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Abstract

We are concerned with the Dirichlet minimization problem for variational integrals with linear
growth. In the existence theory for minimizers, one commonly considers a generalized formula-
tion in the space of functions of bounded variation, while on the other hand the dual problem, in
the classical sense of convex analysis, is a maximization problem in the space of divergence-free
bounded vector fields. In this paper, we characterize extremals of the generalized and the dual
problem by pointwise extremality relations, and we discuss uniqueness issues for both kinds of so-
lutions. Our approach is sufficiently general to cover arbitrary dimensions, non-smooth integrands,
and unbounded, irregular domains.
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1 Introduction

Throughout this paper we fix two positive integers n and N and a non-empty, open set Ω (which is
not necessarily smooth or bounded) in Rn, and we investigate variational integrals of the type

F [w] :=

∫
Ω

f( · ,∇w) dx for w : Ω→ RN ,
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with a given Borel measurable integrand f : Ω×RNn → R. We consider the problem to

minimize F in the Dirichlet class W1,1
u0

(Ω,RN ) := u0 Ω
+ W1,1

0 (Ω,RN ) , (P)

where we permanently assume — for later convenience — that the boundary values are prescribed with
the help of a globally defined function u0 ∈W1,1(Rn,RN ). As our main assumption on the integrand
f we impose a linear growth condition1

|f(x, z)| ≤ Ψ(x) + L|z| for all (x, z) ∈ Ω×RNn (Lin)

with a [0,∞)-valued function Ψ ∈ L1(Ω) and a constant L ∈ [0,∞). This condition ensures that F is
finite on W1,1(Ω,RN ), and in particular that the infimum infW1,1

u0
(Ω,RN ) F of the problem (P) cannot

take the value∞, while the value −∞ remains possible. However, even if reasonable extra assumptions
on f are made and the infimum is finite, it is not necessarily attained, in other words F need not have
a minimizer in W1,1

u0
(Ω,RN ). For this reason one commonly considers a generalized formulation of (P)

in the space BV(Ω,RN ) of functions of bounded variation. Postponing the introduction of this BV-
formulation and the appropriate concept of generalized minimizers to Section 3.2, for the moment
let us just point out that generalized minimizers in BV(Ω,RN ) exist significantly more often than
minimizers in W1,1

u0
(Ω,RN ) itself, but they may have worse uniqueness properties.

In this paper are concerned with the interplay between the generalized BV-formulation of (P) and
the dual problem in the sense of convex analysis, which is extensively discussed, for instance, in the
monograph [19]. The latter problem involves the conjugate function f∗ : Rn ×RNn → R ∪ {∞} of f
(with respect to the z-variable), which is given by f∗(x, z∗) := supz∈RNn

[
z∗ · z− f(x, z)

]
, and in fact,

when we set2

L∞div(Ω,RNn) := {τ ∈ L∞(Ω,RNn) : div τ ≡ 0 in the sense of distributions on Ω} ,

Ru0 [τ ] :=

∫
Ω

[
τ · ∇u0 − f∗( · , τ)

]
dx for τ ∈ L∞(Ω,RNn) ,

the dual problem is to
maximize Ru0

in L∞div(Ω,RNn) . (P∗)

We briefly mention that, in many applications, the dual problem can be seen as a maximization problem
for a physically relevant quantity, called the stress tensor; see [38, 24, 35, 37, 19], for instance. Here
we will not further discuss this aspect, but we rather explain another classical way to understand
the relationship between (P) and (P∗): first, by the definition of the conjugate function one has
f(x, z) ≥ z∗ · z − f∗(x, z∗) for all x ∈ Ω and z, z∗ ∈ RNn, and thus on the one hand one gets

inf
W1,1

u0
(Ω,RN )

F ≥ inf
w∈W1,1

u0
(Ω,RN )

[
sup

τ∈L∞(Ω,RNn)

∫
Ω

[
τ · ∇w − f∗( · , τ)

]
dx

]
. (1.1)

For convex f one moreover has f(x, z) = f∗∗(x, z) := supz∗∈RNn

[
z∗ · z − f∗(x, z∗)

]
(compare Sec-

tion 3.3), and thus we expect equality in (1.1), an anticipation which will eventually turn out to be
true3. On the other hand one also has

sup
τ∈L∞div(Ω,RNn)

Ru0
= sup
τ∈L∞(Ω,RNn)

[
inf

w∈W1,1
u0

(Ω,RN )

∫
Ω

[
τ · ∇w − f∗( · , τ)

]
dx

]
, (1.2)

1We find it worth remarking that, when Ω is bounded and f is independent of x and convex in z, (Lin) reduces to the
requirement f(z) ≤ L(1 + |z|). In particular, in this case a lower bound of the type f(z) ≥ −L(1 + |z|) is an automatic
consequence of convexity.

2Here, we multiply matrices from RNn in the sense of the Hilbert-Schmidt product, and the distributional divergence
is understood as the adjoint of the gradient operator with respect to this inner product.

3Indeed, equality in (1.1) can be inferred from the following arguments and Theorem 1.1 below or alternatively
from [19, Chapter IX.2].

2



since by partial integration the infimum on the right-hand side equals Ru0
[τ ] in the case div τ ≡ 0

(while it equals −∞ otherwise). All in all, we can read off that (P) and (P∗) differ essentially by
the priority of the inf- and the sup-operation on the right-hand sides of (1.1) and (1.2). Moreover,
the inequality inf

[
sup . . .

]
≥ sup

[
inf . . .

]
between these right-hand sides is obvious, so that by the

preceding elementary arguments we have in fact shown

inf
W1,1

u0
(Ω,RN )

F ≥ sup
L∞div(Ω,RNn)

Ru0
. (1.3)

Actually, one can even prove that the interchange of inf and sup does not change the resulting value at
all so that equality holds in (1.3); this is a classical result on the duality correspondence between (P)
and (P∗), which is detailed, for instance, in [19], and which we restate in our setting as follows.

Theorem 1.1 (duality formula and existence of a dual solution). Assume that f satisfies (Lin) and
that f(x, · ) : RNn → R is a convex function for L n-a. e. x ∈ Ω. Then the infimum in (P) equals the
supremum in (P∗), that is

inf
W1,1

u0
(Ω,RN )

F = sup
L∞div(Ω,RNn)

Ru0 ∈ [−∞,∞) . (1.4)

Moreover, whenever the common value is not −∞, then the problem (P∗) has a solution, that is, the
supremum in (1.4) is in fact a maximum.

As already said above, Theorem 1.1 is a special case of more general results in [19]. However,
we want to stress that the proof given there does not only require the abstract duality theory [19,
Chapter III] on the level of functionals, but also the representation [19, Chapter IX.2] of the (bi-)dual
problem in terms of the (bi-)conjugate, which is somewhat less elementary and relies also on a mea-
surable selection theorem. As a side benefit, our methods yield an alternative proof of Theorem 1.1,
which will be provided in Section 5. Though our approach relies on the same basic tools, we believe
that it has a slight advantage over the more classical strategy: in the special case that f is C1 in
z, all measurable selection issues drop out of our argument (compare Remark 5.3), while a similar
simplification of the reasoning in [19] does not seem obvious.

It is well known that the duality formula of Theorem 1.1 leads to characterizations of extremality
in terms of pointwise relations. Let us address this point in detail:

Corollary 1.2 (extremality relations for minimizers in W1,1
u0

(Ω,RN )). Assume that f satisfies (Lin)
and that f(x, · ) : RNn → R is a convex function for L n-a. e. x ∈ Ω. Then, for u ∈W1,1

u0
(Ω,RN ) and

σ ∈ L∞div(Ω,RNn), the following four conditions are equivalent:

u solves (P) and σ solves (P∗) , (1.5)

f( · ,∇u) = σ · ∇u− f∗( · , σ) L n-a. e. on Ω , (1.6)

σ ∈ ∂zf( · ,∇u) L n-a. e. on Ω , (1.7)

∇u ∈ ∂z∗f∗( · , σ) L n-a. e. on Ω . (1.8)

Here, ∂zf and ∂z∗f
∗ denote the subdifferentials — as specified in Definition 3.3 below — of f and f∗

with respect to the second variable.

Proof. By the definition of the conjugate function, f( · ,∇u) ≥ σ · ∇u− f∗( · , σ) holds L n-a. e. on Ω.
Thus, (1.6) is equivalent to the integral identity∫

Ω

f( · ,∇u) dx =

∫
Ω

σ · ∇udx−
∫

Ω

f∗( · , σ) dx . (1.9)

As we are assuming u ∈ W1,1
u0

(Ω,RN ) and σ ∈ L∞div(Ω,RNn), the first integral on the right-hand side
remains unchanged if we replace u with u0, and thus (1.9) just means F [u] = Ru0

[σ]. By Theorem 1.1,
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the last equality characterizes the extremality properties in (1.5), and hence we have established the
equivalence of (1.5) and (1.6).

With the help of (3.3) (which is essentially the definition of the subdifferential) and the equality
f∗∗ = f , (1.6) can be rewritten in the two equivalent forms given in (1.7) and (1.8).

We emphasize however that the preceding reasoning makes essential use of the assumption u ∈
W1,1
u0

(Ω,RN ), while the existence theory for (P) yields generalized minimizers in BV(Ω,RN ) rather
than minimizers in W1,1

u0
(Ω,RN ). In the present paper, we close this gap and extend more specific

results of Bildhauer & Fuchs [12, 9, 13, 10, 11], which are in turn inspired by previous ideas of
Seregin [35, 36, 37]: indeed, by our Theorem 2.1, the extremality relations (1.6), (1.7), (1.8) remain
true for all extremals u ∈ BV(Ω,RN ) and σ ∈ L∞div(Ω,RNn) provided that ∇u is understood as (the
density of) the absolutely continuous part of the gradient measure Du. This result answers a question
raised in [11, Remark 2.30], and it recovers and extends, in an elegant way, uniqueness results for u
and σ in certain situations, covering in particular the singular integrals of [7] which have originally
motivated our investigation of the duality correspondence. Additionally, in Theorem 2.1, we also
provide a new extremality relation for the singular part of Du, which is strongly connected with
previous ideas of Anzellotti [2, 4] and Kohn & Temam [25, 26]. Combined with (1.6), (1.7), (1.8), this
extra relation completely characterizes extremals in our BV-setup.

2 Statement of the results

Postponing the discussion of non-convex cases to Appendix A, we now state our results under — as
we believe — quite general and sharp assumptions on the domain Ω and the integrand f .

Specifically, for the open set Ω, we do not require boundedness (allowing, at the cost of some
technical complications in Sections 4 and 5, such natural domains as the whole space or a half-space),
but we only impose the mild boundary regularity hypothesis

1Ω ∈ BVloc(Rn) and |D1Ω| = H n−1 ∂Ω . (Per)

This condition, introduced in [34], will only be relevant in connection with the strict approximation
result of Lemma 4.3, and it can be rephrased by saying that Ω is a set of locally finite perimeter
in Rn such that its topological boundary differs from its reduced boundary only by a set of zero
H n−1-measure. In particular, (Per) implies that ∂Ω is H n−1-σ-finite and has zero L n-measure.

Furthermore, for the integrand f , we rely, in addition to (Lin), on the following continuity hypoth-
esis:

f(x, · ) : RNn → R is a continuous function for L n-a. e. x ∈ Ω

and the limit lim
x̃→x
z̃→z
t↘0

tf(x̃, z̃/t) exists in R for all (x, z) ∈ Ω× (RNn \ {0}) . (Con)

Assumption (Con) is only needed in order to apply Theorem 4.1, a version of the Reshetnyak continuity
result. The first part of (Con) is commonly phrased by saying that f is a Carathéodory function, and
the second part of (Con) can be reformulated as the requirement that (x, z) 7→ (1−|z|)f(x, z/(1−|z|))
extends from Ω×BNn1 to a function on (Ω×BNn1 ) ∪

(
Ω×∂BNn1

)
which is continuous at all points of

Ω×∂BNn1 . Furthermore, for both illustration and later usage, we record that (Con) implies the following
continuity condition in x:

For all x0 ∈ Ω and ε > 0 there exists a δ > 0 such that for x, x̃ ∈ Ω and z ∈ RNn we have

|x−x0|+ |x̃−x0|+ |z|−1 < δ =⇒ |f(x̃, z)− f(x, z)| < ε|z| .
(2.1)

We point out that, under the hypothesis that f is convex in z with (Lin), the conditions (Con) and (2.1)
are even equivalent. In particular, (2.1) is trivially satisfied in the case of an x-independent integrand
f , and hence, in this case, (Con) follows already from convexity and (Lin).

Now we are ready to state our main result.
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Theorem 2.1 (extremality relations for generalized minimizers). Assume that Ω satisfies (Per), that f
satisfies (Lin) and (Con), and that f(x, · ) : RNn → R is a convex function for L n-a. e. x ∈ Ω. Then,
for u ∈ BVu0

(
Ω,RN

)
and σ ∈ L∞div(Ω,RNn) we have the following equivalence: u is a generalized

minimizer of (P) and σ a solution of (P∗), if and only if any of the relations

f( · ,∇u) = σ · ∇u− f∗( · , σ) L n-a. e. on Ω , (2.2)

σ ∈ ∂zf( · ,∇u) L n-a. e. on Ω , (2.3)

∇u ∈ ∂z∗f∗( · , σ) L n-a. e. on Ω (2.4)

holds for ∇u, and, at the same time, Dsu satisfies

f∞
(
· , dDsu

d|Dsu|

)
=

dJσ ·DuKs

d|Dsu|
|Dsu|-a. e. on Ω . (2.5)

Here, ∇u denotes the density of the absolutely continuous part in the Lebesgue decomposition Du =
(∇u)L n + Dsu of the gradient measure Du with respect to L n, and we refer to Sections 3.2 and 7 for
all further details of our terminology.

In order to illustrate the meaning of this statement for a non-smooth f , let us consider, in the
very simple case n=N=1 (then L∞div(Ω,RNn) consists of constant functions σ, thus Jσ ·DuKs = σDsu),
the integrand f(x, z) = |z| (for which we have ∂zf(x, 0) = [−1, 1] and f∞(x, z) = |z|). In this
situation, (2.3) and (2.5) show that u ∈ BVu0

(
Ω,RN

)
and σ ∈ L∞div(Ω,RNn) are extremals of (P)

and (P∗) if and only if one of the following three possibilities occurs: either σ ≡ 1 and Du ≥ 0, or
σ ≡ −1 and Du ≤ 0, or σ ∈ (−1, 1) and Du ≡ 0; compare also Remark 7.5. We further observe
that, in this example, (2.2), (2.3), (2.4) do also hold for every constant σ ∈ [−1, 1] and every non-
monotone pure-jump function u. Therefore, the additional relation (2.5) is indeed inevitable in the
characterization of BV-extremals.

First, in Section 5, we give a partial proof of Theorem 2.1, which establishes the relations (2.2),
(2.3), (2.4) for all extremals u ∈ BV

(
Ω,RN

)
and σ ∈ L∞div(Ω,RNn). The method employed there is

based on approximations and Ekeland’s variational principle, it yields Theorem 1.1 as a byproduct, it
remains comparably elementary, and it provides precisely the assertion which is relevant for the fol-
lowing applications. The relation (2.5) requires more refined measure-theoretic concepts, in particular
a pairing Jσ ·DuK of gradient measures Du and L∞div-functions σ in the spirit of Anzellotti [2] (compare
Definition 7.1). Under additional regularity assumptions on f and Ω, these tools have been employed
in Anzellotti’s subsequent work [4], and the last relation (2.5) follows from the validity of (2.3) and [4,
Theorem 1.3]. In our less regular setting, however, we establish (2.5) and the full equivalence of The-
orem 2.1 only in Section 7 — by a second approach which relies on |Dsu|-a. e. properties of Jσ · DuK
and which now utilizes Theorem 1.1 as a prerequisite.

We stress that, as already indicated, Theorem 2.1 is not the first duality result in the BV-context:
for instance, under more stringent assumptions on f — namely x-independence, strict convexity, and
C2-regularity with a bound for ∇2f — Bildhauer & Fuchs [12, 10, 11] have proved some regularity
properties of the dual solution and the existence of at least one generalized minimizer which satisfies
the extremality relations (2.2), (2.3), (2.4), while Bildhauer [9] has established uniqueness of the dual
solution under the same hypothesis. One advantage of our Theorem 2.1 is that it recovers the latter
uniqueness result as a direct corollary and under the sole additional hypothesis that f is C1 in the
z-variable:

Corollary 2.2 (uniqueness of σ). Assume that Ω satisfies (Per), that f satisfies (Lin) and (Con),
and that f(x, · ) : RNn → R is a convex C1-function for L n-a. e. x ∈ Ω. If a generalized minimizer
u ∈ BV(Ω,RN ) of (P) exists, then the dual problem (P∗) has a unique solution.

Proof. By the convexity and differentiability assumptions, we are in the case of a single-valued subd-
ifferential ∂zf(x, z) = {∇zf(x, z)}, and then (2.3) determines σ.
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We remark that one may also view — as done in [9] — the uniqueness result as an outcome of a
strict convexity property of the dual problem, as in fact it follows from the following two observations:
on the one hand, the differentiability assumption of the corollary implies that f∗(x, · ) is strictly convex
on4 Im ∂zf(x, · ), while on the other hand (2.3) shows that all dual solutions take values in the latter
sets.

Clearly, if σ is a dual solution, then σ(x) cannot lie in the region where f∗(x, ·) is infinite. In the
next statement we impose a slightly stronger condition, namely that σ(x) is even (locally uniformly
in x) bounded away from this region. Following quite closely a strategy from [37, 13], which is also
described in [11, Section A.3], we then obtain:

Theorem 2.3 (W1,1-regularity of generalized minimizers via a duality criterion). Assume that Ω
satisfies (Per), that f satisfies (Lin) and (Con), and that f(x, ·) : RNn → R is a convex function for
L n-a. e. x ∈ Ω. If the dual problem (P∗) has a solution σ ∈ L∞div(Ω,RNn) such that

f∗(x, · ) ≤ Λ(x) holds on Bε(x)(σ(x)) (2.6)

for L n-a. e. x ∈ Ω, with a continuous function ε : Ω → (0,∞) and some Λ ∈ L1
loc(Ω), then every

generalized minimizer u ∈ BV(Ω,RN ) of (P) is in W1,1(Ω,RN ).

Theorem 2.3 will be established in Section 6.
Finally, we turn to the case that f is even strictly convex in z. Then, a minimizer in W1,1

u0
(Ω,RN )

is necessarily unique, while for generalized minimizers u ∈ BV(Ω,RN ) only the absolutely continuous
part (∇u)L n of their gradient is uniquely determined. Clearly, the latter assertion trivially implies
uniqueness of the full gradient Du whenever one can prove W1,1-regularity for all generalized mini-
mizers. While in [8] we have treated a borderline case of this regularity problem, we here discuss less
subtle situations where it can be resolved — in a simpler and more elegant way — via Theorem 2.3.
In particular, this happens in the following corollaries, which provide two simple sufficient criteria
for (2.6), namely continuity of a dual solution and C1-regularity for one generalized minimizer.

Corollary 2.4 (continuity of σ implies uniqueness of Du). Assume that Ω satisfies (Per), that f is
continuous on Ω×RNn with (Lin) and (Con), and that f(x, ·) : RNn → R is a strictly convex function
for all x ∈ Ω. If the dual problem (P∗) has a continuous solution σ ∈ L∞div(Ω,RNn), then all generalized

minimizers u, v ∈ BV(Ω,RN ) of (P) are in W1,∞
loc (Ω,RN ), and we have Du=(∇u)L n=(∇v)L n=Dv.

The derivation of Corollary 2.4 from Theorems 2.1 and 2.3 will be implemented at the end of
Section 6.

Combining the above results we finally infer:

Corollary 2.5 (uniqueness up to constants of a C1 generalized minimizer). Assume that Ω is connected
and satisfies (Per), that f is continuous on Ω × RNn with (Lin) and (Con), that f is C1 in z with
continuous gradient ∇zf on Ω×RNn, and that f(x, · ) : RNn → R is a strictly convex function for all
x ∈ Ω. If there exists one generalized minimizer u ∈ BV(Ω,RN ) of (P) which is in C1 in the interior
of Ω, then for every generalized minimizer v of (P) there is a constant c ∈ RN such that L n-a. e. on
Ω we have v = u+c.

Proof. By Theorem 2.1, the existence of the C1 generalized minimizer u and the continuity of ∇zf
give the continuous solution σ := ∇zf( · ,∇u) of the dual problem (P∗). Hence, the assumptions of
Corollary 2.4 are satisfied, and the claim follows from Corollary 2.4 via the connectedness of Ω and
the constancy theorem.

We remark that, when considering generalized minimizers, uniqueness up to constants, as stated
in the last corollary, can only be improved to full uniqueness in quite specific situations. For the area

4By this strict convexity assertion we mean precisely that f∗(x, · ) is not affine on any line segment with both
endpoints in Im ∂zf(x, · ); compare Proposition 3.8. Notice however that in the generality of our setup f∗(x, · ) can be
finite and non-strictly convex somewhere outside Im ∂zf(x, · ).
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integrand f(x, z) =
√

1 + |z|2 in codimension N = 1, for instance, Miranda’s boundary continuity
result [29, 30] yields full uniqueness in case of a continuous boundary datum on a Lipschitz domain,
while the examples of Santi [33] and Baldo & Modica [6] show that uniqueness up to constants is
optimal for general data. For a detailed discussion of such non-uniqueness phenomena, we refer also
to [8] and [19, Chapter V.2].

3 Preliminaries

3.1 Some notation

Though we mostly stick to standard notations, we briefly comment on a few of them.
We write 1A : Rn → R for the characteristic function of a subset A of Rn, and by BR := {x ∈

Rn : |x| < R} we denote the open ball with radius R in Rn. Regarding measures, we only work
with (possibly signed or vector-valued) Radon measures on subsets of Rn, which are often given as
weighted measures fµ, with weight function f and non-negative base measure µ, or as restrictions
µ A := (1A)µ of µ to a set A. For a Radon measure ν, we write νa and νs for the absolutely
continuous and the singular part in its Lebesgue decomposition with respect to the Lebesgue measure
L n. Further, if ν is absolutely continuous with respect to a non-negative Radon measure µ, then dν

dµ

stands for the Radon-Nikodym density of ν with respect to µ, so that we have ν = dν
dµµ. Moreover,

‖w‖p;Ω is the Lp-norm, taken on a subset Ω of Rn with respect to L n (and the Euclidean norm on
the finite-dimensional target of w). Finally, the space BV(Ω,RN ) of functions of bounded variation is
defined as the collection of all functions in L1(Ω,RN ) whose distributional derivative is represented by
a finite RNn-valued Radon measure. All further terminology for BV-functions follows closely the one
of the book [1] — up to a few additional conventions that are explained in the following subsection.

3.2 The Dirichlet problem in BV

Recalling that u0 ∈W1,1(Rn,RN ) is fixed, for every w ∈ BV(Ω,RN ) we set

w(x) :=

{
w(x) for x ∈ Ω

u0(x) for x ∈ Rn \ Ω
,

and we introduce the class

BVu0

(
Ω,RN

)
:= {w ∈ BV(Ω,RN ) : w ∈ BV(Rn,RN )}.

We stress that, if Ω has a bounded Lipschitz boundary, then [1, Corollary 3.89] implies BVu0

(
Ω,RN

)
=

BV(Ω,RN ). For less regular Ω (for instance, in the presence of sharp external cusps), BVu0

(
Ω,RN

)
can be strictly smaller than BV(Ω,RN ), but it still contains W1,1

u0
(Ω,RN ) and is in particular non-

empty. When considering functions w ∈ BVu0

(
Ω,RN

)
, we will understand in the following that the

derivative Dw extends to a measure on Ω which is given by Dw(B) := Dw(B) for all Borel subsets B
of Ω. We denote by Daw := (Dw)a and Dsw := (Dw)s, respectively, the absolutely continuous and the
singular part of this measure (with respect to L n), and we write ∇w for the density of Daw so that
in fact we have the Lebesgue decomposition

Dw = (∇w)L n + Dsw .

For any f : Ω×Rm → R with (Lin), we define the recession function f∞ : Ω×RNn → R by

f∞(x, z) := lim inf
x̃→x
z̃→z
t↘0

tf(x̃, z̃/t) for (x, z) ∈ Ω× (RNn \ {0}) (3.1)
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and f∞(x, 0) := 0 for x ∈ Ω. We observe that f∞ is lower semicontinuous5 in (x, z) and positively
1-homogeneous in z, and that (Lin) implies the bound |f∞(x, z)| ≤ L|z|. Moreover, we record that
the second part of our assumption (Con) just means that the lower limit in (3.1) is indeed a limit, and
that in this case f∞ is automatically continuous in (x, z).

Finally, we are in the position to extend F in a natural way from W1,1
u0

(Ω,RN ) to a class of

BV-functions: indeed, following an idea of [23], for w ∈ BVu0

(
Ω,RN

)
we set

Fu0 [w] :=

∫
Ω

f( · ,∇w) dx+

∫
Ω

f∞
(
· , dDsw

d|Dsw|

)
d|Dsw| ,

where we have involved u0 in order to extend Dw to Ω as explained above. The functional Fu0
will

play a crucial role in the present paper, and in particular it is used to specify the notion of generalized
minimizers as follows.

Definition 3.1 (generalized minimizer). Suppose that f fulfills (Lin). A function u ∈ BV(Ω,RN ) is
called a generalized minimizer of the Dirichlet problem (P) if we have u ∈ BVu0

(
Ω,RN

)
and

Fu0 [u] ≤ Fu0 [w] for all w ∈ BVu0

(
Ω,RN

)
.

We highlight the two main features of this notion, which have originally been observed in [21, Sec-
tion 2] under slightly stronger assumptions: first, by Reshetnyak’s semicontinuity theorem, generalized
minimizers do always exist if f is convex in z with (Lin), linearly coercive6, and lower semicontinuous in
(x, z); second, under our assumptions (Lin), (Per), (Con) it follows from Theorem 4.1 and Lemma 4.3
below that the generalization preserves the infimum value of (P) in the sense of

inf
BVu0 (Ω,RN )

Fu0
= inf

W1,1
u0

(Ω,RN )
F . (3.2)

3.3 Convex duality

In this subsection we recall some basic facts from convex analysis; compare, for instance, [19] and [11,
Chapter 2].

Background definitions. As the conjugate function f∗ in our main results can take the value
∞, it is convenient to provide the following statements for extended real-valued functions h : Rm →
R ∪ {−∞,∞} in arbitrary dimension m ∈ N. We define the effective domain domh of such an h as

domh := {z ∈ Rm : h(z) <∞} ,

and by int(domh) we denote the topological interior of domh.

Definition 3.2 (conjugate function). Consider an arbitrary function h : Rm → R ∪ {−∞,∞}. Then
its conjugate function h∗ : Rm → R ∪ {−∞,∞} is given by

h∗(z∗) := sup
ξ∈Rm

[
z∗ · ξ − h(ξ)

]
for all z∗ ∈ Rm .

The conjugate function of h∗ is called the bi-conjugate function and is denoted by h∗∗.

5In the literature one can find several variations of (3.1), which do all coincide in the case of (Con), but may otherwise
differ. The main advantage of the variant which we have singled out here is the general validity of the semicontinuity
property, which in turn seems favorable in order to gain the existence of minimizers.

6Here, we call f linearly coercive if there exist an affine function ` and a positive ε such that f(x, z) ≥ `(z) + ε|z|
holds for all (x, z) ∈ Ω×RNn.
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In addition, we record that, when h 6≡ ∞ is not constantly infinite, then h∗ has values in R ∪ {∞}
(while for h ≡ ∞ we evidently have h∗ ≡ −∞). Moreover, being a pointwise supremum of affine
functions, h∗ is always convex and lower semicontinuous. Finally, for h∗ 6≡ ∞ (or equivalently for
h∗∗ 6≡ −∞), it is well-known that the bi-conjugate h∗∗ coincides with the lower semicontinuous, convex
envelope of h, that means that it is the largest convex function Rm → R ∪ {∞} which is nowhere
larger than h; see [19, Proposition I.4.1].

Definition 3.3 (subdifferentiability and subgradients). For a function h : Rm → R ∪ {−∞,∞}, one
defines the subdifferential ∂h(z) of h at a point z ∈ Rm as the set of all z∗ ∈ Rm with

h(ξ) ≥ h(z) + z∗ · (ξ − z) for all ξ ∈ Rm .

One says that h is subdifferentiable at z ∈ Rm if ∂h(z) is non-empty, and then one calls the elements
of ∂h(z) the subgradients of h at z. The collection of all subgradients of h is Im ∂h :=

⋃
z∈Rm ∂h(z).

Clearly, ∂h(z) is always convex and closed in Rm, and the existence of a classical gradient ∇h(z)
implies that ∂h(z) is either empty or the singleton {∇h(z)}.

Excluding the value −∞, from now on we specialize to functions h : Rm → R ∪ {∞}. Then, for
h 6≡ ∞, we record a useful characterization of subgradients: there holds z∗ ∈ ∂h(z) if and only if the
above supremum in the definition of the conjugate function is attained for the vector ξ = z, in other
words

z∗ ∈ ∂h(z) ⇐⇒ h(z) + h∗(z∗) = z∗ · z . (3.3)

From (3.3) we read off that one has
Im ∂h ⊂ domh∗ , (3.4)

and, for convex and lower semicontinuous h, one can additionally show domh∗ ⊂ Im ∂h. Though
we will not need the latter inclusion let us briefly remark that it can be obtained by applying, for
z∗ ∈ domh∗, the Ekeland type result [19, Theorem I.6.2] to a maximizing sequence for z 7→ z∗ ·z−h(z).

Subdifferentials of convex functions. Next we turn, specifically, to convex h : Rm → R ∪ {∞}.
In this case, it is well known that h is locally Lipschitz continuous and subdifferentiable on int(domh);
see for instance [19, Corollary I.2.4, Proposition I.5.2]. Moreover, for z ∈ int(domh), the quantity
|∂h(z)| := supz∗∈∂h(z) |z∗| (with the convention |∂h(z)| = 0 for ∂h(z) = ∅) is bounded by the Lipschitz
constant of h on an arbitrarily small neighborhood of z, and in particular ∂h(z) is a bounded and thus
— as we already observed its closedness — compact set. If, in addition to convexity, h is also lower
semicontinuous, then h is even subdifferentiable on all of domh, and by the above interpretation of
h∗∗ as the lower semicontinuous, convex envelope of h, we necessarily have h∗∗ = h on Rm.

In the following we recall some more statements involving subdifferentials of convex functions, but
for convenience and completeness we now sketch the proofs in our setting.

Lemma 3.4 (continuity of the subdifferential). Suppose that h : Rm → R ∪ {∞} is convex and that
zk converges to z in int(domh). Then for every choice of z∗k ∈ ∂h(zk) the sequence (z∗k)k∈N is bounded
in Rm and all its cluster points are contained in ∂h(z).

Proof. In view of the preceding observations, |∂h(zk)| is bounded for k →∞ by the Lipschitz constant
on a neighborhood of z, so that also z∗k remains bounded. In addition, the inclusion of the cluster points
in ∂h(z) follows straightforwardly from Definition 3.3 and the convergence limk→∞ h(zk) = h(z).

Lemma 3.5 (one-sided directional derivatives give subgradients). Consider a convex function h : Rm →
R ∪ {∞}, z ∈ int(domh), and v ∈ Rm. Then we have

lim
s↘0

h(z+sv)− h(z)

s
= z∗v · v for some z∗v ∈ ∂h(z) ,

and in particular the limit exists.
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Proof. By the convexity inequality, the quantity h(z+sv)−h(z)
s is increasing in s for 0 < s� 1, so that

its limit for s↘ 0 exists as asserted. By the definition of the subdifferential, we can moreover bound
the same quantity from above by z∗(s) · v with arbitrarily chosen z∗(s) ∈ ∂h(z+sv) and from below
by z∗ · v with any z∗ ∈ ∂h(z). Involving Lemma 3.4, we choose z∗v ∈ ∂h(z) as a cluster point of the
z∗(s) for s↘ 0 and deduce the claimed equality.

Lemma 3.6 (criterion for subgradients). Suppose that h : Rm → R ∪ {∞} is lower semicontinuous.
If some z∗0 ∈ Rm satisfies lim|z|→∞[h(z)− z∗0 · z] =∞, then we have z∗0 ∈ Im ∂h.

Proof. We can assume h 6≡ ∞. Then, direct minimization gives a minimum point z0 of z 7→ h(z)−z∗0 ·z
in Rm. We infer h(z0) + z∗0 · (z−z0) ≤ h(z) for all z ∈ Rm, and thus we get z∗0 ∈ ∂h(z0).

Proposition 3.7 (convexity and openness of Im ∂h). Suppose that h : Rm → R ∪ {∞} is convex
and lower semicontinuous, and assume that h is even strictly convex on domh. Whenever we have
z∗0 ∈ Im ∂h, then there exist positive constants ε and M such that we have

h(z)− z∗0 · z ≥ ε|z| −M for all z ∈ Rm . (3.5)

Furthermore, Im ∂h is convex and open in Rm.

Proof. We can assume h 6≡ ∞.
After subtraction of an affine function and translation, it suffices to prove the claim (3.5) only if

h(0) = 0 and z∗0 = 0 ∈ ∂h(0) (otherwise we can take z0 ∈ Rm with z∗0 ∈ ∂h(z0) and then replace h
with z 7→ h(z0 + z) − h(z0) − z∗0 · z). Then h is non-negative, and the strict convexity implies that
ε := inf |z|=1 h(z) is positive. By the convexity inequality we get h(z) ≥ h(z/|z|)|z| ≥ ε|z| whenever
|z| ≥ 1, and (3.5) follows.

Given any z∗0 ∈ Im ∂h, as a consequence of (3.5) we have lim|z|→∞[h(z)−z∗ ·z] =∞ for all z∗ ∈ Rm
with |z∗−z∗0 | < ε. By Lemma 3.6, these z∗ are contained in Im ∂h, and it is proved that Im ∂h is open.

Finally, we show that for z∗1 , z
∗
2 ∈ Im ∂h also every convex combination z∗ of z∗1 and z∗2 is contained

in Im ∂h. First, by (3.5) we have h(z)− z∗1 · z ≥ ε1|z| −M1 for all z ∈ Rm with positive constants ε1

and M1. In the case (z∗1−z∗) · z ≥ 0 we moreover infer h(z) − z∗ · z ≥ ε1|z| −M1. As z∗ is a convex
combination of z∗1 and z∗2 , in the remaining case (z∗1−z∗) · z < 0 we have (z∗2−z∗) · z ≥ 0, and we
can apply a completely analogous reasoning with (z∗2 , ε2,M2) in place of (z∗1 , ε1,M1). All in all we get
h(z)− z∗ · z ≥ min{ε1, ε2}|z| −max{M1,M2} for all z ∈ Rm. Via Lemma 3.6 we deduce z∗ ∈ Im ∂h,
and the proof of Proposition 3.7 is complete.

Proposition 3.8 (∂h∗ is the inverse of ∂h). If h : Rm → R∪{∞} is convex and lower semicontinuous,
then for z, z∗ ∈ Rm we have the equivalence

z∗ ∈ ∂h(z) ⇐⇒ z ∈ ∂h∗(z∗) , (3.6)

and, in particular, h∗ is subdifferentiable on Im ∂h. Moreover, if h : Rm → R is strictly convex, then
h∗ is of class C1 on the open set Im ∂h.

Proof. Assuming h 6≡ ∞, we start with the proof of the forward implication in (3.6). From (3.3) we
infer that z∗ ∈ ∂h(z) implies h(z) + h∗(z∗) = z∗ · z, which we rewrite in turn, with the help of the
above-mentioned equality h∗∗ = h, as h∗(z∗) + h∗∗(z) = z · z∗. When we involve (3.3) again, but now
with h∗ 6≡ ∞ in place of h, the last equality implies z ∈ ∂h∗(z∗). This proves the forward implication
in (3.6), and the backward one follows, when we use h∗∗ = h once more and switch the roles of h and
h∗.

Turning to the remaining claim, we first observe that the strict convexity implies ∂h(z1)∩∂h(z2) = ∅
whenever z1 6= z2 in Rm. By the subdifferentiability of h and the reverse implication in (3.6), we deduce
that in fact ∂h∗(z∗) = {g(z∗)} is a singleton for all z∗ ∈ Im ∂h. By Proposition 3.7 and (3.4), Im ∂h
is open and contained in int(domh∗), and then Lemma 3.4 gives continuity of g on Im ∂h, while
Lemma 3.5 identifies g as the classical derivative of h∗.
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Finally, we come to the more general case of the x-dependent integrand f : Ω × Rm → R, where
for the remainder of this paper we permanently fix7 m := Nn. In this connection we always consider
conjugate functions and subgradients with respect to the second variable, and we use the terminology

Im(x, ∂zf) :=
⋃
x∈Ω

[
{x} × Im ∂zf(x, · )

]
= {(x, z∗) ∈ Ω×Rm : z∗ ∈ ∂zf(x, z) for some z ∈ Rm} .

Lemma 3.9 (openness of Im(x, ∂zf)). Suppose that f satisfies (Con) and that f(x, · ) : Rm → R is a
strictly convex function for all x ∈ Ω. Then Im(x, ∂zf) is open in Ω×Rm.

Proof. We consider (x0, z
∗
0) ∈ Im(x, ∂zf), that is x0 ∈ Ω and z∗0 ∈ Im ∂zf(x0, · ). Then Proposition 3.7

gives positive constants ε and M such that we have f(x0, z) − z∗0 · z ≥ ε|z| − M for all z ∈ Rm.
Via (2.1) we find some δ > 0 such that for all (x, z) ∈ Ω × Rm with |x−x0| + |z|−1 < δ we have
|f(x, z)− f(x0, z)| ≤ 1

3ε|z|. When we additionally consider an arbitrary z∗ ∈ Rm with |z∗−z∗0 | < 1
3ε,

then we get
f(x, z)− z∗ · z > f(x0, z)− z∗0 · z − 2

3ε|z| ≥
1
3ε|z| −M .

With the help of Lemma 3.6 we deduce that all (x, z∗) ∈ Ω×Rm with |x−x0| < δ and |z∗−z∗0 | < 1
3ε

are contained in Im(x, ∂zf). Thus, the latter set is open.

Lemma 3.10 (joint continuity of f∗). Suppose that f is continuous on Ω×Rm with (Con) and that
f(x, · ) : Rm → R is a strictly convex function for all x ∈ Ω. Then f∗ is continuous on Im(x, ∂zf).

Proof. By the continuity assumption on f and the definition of the conjugate, f∗ is a supremum of
continuous functions and is thus lower semicontinuous on all of Ω×Rm. Now we argue indirectly and
assume that upper semicontinuity of f∗ fails at a point (x0, z

∗
0) ∈ Im(x, ∂zf). After subtraction of a

linear function from f , we assume z∗0 = 0, which means 0 ∈ Im ∂zf(x0, · ), and then we find a sequence
(xk, z

∗
k)k∈N in Im(x, ∂zf) with

lim
k→∞

(xk, z
∗
k) = (x0, 0) and lim inf

k→∞
f∗(xk, z

∗
k) > f∗(x0, 0) . (3.7)

By the definition of the conjugate, we choose a sequence (zk)k∈N in Rm with

lim inf
k→∞

f∗(xk, z
∗
k) ≤ lim inf

k→∞

[
|z∗k||zk| − f(xk, zk)

]
. (3.8)

If we now had lim supk→∞ |zk| = ∞, then (2.1) and Proposition 3.7, the latter applied to f(x0, · ),
would yield f(xk, zk) ≥ f(x0, zk) − 1

2ε|zk| ≥
1
2ε|zk| − M for infinitely many k and fixed positive

constants ε and M , so that the right-hand side of (3.8) would equal −∞. As the left-hand side of (3.8)
is bounded from below by (3.7), this cannot happen and we must have supk∈N |zk| < ∞. With this
information and the continuity of f we can now bound the right-hand side of (3.8) from above by
supz∈Rm

[
− f(x0, z)

]
= f∗(x0, 0), which contradicts (3.7) and completes the proof.

Let us briefly remark that the strict convexity assumptions in the last two lemmas cannot be
dropped. This is shown already for n = 1, every Ω which contains 0, and arbitrary z0 ∈ Rm \ {0}, by
the simple example f(x, z) = |xz−z0|, for which we have Im(x, ∂zf) = {(x, z∗) ∈ Ω×Rm : |z∗| ≤ |x|},
f∗(x, 0) = 0 for x 6= 0, and f∗(0, 0) = −|z0|. Similarly, when we take n = m = 1, 0 ∈ Ω, and
f(x, z) = |xz−1| − z +

√
1+z2, then we get f∗(x, 0) = (1/x) −

√
1+(1/x)2 for 0 < x ≤ 1 and

f∗(0, 0) = −1; hence, even under the strict convexity assumption, one cannot strengthen the conclusion
of Lemma 3.10 to continuity of f∗ on all of {f∗ <∞}.

7Nevertheless, we sometimes write RNn and sometimes Rm depending on whether the matrix structure of z ∈ RNn

is relevant at the respective stage or not.
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4 Reshetnyak continuity and strict approximation

Next we state a refined version of Reshetnyak’s continuity theorem [31] which requires only the assump-
tions (Lin) and (Con) for the integrand f . In particular, these hypotheses comprise the Carathéodory
property for f and joint continuity of f∞ in (x, z), but we emphasize that they do not imply continuity
of f itself in x, which is imposed in more common versions [21, 17, 28] of the result. Indeed, the drop-
ping of the latter continuity assumption in x seems quite natural, but to our knowledge it has been
carried out only recently by Kristensen & Rindler [27]. Here, we take their corresponding statements
as a starting point and then generalize the result to our setup with possibly unbounded Ω.

Theorem 4.1 (Reshetnyak continuity). Suppose that ∂Ω has zero L n-measure and that f : Ω×Rm →
R satisfies (Con) and (Lin) with some positive Ψ ∈ L1(Ω) which is bounded away from 0 on every
bounded subset of Ω. Assume moreover that (µk)k∈N weak-∗-converges8 to µ in the space of finite
Rm-valued Radon measures on Ω. If there holds

lim
k→∞

|(ΨL n, µk)|
(
Ω
)

= |(ΨL n, µ)|
(
Ω
)

for the Rm+1-valued measures (ΨL n, µk) and (ΨL n, µ), then we also have

lim
k→∞

[ ∫
Ω

f
(
· , dµa

k

dL n

)
dx+

∫
Ω

f∞
(
· , dµs

k

d|µs
k|

)
d|µs

k|
]

=

∫
Ω

f
(
· , dµa

dL n

)
dx+

∫
Ω

f∞
(
· , dµs

d|µs|

)
d|µs| .

Proof. We fix ε > 0, and — observing that the second condition in (4.1) is satisfied for all but countably
many R — we find a radius R with

|(ΨL n, µ)|
(
Ω \ BR

)
≤ ε and |(ΨL n, µ)|(Ω ∩ ∂BR) = 0 . (4.1)

Then it follows that we have

lim
k→∞

|(ΨL n, µk)|
(
Ω ∩ BR

)
= |(ΨL n, µ)|

(
Ω ∩ BR

)
and lim sup

k→∞
|(ΨL n, µk)|

(
Ω \ BR

)
≤ ε . (4.2)

Next, exploiting the strict positivity assumption on Ψ, we fix continuous and positive functions Ψl on
Ω ∩ BR such that Ψ/Ψl converges to 1 in L1(Ω ∩ BR) for l →∞ (for instance, one can choose the Ψl

as mollifications). Then we introduce the auxiliary functions hl : Ω ∩ BR ×R×Rm → R by

hl(x, t, z) :=

√[
t/Ψl(x)

]2
+ |z|2 ,

and we record that hl is positively 1-homogeneous in (t, z) and continuous in all variables with 0 ≤
hl(x, t, z) ≤

[
1+1/ infΩ∩BR

Ψl

]
|(t, z)| (where Ω ∩ BR is compact and thus infΩ∩BR

Ψl is positive). By

Reshetnyak’s continuity theorem, as stated in [1, Theorem 2.39]9, we thus obtain

lim
k→∞

∫
Ω∩BR

hl

(
· , d(ΨL n, µk)

d|(ΨL n, µk)|

)
d|(ΨL n, µk)| =

∫
Ω∩BR

hl

(
· , d(ΨL n, µ)

d|(ΨL n, µ)|

)
d|(ΨL n, µ)| (4.3)

for all l ∈ N. Relying on the 1-homogeneity of h in (t, z), we can split the integrals and use
hl(x,Ψ(x), z) =

√
[Ψ(x)/Ψl(x)]2 + |z|2 and h(x, 0, z) = |z| to infer

lim
k→∞

|([Ψ/Ψl]L
n, µk)|

(
Ω ∩ BR

)
= |([Ψ/Ψl]L

n, µ)|
(
Ω ∩ BR

)
,

8In our terminology this convergence means precisely limk→∞
∫
Ω ϕdµk =

∫
Ω ϕdµk for every continuous function

ϕ : Ω→ Rm with compact (or, here equivalently, with bounded) support.
9We remark that the domain of integration in (4.3) is not open as required in [1, Theorem 2.39]. Nevertheless, we

can easily deduce (4.3) from the statement of [1] when we extend Ψl (and thus hl) continuously and the measures µk
and µ by 0 to an open neighborhood of the compactum Ω ∩ BR.
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still for all l ∈ N. Recalling the L1(Ω)-convergence of Ψ/Ψl and the assumption L n(∂Ω) = 0, we
further deduce

lim
k→∞

|(L n, µk)|
(
Ω ∩ BR

)
= |(L n, µ)|

(
Ω ∩ BR

)
.

In the following we borrow some results and terminology from [27]. By [27, Proposition 1], the assumed
weak-∗-convergence and the last equality imply also the weak-∗-convergence in Y(Ω ∩BR,R

N ) of the
elementary Young measures generated by µk to the one generated by µ. To exploit this convergence,
we introduce, for arbitrary M ≥ 0 and the constant L from (Lin), the truncated integrand fM , defined
as

fM (x, z) :=


−M − 2L|z| if f(x, z) < −M − 2L|z|
f(x, z) if |f(x, z)| ≤M + 2L|z|
M + 2L|z| if f(x, z) > M + 2L|z|

.

Then we have |fM (x, z)| ≤M+2L|z|, i. e. the linear growth condition required in [27]. With the help
of (Lin) we see that (fM )∞ = f∞ holds and that (Con) carries over from f to fM . Therefore, the
restriction10 of fM to Ω ∩ BR×Rm is a representation integrand in the sense of [27, Section 2.4], and
we are in the position to apply [27, Proposition 2], which yields

lim
k→∞

[ ∫
Ω∩BR

fM

(
· , dµa

k

dL n

)
dx+

∫
Ω∩BR

f∞
(
· , dµs

k

d|µs
k|

)
d|µs

k|
]

=

∫
Ω∩BR

fM

(
· , dµa

dL n

)
dx+

∫
Ω∩BR

f∞
(
· , dµs

d|µs|

)
d|µs| .

When we observe |f(x, z) − fM (x, z)| ≤ (Ψ(x) −M)+ and send M → ∞, we can replace fM with
f in the last equality. Hence, we get the claimed convergence, but initially with Ω ∩ BR in place
of Ω. Then we employ (Lin), (4.1), and (4.2) in order to control the corresponding integrals over
Ω \Ω ∩ BR ⊂ Ω \BR so that we get the claim up to an error of at most 2(1+L)ε. Taking into account
the arbitrariness of ε, the proof is complete.

Remark 4.2. In fact, a version of Theorem 4.1 holds true for arbitrary open sets Ω (even when
L n(∂Ω) > 0); to formulate this version, one needs to define f and Ψ, require the respective assump-
tions, and take all integrals on the closure Ω of Ω.

Starting from a given u ∈ BVu0

(
Ω,RN

)
, we next construct convenient strict approximations

(wk)k∈N such that in particular the preceding theorem applies for the convergence of the gradient
measures. Basically, the existence of such approximations is classical, but a detailed proof of the here
relevant version which covers bounded Lipschitz domains Ω seems to have been written down only
in [11, Lemma B.2]. Moreover, the generality of bounded Ω with (Per) has been reached in [34].
In the following we continue to work under the hypothesis (Per), which is used only implicitly by
quoting the relevant constructions from [34], and we generalize the strict approximation result [34,
Theorem 1.2] to possibly unbounded Ω. Moreover — as a slight but decisive extra feature in the spirit
of [5, Lemma 5.1] — we achieve the almost-everywhere convergence (4.5) for the absolutely continuous
parts of the gradients.

Finally, we state the approximation lemma, which heavily uses the convention of Section 3.2 that
gradient measures of functions on Ω are extended to Ω with the aid of the fixed u0.

Lemma 4.3 (strict and almost-everywhere approximation in BV). Suppose that Ω satisfies (Per) and
consider an arbitrary non-negative Ψ ∈ L1(Ω). For every u ∈ BVu0

(
Ω,RN

)
there exists a sequence

10In our setting, (fM )∞ = f∞ is (and needs to be) defined on Ω×Rm, while fM itself is initially only given on Ω×Rm.
In view of L n(∂Ω) = 0, we can however assume that fM extends suitably to Ω×Rm ⊃ Ω ∩ BR×Rm; indeed, we can
take fM (x, z) := f∞(x, z) for x ∈ ∂Ω.
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(wk)k∈N in u0 Ω
+ C∞cpt(Ω,R

N ) ⊂ W1,1
u0

(Ω,RN ) such that (wk)k∈N converges to u in L1(Ω,RN ) and

(Dwk)k∈N weak-∗-converges to Du as finite RNn-valued measures on Ω with

lim
k→∞

|(ΨL n,Dwk)|
(
Ω
)

= |(ΨL n,Du)|
(
Ω
)
, (4.4)

∇wk → ∇u L n-a. e. in Ω . (4.5)

Proof. For bounded Ω, Ψ ≡ 1, and without (4.5), the statement is just a reformulation of [34, Theo-
rem 1.2]. We will now show how the general statement can be deduced.

Step 1. We prove Lemma 4.3 under the stated assumptions on Ω and Ψ, but at first without (4.5).
To this end, we choose, for every k ∈ N, a radius rk ∈ (k, k+1) with the following three properties:
∂Ω intersects ∂Brk in a set of zero H n−1-measure, the two one-sided traces of the BV-function u from
Section 3.2 coincide H n−1-a. e. on ∂Brk with its Lebesgue representative (and hence with each other),
and we have ∫

∂Brk

|u−u0|dH n−1 ≤
∫
Rn\Bk

|u−u0|dx . (4.6)

This choice is possible, as (Per) and the Federer-Vol’pert theorem (see [1, Theorem 3.77, Theorem 3.78,
Remark 3.79]) imply that all but countably many radii have the first two desired properties, while the
following Fubini type argument guarantees the validity of the last property for the radii in a subset
of (k, k+1) with positive L 1-measure: indeed, denoting by S the set of radii for which (4.6) fails, we
have

L 1(S)

∫
Rn\Bk

|u−u0|dx <
∫
S

∫
∂Br

|u−u0|dH n−1 dr ≤
∫
Rn\Bk

|u−u0|dx ,

hence we get L 1(S) < 1, and the complement of S has positive L 1-measure. Once rk is chosen, it is
not difficult to verify that also

Ωk := Ω ∩ Brk

satisfies the condition (Per). We now set uk := u
Ωk

and write uk for the extension of uk to Rn by the

values of u0. From (4.6) and [1, Theorem 3.84] we infer uk = 1Brk
u+ 1Rn\Brk

u0 ∈ BV(Rn,RN ) and

|Duk| Ωk = |Du|
(
Ω ∩ Brk

)
+ |u0−u|H n−1

(
Ω ∩ ∂Brk

)
. (4.7)

In particular, we have uk ∈ BVu0

(
Ωk,R

N
)
, and, analogous to the convention of Section 3.2, we use

Duk in order to extend Duk to a measure on Ωk. Applying [34, Theorem 1.2] to uk on the bounded
set Ωk, we find a sequence (w̃k,`)`∈N in u0 Ωk

+ C∞cpt(Ωk,R
N ) with

lim
`→∞

‖w̃k,`−uk‖1;Ωk
= 0 ,

lim
`→∞

|(L n,Dw̃k,`)|
(
Ωk
)

= |(L n,Duk)|
(
Ωk
)
.

It follows that a subsequence of (Dw̃k,`)`∈N weak-∗-converges in the sense of measures on Ωk, and
the limit measure must be Duk. Next we choose Mk large enough that Ψk := min{Ψ,Mk} satisfies
‖Ψk − Ψ‖1;Ω ≤ 1

k . Then we make use of Theorem 4.1, applied with Ωk in place of Ω, the constant 1
in place of Ψ, and the integrand11 (x, z) 7→ |(Ψk(x), z)| in place of f . Consequently, we can take `(k)
large enough that

‖w̃k,`(k)−uk‖1;Ωk
≤ 1

k
,

|(ΨkL
n,Dw̃k,`(k))|

(
Ωk
)
≤ |(ΨkL

n,Duk)|
(
Ωk
)

+
1

k
,

11The approximations Ψk are needed, since the integrand (x, z) 7→ |(Ψ(x), z)| does not satisfy the relevant assump-
tion (Con) in Theorem 4.1 if Ψ is unbounded on Ωk.
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and via the choice of Ψk, (4.7), and (4.6) we also get

|(ΨL n,Dw̃k,`(k))|
(
Ωk
)
≤ |(ΨL n,Du)|

(
Ω ∩ Brk

)
+

∫
∂Brk

|u0−u|dH n−1 +
2

k

≤ |(ΨL n,Du)|
(
Ω
)

+

∫
Rn\Bk

|u0−u|dx+
2

k
.

Now we introduce wk ∈ u0 Ω
+ C∞cpt(Ω,R

N ) as the extension of w̃k,`(k) from Ωk to Ω via the values of
u0. Then the preceding estimates readily yield

‖wk−u‖1;Ω ≤
1

k
+ ‖u0−u‖1;Ω\Bk

and

|(ΨL n,Dwk)|
(
Ω
)
≤ |(ΨL n,Dw̃k,`(k))|

(
Ωk
)

+

∫
Ω\Bk

|(Ψ,∇u0)|dx

≤ |(ΨL n,Du)|
(
Ω
)

+
2

k
+

∫
Rn\Bk

[
|(Ψ,∇u0)|+ |u0−u|

]
dx .

We infer that (wk)k∈N converges to u in L1(Ω,RN ) with

lim sup
k→∞

|(ΨL n,Dwk)|
(
Ω
)
≤ |(ΨL n,Du)|

(
Ω
)
,

and this in turn implies — via a standard argument with subsequences — that (Dwk)k∈N weak-∗-
converges to Du in the sense of measures on Ω. By the lower semicontinuity of the total variation, we
arrive at (4.4).

Step 2. We finally establish the full statement of Lemma 4.3 including (4.5). To this end we now
denote

Ωk :=
{
x ∈ Ω : dist(x, ∂Ω) > k−1

}
,

and we first consider mollifications uk ∈W1,1(Ω2k,R
N ) of u such that we have12

‖uk − u‖1;Ω2k
≤ k−2 for all k ∈ N ,

∇uk → ∇u L n-a. e. in Ω ,

lim sup
k→∞

|(ΨL n,Duk)|(Ω2k) ≤ |(ΨL n,Du)|(Ω) .

Moreover, by the preceding Step 1 we can also find a sequence (w̃k)k∈N in u0 Ω
+ C∞cpt(Ω,R

N ) such
that we have

‖w̃k − u‖1;Ω ≤ k−2 ,

|(ΨL n,Dw̃k)|
(
Ω
)
≤ |(ΨL n,Du)|

(
Ω
)

+
1

k

for all k ∈ N. We record that (Dw̃k)k∈N weak-∗-converges to Du in the sense of measures on Ω. Now,
for all k ∈ N, we choose cut-off functions ηk ∈ C∞cpt(Ω) which satisfy 1Ωk

≤ ηk ≤ 1Ω2k
and |∇ηk| ≤ 4k

on Ω. Introducing wk := ηkuk + (1−ηk)w̃k ∈ u0 Ω
+ C∞cpt(Ω,R

N ) we observe that (wk)k∈N converges

to u in L1(Ω,RN ) and that (4.5) is valid. Then for fixed ` ∈ N and k ≥ ` we find

|(ΨL n,Dwk)|
(
Ω
)
≤ |ηk(ΨL n,Duk)|

(
Ω
)

+ |(1−ηk)(ΨL n,Dw̃k)|
(
Ω
)

+

∫
Ω

|(uk−w̃k)⊗∇ηk|dx

≤ |(ΨL n,Duk)|(Ω2k) + |(ΨL n,Dw̃k)|
(
Ω \ Ω`

)
+ 8k−1 ,

12In connection with the a. e. convergence observe that the∇uk are mollifications of the measure Du = (∇u)L n+Dsu;
the mollifications of ∇u converge L n-a. e. to ∇u, while the mollifications of Dsu converge L n-a. e. to 0.
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where we estimated the last term via the fast convergences of uk and w̃k and the bound for |∇ηk|.
Splitting |(ΨL n,Dw̃k)|

(
Ω \ Ω`

)
= |(ΨL n,Dw̃k)|

(
Ω
)
− |(ΨL n,Dw̃k)|(Ω`) we now send first k to ∞

and use the lower semicontinuity of the total variation on the open Ω` to arrive at

lim sup
k→∞

|(ΨL n,Dwk)|
(
Ω
)
≤ |(ΨL n,Du)|(Ω) + |(ΨL n,Du)|

(
Ω \ Ω`

)
.

Then we pass also ` to ∞, and we conclude

lim sup
k→∞

|(ΨL n,Dwk)|
(
Ω
)
≤ |(ΨL n,Du)|

(
Ω
)
.

As usual, we deduce that (Dwk)k∈N weak-∗-converges to Du in the sense of measures on Ω, and the
lower semicontinuity of the total variation gives (4.4).

Remark 4.4. If Ω, f , and Ψ satisfy the assumptions of Theorem 4.1 and Lemma 4.3, then the
approximations of Lemma 4.3 have the following property, which we record for later usage: whenever
for a Borel set B in Rn we have (L n+|Du|)

(
Ω ∩ ∂B

)
= 0, then there holds

lim
k→∞

∫
Ω∩B

f( · ,∇wk) dx =

∫
Ω∩B

f( · ,∇u) dx+

∫
Ω∩B

f∞
(
· , dDsu

d|Dsu|

)
d|Dsu| , (4.8)

where, in the case that f is positively 1-homogeneous in its second variable, the right-hand side
simplifies to

∫
Ω∩B f

(
· , dDu

d|Du|
)

d|Du|. Indeed, in order to prove (4.8), one uses the semicontinuity

of the total variation on the relatively open sets Ω ∩ intB and Ω \ B to deduce the convergence
limk→∞ |(ΨL n,Dwk)|

(
Ω ∩ intB

)
= |(ΨL n,Du)|

(
Ω ∩ intB

)
(compare with [20, Theorem 1.9.1]); then

one concludes by Theorem 4.1, with Ω ∩ intB in place of Ω.

5 The duality formula and the extremality relation for ∇u
We start with a separation lemma from functional analysis which we have chosen to state for all
p ∈ (1,∞). We will use this lemma only for p = 2 (and alternatively we could use it for every other
fixed choice of p > 1), but we want to emphasize that the statement does not carry over to the case
p = 1 which will cause slight technical complications later on.

Lemma 5.1 (separation lemma). Consider δ > 0, p ∈ (1,∞), a convex set C in L∞(Ω,Rm), and a
closed subspace S of Lp(Ω,Rm) such that ‖Φ‖1;Ω ≤ M‖Φ‖p;Ω holds for all Φ ∈ S and a constant M .
If for every Φ ∈ S there is some τΦ ∈ C with∫

Ω

τΦ · Φ dx < δ‖Φ‖p;Ω ,

then there also exists some τ ∈ C with∫
Ω

τ · Φ dx < δ‖Φ‖p;Ω for all Φ ∈ S .

Proof. In view of the assumed inequality ‖Φ‖1;Ω ≤ M‖Φ‖p;Ω, the specification 〈Rτ,Φ〉 :=
∫

Ω
τ · Φ dx

defines a continuous linear operator R : L∞(Ω,Rm) → S∗. We now prove the claimed implication by
a contradiction argument. Indeed, if the conclusion were wrong, we would have ‖Rτ‖S∗ ≥ δ for every
τ ∈ C. By the Hahn-Banach separation theorem (see for instance [19, Corollary I.1.1]) we could then
separate the convex set R(C) from the open ball with radius δ and center 0 in S∗, meaning that we
would have

〈
F,Rτ

〉
≥ δ for all τ ∈ C and some F ∈ S∗∗ with ‖F‖S∗∗ = 1. As we are assuming

1 < p < ∞, the space Lp(Ω,Rm) and its closed subspace S are reflexive, and F would coincide with
the evaluation on some Φ ∈ S such that ‖Φ‖p;Ω = 1. Hence, we would get∫

Ω

τ · Φ dx =
〈
Rτ,Φ

〉
=
〈
F,Rτ

〉
≥ δ = δ‖Φ‖p;Ω for all τ ∈ C .

Clearly, the existence of such a Φ would contradict our premise, and the lemma is proved.
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The next lemma, based on Ekeland’s variational principle, is crucial for our approach.

Proposition 5.2 (approximative solutions). Assume that f satisfies (Lin) and that f(x, · ) : Rm → R

is a convex function for L n-a. e. x ∈ Ω. Furthermore, consider ε, χ ∈ (0,∞) and a closed subspace
S of L2(Ω,Rm) such that ‖Φ‖1;Ω ≤M‖Φ‖2;Ω holds for all Φ ∈ S and a constant M . Then, for every
ŵ ∈ L1(Ω,Rm) with ∫

Ω

f( · , ŵ) dx ≤ inf
Θ∈ŵ+S

∫
Ω

f( · ,Θ) dx+ ε

there exist approximative solutions v̂ ∈ ŵ + S and τ ∈ L∞(Ω,Rm) such that we have∫
Ω

f( · , v̂) dx ≤ inf
Θ∈ŵ+S

∫
Ω

f( · ,Θ) dx+ 2ε , (5.1)

‖v̂ − ŵ‖2;Ω ≤ χ , (5.2)

τ(x) ∈ ∂zf(x, v̂(x)) for L n-a. e. x ∈ Ω , (5.3)∫
Ω

τ · Φ dx <
2ε

χ
‖Φ‖2;Ω for all Φ ∈ S . (5.4)

Proof. By the convexity assumption, f(x, · ) is a continuous function for L n-a. e. x ∈ Ω, and we infer
with the help of (Lin) and the assumed inequality ‖Φ‖1;Ω ≤M‖Φ‖2;Ω that Θ 7→

∫
Ω
f( · ,Θ) dx is finite

and continuous on the complete metric space (ŵ+S, ‖ · ‖2;Ω). An application of Ekeland’s variational
principle [18, Theorem 1.1] thus yields a function v̂ ∈ ŵ + S with

‖v̂ − ŵ‖2;Ω ≤ χ ,∫
Ω

f( · , v̂) dx ≤
∫

Ω

f( · ,Θ) dx+
ε

χ
‖Θ− v̂‖2;Ω for all Θ ∈ ŵ + S . (5.5)

In particular, we get
∫

Ω
f( · , v̂) dx ≤

∫
Ω
f( · , ŵ) dx + ε ≤ infΘ∈ŵ+S

∫
Ω
f( · ,Θ) dx + 2ε, and thus (5.1)

and (5.2) are verified. When we test (5.5) with Θ = v̂ − sΦ, where s > 0 and Φ ∈ S are arbitrary, we
deduce

−
∫

Ω

f( · , v̂ − sΦ)− f( · , v̂)

s
dx ≤ ε

χ
‖Φ‖2;Ω . (5.6)

For L n-a. e. x ∈ Ω, we now use Lemma 3.5 to find some τΦ(x) with

τΦ(x) ∈ ∂zf(x, v̂(x)) ,

−τΦ(x) · Φ(x) = lim
s↘0

f(x, v̂(x)− sΦ(x))− f(x, v̂(x))

s
.

(5.7)

We immediately observe from (5.7) that τΦ · Φ is Lebesgue measurable, while on the other hand it
is not evident that τΦ itself is measurable. We claim however that one can modify the τΦ so that
they become Lebesgue measurable, while (5.7) still holds for L n-a. e. x ∈ Ω. Indeed, let us briefly
sketch how this last claim can be justified using the theory of measurable multifunctions as described
in [32]: first, by [32, Corollary 2X]13 the multifunction Γ: Ω→ Rm with Γ(x) := ∂zf(x, v̂(x)) is closed-
valued and Lebesgue measurable — in one of the equivalent senses of [32, Proposition 1A]. Similarly,
also ΥΦ(x) := {z∗ ∈ Rm : z∗ · Φ(x) = τΦ(x) · Φ(x)} defines a closed-valued Lebesgue measurable
multifunction ΥΦ : Ω → Rm (this follows from the measurability of τΦ · Φ and can be easily verified
with the help of [32, Corollary 1.D]). By [32, Theorem 1.M] also the pointwise intersection Γ ∩ ΥΦ

is closed-valued and Lebesgue measurable. Moreover, the existence of the above τΦ shows that the
values of Γ ∩ ΥΦ are non-empty. Hence, by [32, Theorem 1.C] we can choose a Lebesgue measurable
selection τ̃Φ : Ω→ Rm with τ̃Φ(x) ∈ Γ(x)∩ΥΦ(x) for L n-a. e. x ∈ Ω. By the definitions of Γ and ΥΦ,

13Notice also that, as our integrands f are always Borel measurable, the normality assumption in [32, Corollary 2X]
is satisfied as a consequence of [32, Theorem 2F].
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the last inclusion shows that (5.7) still holds with τ̃Φ in place of τΦ. A posteriori we can thus assume
that the τΦ themselves are all measurable with (5.7). From (Lin) and [22, Lemma 5.2], we infer that f
is Lipschitz continuous in z, uniformly in x, so that |∂zf | is bounded on Ω×RNn. Hence, we read off
from (5.7) that we can see τΦ as an element of L∞(Ω,Rm), and dominated convergence in (5.6) gives∫

Ω

τΦ · Φ dx <
2ε

χ
‖Φ‖2;Ω .

We are thus in the position to apply Lemma 5.1 with p = 2, the convex set{
ϑ ∈ L∞(Ω,Rm) : ϑ(x) ∈ ∂zf(x, v̂(x)) for L n-a. e. x ∈ Ω

}
,

and the closed subspace S of L2(Ω,Rm). The lemma then gives a function τ ∈ L∞(Ω,Rm) with
τ(x) ∈ ∂zf(x, v̂(x)) for L n-a. e. x ∈ Ω and with∫

Ω

τ · Φ dx <
2ε

χ
‖Φ‖2;Ω for all Φ ∈ S .

Thus we have established (5.3) and (5.4), and the proof of the proposition is complete.

Remark 5.3. If f is of class C1 in z, then the proof of Proposition 5.2 simplifies considerably.
Indeed, neither measurable selections nor Lemma 5.1 are needed in this situation, as the manifest
choice τ := ∇zf( · , v̂) satisfies (5.7) for all Φ ∈ S.

Next we turn to the proof of Theorem 1.1, in which the existence of the approximative solutions
of Proposition 5.2 will be exploited in order to apply the following simple lemma.

Lemma 5.4. Assume that f satisfies (Lin). If for some sequences (vk)k∈N in W1,1(Ω,RN ) and
(τk)k∈N in L∞(Ω,RNn) we have

τk(x) ∈ ∂zf(x,∇vk(x)) for L n-a. e. x ∈ Ω ,

lim sup
k→∞

∫
Ω

τk · (∇u0 −∇vk) dx ≥ 0 ,
(5.8)

and if (τk)k∈N weak-∗-converges in L∞(Ω,RNn) to a limit σ ∈ L∞div(Ω,RNn), then we have

Ru0
[σ] ≥ lim inf

k→∞
F [vk] .

Proof. We record that f∗ is convex and lower semicontinuous in its second variable, and (Lin) gives the
lower bound f∗(x, z∗) ≥ −Ψ(x) with the L1-function Ψ. In this situation, [16, Theorem 3.20]14 guaran-
tees upper semicontinuity of ϑ 7→ −

∫
Ω
f∗( · , ϑ) dx with respect to weak-∗-convergence in L∞(Ω,RNn),

and thus we get

Ru0
[σ] =

∫
Ω

[
σ · ∇u0 − f∗( · , σ)

]
dx ≥ lim sup

k→∞

∫
Ω

[
τk · ∇u0 − f∗( · , τk)

]
dx . (5.9)

From the first part of (5.8) and (3.3) we deduce f( · ,∇vk) + f∗( · , τk) = τk · ∇vk. With the help of
this equality we can rewrite (5.9) as

Ru0 [σ] ≥ lim sup
k→∞

[ ∫
Ω

f( · ,∇vk) dx+

∫
Ω

τk · (∇u0 −∇vk) dx

]
,

and the claim follows via the second part of (5.8) .

14Actually, [16, Theorem 3.20] is not directly formulated for case of weak-∗-convergence in L∞, but it implies the
required statement (compare [16, Remark 3.25]). This follows easily from the fact that weak-∗-convergence in L∞

comprises — at least on subsets of finite measure — weak convergence in Lp for all p <∞.
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We remark that, in Lemma 5.4, neither vk ∈W1,1
u0

(Ω,RN ) nor div τk ≡ 0 is assumed, and thus the
functions vk and τk need not be admissible competitors in (P) and (P∗), respectively. Nevertheless,
when applying the lemma in the following, we will utilize Proposition 5.2 to choose at least the vk
admissible. In this way we now provide a

Proof of Theorem 1.1. By (Lin), infW1,1
u0

(Ω,RN ) F =∞ cannot happen, and if we have infW1,1
u0

(Ω,RN ) F =

−∞, the claim follows from (1.3). Thus, we now assume that the infimum is finite. From the con-
tinuity of f in z and from (Lin), we get that F is continuous in W1,1(Ω,RN ), and thus we can
find a sequence (wk)k∈N in the dense subset u0 Ω

+ C∞cpt(Ω,R
N ) of W1,1

u0
(Ω,RN ) such that we have

limk→∞ F [wk] = infW1,1
u0

(Ω,RN ) F . Since each wk−u0 vanishes near the boundary of Ω, we can more-

over choose an increasing sequence (Gk)k∈N of bounded open subsets of Ω with
⋃∞
k=1Gk = Ω and

such that wk = u0 holds on Ω \ Gk. In addition, we take a null sequence (εk)k∈N in (0,∞) with
F [wk] ≤ infW1,1

u0
(Ω,RN ) F + εk, and we set

χk := 1 + ‖∇wk −∇u0‖2;Ω ,

W1,2
0;Gk

(Ω,RN ) := {ϕ ∈W1,2
0 (Ω,RN ) : ϕ ≡ 0 on Ω \Gk} ,

Sk := {∇ϕ : ϕ ∈W1,2
0;Gk

(Ω,RN )} .

With the help of Poincaré’s inequality and weak compactness, it follows that Sk is a closed subspace
of L2(Ω,RN ). Furthermore, we have ‖Φ‖1;Ω ≤

√
L n(Gk) ‖Φ‖2;Ω for all Φ ∈ Sk and∫

Ω

f( · ,∇wk) ≤ inf
Θ∈∇wk+Sk

∫
Ω

f( · ,Θ) dx+ εk .

For each fixed k ∈ N, we can thus apply Proposition 5.2 with the constants εk, χk, the subspace Sk,
and and the L1-function ∇wk. Consequently, we find v̂k ∈ ∇wk + Sk, which we can directly write as
v̂k = ∇vk with vk ∈ u0 Ω

+ W1,2
0;Gk

(Ω,RN ) ⊂W1,1
u0

(Ω,RN ), and τk ∈ L∞(Ω,RNn) such that

‖∇vk −∇wk‖2;Ω ≤ χk ,
τk(x) ∈ ∂zf(x,∇vk(x)) for L n-a. e. x ∈ Ω ,∫

Ω

τk · ∇ϕdx <
2εk
χk
‖∇ϕ‖2;Ω for all ϕ ∈W1,2

0;Gk
(Ω,RN ) .

As |∂zf | is bounded on Ω × RNn via (Lin) and [22, Lemma 5.2], (τk)k∈N is a bounded sequence in
L∞(Ω,RNn). Possibly passing to a subsequence, we can assume that (τk)k∈N weak-∗-converges to a
limit σ in L∞(Ω,RNn). Since every ϕ ∈ C∞cpt(Ω,R

N ) is for k � 1 in W1,2
0;Gk

(Ω,RN ) and εk/χk tends

to 0, we easily infer σ ∈ L∞div(Ω,RN ). Recalling the precise choice of the χk we moreover have∫
Ω

τk · (∇vk −∇u0) dx ≤ 2εk
χk

[
‖∇vk −∇wk‖2;Ω + ‖∇wk −∇u0‖2;Ω

]
≤ 4εk −→

k→∞
0 ,

so that all assumptions of Lemma 5.4 are available. By the latter lemma, we thus conclude

Ru0
[σ] ≥ lim inf

k→∞
F [vk] ≥ inf

W1,1
u0

(Ω,RN )
F .

Taking (1.3) into account, we see that σ solves the dual problem (P∗), and that we have in fact equality
in the last estimate.

Similar in spirit and also based on Proposition 5.2, but choosing as the starting sequence (wk)k∈N
the refined approximations of Lemma 4.3, we next establish a part of Theorem 2.1.
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Proof that (2.2), (2.3), (2.4) hold for all extremals u and σ, in the situation of Theorem 2.1. Possibly
passing from Ψ to max{Ψ,Φ

Ω
} with some positive and continuous Φ ∈ L1(Rn), we assume in the

following that the function Ψ ∈ L1(Ω) in assumption (Lin) is positive and bounded away from 0 on
bounded subsets of Ω. Starting from a given generalized minimizer u for F in W1,1

u0
(Ω,RN ) we then

work with the sequence (wk)k∈N of Lemma 4.3, and in view of the assumption just made we can also
apply Theorem 4.1. From this theorem and the minimizing property of u we deduce

lim
k→∞

F [wk] = lim
k→∞

∫
Ω

f(∇wk) dx =

∫
Ω

f(∇u) dx+

∫
Ω

f∞
( dDsu

d|Dsu|

)
d|Dsu| = Fu0

[u] ≤ inf
W1,1

u0
(Ω,RN )

F .

Now we take a null sequence (εk)k∈N in (0,∞) with F [wk] ≤ infW1,1
u0

(Ω,RN ) F + εk, and we also fix

a Borel representative of a solution σ ∈ L∞div(Ω,RN ) of the dual problem (P∗). Setting fσ(x, z) :=
f(x, z)−σ(x)z, we observe that fσ is Borel measurable, convex in z, and satisfies (Lin) (possibly with
L+‖σ‖∞;Ω in place of L). Using div σ ≡ 0 in the first step and the duality formula of Theorem 1.1 in
the last one, we get∫

Ω

fσ( · ,∇wk) dx = F [wk]−
∫

Ω

σ · ∇u0 dx

≤ εk + inf
W1,1

u0
(Ω,RN )

F −
∫

Ω

σ · ∇u0 dx = εk −
∫

Ω

f∗( · , σ) dx . (5.10)

Moreover, by the definition of the conjugate function we have

−f∗(x, σ(x)) ≤ f(x, z)− σ(x) · z = fσ(x, z) for all (x, z) ∈ Ω×RNn

so that in fact there holds

−
∫

Ω

f∗( · , σ) dx ≤
∫

Ω

fσ( · ,Θ) dx for all Θ ∈ L1(Ω,RN ) . (5.11)

Next, we choose an increasing sequence (Gk)k∈N of bounded open subsets of Ω with
⋃∞
k=1Gk = Ω.

When we introduce the closed subspace

L2
Gk

(Ω,RNn) := {Φ ∈ L2(Ω) : Φ ≡ 0 on Ω \Gk}

of L2(Ω,RNn), we can combine (5.10) and (5.11) to obtain in particular∫
Ω

fσ( · ,∇wk) dx ≤ inf
Θ∈∇wk+L2

Gk
(Ω,RNn)

∫
Ω

fσ( · ,Θ) dx+ εk .

Similar to the above proof of Theorem 1.1, we apply Proposition 5.2 — but this time with fσ in place of
f and

√
εk in place of χ — to find for each k ∈ N some v̂k ∈ ∇wk + L2

Gk
(Ω,RN ) and τk ∈ L∞(Ω,RNn)

with

‖v̂k −∇wk‖2;Ω ≤
√
εk , (5.12)

τk(x) ∈ ∂zfσ(x, v̂k(x)) for L n-a. e. x ∈ Ω , (5.13)∫
Ω

τk · Φ dx < 2
√
εk ‖Φ‖2;Ω for all Φ ∈ L2

Gk
(Ω,RN ) . (5.14)

From (5.14) we conclude that (τk)k∈N converges to 0 in L2
loc(Ω,RN ), and by (5.12) (v̂k−∇wk)k∈N

converges to 0 in L2(Ω,RN ). Passing to a subsequence we can assume that these convergences hold
also L n-a. e. on Ω, and — taking into account the extra information of (4.5) — it follows that (v̂k)k∈N
converges L n-a. e. to ∇u. Using these convergences and (5.13), and applying Lemma 3.4 pointwisely,
we infer

0 ∈ ∂zfσ(x,∇u(x)) for L n-a. e. x ∈ Ω .

Recalling the definition of fσ, we have ∂zfσ(x,∇u(x)) = ∂zf(x,∇u(x)) − σ(x), and hence we finally
arrive at (2.3). With the help of (3.3) and the equality f∗∗ = f , we see that (2.2) and (2.4) hold as
well.
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6 Proofs of the regularity and uniqueness statements

In this section, we start with an elementary bound for the subdifferential, and then we proceed with
the proofs of Theorem 2.3 and Corollary 2.4, which essentially follow previous arguments of [37, 13].

Lemma 6.1. Consider h : Rm → R∪ {∞,−∞} and suppose that |h| is bounded by a constant Λ on a
subset A of Rm. Then, for all interior points z of A, we have

|∂h(z)| ≤ 2Λ

dist(z,Rm \A)
.

Proof. If the lemma were false, for some interior point z of A and some z∗ ∈ ∂h(z) we would have
|z∗| > 2Λ/dist(z,Rm \ A). We could then choose a ξ ∈ Rm which points in the same direction as z∗

and satisfies 2Λ/|z∗| < |ξ| < dist(z,Rm \A). Consequently, we would get z+ξ ∈ A and

h(z+ξ)− h(z) ≥ z∗ · ξ = |z∗||ξ| > 2Λ ,

which clearly contradicts our assumptions.

Proof of Theorem 2.3. We consider an arbitrary generalized minimizer u ∈ BV(Ω,RN ) of (P) and the
approximations wk ∈ u0 Ω

+ C∞cpt(Ω,R
N ) of Lemma 4.3, for which in particular (Dwk)k∈N weak-∗-

converges to Du in the sense of measures. Exactly as in the proof of Theorem 2.1 we use Theorem 4.1
to deduce limk→∞ F [wk] ≤ infW1,1

u0
(Ω,RN ) F , and by Theorem 1.1 we conclude

lim
k→∞

F [wk] ≤
∫

Ω

σ · ∇u0 dx−
∫

Ω

f∗( · , σ) dx (6.1)

for the fixed dual solution σ of Theorem 2.3. Now we consider t > 0 and a test function ϕ ∈
C∞cpt(Ω,R

Nn). Then, exploiting the definition of f∗ and recalling div σ ≡ 0, we infer

F [wk] ≥
∫

Ω

(σ + tϕ) · ∇wk dx−
∫

Ω

f∗( · , σ + tϕ) dx

=

∫
Ω

σ · ∇u0 dx+ t

∫
Ω

ϕ · ∇wk dx−
∫

Ω

f∗( · , σ + tϕ) dx .

Using (6.1), the weak-∗-convergence of the Dwk, and the continuity of ϕ, we pass to the limit k →∞
in the last inequality, and we find∫

Ω

σ · ∇u0 dx−
∫

Ω

f∗( · , σ) dx ≥
∫

Ω

σ · ∇u0 dx+ t

∫
Ω

ϕ · dDu−
∫

Ω

f∗( · , σ + tϕ) dx .

The integrals involving u0 cancel out, and we arrive at∫
Ω

ϕ · dDu ≤
∫

Ω

f∗( · , σ + tϕ)− f∗( · , σ)

t
dx . (6.2)

Reasoning for L n-a. e. x ∈ Ω, we next notice that by (Lin) and (2.6) we have −Ψ(x) ≤ f∗(x, · ) ≤ Λ(x)
on Bε(x)(σ(x)), so that by Lemma 6.1 we get |∂z∗f∗(x, · )| ≤ 4 max{Λ(x),Ψ(x)}/ε(x) on Bε(x)/2(σ(x)).
For every fixed ϕ ∈ C∞cpt(Ω,R

Nn), we know that ε is bounded from below on sptϕ, and thus we can
take t > 0 sufficiently small that σ(x) + tϕ(x) is contained in Bε(x)/2(σ(x)) for all x ∈ Ω. For such t
we have the control

f∗( · , σ + tϕ)− f∗( · , σ)

t
≤ |∂z∗f∗( · , σ + tϕ)| |ϕ| ≤ 4 max{Λ,Ψ}

ε
|ϕ| L n-a. e. on Ω (6.3)

in terms of the function max{Λ,Ψ}/ε ∈ L1
loc(Ω). When we combine the estimates (6.2) and (6.3) and

exploit the arbitrariness of ϕ, we find

|Du| ≤ 4 max{Λ,Ψ}
ε

L n .
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As u ∈ BV(Ω,RN ) already means u ∈ L1(Ω,RN ) and |Du|(Ω) < ∞, we have thus shown u ∈
W1,1(Ω,RN ).

Proof of Corollary 2.4. We first argue that (2.6) is valid: By Lemmas 3.9 and 3.10, the strict convexity
assumption on f implies that f∗ is continuous on the open subset Im(x, ∂zf) of Ω×RNn. Moreover,
by the continuity of σ and by Theorem 2.1, for every compact subset K of Ω, the graph ΣK of σ

K
is

a compact subset of Im(x, ∂zf). Consequently, for some εK > 0 the εK-neighborhood NεK (ΣK) of ΣK
is still relatively compact in Im(x, ∂zf), and |f∗| is bounded on NεK (ΣK) by some constant ΛK . As K
is an arbitrary compact subset of Ω, it is now easy to obtain (2.6) with continuous positive functions
ε and Λ. Consequently, the conclusions of Theorem 2.3 are available, and every generalized minimizer
u of (P) is in W1,1(Ω,RN ). Taking Proposition 3.8 into account, the strict convexity also gives that
f∗ is C1 in z∗ on Im(x, ∂zf) with single-valued subdifferential ∂z∗f

∗(x, z∗) = {∇z∗f∗(x, z∗)}, and
Lemma 6.1 yields the bound |∇z∗f∗| ≤ 4ΛK/εK on NεK/2(ΣK). Therefore, (2.4) determines ∇u and
bounds it in L∞loc(Ω,RNn).

7 A pairing of σ and Du and the extremality relation for Dsu

In this section we prove the full statement of Theorem 2.1. To this end, we follow ideas of Anzellotti [2]
(compare also [14, 26]), and we introduce, for u ∈ BVu0

(
Ω,RN

)
and σ ∈ L∞div(Ω,RNn), a pairing of the

gradient measure Du and the possibly discontinuous function σ. Indeed, imposing the assumption (Per)
on Ω, we use the approximations from Lemma 4.3 and integration by parts in order to handle an up-
to-the-boundary version of Anzellotti’s pairing. In the first place, these tools allow to show continuity
of the linear functional

C∞cpt(R
n)→ R, ϕ 7→

∫
Ω

ϕσ · ∇u0 dx−
∫

Ω

σ · ((u−u0)⊗∇ϕ) dx

(and its extension to C0
cpt(R

n)) in the sup-norm. In view of the Riesz representation theorem for
continuous linear functionals on C0

cpt, we can then give the following variant of [2, Definition 1.4,
Theorem 1.5].

Definition 7.1 (up-to-the-boundary pairing of Du and σ). Suppose that Ω satisfies (Per). For every
u ∈ BVu0

(
Ω,RN

)
and σ ∈ L∞div(Ω,RNn) we define Jσ · DuK as the uniquely determined signed Radon

measure on Ω such that∫
Ω

ϕdJσ ·DuK =

∫
Ω

ϕσ · ∇u0 dx−
∫

Ω

σ · ((u−u0)⊗∇ϕ) dx holds for all ϕ ∈ C∞cpt(R
n) .

We stress that the up-to-the boundary feature in this definition lies in the fact that only ϕ ∈
C∞cpt(R

n), but not sptϕ ⊂ Ω, is required; as a result, Definition 7.1 incorporates the possible deviation
of u from the boundary values prescribed by u0, or, in other words, it takes into account the measure
Du ∂Ω.

However, when sptϕ ⊂ Ω holds, then integration by parts and standard approximation of u0 give∫
Ω
ϕdJσ ·DuK = −

∫
Ω
σ · (u⊗∇ϕ) dx for all ϕ ∈ C∞cpt(Ω), so that our pairing Jσ ·DuK coincides on Ω

with Anzellotti’s original one. Therefore, from [2, Theorem 2.4] we can deduce the representation

Jσ ·DuKa = (σ · ∇u)L n (7.1)

of the absolutely continuous part of Jσ · DuK. Approximation, based on Lemma 4.3 with Ψ ≡ 0, also
yields (compare with [2, Theorem 1.5, Corollary 1.6])

|Jσ ·DuK| ≤ ‖σ‖∞;Ω|Du| (7.2)
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as an inequality of measures on Ω, and hence the existence of the density dJσ·DuK
d|Du| follows. In addition,

the usage of test functions ϕ with ϕ ≡ 1 on large balls, gives the equality

Jσ ·DuK
(
Ω
)

=

∫
Ω

σ · ∇u0 dx . (7.3)

Finally, we have the following statements, which are crucial for our purposes:

Theorem 7.2 (|Du|-a. e. density control on Jσ · DuK). Suppose that Ω satisfies (Per). Consider

u ∈ BVu0

(
Ω,RN

)
and σ ∈ L∞div(Ω,RNn), and a common Lebesgue point15 x0 of dDu

d|Du| and dJσ·DuK
d|Du|

with respect to |Du| in Ω. If σ ∈ K holds L n-a. e. on a neighborhood of x0 in Ω, for some closed
convex set K in RNn, then there exists a σ0 ∈ K with

dJσ ·DuK
d|Du|

(x0) = σ0 ·
dDu

d|Du|
(x0) . (7.4)

Corollary 7.3. Suppose that Ω satisfies (Per) and that (Lin) and (Con) hold for f . Then, for all
u ∈ BVu0

(
Ω,RN

)
and σ ∈ L∞div(Ω,RNn) such that f∗( · , σ) <∞ holds L n-a. e. on Ω, we have

dJσ ·DuK
d|Du|

≤ f∞
(
· , dDu

d|Du|

)
|Du|-a. e. on Ω . (7.5)

Before turning to the proofs of Theorem 7.2 and Corollary 7.3, let us highlight their most decisive
feature: indeed, for L n-a. e. x0 ∈ Ω with ∇u(x0) 6= 0, one can directly read off from (7.1) that

dJσ ·DuK
d|Du|

(x0) = σ(x0) · ∇u(x0)

|∇u(x0)|
= σ(x0) · dDu

d|Du|
(x0)

holds, so that the validity of (7.4) with the ‘concrete’ value σ0 = σ(x0) is obvious for |Dau|-a. e.
x0. However, the crucial point of Theorem 7.2 — which will enable us to deal with the extremality
relation (2.5) for Dsu — is that it gives (7.4) not only for |Dau|-a. e. x0, but also for |Dsu|-a. e. x0.
We believe that it is possible to deduce the latter assertion — which is clearly more subtle, as σ
cannot be evaluated |Dsu|-a. e. — from an adaption of Anzellotti’s aureate representation formula [3,

Theorem 3.6] for dJσ·DuK
d|Du| (stated for N = 1, see also [4, Fact 1.1] and [14, Proposition 1.6]). However,

the adaption to our case of an up-to-a-non-smooth-boundary pairing would require a considerable
effort, and we prefer to follow a more elementary line of argument. Our approach yields a less precise

information about dJσ·DuK
d|Du| , which however still suffices for our purposes:

Proof of Theorem 7.2. We assume 0 ∈ K (otherwise we fix some z∗0 ∈ K, and in view of J(σ−z∗0)·DuK =
Jσ ·DuK− z∗0 ·Du, we can pass from K to {z∗−z∗0 : z∗ ∈ K} and from σ to σ−z∗0), and we work with
approximations wk of Lemma 4.3, corresponding to an arbitrarily fixed, positive Ψ ∈ L1(Ω). Using
the L1-convergence of the wk and integration by parts in Definition 7.1, we get∫

Ω

ϕdJσ ·DuK = lim
k→∞

∫
Ω

ϕσ · ∇wk dx for all ϕ ∈ C∞cpt(R
n) .

Approximating the characteristic functions of balls with the ϕ and keeping (7.2) in mind, this implies,
in a standard way,

Jσ ·DuK
(
Ω ∩ BR(x0)

)
= lim
k→∞

∫
Ω∩BR(x0)

σ · ∇wk dx whenever |Du|
(
Ω ∩ ∂BR(x0)

)
= 0 . (7.6)

15We call x0 ∈ sptµ a Lebesgue point of a µ-measurable function G : Ω→ Rm with respect to a non-negative Radon
measure µ in Ω if there exists a z0 ∈ Rm with

lim
R↘0

1

µ
(
Ω ∩ BR(x0)

) ∫
Ω∩BR(x0)

|G− z0|dµ = 0 .

For such points, the value z0 is uniquely determined, is called the Lebesgue value of G at x0, and is denoted by G(x0).
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Here, the last requirement is fulfilled for all but countably many R, and we tacitly understand in the
following that it is met by all radii in our computations. We now introduce the Lebesgue value

v :=
dDu

d|Du|
(x0) with |v| = 1 .

Writing pv⊥ : RNn → RNn for the orthogonal projection on the orthogonal complement of v, we then
split

σ · ∇wk = (σ · v)(v · ∇wk)+ − (σ · v)(v · ∇wk)− + pv⊥(σ) · pv⊥(∇wk)

and estimate the resulting terms on the right-hand side of (7.6) separately. For one term, we use
Remark 4.4, with the integrand (x, z) 7→ |pv⊥(z)|, and the inequality |pv⊥(z)| = |pv⊥(z−v)| ≤ |z−v|
to get

lim sup
k→∞

∣∣∣∣ ∫
Ω∩BR(x0)

pv⊥(σ) · pv⊥(∇wk) dx

∣∣∣∣ ≤ ‖σ‖∞;Ω lim
k→∞

∫
Ω∩BR(x0)

|pv⊥(∇wk)|dx

= ‖σ‖∞;Ω

∫
Ω∩BR(x0)

∣∣∣pv⊥( dDu

d|Du|

)∣∣∣ d|Du|
≤ ‖σ‖∞;Ω

∫
Ω∩BR(x0)

∣∣∣ dDu

d|Du|
− v
∣∣∣d|Du| .

(7.7)

Arguing analogously with (x, z) 7→ (v · z)− and (v · z)− ≤ |z−v|, we also get

lim sup
k→∞

∣∣∣∣ ∫
Ω∩BR(x0)

(σ · v)(v · ∇wk)− dx

∣∣∣∣ ≤ ‖σ‖∞;Ω lim
k→∞

∫
Ω∩BR(x0)

(v · ∇wk)− dx

= ‖σ‖∞;Ω

∫
Ω∩BR(x0)

(
v · dDu

d|Du|

)
−

d|Du|

≤ ‖σ‖∞;Ω

∫
Ω∩BR(x0)

∣∣∣ dDu

d|Du|
− v
∣∣∣d|Du| .

(7.8)

In order to treat the remaining term, we set M := max{z∗ · v : z∗ ∈ K , |z∗| ≤ ‖σ‖∞;Ω}, and we
get 0 ≤ M ≤ ‖σ‖∞;Ω (as we supposed 0 ∈ K). Now we take R sufficiently small that inclusion
σ ∈ K holds in Ω ∩ BR(x0). Then, Remark 4.4, applied with (x, z) 7→ (v · z)+, and the inequality
(v · z)+ = v · z + (v · z)− ≤ v · z + |z−v| give

lim sup
k→∞

∫
Ω∩BR(x0)

(σ · v)(v · ∇wk)+ dx ≤M lim
k→∞

∫
Ω∩BR(x0)

(v · ∇wk)+ dx

= M

∫
Ω∩BR(x0)

(
v · dDu

d|Du|

)
+

d|Du|

≤M
∫

Ω∩BR(x0)

[
v · dDu

d|Du|
+
∣∣∣ dDu

d|Du|
− v
∣∣∣] d|Du| .

(7.9)

Collecting the estimates (7.6), (7.7), (7.8), (7.9), we arrive at

Jσ ·DuK
(
Ω ∩ BR(x0)

)
≤Mv ·Du

(
Ω ∩ BR(x0)

)
+ 3‖σ‖∞;Ω

∫
Ω∩BR(x0)

∣∣∣ dDu

d|Du|
− v
∣∣∣d|Du| .

Now we divide on both sides by |Du|
(
Ω ∩ BR(x0)

)
and take the limit for R↘ 0. Recalling that x0 is

a Lebesgue point of dDu
d|Du| with Lebesgue value v and also a Lebesgue point of dJσ·DuK

d|Du| (in particular

x0 ∈ spt |Du|, so that for 0 < R� 1 we are not dividing by 0), we obtain

dJσ ·DuK
d|Du|

(x0) ≤Mv · v .

24



Recalling |v| = 1 and the choice of M , this implies

dJσ ·DuK
d|Du|

(x0) = σM · v

for some σM ∈ K. Using, as a substitute for (7.9), a very similar estimate from below, we can also
find a σm ∈ K with

dJσ ·DuK
d|Du|

(x0) ≥ σm · v ,

and, together, the two last inequalities show that (7.4) holds, when we take σ0 ∈ K as a suitable
convex combination of σM and σm.

In order to deduce the statement of Corollary 7.3, the following simple continuity lemma will be
useful to cope with the x-dependence of the integrand f .

Lemma 7.4. Suppose that g : Ω × Rm → R is continuous. Then, for every (x0, z0) ∈ Ω × Rm and
every ε > 0, there exists a δ > 0 such that we have

∂zg(x, z0) ⊂ Nε(∂zg(x0, z0)) for all x ∈ Ω with |x−x0| < δ .

Here, we used Nε( · ) for the ε-neighborhood of a set.

Proof. We may assume z0 = 0. In order to prove the lemma by contradiction, we now suppose that
the claim fails for some x0 ∈ Ω and some ε > 0. Then we can find a sequence (xk)k∈N in Ω, converging
to x, and a sequence (z∗k)k∈N in Rm such that z∗k ∈ ∂zg(xk, 0) and dist(z∗k, ∂zg(x0, 0)) ≥ ε hold for all
k ∈ N. As g(xk, 0) and g(xk, z

∗
k/|z∗k|) remain bounded for k →∞, the estimate

g(xk, 0) + |z∗k| = g(xk, 0) + z∗k · z∗k/|z∗k| ≤ g(xk, z
∗
k/|z∗k|)

gives boundedness of (z∗k)k∈N, hence a subsequence (z∗kl)l∈N converges to a limit z∗0 ∈ Rm. For the
limit, we have on the one hand dist(z∗0 , ∂zg(x0, 0)) ≥ ε, while on the other hand we infer

g(x0, z) = lim
l→∞

g(xkl , z) ≥ lim
l→∞

g(xkl , 0) + z∗kl · z = g(x0, 0) + z∗0 · z

for all z ∈ Rm, so that we get z∗0 ∈ ∂zg(x0, 0). This contradiction ends the proof of the lemma.

Proof of Corollary 7.3. It suffices to show that (7.5) holds at every common Lebesgue point x0 of
dDu

d|Du| and dJσ·DuK
d|Du| with respect to |Du| in Ω. To see this, we first record that, by the definition of the

conjugate function, we have tf(x, z/t) ≥ σ(x) · z − tf∗(x, σ(x)) for all (x, z) ∈ Ω×RNn and all t > 0.
Sending t to 0 and recalling that in view of (Con) the lower limit in (3.1) is in fact a limit, we infer

f∞(x, z) ≥ σ(x) · z for all z ∈ RNn

whenever x ∈ Ω such that f∗(x, σ(x)) is finite. By assumption, the last finiteness requirement is
available, and we thus have σ(x) ∈ ∂zf∞(x, 0), for L n-a. e. x ∈ Ω. For an arbitrary ε > 0, we now
apply Lemma 7.4 to f∞ (which under (Lin) and (Con) is jointly continuous in (x, z)), and we infer
that σ(x) ∈ Nε(∂zf∞(x0, 0)) holds for L n-a. e. x in a neighborhood of x0 in Ω. At this stage we
employ Theorem 7.2 with the closure of the convex set Nε(∂zf∞(x0, 0)) in place of K, and we infer

dJσ ·DuK
d|Du|

(x0) = σ0 ·
dDu

d|Du|
(x0) for some σ0 ∈ Nε(∂zf∞(x0, 0)) .

As a consequence, we can find a subgradient σ∗ ∈ ∂zf∞(x0, 0) with |σ∗−σ0| ≤ ε, and we get

dJσ ·DuK
d|Du|

(x0) = σ0 ·
dDu

d|Du|
(x0) ≤ σ∗ ·

dDu

d|Du|
(x0) + ε

∣∣∣ dDu

d|Du|
(x0)

∣∣∣ ≤ f∞(x0,
dDu

d|Du|
(x0)

)
+ ε .

Sending ε to 0, the proof is complete.
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Building on Theorem 1.1 and Corollary 7.3, we can provide a short

Proof of Theorem 2.1. As in the proof of Corollary 1.2, for all u ∈ BVu0

(
Ω,RN

)
and σ ∈ L∞div(Ω,RNn),

it follows from the definition of the conjugate function that

f( · ,∇u) ≥ σ · ∇u− f∗( · , σ) holds L n-a. e. on Ω . (7.10)

Turning to the singular part, we first record that dDsu
d|Dsu| = dDu

d|Du| holds |Dsu|-a. e. on Ω. In addition, (7.2)

implies |Jσ·DuKs| ≤ ‖σ‖∞;Ω|Dsu|, and therefore the density dJσ·DuKs

d|Dsu| is well-defined and |Dsu|-a. e. equal

to dJσ·DuK
d|Du| . With these observations at hand, Corollary 7.3 shows that

f∞
(
· , dDsu

d|Dsu|

)
≥ dJσ ·DuKs

d|Dsu|
holds |Dsu|-a. e. on Ω (7.11)

whenever f∗( · , σ) <∞ is valid L n-a. e. on Ω.
After these initial remarks we now proceed with the proof of the claimed equivalence. First, from

Theorem 1.1, (3.2), and the definition of Ru0 , we infer that extremality of u and σ means nothing but

Fu0
[u] =

∫
Ω

[
σ · ∇u0 − f∗( · , σ)

]
dx .

When we write out the left-hand side and make use of (7.3) and (7.1) on the right-hand side, this
equality becomes∫

Ω

f( · ,∇u) dx+

∫
Ω

f∞
(
· , dDsu

d|Dsu|

)
d|Dsu| =

∫
Ω

[
σ · ∇u− f∗( · , σ)

]
dx+ Jσ ·DuKs

(
Ω
)
. (7.12)

As we have the pointwise estimates (7.10) and (7.11) for the integrands, (7.12) holds if and only if
equality occurs in these estimates, or, in other words, if and only if (2.2) and (2.5) hold (where we
have also exploited that (7.12) implies the finiteness condition on f∗( · , σ) which is needed for (7.11)).
Hence, we have shown that extremality of u and σ is equivalent to the combination of (2.2) and (2.5).
In view of (3.3) and f∗∗ = f , we can also use (2.3) or (2.4) as a substitute for (2.2), and the proof is
complete.

Remark 7.5 (extremality relations in the 1-homogeneous case). If, in the situation of Theorem 2.1,
f(x, · ) : RNn → R is positively 1-homogeneous for L n-a. e. x ∈ Ω, then the extremality relations can
be restated in the alternative form

f
(
· , dDu

d|Du|

)
=

Jσ ·DuK
d|Du|

|Du|-a. e. on Ω and f∗( · , σ) ≡ 0 L n-a. e. on Ω .

This follows from (7.1) via the observations that f∞ equals f and that f∗ takes only the values 0 and
∞. We also refer to [15] a further analysis of the 1-homogeneous case.

A Relaxation and non-convex problems

In this section, we restrict ourselves to bounded Ω and Ψ (so that we can quote suitable auxiliary
results from the literature), and we point out that a weakening of the convexity assumptions on f
is possible in Theorem 1.1, in Theorem 2.1 and consequently in Corollary 2.2, and in Theorem 2.3
(while the strict convexity in Corollaries 2.4 and 2.5 seems inevitable). It should however be noted
that, under these weaker assumptions, no general existence results for (P) can be expected; hence, the
practicability of the following general results is in fact limited to more specific situations.
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To describe the new set of assumptions, we utilize quasiconvex functions in the sense of [16, Defini-
tion 5.1 (ii)], and we recall that the quasiconvex envelope Qf : Ω×RNn → [−∞,∞) of f (with respect
to the z-variable) is defined at (x, z) ∈ Ω×RNn by

Qf(x, z) := sup
{
g(z) : g : RNn → R is quasiconvex with g ≤ f(x, · ) on RNn

}
(with the usual convention sup ∅ = −∞). Furthermore, for a Carathéodory16 function f : Ω×RNn → R

with
− L(1+|z|) ≤ Qf(x, z) ≤ f(x, z) ≤ L(1+|z|) , (A.1)

also Qf has the Carathéodory property, and setting QF [w] :=
∫

Ω
Qf( · ,∇w) dx we will rely one the

well-known relaxation formula
inf

W1,1
u0

(Ω,RN )
QF = inf

W1,1
u0

(Ω,RN )
F , (A.2)

which can be inferred, for instance, from [16, Proposition 9.5, Theorem 9.8]. If we now require, as
the decisive hypothesis of this appendix, that Qf is convex in the z-variable, then we can apply the
preceding results with Qf in place of f , and — as will be clarified in the following — in view of (A.2) we
can hope to come up with the same conclusions. Here, the convexity assumption on Qf is equivalent
to the equality Qf = f∗∗ and is much weaker than the analogous assumption for f itself: indeed,
convexity of Qf in z holds generally true for a large class of rotationally symmetric integrands [16,
Theorem 6.30], and most importantly it is tautologically satisfied in the cases N = 1 and n = 1, where
quasiconvexity reduces to convexity. Thus, in the following we accept the convexity requirement for
Qf as a reasonable hypothesis in order to state:

Corollary A.1. For bounded Ω, the conclusions of Theorem 1.1 remains true if we solely impose
the hypotheses that f is a Carathéodory function with (A.1) and that Qf(x, · ) is convex for L n-a. e.
x ∈ Ω.

Corollary A.2. For bounded Ω, the forward implication of Theorem 2.1 and all assertions of Theo-
rems 2.3 remain true if we solely impose the following conditions on the integrand: f is a Carathéodory
function with (A.1), Qf is convex for L n-a. e. x ∈ Ω, and (Con) holds for Qf in place of f .

The remaining deficit in these statements lies in the fact that further hypotheses — most notably
the validity of (Con) for Qf and less severely the requirement (A.1) — are formulated in terms of
Qf rather than f . While in general it does not seem easy to overcome this point and to provide
good criteria in terms of f itself, we stress that the problem automatically disappears in the case of
an x-independent integrand f : indeed, when we assume convexity of Qf and the growth condition
f(z) ≤ L(1+z) and exclude the trivial situation infW1,1

u0
(Ω,RN ) F = −∞ (which in this case happens if

and only if Qf ≡ −∞), then (Con) for Qf and (A.1) are automatically satisfied.

Proof of Corollaries A.1 and A.2. From the assumption Qf = f∗∗ and the general equality f∗∗∗ = f∗

(which in turn follows from the convexity and lower semicontinuity of f∗; compare the beginning of
Section 3.3) we infer (Qf)∗ = f∗. Consequently, f∗, Ru0

, and the solutions of the dual problem (P∗)
are completely invariant under passage from f to Qf .

Clearly, under the assumptions stated in Corollary A.1 we can apply Theorem 1.1 with Qf in place
of f , and and keeping the above invariance in mind we infer the equality

inf
W1,1

u0
(Ω,RN )

QF = sup
L∞div(Ω,RNn)

Ru0

and the existence of a dual solution. Involving (A.2) it follows that the claims of Theorem 1.1 hold in
the generality of Corollary A.1.

16Indeed, it suffices for both the relaxation formula and our purposes in this section if f is not Carathéodory, but
only Borel measurable; compare [16, Remark 9.9 (ii)]. Nevertheless, we have decided to work with the Carathéodory
property, as it is commonly postulated in the statement of the relaxation formula.
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Turning to Corollary A.2, let us first show that every generalized minimizer u of F is also a
generalized minimizer of QF (with respect to the same u0) with

Qf( · ,∇u) = f( · ,∇u) L n-a. e. on Ω , (A.3)

(Qf)∞
(
· , dDsu

d|Dsu|

)
= f∞

(
· , dDsu

d|Dsu|

)
|Dsu|-a. e. on Ω . (A.4)

To this end, we observe — with the specifications of Section 3.2 — that, if u ∈ BVu0

(
Ω,RN ) minimizes

Fu0
, then we also have

QFu0
[u] ≤ Fu0

[u] = inf
BVu0

(Ω,RN )
Fu0
≤ inf

W1,1
u0

(Ω,RN )
F = inf

W1,1
u0

(Ω,RN )
QF = inf

BVu0
(Ω,RN )

QFu0
.

Here, the first inequality follows from Qf ≤ f and (Qf)∞ ≤ f∞, the second one from BVu0

(
Ω,RN ) ⊃

W1,1
u0

(Ω,RN ), and the equalities result from the minimality of u, (A.2), and (3.2) (which in turn exploits

the assumptions (Lin) and (Con) for Qf). All in all, this reasoning shows that u minimizes QFu0
; in

particular, the first inequality is in fact an equality, which in turn results in (A.3) and (A.4).
At this stage, we apply Theorem 2.1 with Qf in place of f , and we deduce

Qf( · ,∇u) = σ · ∇u− f∗( · , σ) , L n-a. e. on Ω

(Qf)∞
(
· , dDsu

d|Dsu|

)
=

dJσ ·DuKs

d|Dsu|
|Dsu|-a. e. on Ω

for all generalized minimizers u of QF and all dual solutions σ, where we have used (Qf)∗ = f∗ once
more. By the preceding argument, the last equalities hold in particular for generalized minimizers
u of F , and (2.4) follows once we recall Qf = f∗∗ and (3.3). Furthermore, we can use (A.3) to
deduce also (2.2), then (2.3) follows again via (3.3), and via (A.4) we also obtain (2.5). Thus, we have
established the claimed generalization of Theorem 2.1.

Finally, the same arguments also suffice to generalize the implication of Theorem 2.3.
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