have to be
repeated for the next chunks.

The Skyline computation in Phase 3 can be done after an arbitrary number
of processed chunks or after a pre-defined time. Therefore, our algorithm can
be used for real-time Skyline evaluation. It is also possible to parallelize this
approach in the sense of [27,28]: Parallelize the adding of the objects in the chunk,
and, after adding an object, directly start a DFT to mark nodes as dominated.

Since SLS follows the idea of Hexagon and Lattice Skyline, the linear runtime
complexity of O(dn+ dV ) remains for our algorithm. Thereby, n is the number
of input objects, d number of dimensions, and V the size of the lattice, i.e., the
product of the cardinalities of the d low-cardinality domains from which the
attributes are drawn.
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Phase 3 Removal Phase

1: Start a BFT beginning at the top of the BTG
2: for each ID in BFT do
3: if ¬BTG[ID].isDominated() ∧ ¬BTG[ID].isEmpty() then
4: DFT(ID) . Start depth-first traversal to mark dominated nodes
5: end if
6: end for
7:
8: . Start DFT
9: DFT(ID) =

10: for each successor sID of ID do
11: if BTG[sID].isDominated() then return . Node is already dominated
12: end if
13: . Otherwise remove dominated nodes and continue DFT
14: BTG[sID].setStatus = dominated
15: BTG[sID].clear() . Set objects to null
16: DFT(sID) . Recursion, continue with successor of sID
17: end for

4 Experiments

In this section we present comprehensive experiments on our SLS algorithm.

4.1 Benchmark Framework

In our benchmarks we wanted to explore the behavior of SLS on synthetic and
real-world data, depending on the data size, chunk size, and different domain
size. For runtime evaluation we compared SLS to the stream variant of BNL,
cp. Section 2.2, because to the best of our knowledge, this is the only other
stream-based Skyline algorithm.

For our experiments on artificial data we generated correlated (corr), anti-
correlated (anti), and independent (ind) data streams as described in [12] and
varied three parameters: (1) the data cardinality (n), (2) the data dimensionality
(d), and (3) the number of distinct values for each attribute domain.

For real data, we used Twitter records collected over a specific period of
time. These objects (tweets) include various attributes such as name, description,
created at, followers count, status count, lang, and many more. We mapped all
attribute values of theses short messages to a numerical domain according to a
mapping function described in Section 3.1.

For analyzing a data stream, it is necessary to divide it into a series of chunks
ci as described in Section 2.2. For this we used Apache Flink2, an open source
platform for scalable stream and batch data processing, which is also able to
process real-world data like Twitter. For more details on the implementation of
our personalized stream processing framework we refer to [29,30,31].

2 Apache Flink: https://flink.apache.org/

https://flink.apache.org/
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Our algorithms have been implemented using Java 8. All experiments are
performed on a single node running Debian Linux 7.1. The machine is equipped
with two Intel Xeon 2.53 GHz quad-core processors.

4.2 Influence of the Chunk Size

In our first experiment we varied the chunk size to find out the optimal number of
objects per chunk. We also compared BNL to SLS w.r.t. their runtime depending
on the chunk size. We used datasets with 100K and 500K objects and considered
the algorithms behaviour for anti-correlated, independent and correlated data
distribution.

For a more reliable result we considered different domains: [1, 2, 2, 3], [1, 5, 10],
[1, 2, 2, 2, 2, 2, 2, 2, 3], [2, 3, 7, 8, 4, 10], [1, 5, 2560] and [13, 35, 70]. Remember, each
number corresponds to the maximal possible values of the single domains.

Figure 3 (pages 10 – 11) shows our results for anti-correlated data. In all
experiments SLS performs significant better than BNL independent of the chunk
size. For small chunks (up to 500 objects) and for very large chunks (more than
50K objects), BNL is substantial worse than SLS. For small chunk sizes this can
be explained by a higher number of unions which has to be carried out after
each chunk evaluation, cp. Equation 3. For larger chunks the object comparison
process takes more time.
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Fig. 3: Influence of the chunk size. SLS vs BNL, anti-correlated data distribution.
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SLS seems to be nearly constant w.r.t. the runtime. However, a closer look
to the runtimes of SLS spawns that SLS is slower for small chunks (up to 200
objects) than for chunks with more than 200 objects, cp. Figures 6a to 6d on
page 16. This can be explained by the frequent repeating of the BFT and DFT
in SLS, which have to be carried out for each chunk. For the chunk size over 20K
objects the runtime of SLS increases again, because the adding of new objects to
the BTG (Phase 2) in SLS is more expensive. In summary, we claim that the
optimal chunk size for the best runtime with anti-correlated data distribution is
between 200 and 20K objects.

Figure 4 (pages 12 – 13) presents the comparison result of SLS and BNL
for independent data distribution. We can see, that SLS has better runtime for
small and medium chunks (up to 10K − 20K depending on the domains), but
for large chunks both algorithms have very similar runtime. For some domains,
e.g. [1,5,2560] and [13,35,70] (cp. Figures 4i to 4l) BNL outperforms SLS. In
the case of these two domains we are dealing with the high cardinality domains,
which produce deep BTGs in the sense of the height. The required time for the
depth search (DFT) in the deep BTG (cp. Removing Phase 3 in Section 3.2) for
such domains is significant longer than for low cardinality domains. This enables
better runtime of BNL compared to SLS for chunk sizes from 1K objects for
domains with high cardinality.

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 0.1  1  10  100

R
un

tim
e 

(s
ec

)

Chunk size * 1000

BNL
SLS

(a) n=100K, dom=[1,2,2,3]

 7

 7.5

 8

 8.5

 9

 9.5

 0.1  1  10  100

R
un

tim
e 

(s
ec

)

Chunk size * 1000

BNL
SLS

(b) n=500K, dom=[1,2,2,3]

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0.1  1  10  100

R
un

tim
e 

(s
ec

)

Chunk size * 1000

BNL
SLS

(c) n=100K, dom=[1,5,10]

 5.5
 6

 6.5
 7

 7.5
 8

 8.5
 9

 9.5
 10

 10.5
 11

 0.1  1  10  100

R
un

tim
e 

(s
ec

)

Chunk size * 1000

BNL
SLS

(d) n=500K, dom=[1,5,10]

Fig. 4: Influence of the chunk size. SLS vs BNL, independent data distribution.



Real-Time Skyline Computation on Data Streams with SLS 13

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0.1  1  10  100

R
un

tim
e 

(s
ec

)

Chunk size * 1000

BNL
SLS

(e) n=100K, dom=[1,2,2,2,2,2,2,2,3]

 7

 7.5

 8

 8.5

 9

 9.5

 0.1  1  10  100

R
un

tim
e 

(s
ec

)

Chunk size * 1000

BNL
SLS

(f) n=500K, dom=[1,2,2,2,2,2,2,2,3]

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 0.1  1  10  100

R
un

tim
e 

(s
ec

)

Chunk size * 1000

BNL
SLS

(g) n=100K, dom=[2,3,7,8,4,10]

 7

 7.5

 8

 8.5

 9

 9.5

 0.1  1  10  100
R
un

tim
e 

(s
ec

)

Chunk size * 1000

BNL
SLS

(h) n=500K, dom=[2,3,7,8,4,10]

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0.1  1  10  100

R
un

tim
e 

(s
ec

)

Chunk size * 1000

BNL
SLS

(i) n=100K, dom=[1,5,2560]

 5

 6

 7

 8

 9

 10

 11

 0.1  1  10  100

R
un

tim
e 

(s
ec

)

Chunk size * 1000

BNL
SLS

(j) n=500K, dom=[1,5,2560]

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0.1  1  10  100

R
un

tim
e 

(s
ec

)

Chunk size * 1000

BNL
SLS

(k) n=100K, dom=[13,35,70]

 5

 6

 7

 8

 9

 10

 11

 0.1  1  10  100

R
un

tim
e 

(s
ec

)

Chunk size * 1000

BNL
SLS

(l) n=500K, dom=[13,35,70]

Fig. 4: Influence of the chunk size. SLS vs BNL, independent data distribution.
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For a better estimation of the optimal chunk size for independent data, we take
a closer look to the runtime of SLS. Figures 6e to 6h on page 16 demonstrate
the best results for the chunk size between 1K and 10K objects.

In Figure 5 (pages 14 – 15) we can observe the runtime comparison of BNL
and SLS for correlated data. For a chunk size up to 2K objects SLS is much
better than BNL. For larger chunks both algorithms show very similar runtime.
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Fig. 5: Influence of the chunk size. SLS vs BNL, correlated data distribution.
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Fig. 5: Influence of the chunk size. SLS vs BNL, correlated data distribution.

As we can see in Figures 6i to 6l on page 17, the SLS achieves its best
runtime results for correlated data where the chunk size is between 200 and 20K
objects.

4.3 Influence of Different Domains

In this experiment, we explored the influence of different domains on SLS. We
used data with 10K and 500K objects.

The results on anti-correlated data are shown in Figure 7 (page 18). In
Figures 7a and 7b we varied the number of attributes from 4 to 9, while the
domain values remain within the low-cardinality range {0, ..., 10}. The runtime
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Fig. 6: Influence of the chunk size on SLS.



Real-Time Skyline Computation on Data Streams with SLS 17

 2.9
 2.95

 3
 3.05
 3.1

 3.15
 3.2

 3.25
 3.3

 3.35
 3.4

 3.45

 0.1  1  10  100

R
un

tim
e 

(s
ec

)

Chunk size * 1000

[1,2,2,3]
[2,3,7,8,4,10]

(i) n=100K, corr

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 0.1  1  10  100

R
un

tim
e 

(s
ec

)

Chunk size * 1000

[1,2,2,3]
[2,3,7,8,4,10]

(j) n=500K, corr

 2.5
 2.6
 2.7
 2.8
 2.9

 3
 3.1
 3.2
 3.3
 3.4
 3.5

 0.1  1  10  100

R
un

tim
e 

(s
ec

)

Chunk size * 1000

[1,5,10]
[1,2,2,2,2,2,2,2,3]

(k) n=100K, corr

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 0.1  1  10  100
R
un

tim
e 

(s
ec

)

Chunk size * 1000

[1,5,10]
[1,2,2,2,2,2,2,2,3]

(l) n=500K, corr

Fig. 6: Influence of the chunk size on SLS.

behavior is similar for all domains, because low-cardinality domains produce flat
BTGs and therefore the runtime for the DFT search in the BTG is nearly constant.
Note that the [2,3,7,8,4,10] domain has some 47.5K nodes, [1,2,2,2,2,2,2,2,3]
produces a BTG with 17.5K nodes and [1,2,2,3] has only 72 nodes.

In Figures 7c, 7d and 7e we compared domains with the same number of
attributes, but varied strongly the number of distinct values for each attribute
and generated the high-cardinality domains. These domains produce deeper BTGs
in the sense of the height, but observe a similar behavior as in Figure 7a and
7b. There are some 36K nodes in the largest BTG and only 132 nodes in the
smallest.

In Figure 7f we compared two domains ([1,2,2,3] and [2,1,2,3,2,1,10,2,2])
producing flat BTGs and two domains building deep BTGs ([13, 35, 70] and
[1,5,2560]). As we can see in this figure, SLS needs more time for deep BTGs,
because the required time for depth search (DFT) (c.p. Removing Phase 3
in Section 3.2) for high-cardinality domains is significant longer than for low
cardinality domains.

In summary, the runtimes of SLS are nearly independent from the number of
attributes and the size of the domain, as long as we have low-cardinality domains.
The best chunk size for anti-correlated data distribution is between 200 and 20K
objects for all tested domains.
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Fig. 7: Influence of different domains, n=500K, anti-correlated data distribution.

The influence of different domains on SLS for independent data is shown
in Figure 8 (page 19). Similar to the experiments on anti-correlated data, we
compared low-cardinality domains producing flat BTGs in Figures 8a and 8b,
high-cardinality domains creating deep BTGs in Figures 8c, 8d and 8e and
mixed these domains in Figure 8f.

The SLS behaviour is very similar for different low-cardinality domains and
for various high-cardinality domains. Furthermore, the runtime of SLS is higher
for deep BTGs, due to the higher runtime of the DFT.

The best runtime results SLS shows for the chunk sizes up to 10K objects.
Compared to anti-correlated data, the results for independent data have no
troubles with small chunks. The very large chunks (more than 10K objects)
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require more runtime because the adding of new objects to the BTG (Phase 2
Section 3.2) in SLS is more expensive.
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Fig. 8: Influence of different domains, n=500K, independent data distribution.

Figure 9 (on page 20) shows the experimental results for correlated data. We
used the same domains as for anti-correlated and independent data and compared
flat and deep BTGs. These results also confirm our assumption: runtimes of
SLS are nearly independent from the number of attributes and the size of the
domain, as long as we have low-cardinality domains. Deep BTGs produced by
high-cardinality domains are processed by SLS more slowly. The best runtimes
were shown for chunk sizes between 200 and 20K objects.
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Fig. 9: Influence of different domains, n=500K, correlated data distribution.

4.4 Influence of the Data Distribution

In this experiment we wanted to investigate the impact of different data distribu-
tions on SLS. We used independent (ind), correlated (cor), and anti-correlated
(anti) data. We varied the size of the dataset (100K and 500K objects), and the
domains. In Figure 10 (page 21) we compared low-cardinality domains produc-
ing flat BTGs and in Figure 11 on page 22 we demonstrated the SLS behaviour
for different data distributions with high-cardinality domains generating deep
BTGs.
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Fig. 10: Influence of the data distribution on SLS.

SLS relies on the lattice structure a Skyline query constructs and does not
depend on any object-to-object comparisons. Therefore, we expected that the
runtime of SLS is nearly the same for any kind of data distribution.

This expectation was completely fulfilled for low-cardinality domains as
confirmed by Figure 10. For high-cardinality domains, SLS takes more time
for the processing of very small (up to 200 objects) and very large (over 20K
objects) chunks. We observed the best runtime for the chunks with [200; 20K]
objects, as already shown in Section 4.2.
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Fig. 11: Influence of the data distribution on SLS.

4.5 Runtime Comparison of SLS, Hexagon and BNL

In this section we describe experiments in which we compared SLS with BNL and
Hexagon. Since Hexagon is not able to process streams, we analysed the runtimes
of Hexagon and compared them to the runtimes of SLS and the stream-based
version of BNL with only one big chunk which is equal to the dataset size. We
varied the data cardinality, data distribution and domains.

Figure 12 (page 23) presents the result for anti-correlated data. In this case
SLS clearly outperforms BNL: The larger the dataset, the greater the difference.

The results for independent data are presented in Figure 13 (page 24).
SLS shows often shows the best runtime, but sometimes BNL is better (for
example with 50K objects for [1,1,2,2,2,2,2,2,2,3] domain or with 500K objects
for [2856,1,5] domain).

For correlated data SLS demonstrates better results for all chunk sizes except
1000K objects. For this size BNL is clearly faster (see Figure 14 on page 25).

We tested also Hexagon in order to find out if our SLS implementation (based
on Hexagon) shows very similar runtime results. And indeed, the two algorithms
show very similar runtimes how we can see in Figures 12, 13 and 14.
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Fig. 12: SLS vs Hexagon vs BNL, anti-correlated data distribution.
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Fig. 13: SLS vs Hexagon vs BNL, independent data distribution.
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Fig. 14: SLS vs Hexagon vs BNL, correlated data distribution.
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4.6 Real-World Data

For real data experiments we used tweets collected from Twitter over a specific
period of time (for repeatable experiments). We used (disjunct) datasets of 100K
and 500K objects. We mapped all attributes to a numerical domain according
to a mapping function as described in Section 3.1. For example, we mapped
status count (number of posted tweets), followers number and hashtag to the
numerical domain [2856,5,1].

In our first experiment we compared the runtime of SLS and BNL on different
data sizes, but the same domain, cp. Figure 15.
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Fig. 15: Performance of SLS vs BNL on real Twitter data.
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Again, for BNL the worst runtime is for small chunks due to the frequent
repetition of tuple-comparisons in each single chunk. However, for larger chunks,
BNL becomes better. We assume that there are some killer objects (objects better
than most of the other objects in the dataset), which can be accessed earlier
by BNL through the larger chunk sizes and therefore speed-ups performance.
Nevertheless, SLS is still better than BNL, in particular for the larger dataset.

In our second experiment we explored the runtime of SLS for real Twitter
data in comparison to generated independent data having the same domains
([4,126,77], [4,77,2,10] and [2856,5,1]). We found it interesting to compare real
data to independent generated data, since real data is often assumed to be
independent distributed. Figure 16 presents our results.
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Fig. 16: Performance of SLS on real and generated independent data.
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Since real data is not always perfectly independent distributed and their
are some killer objects the results show the expected behavior: SLS performs
significant better on real data than on artificial data. In addition, we see that
also for real data chunk sizes between 200 and 20K objects are a good choice.

In summary, we conclude that SLS has an optimal runtime for a chunk size
between 200 and 20K objects. For this range, SLS outperforms BNL for different
domains, dataset sizes, and data distributions for real and synthetic data.

5 Conclusion

There is significant interest of the research community towards continuous query
processing. And one information filtering approach on data streams is to compute
the Skyline set. In this paper, we presented our novel algorithm SLS to find
the Skyline on a data stream. Exploiting the lattice, SLS does not rely on
object-to-object comparisons like BNL-style approaches, is independent of any
data partitioning, and has a linear runtime complexity. In addition, SLS fulfills
all requirements on modern stream algorithms: 1) fast runtime as seen in our
experiments, 2) incremental evaluation since new chunks can easily be added to
the BTG, 3) limited number of data access, because only non-dominated objects
are added to the BTG, and 4) in-memory storage since the BTG is hold in RAM
to avoid expensive I/O accesses. We also presented comprehensive results on
characteristic experiments to confirm that SLS is currently the most advanced
real-time Skyline stream processing algorithm.

Nevertheless, there are still open issues which must be addressed in the
future. For example, SLS can be parallelized as described in [27,28]. Also we
want to enhance our algorithm to handle unrestricted high-cardinality domains
as depicted in [32]. However, this could be a challenging task.

Also, maybe index structures could be used for stream data preference pro-
cessing, cp. [33].
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