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Abstract

Several aspects of regularity theory for parabolic systems are investigated under the effect of
random perturbations. The deterministic theory, when strict parabolicity is assumed, presents both
classes of systems where all weak solutions are in fact more regular, and examples of systems with weak
solutions which develop singularities in finite time. Our main result is the extension of a regularity
result due to Kalita to the stochastic case, which concerns local Hölder continuity of weak solutions
in the vectorial case. For the proof we apply stochastic versions of methods which are classical in the
deterministic case (such as difference quotient techniques, higher integrability by embedding theorems
and a version of Moser’s iteration technique). This might be of interest on their own.

MSC (2010): 60H15 (primary); 60H30, 35B65, 35R60 (secondary)

1 Introduction

Nonlinear parabolic systems of the form

∂tu = divA(x, t, u,Du), u|t=0 = u0 (1.1)

on a cylindrical domain D × (0, T ), with D ⊂ Rn a bounded, regular domain, u : D × [0, T ] → RN a
vector-valued function, A : D×[0, T ]×RN×RnN → RnN a vector field, have been investigated intensively
in the past decades. Various techniques were developed which then were applicable in different settings
or under different structure assumptions and which eventually led to a better understanding of the issues
of existence and regularity for weak solutions to such systems. A key feature in the vectorial case N > 1
is that, under the strict parabolicity assumption

n∑
i,j=1

N∑
α,β=1

∂Aαi

∂zβj
(x, t, u, z) ξαi ξ

β
j ≥ λ0|ξ|2 for all ξ ∈ RnN

and some differentiability assumption on A with respect to the (x, u)-variable, there are classes of vector
fields A(x, t, u, z) such that all weak solutions to (1.1) are in fact more regular, and examples of sys-
tems such that there exist weak solutions with singularities; this dichotomy does not happen for single
equations, the case N = 1, where regularity of weak solutions is always true, due to the (elliptic and
parabolic) works based on the fundamental results of De Giorgi, Nash and Moser [8, 30, 29].

The aim of the present paper is to expand some of these by now classical techniques to the framework
of parabolic systems under random perturbations and to discuss as an example of its applications the
extension of a classical regularity result for parabolic systems to the stochastic case. For this reason,
we start by giving first some background on the deterministic theory (without stochastic noise), by
sketching some basic regularity results obtained in the elliptic and parabolic theory. Since the interesting
phenomena already occur for very simple systems, we here state the results only for some particular cases
in order to allow a clearer exposition, and we refer to the literature for a more detailed discussion of the
general results.
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2 1 Introduction

Elliptic systems. For reasons of comparison we begin the discussion with the case of elliptic systems
and stationary weak solutions (i. e. system and solution do not depend on the time variable). The notion
of weak solution here refers always to a function u which belongs to a suitable Sobolev space and which
solves the system in an integral sense, i. e.

∫
D
A(x, u,Du) · Dϕdx = 0 for all ϕ ∈ C∞0 (D,RN ). As

already mentioned above, in the scalar case N = 1 weak solutions are locally continuous under quite
general assumptions, that is under a suitable ellipticity condition and a corresponding growth condition
on the vector field A(x, u, z), see [8, 30, 29]. Roughly speaking, weak solutions are always regular, and
the degree of regularity (Hölder regularity and differentiability) is determined by the regularity of the
system. In the vectorial setting N > 1, which will be studied in the present paper, it turns out that the
different component functions of a weak solution might interact in a nontrivial way, in the sense that full
regularity cannot be expected. In fact, counterexamples by De Giorgi, Giusti, Miranda [9, 19] and others
revealed that discontinuous weak solutions (having a smooth trace on ∂D) exist, even for analytic vector
fields which are linear in the gradient variable. Instead, again under suitable additional assumptions on
growth and regularity of the vector field A(x, u, z), there are partial regularity results available, yielding
Hölder regularity of the solution u (or of its gradient Du) outside of a negligible set, the singular set of u
(or of Du). Hence, for general systems, the best regularity to hope for is partial regularity of Du, with
an estimate for the Hausdorff dimension of the singular set strictly below the space dimension n. This
general partial regularity theory including estimates on the Hausdorff dimension of the singular set was
developed in a series of papers initiated from [17, 21], and for an overview on the state of the art we refer
to the survey paper [28]. In order to obtain regularity of u on larger sets, one needs stronger assumptions,
such as some a priori information on the regularity of the solution (for example that the integrability
exponent of the solution is coupled to the space dimension) or special structure assumptions (such as
vector fields which are linear in the gradient variable), see e. g. [5, 18]. Full regularity result instead
are only possible if even more restrictive structural assumptions are imposed. In the nonlinear case, full
regularity of Du can for instance still be obtained if the nonlinear part of the vector field depends only on
the modulus of z, such as for the p-Laplace system see [38]. An easier (and very classical) example is a
linear elliptic system with constant coefficients. Moreover, it is sometimes also sufficient to be sufficiently
close to one of these systems, for example in terms of the eigenvalues of DzA.

For simplicity we now focus on quasilinear systems with a vector field of the form a(x)z, i. e. to weak
solutions of

div
(
a(x)Du

)
= 0 , (1.2)

with coefficients a ∈ L∞(D,RNn×Nn) with ellipticity constant λ0 and the upper bound λ1

λ0|ξ|2 ≤ 〈 a(x)ξ, ξ 〉, |a(x)ξ| ≤ λ1|ξ| . (1.3)

One restriction leading to full regularity imposes the ratio λ0/λ1 to be sufficiently close to 1, meaning that
the different component functions cannot interact too much. This is sometimes referred to as “Cordes-
type condition” since Cordes [6] studied quasilinear elliptic equations (that is N = 1) and succeeded in
showing the availability of a priori Morrey-type estimates under such an assumption. In turn, Schauder
fixed point theorems were applied and allowed to deduce the existence of regular solutions. Similar
results were obtained later by Koshelev [23] in the vectorial case (here, uniform Morrey-type estimates
in a regularization procedure of the original system play the crucial role), which for the toy case of the
linear situation allows to identify two different regimes:

Theorem 1.1. There exists a constant ce(n) < 1 such that the following statement is true:

(i) whenever a ∈ L∞(D,RNn×Nn) is symmetric and satisfies (1.5) for 0 < λ0 ≤ λ1 with λ0/λ1 > ce(n),
then every weak solution to system (1.2) is of class C0,α

loc (D × [0, T ],RN ) for some α > 0.

(ii) given two numbers 0 < λ0 ≤ λ1 with λ0/λ1 ≤ ce(n), there exist symmetric coefficients a ∈
L∞(D,RNn×Nn) satisfying (1.5) such that the system (1.2) admits a discontinuous weak solution
with regular boundary values on ∂D.

We highlight that no continuity of the coefficients is assumed in (i) and that (ii) shows the sharpness of
the constant ce (the corresponding counterexamples are obtained by modifications of De Giorgi’s famous
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counterexample in [9], see [25, Section 2.5]). Furthermore, we note that Koshelev gave the condition
λ0/λ1 > ce(n) explicitly as

λ1 − λ0

λ1 + λ0

√
1 +

(n− 2)2

n− 1
< 1 .

Parabolic systems. The regularity theory for parabolic systems is – to a certain extent – very similar
to the elliptic one described above. In the scalar-valued case we again have full regularity under quite
general assumptions; for an extension of Moser’s iterative scheme to quasilinear parabolic systems we
refer to the works of Aronson, Serrin, Ivanov and Kurihara [1, 20, 27]. In the general vectorial case
only partial regularity results are available, provided that suitable assumptions on growth and regularity
of the vector field A(x, t, u, z) are satisfied. Moreover, an estimate for the Hausdorff dimension of the
singular set strictly below the dimension of Rn × [0, T ] can be found, see [12]. Again, in order to obtain
regularity of u on larger sets, restrictions on the space dimension or on the structure of the vector-field
A(x, t, u, z) need to be imposed, see e. g. [16, 4, 31] for results in low dimensions or for vector fields which
are linear in the gradient variable. Concerning full regularity, we have the extension of the p-Laplacian
system to the non-stationary case, which again allows to prove full regularity of the spatial Du, see [11].
Moreover, smoothness of solutions is obtained in the classical case of parabolic systems with constant
coefficients. Furthermore, if the system is still sufficiently close to the Laplacian system, then we still get
full regularity of u, see [24, 22].

Since the latter regularity result will be of great importance for our paper, we now go into more
details and state an extension of Theorem 1.1 to the parabolic case. We will first point out some of
the structural prerequisites of the positive (full) regularity theory, and we will then confront it with the
existing examples of systems admitting a singular weak solutions. Similarly as in the elliptic case, we
again focus on quasilinear problems with a vector field of the form a(x, t)z, i. e. to weak solutions of

∂tu = div
(
a(x, t)Du

)
, u|t=0 = u0 (1.4)

in D × (0, T ), with coefficients a ∈ L∞(D × (0, T ),RNn×Nn). Provided that the coupling of the single
equations is sufficiently weak, which is ensured by a Cordes-type condition, Koshelev and Kalita [24, 22]
observed that discontinuities of the weak solution can globally be excluded.

Theorem 1.2 ([22]). Let u0 ∈ W 1,q(D,RN ) for some q > n and consider coefficients a(x, t) which are
of class C1 in x, measurable in t and which satisfy

λ0|ξ|2 ≤ 〈 a(x, t)ξ, ξ 〉, |a(x, t)ξ| ≤ λ1|ξ| , and |Dxa(x, t)| ≤ L (1.5)

for all ξ ∈ RnN , (x, t, z) ∈ D × [0, T ] × RnN and some positive constants λ0, λ1, L. If λ0/λ1 > 1 − 2/n
holds, then every weak solution u : D× [0, T ]→ RN to the initial boundary value problem (1.4) is of class
C0,α

loc (D × [0, T ],RN ) for some α > 0.

We start with some comments on the statement of the result. It is important to mention that
the original results –which is also true for the statement (i) of Theorem 1.1 – apply to more general
systems, which are possibly nonlinear in the gradient variable, provided that the vector field A(x, t, u, z)
is sufficiently close to a quasilinear situation with small dispersion ratio. Secondly, we observe that in the
parabolic case – in contrast to the elliptic case – an additional regularity with respect to the x-variable
is required. It is not clear whether or not this prerequisite is actually needed, or whether it is due to
the method of proof. However, before commenting on the strategies of proof, we note that by some
perturbation arguments it is possible to obtain local continuity of all solutions, solely under the condition
λ0/λ1 > cp(n), for some cp(n) < 1 (but cp(n) > 1 − 2/n is still possible). The idea here is to consider
a(x, t) as a perturbation of the Laplace system and to carry the a priori regularity results (which are
available for such systems) over to the original one, with arguments similar as in Campanato’s paper [3].
Since cp(n) in this case is hardly determined explicitly, we omit the precise statement and prefer to give
now a short exposition on the proofs of Theorem 1.2 under the additional regularity assumption on Dxa.
First, Koshelev proved the existence of a regular solution (which in the situation above is already the
unique one, but for nonlinear systems there might be more than one) by studying approximations of the
system such that its solutions are regular and converge in a suitable (Morrey-type) norm to a solution of
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the original system. This is also the line of arguments for the elliptic result of Theorem 1.1 (i). Kalita
achieved later the regularity result for all solutions with a direct argument (and not as a consequence
of a suitable approximating sequence). His approach is based on an equation satisfied by second space
derivatives of u. Therefore, one first uses finite difference quotients in place of derivatives, a classical
method in the study of regularity of weak solutions to elliptic or parabolic equations. Secondly, Moser’s
iterative method [29] is applied, which means proving higher integrability of a solution (here: the gradient
of the solution) by testing with powers of the solution itself. In this way, regularity of weak solutions
follows by standard embedding theorems (first slicewise for fixed times, and then by a classical argument
the regularity follows locally in D × (0, T ) via the system equation).

Under weaker assumptions than in the previous theorem, such a local regularity result can no longer
be expected. In fact, in a very similar setting the following example of a system was proposed by Stará
and John [37] (actually, the example was constructed on the full space and the solution can be traced back
in time t→ −∞), which admits a solution that starts from a regular – in particular Hölder continuous –
initial data and develops a singularity in finite time in the interior of the parabolic cylinder.

Theorem 1.3 ([37]). Let n = N ≥ 3. There exist initial data u0 ∈ W 1,2n(B1(0),Rn) and symmetric

coefficients a ∈ L∞(B1(0) × [0, 1),Rn2×n2

), which are elliptic and bounded in the sense of (1.5)1,2 for
all (x, t) ∈ B1(0) × [0, 1), such that at least one of the solutions to the initial problem (1.4) develops a
discontinuity in the origin x = 0 as t↗ 1.

The coefficients constructed in [37] have a dispersion ratio λ0/λ1 < 1− 2/n strictly below the critical
one investigated in [22], which was an essential ingredient in order to obtain globally Hölder continuous
weak solutions. Moreover, the matrix constructed by Stará and John [37] also fails to satisfy the regularity
with respect to x, i. e. the matrix A is not differentiable in x. For this reason it is not clear whether
the counterexample could by constructed due to the small ellipticity ratio or the low regularity in x or
a combination of both. As far as we know, in the literature neither this question is answered nor sharp
conditions as in the elliptic case were found, so the occurrence of irregularities for parabolic systems is
not yet understood completely. However, due to the positive results obtained by perturbation methods,
we believe that the dispersion ratio λ0/λ1 plays an important role.

Parabolic systems with random noise. The aim of this paper is to investigate parts of the parabolic
theory presented above under the effect of random perturbations. The final aim of our research project, in
analogy with recent results proved for other equations, is to show that the regularity theory of parabolic
systems is, under random perturbations, in some sense not worse than the deterministic one (of course
only up to a certain degree of regularity), and possibly better. As in the deterministic case there is more
than one approach to the analysis of these problems, so we restrict here our attention only to a few
directions. More precisely, we discuss in the present paper the extension of Kalita’s result (which was
displayed above) to the stochastic case. For this purpose we study systems with Itô noise of the form

du = div
(
A(x, t)Du

)
dt+H(Du) dBt , u|t=0 = u0 (1.6)

(with H Lipschitz), where (Bt)t≥0 is a Brownian motion of suitable dimension. The passage from de-
terministic to stochastic of Kalita’s approach contains at least one non trivial detail which is rather new
in the stochastic setting: the weak solution u we start with is not, a priori, the limit of a sequence of
smooth solutions of approximating equations (for instance, due to the nonlinearity, classical mollifiers are
difficult to implement; in another direction, in some cases solutions exist as limits of Galerkin or other
types of approximations, but we here start with a weak solution which a priori has not been constructed
in that way) and thus it is not clear how to perform differential calculus on u. The methods described
before in Kalita’s approach (existence of higher order derivatives via difference quotient techniques or
Moser’s iteration techniques) are classical in the deterministic setting, but not common in the stochastic
case. This leads to a number of technical novelties, mainly due to the fact that neither do we use any
representation formulas for the solution nor can we work pathwise. Instead, we extract from the system
information on the mean value of certain (space-time) integral expressions of the solution u or its spatial
gradient Du as a process. This is accomplished by difference quotient techniques carried over to the
stochastic setting, see Section 3.2 for the general setup. Moreover, the Moser iteration technique needs
to be implemented in the stochastic case (via the application of Itô’s formula in Banach spaces); we here
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note that a stochastic version of Moser’s iterative scheme and of a maximum principle was obtained in
[10], but in contrast to our paper only the case of equations (N = 1) was studied, less general coefficients
were investigated, and all the arguments were given on level of the solution, and not its derivatives. In
our paper instead, it is ensured that the process u belongs P -almost surely to a suitable Sobolev space,
and a pathwise regularity result then follows by embedding theorem for fixed times. Finally, with ar-
guments similar as in the deterministic case, space-time regularity is obtained by exploiting the system
equation, see Section 3.3. These technical aspects for stochastic partial differential equations might be of
interest on their own even though they are not surprising. At the end we reach a full extension of Kalita
result to a quite general stochastic case, which includes in particular perturbations in form of additive
or of multiplicative noise. In the quasi-linear model case we obtain – as a particular case of the general
Theorem 5.1 – the following result (the precise definition of weak solution is given in Definition 2.2 below).

Theorem 1.4. Let u0 ∈ W 1,q(D,RN ) for some q > n. Consider coefficients a(x, t) which are of
class C1 in x, measurable in t and which satisfy (1.5) with λ0/λ1 > 1 − 2/n, and assume that H is
Lipschitz continuous with Lipschitz constant LH < L∗H for some sufficiently small L∗H depending only on
n, λ0 and λ1. Then there exists α > 0 depending only on n, λ0, λ1 and q such that every weak solution
u : D × [0, T ]×Ω→ RN to the initial boundary value problem (1.6) is of class C0,α

loc (D × [0, T ],RN ) with
probability 1.

We conclude this introductory part with some open questions and possible extensions. Concerning the
existence of weak solutions, we could give a quite general result, but since it is related to the generalization
of Koshelev’s approach of [24, 25] to regularity, we did not pursue this research direction. Concerning
other strategies for proving regularity we note that it might be interesting to generalize also the classical
strategy via Campanato-type estimates to the stochastic case. However, we decided to concentrate
here only on some selected aspects of regularity methods and postpone further development of classical
techniques known from the deterministic setting to future works.

Finally, we mention an interesting open problem in a related research direction which might contribute
to the understanding of the irregularity phenomenon for vectorial parabolic systems. So far, the present
paper makes a contribution in only one direction, namely that regularity of weak solutions does not get
worse under random perturbation. A natural question is the possibility that noise might actually prevent
the emergence of singularities (for example by destroying coherent structures on which the construction of
counterexamples is usually based). It has been recently proved that a Stratonovich bilinear multiplicative
noise may have a regularizing effect on certain classes of PDEs, see [13] for a review, based on a number
of works including [14, 15, 2]. In most cases, uniqueness by noise is the topic of these works. The problem
of the interaction between noise and singularities is more difficult and less explored, but positive results
from the linear transport equations and the point vortex motion associated to the 2D Euler equations
were discovered. From these results it seems that each equation requires its own understanding, and no
general method exists to investigate these kind of properties. In the context of parabolic systems one
might hope to prove that, under assumptions on the vector field A(x, t, u, z) such that weak solutions
with singularities in the deterministic case might exist, there are no more singularities if a suitable noise
is added. However, the answer to this question seems to be rather challenging, but we believe that it
would be interesting also from the deterministic point of view.

2 Setting and assumptions

Consider n, n′ ∈ N with n ≥ 2, T > 0, and D ⊂ Rn a (regular) bounded domain. Let (Ω,F, P ) be a
complete probability space with filtration (Ft)t≥0, and let (Bt)t≥0 be a standard n′-dimensional Brownian
motion. Let further A : D × [0, T ] × RN × RnN × Ω → RnN be a vector field satisfying the following
properties:

• A is progressively measurable, i. e. for every t ∈ [0, T ] the restriction of A to D × [0, t] × RN ×
RnN × Ω→ RnN is B(D)×B([0, t])×B(RN )×B(RnN )× Ft measurable;

• A(x, t, u, z, ω) (usually abbreviated by A(x, t, u, z)) is differentiable in x, u and z (with Ft-adapted
derivatives), and it satisfies for P -almost all ω ∈ Ω the following assumptions concerning growth
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and ellipticity: 
|A(x, t, u, z)| ≤ L

(
|z|+ |u|n+2

n + f
a
2 (x, t)

)
|ξ − κDzA(x, t, u, z)ξ|2 ≤ (1− ν2)|ξ|2

|DuA(x, t, u, z)| ≤ L
(
|z|

2
n+2 + |u| 2n + f(x, t)

)
|DxA(x, t, u, z)| ≤ L

(
|z|+ |u|n+2

n + f2(x, t)
) (2.1)

for all (x, t) ∈ D × [0, T ], u ∈ RN and z, ξ ∈ RnN , some constants κ, ν, L > 0, and an Ft-adapted
process f which with probability one belongs to La(D × [0, T ]) for a fixed number a > n+ 2.

Moreover, let H : D×[0, T ]×RnN×Ω→ Rn′N be progressively measurable, of class C1 in x, Lipschitz
with respect to the gradient variable of at most linear growth, uniformly in (x, t), i.e.

|H(x, t, z, ω)−H(x, t, z̃, ω)| ≤ LH |z − z̃| ,
|H(x, t, z, ω)| ≤ L

(
fH(x, t, ω) + |z|

)
,

|DxH(x, t, z, ω)| ≤ L
(
f

a
a−2

H (x, t, ω) + |z|
) (2.2)

for a constant LH , all (x, t) ∈ D× [0, T ], z, z̃ ∈ RnN , and almost every ω ∈ Ω. Here, fH denotes another
function in La(D × (0, T )× Ω).

Under these assumptions we consider a stochastic partial differential equation with noise of the form

du = divA(x, t, u,Du) dt+H(x, t,Du) dBt in DT := D × (0, T ) , (2.3)

where u : DT ×Ω→ RN is a random function. The stochastic integral is here understood in the Itô sense.
According to the growth condition on the vector field A, we note that for P -almost every ω ∈ Ω and all
t ∈ [0, T ] we have divA(x, t, v,Dv) ∈ W−1,2(D,RN ) – the dual space to W 1,2

0 (D,RN ) –, provided that
v ∈W 1,2(D,RN ).

Remark 2.1. We have chosen this level of generality of the noise for several reasons: to keep a simple
PDE structure instead of an abstract operator formulation, and to cover two interesting examples: additive
noise (with H(x, z) independent of z) and bilinear multiplicative noise with first derivatives of u (with
H(x, z) linear in z). A priori there is no conceptual obstacle to consider H depending also on u or to
generalize to the case of a Brownian motion B in a Hilbert space U , with suitable assumptions on H, but
for simplicity we restrict ourselves to the previous case.

The function spaces that will be needed in the sequel are the Banach spaces

V m,p(DT ,RN ) := L∞
(
0, T ;Lm(D,RN )

)
∩ Lp

(
0, T ;W 1,p(D,RN )

)
,

V m,p0 (DT ,RN ) := L∞
(
0, T ;Lm(D,RN )

)
∩ Lp

(
0, T ;W 1,p

0 (D,RN )
)
,

with m, p ≥ 1, and they are equipped with the norm

‖u‖Vm,p(DT ,RN ) := ess sup
t∈(0,T )

‖u(t)‖Lm(D,RN ) + ‖Du‖Lp(DT ,RN ) .

When m = p we shall use the abbreviations V p(0)(DT ,RN ) = V p,p(0) (DT ,RN ). We remind that the spaces

V m,p(DT ,RN ) are embedded in the Lebesgue space Lq(DT ,RN ) with q = p(n + m)/n > p (see [11,
Propositions I.3.1, I.3.2]). We will need only the result concerning the cases p ≥ m = 2 or p = m ≥ 2. In
the latter case, the embedding reads as follows (see [11, Propositions I.3.3, I.3.4]): let v ∈ V p0 (DT ,RN ),
p < n. Then there exists a constant c depending only on n and p such that

‖v‖Lq(DT ,RN ) ≤ c‖v‖V p(DT ,RN ) (2.4)

(and an analogous result holds without any restriction on the boundary values of v on ∂D× (0, T ) if ∂D
is assumed to be sufficiently regular).

We are now going to study the properties of weak (or variational) solutions to the system (2.3), which
are to be understood in the following sense.
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Definition 2.2. An Ft-progressively measurable process u on [0, T ] × Ω is called weak solution to the
system (2.3) with initial values u0 ∈ L2(D,RN ) if P -a. e. path satisfies u(·, ω) ∈ V 2(DT ,RN ) and if for
all t ∈ [0, T ], we have P -a. s. the identity

〈u(t)− u0, ϕ 〉L2(D) =

∫ t

0

〈divA(·, s, u,Du), ϕ 〉W−1,2(D);W 1,2
0 (D) ds+

∫ t

0

〈ϕ,H(·, s,Du) dBs 〉L2(D)

for all ϕ ∈W 1,2
0 (D,RN ).

When a solution is progressively measurable with respect to the (completed) filtration associated to the
Brownian motion, it is usually called a “strong” solution in the probabilistic sense, see [34, Section IX.1].
We do not require this condition, so our result will also apply to the so called “weak” solutions in the
probabilistic sense (those for which there is a filtration (Ft)t≥0 such that u is Ft-progressively measurable
and B is an Ft-Brownian motion). We further note that according to the definition above, a solution
is defined as an equivalence class in the sense of versions (a process Y is a version or modification of a
process X if for each time t we have P -a. s. Xt = Yt). Hence, regularity of a weak solution is always to
be understood as finding a regular representative in the corresponding equivalence class.

Moreover, we comment on the way in which the initial values are attained. Under mild assumptions
on the growth of A and H with respect to the gradient variable one actually deduces from the equation
itself that u belongs to C0(0, T ;L2(D′,RN )) P -a. s. for every D′ b D, compare the classical parabolic
theory or formula (4.1) and the beginning of Step 3 on p. 16. Under further assumptions on the trace
of u on ∂D × [0, T ] this extends to continuity of the full L2-norm, with D′ = D. In this sense the term
“initial value” in the definition of a weak solution as a function in the space V 2 is justified.

3 Preliminaries

In this section we recall some well-known facts and provide several technical tools. For convenience of
the reader we state two suitable versions of Itô’s formula. Furthermore, in analogy with the deterministic
theory, we discuss a sufficient condition for the “existence of weak derivatives with probability one”, and
we further give a criterion which guarantees pathwise Hölder continuity of a process.

3.1 Itô formula

We first recall two versions of Itô’s formula, the first one the standard version for N -dimensional processes
and the second one for processes with values in Hilbert spaces. Consider (Ω, F, P ) a complete probability
space and let

dX(t) = a(t) dt+ b(t) dBt (3.1)

be an N -dimensional Itô process which satisfies: a, b are Ft-adapted (i. e., the maps ω 7→ a(t, ω), b(t, ω)
are Ft measurable), (t, ω) 7→ b(t, ω) is B([0, T ])× F-measurable and

P
(∫ T

0

[
|a(s, ω)|+ |b(s, ω)|2

]
ds <∞

)
= 1.

Then the following general Itô formula holds (see e. g. [32, Theorem 4.2.1]).

Theorem 3.1 (Itô’s formula I). Let N ′ ∈ N. Let g(t, z) = (g1(t, z), . . . , gN ′(t, z)) be a map from [0, T ]×
RN to RN ′ of class C1 in t and of class C2 in z. Then the process Y (t, ω) := g(t,X(t)) with X(t) defined
in (3.1) is again an Itô process whose components are given by

dYk(t) =
∂gk
∂t

(t,X) dt+

N∑
i=1

∂gk
∂yi

(t,X) dXi +
1

2

N∑
i,j=1

∂2gk
∂yiyj

(t,X) d[Xi, Xj ]t

for all k ∈ {1, . . . , N ′} and with [Xi, Xj ]t the quadratic covariation of the processes Xi and Xj, with
d[Bi, Bj ]t = δij dt for all i, j ∈ {1, . . . , N}.
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In the sequel, we will also employ the following version of the Itô formula in Hilbert spaces that can
be found in [26, Theorem 3.1] or [35, Chapter 1.4.2, Theorem 2].

Theorem 3.2 (Itô’s formula II). Let V ⊂ H ⊂ V ′ be a Gelfand triple, with H a separable Hilbert space.
Assume that we have for L1 × P almost all (t, ω) ∈ [0, T ]× Ω

〈x(t), ϕ 〉H = 〈x(0), ϕ 〉H +

∫ t

0

〈 y(s), ϕ 〉V ′,V ds+ 〈Mt, ϕ 〉H (3.2)

for every ϕ ∈ V where x(t, ω), y(t, ω) are taking values in V and V ′, respectively, and are progressively
measurable with

P
(∫ T

0

[
‖x(s, ω)‖2V + ‖y(s, ω)‖2V ′

]
ds <∞

)
= 1,

and where Mt is a continuous local martingale with values in H. Then there exists a set Ω̃ ⊂ Ω with
P (Ω̃) = 1 and a map x̃(t, ω) with values in H such that:

(i) x̃(t) is Ft-adapted, continuous in t ∈ [0, T ] for every ω ∈ Ω̃, and x(t) = x̃(t) P -almost surely;

(ii) for every ω ∈ Ω̃, t ∈ [0, T ] and all ϕ ∈ V there holds

〈 x̃(t), ϕ 〉H = 〈x(0), ϕ 〉H +

∫ t

0

〈 y(s), ϕ 〉V ′,V ds+ 〈Mt, ϕ 〉H ;

(iii) for every ω ∈ Ω̃, t ∈ [0, T ] there holds the equality

‖x̃(t)‖2H = ‖x(0)‖2H + 2

∫ t

0

〈 y(s), x(s) 〉V ′,V ds+ 2

∫ t

0

〈 dMs, x̃(s) 〉H + [M ]t

with [M ]t = [M,M ]t denoting the quadratic variation of M .

3.2 Weak derivatives

For a vector-valued function f : Rn ⊃ D → RN , k ∈ {1, . . . , n} and a real number h ∈ R \ {0} we
denote by 4k,hf(x) := h−1(f(x + hek) − f(x)) the finite different quotient in direction ek and stepsize
h (this makes sense as long as x, x + hek ∈ D). Let p > 1, f ∈ Lp(D), k ∈ {1, . . . , n} and let Dkf be
the derivative of f in the direction k in the sense of distributions. Just for comparison let us recall the
following lemma (not used below).

Lemma 3.3. If there is hn → 0 and gk ∈ Lp(D) such that

lim
n→∞

∫
D

(
4k,hnf(x)− gk(x)

)
ϕ(x) dx = 0

for every ϕ ∈ C∞0 (D), then Dkf is in Lp(D) and is equal to gk.

As an immediate consequence of this lemma and of the compactness of the Lp-spaces with p > 1
with respect to weak (or weak-∗) convergence, we obtain a simple criterion for the existence of the weak
derivative Dkf in Lp, namely it is sufficient that ‖4k,hf‖Lp(D′) is bounded for every D′ b D by some
constant CD′ , uniformly for all h such that |h| < dist(D′, ∂D).

Now this well-known principle shall be carried over to a probabilistic setting. Let (Ω, F, P ) be a
complete probability space and consider a function f in the Banach space Lp(D × Ω). A function
gk ∈ Lp(D × Ω) is said to be the weak derivative of f in the k-direction if

P
(∫

D

fDkϕdx = −
∫
D

gkϕdx
)

= 1

for every ϕ ∈ C∞0 (D) (taking a countable sequence and using a density argument, the property “for every
ϕ ∈ C∞0 (D)” can be written inside the probability). We then write Dkf = gk. The previous lemma has
a generalization to functions in Lp(D × Ω).
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Lemma 3.4. If there is hn → 0 and gk ∈ Lp(D × Ω) such that

lim
n→∞

∫ ∫
D×Ω

(
4k,hnf(x, ω)− gk(x, ω)

)
ϕ(x)X(ω) dx dP (ω) = 0

for every ϕ ∈ C∞0 (D) and every bounded measurable X : Ω→ R, then Dkf is in Lp(D ×Ω) and is equal
to gk.

Proof. Since X and ϕ are bounded, we may apply (first Fubini and then) Lebesgue’s dominated conver-
gence theorem, and we get

−E
[
X

∫
D

(
fDkϕ+ gkϕ

)
dx
]

= −
∫ ∫

D×Ω

X
(
fDkϕ+ gkϕ

)
dx dP

= lim
n→∞

∫ ∫
D×Ω

X
(
− f(x)4k,−hnϕ(x)− gk(x)ϕ(x)

)
dx dP.

When hn < dist(sptϕ, ∂D), this is equal to (we apply Fubini twice and a change of variables)

lim
n→∞

∫ ∫
D×Ω

X
(
4k,hnf(x, ω)ϕ(x)− gk(x, ω)ϕ(x)

)
dx dP.

This limit is zero by assumption, hence

E
[
X

∫
D

(
fDkϕ+ gkϕ

)
dx
]

= 0.

The arbitrariness of X implies
∫
D

(
fDkϕ + gkϕ

)
dx = 0, as a random variable on Ω. The proof is

complete.

Corollary 3.5. If there is a constant C > 0 such that

E
[ ∫

D′
|4k,hf(x)|p dx

]
≤ C

for all h and all D′ b D such that |h| < dist(D′, ∂D), then Dkf is in Lp(D × Ω).

Proof. The family gk,h(x, ω) := 4k,hf(x, ω) is equibounded in Lp(D′ × Ω), hence there is a sequence
hn → 0 such that gk,hn converges weakly in Lp(D × Ω) to some function gk ∈ Lp(D × Ω). The product

ϕ(x)X(ω) is in Lp
′
(D×Ω) (with p′ conjugate to p) for every ϕ ∈ C∞0 (D) and every bounded measurable

X : Ω→ R. Hence, we may apply the lemma and obtain the assertion.

First, for our later application, we replace D by D×[0, T ] and we allow different integrability exponents
with respect to the variables in [0, T ] and D, respectively. Let f : Ω→ Lq(0, T ;Lp(D)) be a measurable
function with p ∈ (1,∞) and q > 1. We say that a function gk : Ω→ Lq(0, T ;Lp(D)) is weak derivative
of f in the k-direction with probability one if for a. e. (t, ω) ∈ [0, T ]× Ω we have∫

D

fDkϕdx = −
∫
D

gkϕdx

for every ϕ ∈ C∞0 (D), and we then write Dkf = gk. Furthermore, let us generalize to a scheme where
we relax the integrability in Ω.

Theorem 3.6. Let Y : [0, T ]×Ω→ (0, 1] be a positive random variable, with P (inft∈[0,T ] Y > 0) = 1. If
there is a constant C > 0 such that

E
[∥∥Y (t)4k,hnf(x, t)

∥∥p
Lq(0,T ;Lp(D′))

]
≤ C

for all h and D′ b D satisfying |h| < dist(D′, ∂D), then Dkf ∈ Lq(0, T ;Lp(D)) with probability one and
there hold

Y4k,hf → Y Dkf weakly in Lp(Ω;Lq(0, T ;Lp(D))),

E
[∥∥Y Dkf

∥∥p
Lq(0,T ;Lp(D))

]
≤ C

with the same constant C.
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Proof. The family Zk,h(x, t, ω) := Y (t)4k,hnf(x, t, ω) is equibounded in Lp(Ω;Lq(0, T ;Lp(D′))), hence
there is a sequence hn → 0 such that Zk,hn converges weakly in Lp(Ω;Lq(0, T ;Lp(D))) (or weakly-∗
if q = ∞) to some function Zk ∈ Lp(Ω;Lq(0, T ;Lp(D))). This implies (again with ψ, X bounded,
measurable and ϕ smooth, compactly supported)

lim
n→∞

∫ ∫ ∫
D×[0,T ]×Ω

(
Y (t)4k,hnf(x, t)− Zk(x, t)

)
ϕ(x)ψ(t)X dxdt dP = 0 .

Hence, by Fubini and change of variables as above, we find

lim
n→∞

∫ ∫ ∫
D×[0,T ]×Ω

(
Y (t)f(x, t)4k,−hnϕ(x) + Zk(x, t)ϕ(x)

)
ψ(t)X dxdt dP = 0 ,

which in turn implies by Lebesgue’s theorem∫ ∫ ∫
D×[0,T ]×Ω

(
Y (t)f(x, t)Dkϕ(x) + Zk(x, t)ϕ(x)

)
ψ(t)X dxdt dP = 0 .

Arbitrariness of X and ψ thus yields∫
D

(
Y (t)f(x, t)Dkϕ(x) + Zk(x, t)ϕ(x)

)
dx = 0

for a. e. (t, ω) ∈ [0, T ]× Ω. Therefore, we have∫
D

(
f(x, t)Dkϕ(x) + gk(x, t)ϕ(x)

)
dx = 0 (3.3)

for a. e. (t, ω) ∈ [0, T ] × Ω, where gk = Y −1Zk. Since Zk belongs to Lp(Ω;Lq(0, T ;Lp(D))), it is
Lq(0, T ;Lp(D)) for P -a. e. ω ∈ Ω. Hence, by assumption on Y , we also have gk ∈ Lq(0, T ;Lp(D)) for
P -a. e. ω ∈ Ω. The only difference with the definition of gk being the “weak derivative of f in the
k-direction with probability one” is that the negligible set of (t, ω) ∈ [0, T ] × Ω where (3.3) may fail
depends on ϕ ∈ C∞0 (D), until now. But W 1,p′(D) (with p′ conjugate to p) is separable and C∞0 (D) is
dense in it. Hence, there is a countable family {ϕn} ⊂ C∞0 (D) which is dense in W 1,p′(D). If we call
N the countable union of all negligible sets of (t, ω) ∈ [0, T ] × Ω where (3.3) may fail for {ϕn}, N is
negligible, and on the complement we have (3.3) for every ϕn, hence by density for all ϕ ∈ W 1,p′(D)
and then for all ϕ ∈ C∞0 (D). Having identified gk as the weak derivative of f in the k-direction we take
advantage of the lower semi-continuity of the norm with respect to weak (or weak-∗) convergence and
thus we find

E
[
‖Y Dkf‖pLq(0,T ;Lp(D))

]
= E

[
‖Zk‖Lq(0,T ;Lp(D))

]
≤ C.

The proof is complete.

Remark 3.7. This result will be applied later in the cases p = q where the assumption then reads as

E
[ ∫ T

0

∫
D

|Y (t)4k,hf1(x, t)|p dx dt
]
≤ C

and where we have Lp(Ω;Lq(0, T ;Lp(D))) = Lp(D × [0, T ] × Ω), or in the case q = ∞ where we then
require

E
[

sup
t∈(0,T )

∫
D

|Y (t)4k,hf2(x, t)|p dx
]
≤ C .

From the theorem we then conclude that Dkf1 ∈ Lp(D× [0, T ]) and Dkf2 ∈ L∞(0, T ;Lp(D)) with proba-
bility one, respectively. In particular, if we take a function f ∈W 1,p(D) and if the previous assumptions
are satisfied for f1 = Df and f2 = f , then the conclusions are equivalent to Dkf ∈ V p(DT ).
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3.3 A criterion for pathwise Hölder continuity

We next discuss a criterion which guarantees Hölder continuity of (a suitable representative of) a given
functions u : D × [0, T ]→ RN . For example, Sobolev’s embedding theorem provides a criterion which is
easy to apply, namely that u belongs to a suitable Sobolev space W 1,q(D× [0, T ],RN ) – however, this is
in general not satisfied for the solutions considered in our paper since derivatives in time need not exist.
Instead, we now prove that it is sufficient to have only the spatial derivatives in a suitable Lebesgue
space, provided that a weak form of continuity in time (here of the L2(D)-norm) is available.

Lemma 3.8. If a function u : D × [0, T ]→ RN has the properties

Du ∈ L∞(0, T ;Ln+α(D,RnN )), u ∈ Cβ(0, T ;L2(D,RN ))

for some α, β > 0, D ⊂ Rn a bounded, regular domain, then

u ∈ Cγ(D × [0, T ],RN )

for some γ > 0, depending only on α, β and n.

Proof. First, we deduce spatial Hölder continuity for every time slice. From the assumption Du ∈
L∞(0, T ;Ln+α(D)) we deduce u ∈ L∞(0, T ;Cδ(D)) for some δ > 0, depending only on α and n, by
Sobolev’s embedding theorem; namely, there exists C1 > 0 such that

|u(x, t)− u(y, t)| ≤ C1|x− y|δ (3.4)

for all t ∈ [0, T ], x, y ∈ D.
Our next aim is Hölder continuity in time, at a fixed point. From the inequality

‖u(·, t)− u(·, s)‖L2(D) ≤ C2|t− s|β

for s, t ∈ [0, T ], we infer for every set B ⊂ D

inf
x∈B
|u(x, t)− u(x, s)| ≤ 1

|B|

∫
B

|u(x, t)− u(x, s)| dx ≤ 1

|B|1/2
‖u(·, t)− u(·, s)‖L2(D) ≤

C2|t− s|β

|B|1/2
.

Let x0 ∈ D be given. In order to prove Hölder continuity in time at x0, we estimate

|u(x0, t)− u(x0, s)| ≤ |u(x0, t)− u(x, t)|+ |u(x, t)− u(x, s)|+ |u(x, s)− u(x0, s)|
≤ 2C1|x− x0|δ + |u(x, t)− u(x, s)|

for every x ∈ D. Hence, if we take x in a ball B(x0, ρ), we have

|u(x0, t)− u(x0, s)| ≤ 2C1ρ
δ + inf

x∈B(x0,ρ)
|u(x, t)− u(x, s)|

≤ 2C1ρ
δ + C3

C2|t− s|β

ρn/2

where C3 is such that |B(x0, ρ)|ρn/C2
3 . Let us now choose ρ = |t− s|ε for some ε > 0:

|u(x0, t)− u(x0, s)| ≤ 2C1|t− s|εδ + C3C2|t− s|β−εn/2.

If we choose for instance ε = β/n, we get

|u(x0, t)− u(x0, s)| ≤ C4|t− s|η (3.5)

for some η, C4 > 0, independently of x0 ∈ D, t, s ∈ [0, T ]. The exponent η depends only on β, δ and n.
From (3.4) and (3.5) it is now straightforward to deduce the claim of the lemma.

With the previous lemma at hand, we now give a continuity criterion which is adapted to weak
solutions in the probabilistic setting, with (Ω, F, P ) a complete probability space.
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Proposition 3.9. Let u : D × [0, T ]× Ω→ RnN have the properties

P
(
Du ∈ L∞(0, T ;Ln+ε(D,RnN ))

)
= 1 , (3.6)

u(x, t) = u0(x) +

∫ t

0

a(x, s) ds+

∫ t

0

b(x, s) dBs ,

for some ε > 0, u0 ∈ L2(D), and with progressively measurable fields a, b such that

P
(∫ T

0

∫
D

|a(x, s)|2 dx ds+

∫ T

0

(∫
D

|b(x, s)|2 dx
) 2+ε

2

ds <∞
)

= 1.

Then
P
(
u ∈ Cγ(D × [0, T ])

)
= 1

for some γ > 0 depending only on ε.

Proof. Step 1. If we prove that, for some β > 0,

P
(
u ∈ Cβ(0, T ;L2(D))

)
= 1 ,

then we get the claim of the proposition after the pathwise application of the previous Lemma 3.8 (using
in particular the stated independence of the Hölder exponent). To this end we observe that the function
u is the sum of two terms:

u1(x, t) = u0(x) +

∫ t

0

a(x, s) ds, u2(x, t) =

∫ t

0

b(x, s) dBs

The term u1 is, with probability one, of class W 1,2(0, T ;L2(D)), hence it is of class C1/2(0, T ;L2(D)):

‖u1(t)− u1(s)‖L2(D) =
∥∥∥∫ t

s

a(·, r) dr
∥∥∥
L2(D)

≤ |t− s|1/2
(∫ T

0

∫
D

|a(x, r)|2 dx dr
)1/2

.

So it only remains to prove that, for some β > 0,

P
(
u2 ∈ Cβ(0, T ;L2(D))

)
= 1.

Step 2. For R > 0, let

τR = inf
{
t ∈ (0, T ] :

∫ t

0

‖b(·, s)‖2+ε
L2(D) ds > R

}
if the set is non empty, otherwise τR = T . Let ΩR ⊂ Ω be the set where τR = T . The family {ΩR}R>0

is increasing, with

P
( ⋃
R>0

ΩR

)
= 1

because by assumption we have P
( ∫ T

0
‖b(·, s)‖2+ε

L2(D) ds <∞
)

= 1. We now set

bR(x, s) = b(x, s)1s≤τR and u2,R(t) =

∫ t

0

bR(x, s) dBs =

∫ t∧τR

0

b(x, s) dBs .

We then have ∫ T

0

‖bR(·, s, ω)‖2+ε
L2(D) ds ≤ R

uniformly in ω. Hence, for every p ≥ 1, we find

E
[
‖u2,R(t)− u2,R(s)‖pL2(D)

]
= E

[∥∥∥ ∫ t

s

bR(·, r) dBr
∥∥∥p
L2(D)

]
≤ CpE

[( ∫ t

s

‖bR(·, r)‖2L2(D) dr
) p

2
]

≤ Cp|t− s|
pε

2(2+ε)E
[( ∫ t

s

‖bR(·, r)‖2+ε
L2(D) dr

) p
2+ε
]
≤ CpR

p
2+ε |t− s|

pε
2(2+ε) .
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This implies, for p = p(ε) sufficiently large, by Kolmogorov’s regularity theorem for processes taking
values in L2(D) (see [7, Theorem 3.3] for a version in Banach spaces), that u2,R has a Hölder continuous
version in L2(D)

‖u2,R(·, t, ω)− u2,R(·, s, ω)‖L2(D) ≤ Cβ,R(ω)|t− s|β

with β any Hölder exponent with β < ε
2(2+ε) . For ω ∈ ΩR we thus have (recalling the definition of u2,R)

‖u2(·, t, ω)− u2(·, s, ω)‖L2(D) ≤ Cβ,R(ω)|t− s|β .

Since
⋃
R>0 ΩR is of full P -measure, we obtain u2 ∈ Cβ(0, T ;L2(D)) for P -a. e. ω ∈ Ω. Now the previous

Lemma 3.8 can be applied, and the proof is complete.

3.4 A technical lemma

In Kalita’s paper a crucial point is to show higher regularity (such as higher integrability and differentia-
bility) not only for the solution, but also for powers of the solution (resp. its gradient). For this purpose
the following technical lemma was essential.

Lemma 3.10 ([22]). Let u : Rn → RN be a function which is a. e. differentiable. Set v = u|u|s with
s ∈ (−1,∞). Then, for µ(s) := 1− ( s

2+s )2, we have a. e.

Du ·Dv ≥ µ 1
2 (s)|Du||Dv| .

We need the following modification of this result, which on the one hand allows to test the system
with powers (truncated for large values) and which on the other hand satisfies an estimate corresponding
to the one from Lemma 3.10.

Lemma 3.11. For every K > 0 and every q ≥ 1 there exists a C2-function Tq,K : R+ → R+ such that

(i) Tq,K is strictly increasing and convex on R+, and it satisfies Tq,K(t) = t2q for all t ≤ K;

(ii) for all t ∈ R+ and a constant c(q) the growth with respect to t is estimated by

Tq,K(t) + T ′q,K(t)t+ T ′′q,K(t)t2 ≤ c(q) min
{
K2q−2t2, t2q

}
;

moreover, the inequalities T ′′q,K(t)t−T ′q,K(t) ≤ 2(q−1)T ′q,K(t) as well as T ′′q,K(t)t2 ≤ c(q)T ′q,K(t)t ≤
c(q)Tq,K(t) hold true on R+;

(iii) If u : Rn → RN is a function which is a. e. differentiable and µ(q) := 1 − ( q−1
q )2, then for the

function v = T ′q,K(|u|)|u|−1u the following inequality is satisfied a. e.:

Du ·Dv ≥
√
µ(q)|Du||Dv| ≥

√
µ(q)T ′q,K(|u|)|u|−1|Du|2 .

Proof. We first assume K = 1. We set

Tq,1(t) =

{
t2q if t ≤ 1
at2 + bt+ c if t > 1

for some coefficients a, b, c ∈ R to be determined as follows. The C2-regularity condition implies that the
following linear system has to be satisfied:1 1 1

2 1 0
2 0 0

ab
c

 =

 1
2q

2q(2q − 1)

⇒
ab
c

 =

 q(2q − 1)
−4q(q − 1)

(2q − 1)(q − 1)

 .

We now calculate some crucial quantities. We first observe that

T ′q,1(t) =

{
2qt2q−1 if t ≤ 1
2q(2q − 1)t− 4q(q − 1) if t > 1
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is strictly increasing and positive on R+. Thus, we immediately obtain assertion (i) of the lemma.
Furthermore, we have

T ′′q,1(t)t− T ′q,1(t) =

{
4q(q − 1)t2q−1 if t ≤ 1
4q(q − 1) if t > 1,

which is again positive on R+. Moreover, for all t ∈ R+ we get

T ′′q,1(t)t− T ′q,1(t) ≤ 2(q − 1)T ′q,1(t) , (3.7)

which in particular yields the inequality T ′′q,1(t)t2 ≤ c(q)T ′q,1(t)t of assertion (ii). The last inequality
T ′q,1(t)t ≤ c(q)Tq,1(t) is also checked easily. For the function v = T ′q,K(|u|)|u|−1u given in (iii) we next
compute

Div
α = T ′q,1(|u|)Diu

α

|u|
+
(
T ′′q,1(|u|)|u| − T ′q,1(|u|)

)Diu · uuα

|u|3
,

Du ·Dv = T ′q,1(|u|) |Du|
2

|u|
+
(
T ′′q,1(|u|)|u| − T ′q,1(|u|)

) |Du · u|2
|u|3

.

In particular, this shows Du ·Dv ≥ 0, using again the positivity of T ′′q,1(t)t−T ′q,1(t) and of T ′q,1(t) on R+.
Furthermore, we obtain

|Dv|2 = T ′q,1(|u|)2 |Du|2

|u|2
+
(
T ′′q,1(|u|)|u| − T ′q,1(|u|)

)2 |Du · u|2
|u|4

+ 2T ′q,1(|u|)
(
T ′′q,1(|u|)|u| − T ′q,1(|u|)

) |Du · u|2
|u|4

≥ T ′q,1(|u|)2 |Du|2

|u|2
,

which yields the second inequality in (iii). Now, keeping in mind the definition of µ(·), we find via the
previous estimate (3.7)

|Du ·Dv|2 − µ(q)|Du|2|Dv|2 =
(q − 1

q

)2

T ′q,1(|u|)2 |Du|4

|u|2
+
(
T ′′q,1(|u|)|u| − T ′q,1(|u|)

)2 |Du · u|4
|u|6

−
(
T ′′q,1(|u|)|u| − T ′q,1(|u|)

)2 2q − 1

q2

|Du · u|2|Du|2

|u|4

+ 2
(q − 1

q

)2

T ′q,1(|u|)
(
T ′′q,1(|u|)|u| − T ′q,1(|u|)

) |Du · u|2|Du|2
|u|4

≥
(q − 1

q

)2

T ′q,1(|u|)2 |Du|4

|u|2
+
(
T ′′q,1(|u|)|u| − T ′q,1(|u|)

)2 |Du · u|4
|u|6

− 2
q − 1

q
T ′q,1(|u|)

(
T ′′q,1(|u|)|u| − T ′q,1(|u|)

) |Du · u|2|Du|2
|u|4

,

which is non-negative by Young’s inequality. This finishes the proof of (iii) for the case K = 1. To
complete the proof of the lemma it is sufficient to observe that for general K > 0 the coefficients a, b, c
have to be replaced by aK2q−2, bK2q−1, cK2q, and the conclusion then follows exactly as above.

4 Higher differentiability of weak solutions

In this section we start working on the solution u of the parabolic system (2.3) with noise. First, we prove
an upper bound for the average of weighted norms of Du. This will be done in Section 4.1 and serves also
to explain the general strategy to obtain such estimates. We will then extract higher regularity properties
of the solution, still following the ideas given in Section 4.1. More precisely, as the final result of this
section, we are interested in pathwise higher integrability of the gradient Du, which will be the core of
the proof of the regularity result given later in Theorem 5.1.
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4.1 An a priori estimate

From Definition 2.2 of a weak solution to the system (2.3), no a priori information is available on the
expected value of the solution. In particular, we only know that every weak solution u(ω) belongs to the
space V 2(DT ,RN ) for P -almost every ω ∈ Ω, but it is still possible that the average E[‖u‖V 2(DT ,RN )] is
infinite. Even if this cannot be excluded in general, we can win an a priori information on the average of
weighted norms of u.

The strategy for a priori estimates for deterministic elliptic or parabolic systems is simply to “test”
the equation with the solution (or some modification of it), and estimates then follow by employing
the regularity and growth properties of the system. For stochastic systems, such testing with an the
appropriate modification of the solution is replaced by the application of an Itô’s formula for Banach
spaces. Then, a first pathwise estimate follows (Step 1 in the proof of the next lemma). Since we are
interested in averages, the first estimate is rewritten (Step 2) by introducing weights depending on the
solution itself. With these weights we can finally take the expectation (Step 3) and end up with the
desired estimate, which we now state in its precise form (note that we usually suppress to indicate the
precise path ω ∈ Ω for the weak solution, in particular we simply write u ∈ V 2(DT ,RN ) and implicitly
mean that this property holds with probability one, by definition of the term weak solution).

Lemma 4.1. Let u ∈ V 2(DT ,RN ) be a weak solution to the initial boundary value problem to (2.3) under
the assumptions (2.1)1,2, (2.2)1,2 and with u( · , 0) = u0(·) for deterministic initial values u0 ∈ L2(D,RN ).
Suppose further that the smallness condition L2

H < 2κ−1(1 − (1 − ν2)1/2) is satisfied, and let D0 ⊂ D
with d0 := dist(D0, ∂D) > 0. Then there holds

E
[ ∫ T

0

e−
∫ t
0
c0G0(u,f) ds‖Du(t)‖2L2(D0) dt

]
≤ c0

(
‖u0‖2L2(D) + 1 + E

[
‖fH‖2L2(DT )

])
for a constant c0 depending only on D,L,LH , d0, κ and ν, and a function G0(u, f) given by (4.3).

Proof. Step 1. A preliminary pathwise estimate. We start by multiplying the equation (2.3) with a
standard cut-off function η ∈ C∞(D, [0, 1]) which satisfies η ≡ 1 on D0 and |Dη| ≤ c(d0). Obviously, the
map η4k,hu has the same properties concerning integrability and measurability as u, and the Itô formula

from Theorem 3.2 in Banach spaces may be applied with the Gelfand triple W 1,2
0 (D,RN ) ⊂ L2(D,RN ) ⊂

W−1,2(D,RN ). This yields the existence of a subset Ω′ ⊂ Ω of full measure P (Ω′) = 1 and a function
u′ : [0, T ] × Ω → W 1,2(D,RN ) which satisfies: u′ is Ft-adapted on [0, T ] × Ω′, continuous in t for every
ω ∈ Ω′, and u′ = uη holds for P × L1-almost all (t, ω) ∈ [0, T ] × Ω. Moreover, using the integration by
parts formula, we have for every ω ∈ Ω′ and all t ∈ [0, T ]

‖u′(t)‖2L2(D) + 2

∫ t

0

〈D(u(s)η2), A( · , s, u(s), Du(s)) 〉L2(D) ds

= ‖u0η‖2L2(D) + 2

∫ t

0

〈u′(s)η,H(·, s,Du(s)) dBs 〉L2(D) +

∫ t

0

‖H(·, s,Du(s))η‖2L2(D) ds (4.1)

(with the convention |M |2 =
∑n
i,j=1M

2
ij for every n × n matrix). Next we need to estimate the second

integral on the left-hand side of the previous identity, employing the assumptions (2.1). For this purpose,
we first observe with (2.1)1,2 and Young’s inequality that

〈Du(s)η2, A( · , s, u(s), Du(s)) 〉L2(D)

=

∫ 1

0

〈Du(s)η2, DzA( · , s, u(s), rDu(s))Du(s) 〉L2(D) dr + 〈Du(s)η2, A( · , s, u(s), 0) 〉L2(D)

=
1

κ
〈Du(s)η,Du(s)η 〉+

1

κ

∫ 1

0

〈Du(s)η2, κDzA( · , s, u(s), rDu(s))Du(s)−Du(s) 〉L2(D) dr

+ 〈Du(s)η2, A( · , s, u(s), 0) 〉L2(D)

≥ 1

κ

(
1− (1− ν2)

1
2 − ε

)
‖Du(s)η‖2L2(D) − c(ε

−1, L)
(
‖u(s)‖

2(n+2)
n

L
2(n+2)
n (D)

+ ‖f(s)‖aLa(D)

)
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for almost every s ∈ (0, T ) and all ε > 0. Moreover, again by assumption (2.1)1 and Young’s inequality,
we find

|〈u(s)⊗Dηη,A( · , s, u(s), Du(s)) 〉L2(D)|

≤ ε

κ
‖Du(s)η‖2L2(D) + c(L, ε−1, κ, d0)

(
‖u(s)‖2L2(D) + ‖u(s)‖

2(n+2)
n

L
2(n+2)
n (D)

+ ‖f(s)‖aLa(D)

)
.

Next, the integrand of the last term on the right-hand side of (4.1) is bounded via (2.2)1,2 by

‖H(·, s,Du(s))η‖2L2(D)

≤
(
1 +

ε

κL2
H

)
‖(H(·, s,Du(s))−H(·, s, 0))η‖2L2(D) + c(ε−1, LH , κ)‖H(·, s, 0)η‖2L2(D)

≤
(
L2
H +

ε

κ

)
‖Du(s)η‖2L2(D) + c(ε−1, LH , κ)‖fH(s)‖2L2(D) .

Combining the last three inequalities (here enters the smallness assumption on LH) with (4.1), choosing
ε sufficiently small (in dependency of LH and ν) and using Hölder’s inequality, we thus end up with the
announced preliminary pathwise estimate

‖u′(t)‖2L2(D) + c−1(LH , κ, ν)

∫ t

0

‖Du(s)η‖2L2(D) ds

≤ ‖u0η‖2L2(D) + 2

∫ t

0

〈u′(s)η,H(·, s,Du(s)) dBs 〉L2(D)

+ c0(D,L,LH , d0, κ, ν)

∫ t

0

(
1 + ‖u(s)‖

2(n+2)
n

L
2(n+2)
n (D)

+ ‖f(s)‖aLa(D) + ‖fH(s)‖2L2(D)

)
ds . (4.2)

Step 2. An improved pathwise estimate. The next step consists in getting a pathwise estimate
where the bound on the right-hand side contains a deterministic part almost independent of the weak
solution and the function f , and a stochastic part which might still depend on the solution. We start by
defining

G0(u, f)(s) = 1 + ‖u(s)‖
2(n+2)
n

L
2(n+2)
n (D)

+ ‖f(s)‖aLa(D) (4.3)

for s ∈ (0, T ). Obviously, G0 belongs to L1(0, T ) with probability one. Then we use a Gronwall-type

argument, by applying the one-dimensional Itô-formula to exp(−
∫ t

0
c0G0(u, f)(s̃) ds̃)(1 + ‖u′(t)‖2L2(D)),

as e. g. in [36, Proof of Theorem 5.1]. Thus, we get

e−
∫ t
0
c0G0(u,f)(s̃) ds̃‖u′(t)‖2L2(D) + c−1(LH , κ, ν)

∫ t

0

e−
∫ s
0
c0G0(u,f)(s̃) ds̃‖Du(s)η‖2L2(D) ds

≤ ‖u0η‖2L2(D) + 1 + 2

∫ t

0

e−
∫ s
0
c0G0(u,f)(s̃) ds̃〈u′(s)η,H(·, s,Du(s)) dBs 〉L2(D)

+ c0

∫ t

0

e−
∫ s
0
c0G0(u,f)(s̃) ds̃‖fH(s)‖2L2(D) ds . (4.4)

Note that we here have omitted a negative term which appeared on the right-hand side and the positive
term containing the 1 on the left-hand side. This is the desired improved pathwise estimate. We note
that u and f still appear in the function G0 in the deterministic integral on the right-hand side, but in
a way that for greater values of u or f the integral gets smaller. At the same time obviously also the
exponential factor on the left-hand side will get smaller, but this allows us now to proceed to Step 3.

Step 3. An estimate for the expected value with weights. Uniform estimates for the average of
the weak solution (e. g. for expressions of the form E[‖u‖] for some norm of u or Du) cannot be expected
under such weak assumptions as we have supposed in the lemma. But the previous inequality (4.4)
now allows us to get a weighted inequality, with no stochastic terms on the right-hand side. Since the
expectation of the stochastic integral is not a priori known to vanish, we now apply a stopping time
argument.
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From identity (4.1) it follows that the process ‖u′(t)‖2L2(D) has a continuous version in t, used in the
following argument. For every R > 0 we introduce the random time

τR := inf
{
t ∈ [0, T ] :

∫ t

0

‖u′(s)‖2L2(D)‖H(s,Du(s))η‖2L2(D) ds > R
}

with τR = T when the set is empty. We note that ‖u′(s)‖2L2(D)‖H(s,Du(s))η‖2L2(D) is in L1(0, T ) with

probability one, because of the property u ∈ V 2
0 (DT ,RN ) and the assumption (2.2)2 on H. Hence, we

have in particular P (limR→∞ τR = T ) = 1 and

P
(

lim
R→∞

‖u′(t ∧ τR)‖2L2(D) = ‖u′(t)‖2L2(D)

)
= 1

for every t ∈ [0, T ]. Now we take inequality (4.4) at time t ∧ τR and get

e−
∫ t∧τR
0 c0G0(u,f)(s̃) ds̃‖u′(t ∧ τR)‖2L2(D) + c−1

∫ t∧τR

0

e−
∫ s
0
c0G0(u,f)(s̃) ds̃‖Du(s)η‖2L2(D) ds

≤ ‖u0η‖2L2(D) + 1 + 2

∫ t∧τR

0

e−
∫ s
0
c0G0(u,f)(s̃) ds̃〈u′(s)η,H(·, s,Du(s)) dBs 〉L2(D)

+ c0

∫ t∧τR

0

e−
∫ s
0
c0G0(u,f)(s̃) ds̃‖fH(s)‖2L2(D) ds .

For the stochastic integral we now have

∫ t∧τR

0

e−
∫ s
0
c0G0(u,f)(s̃) ds̃〈u′(s)η,H(s,Du(s)) dBs 〉L2(D)

=

∫ t

0

e−
∫ s
0
c0G0(u,f)(s̃) ds̃1s≤τR〈u′(s)η,H(s,Du(s)) dBs 〉L2(D) ,

and we further have∫ t

0

e−2
∫ s
0
c0G0(u,f)(s̃) ds̃1s≤τR‖u′(s)‖2L2(D)‖H(s,Du(s))η‖2L2(D) ds

≤
∫ t∧τR

0

‖u′(s)‖2L2(D)‖H(s,Du(s))η‖2L2(D) ds ≤ R

by definition of τR. Thus the stopped stochastic integral above is a martingale, hence with expected
value zero. This implies

E
[
e−

∫ t∧τR
0 c0G0(u,f)(s̃) ds̃‖u′(t ∧ τR)‖2L2(D)

]
+ E

[
c−1

∫ t∧τR

0

e−
∫ s
0
c0G0(u,f)(s̃) ds̃‖Du(s)η‖2L2(D) ds

]
≤ ‖u0η‖2L2(D) + 1 + c0E

[ ∫ T

0

‖fH(s)‖2L2(D) ds
]
.

On the left-hand side we now apply Fatou’s lemma to the first term and the monotone convergence
theorem to the second one, and we get

E
[
e−

∫ t
0
c0G0(u,f)(s̃) ds̃‖u′(t)‖2L2(D)

]
+ E

[
c−1

∫ t

0

e−
∫ s
0
c0G0(u,f)(s̃) ds̃‖Du(s)η‖2L2(D) ds

]
≤ ‖u0η‖2L2(D) + 1 + c0E

[ ∫ T

0

‖fH(s)‖2L2(D) ds
]

for every t ∈ [0, T ]. This proves the bound claimed in the lemma.
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4.2 Existence of second order space derivatives

We next study the existence of second order space derivatives. For deterministic elliptic and parabolic
partial differential equations it is a standard procedure to establish the existence of higher order derivatives
by finite difference quotient methods. The basic idea in the deterministic case is the following. Once
the norm of finite difference quotients of Du are kept under control independently of its step size, i. e.
‖4k,hDu‖Lp ≤ C with C independent of h and with p ∈ (1,∞), then the weak derivative DkDu exists
and has finite norm in Lp (and as long as one is away from the boundary also the reverse it true),
compare Section 3.2. So uniformly bounded difference quotients of Du can heuristically be considered as
second derivatives DkDu. This uniform bound in turn is usually achieved by “testing the system” with
appropriate modifications of the solutions (formally one might think of 4k,−h4k,hu) and relies on the
one hand on the ellipticity of the vector field A and on the other hand on its regularity with respect to
the x and u variables (we note that it seems mandatory to have at least Lipschitz-regularity in order to
expect the existence of full second space derivatives).

For the stochastically perturbed system (2.3) the approach for proving the existence of higher order
derivatives is still very similar, but we need some modifications of this method due to the stochastic
terms. The above strategy (with testing replaced by the the use of the Itô formula in Banach spaces)
applied to our stochastic system gives – after some standard, though very technical computations – a
preliminary pathwise estimate for finite difference quotients of u and Du (this corresponds in some sense
to Step 1 in the proof of the previous Lemma 4.1). But since this estimate still involves a stochastic
integral, it is not yet possible to gain immediately any information on second order derivatives. In a
second step, this pathwise estimate is rewritten (here again some Gronwall-type inequality is needed),
which allows in the third step to take the expectation of a weighted version of ‖4k,hDu‖L2 and to bound
it independently of the stepsize h. This is still sufficient to deduce the existence of DkDu with probability
one (see Theorem 3.6 in Section 3.2).

Given a deterministic initial condition u0 (sufficiently regular) we now give the precise statement on
the boundedness of the expectation of finite difference quotients of Du.

Lemma 4.2. Let u ∈ V 2(DT ,RN ) be a weak solution to the initial boundary value problem to (2.3) under
the assumptions (2.1), (2.2) and with u( · , 0) = u0(·) ∈W 1,2(D,RN ). Suppose further that the smallness
condition L2

H < 2κ−1(1 − (1 − ν2)1/2) is satisfied, and let D′ ⊂ D with d′ := dist(D′, ∂D) > 0. Then
there holds

sup
|h|<d′

E
[

sup
t∈(0,T )

e−
∫ t
0
c′G′(u,f) ds‖4k,hu(t)‖2L2(D′) +

∫ T

0

e−
∫ t
0
c′G′(u,f) ds‖D4k,hu(t)‖2L2(D′) dt

]
≤ c′

(
‖Dku0‖2L2(D) + 1 + E

[
‖fH‖

2a
a−2

L
2a
a−2 (DT )

])
for every k ∈ {1, . . . , n}, a constant c′ depending only on n,D, T, L, LH , d

′, κ, and ν, and a function
G′(u, f) given by (4.8) further below.

Proof. We proceed similarly to the proof of Lemma 4.1, with the main difference that instead of u we
now need to estimate the difference quotients 4k,hu.

Step 1. We first set D0 := {x ∈ D : dist(x, ∂D) ≥ d′/2} and note D′ ⊂ D0 ⊂ D. We now observe
that if u is a solution of (2.3), then, for all t ∈ [0, T ], by definition also the following identity holds true
P -a. s.:

〈 η4k,hu(t)− η4k,hu0, ϕ 〉L2(D) =

∫ t

0

〈 η div4k,hA(·, s, u(s), Du(s)), ϕ 〉W−1,2(D);W 1,2
0 (D) ds

+

∫ t

0

〈ϕ, η4k,hH(·, s,Du(s))
)
dBs 〉L2(D)

for all ϕ ∈ W 1,2
0 (D,RN ). Here k ∈ {1, . . . , n} is arbitrary, h ∈ R \ {0} with |h| < d′/2, and η denotes

a standard cut-off function in C∞(D0, [0, 1]) satisfying η ≡ 1 on D′ and |Dη| ≤ c(d′). Therefore,
the map η4k,hu has the same properties concerning integrability and measurability as u, and the Itô

formula from Theorem 3.2 in Banach spaces is again applied with the Gelfand triple W 1,2
0 (D,RN ) ⊂
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L2(D,RN ) ⊂ W−1,2(D,RN ). We hence get a subset Ω′ ⊂ Ω of full measure P (Ω′) = 1 and a function
u′k : [0, T ]×Ω→W 1,2(D,RN ) with the following properties: u′k is Ft-adapted on [0, T ]×Ω′, continuous
in t for every ω ∈ Ω′, and satisfies u′k = 4k,huη for P × L1-almost all (t, ω) ∈ [0, T ] × Ω. Moreover, for
every ω ∈ Ω′ and all t ∈ [0, T ] we have

‖u′k(t)‖2L2(D) + 2

∫ t

0

〈D(4k,hu(s)η2),4k,hA( · , s, u(s), Du(s)) 〉L2(D) ds

= ‖4k,hu0η‖2L2(D) + 2

∫ t

0

〈u′k(s)η,4k,hH(·, s,Du(s)) dBs 〉L2(D)

+

∫ t

0

‖4k,hH(·, s,Du(s))η‖2L2(D) ds . (4.5)

Our first aim is to deduce a pathwise estimate for finite differences of u and Du, respectively. To this
end we start by studying in detail the second term on the left-hand side. For almost every t ∈ [0, T ] we
decompose the finite difference quotient applied on A(x, t, u,Du) as follows

4k,hA(x, t, u(x), Du(x))

= h−1
[
A(x+ hek, t, u(x+ hek), Du(x+ hek))−A(x+ hek, t, u(x+ hek), Du(x))

]
+ h−1

[
A(x+ hek, t, u(x+ hek), Du(x))−A(x+ ek, t, u(x), Du(x))

]
+ h−1

[
A(x+ hek, t, u(x), Du(x))−A(x, t, u(x), Du(x))

]
=

∫ 1

0

DzA(x+ hek, t, u(x+ hek), Du(x) + rh4k,hDu(x)) dr4k,hDu(x)

+

∫ 1

0

DuA(x+ hek, t, u(x) + rh4k,hu(x), Du(x)) dr4k,hu(x)

+

∫ 1

0

DxA(x+ rhek, t, u(x), Du(x)) dr

=: A(h) + B(h) + C(h) (4.6)

with the obvious abbreviations. Using the assumptions (2.1), Hölder’s and Young’s inequality, we now
estimate the different terms arising from this decomposition in equation (4.5) on time slices t ∈ (0, T )
(on such slices we omit the notion of t). We first find for almost every t ∈ (0, T ) and every ε > 0

〈D(4k,huη2),A(h) 〉L2(D)

= κ−1〈D(4k,huη2), D4k,hu 〉L2(D) − κ−1〈D(4k,huη2), D4k,hu− κA(h) 〉L2(D)

≥ κ−1‖D4k,huη‖2L2(D) − 2ε‖D4k,huη‖2L2(D) − c(κ, ε)‖4k,huDη‖
2
L2(D)

− κ−1(1− ν2)
1
2 ‖D4k,huη‖2L2(D)

≥
(
κ−1(1− (1− ν2)

1
2 )− 2ε

)
‖D4k,huη‖2L2(D) − c(κ, ε, ‖Dη‖L∞(D))‖Dku‖2L2(D)

where in the last line we have used the fact that the norm of the finite difference quotient of a compactly
supported function is always bounded by the norm of the partial derivative (provided that the stepsize
is sufficiently small). This lower bound will be crucial (and can be understood as some ellipticity of the
vector field A up to lower order terms). We next observe with Hölder’s inequality that given arbitrary
exponents pi > 0, qi ≥ max{1, 1/pi} and arbitrary functions fi ∈ Lqi(D), with i ∈ {1, . . . ,m} for some
m ∈ N, we have ∥∥ m∏

i=1

|fi|pi
∥∥
L1(D)

≤
m∏
i=1

‖fi‖piLqipi (D)

provided that
∑m
i=1 q

−1
i = 1 holds. Combining the growth condition (2.1) for DuA and this inequality

with m = 4 and exponents 2, 2/(1−θ), 2n/((n−2)θ), n/θ as qi’s, we then infer from the Sobolev-Poincaré
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embedding (applied on every time-slice)∣∣〈D(4k,huη2),B(h) 〉L2(D)

∣∣
≤ L〈 |D4k,huη|+ 2|4k,huDη|,

(
|Du|

2
n+2 +

∫ 1

0

|u(x) + rh4k,hu|
2
n dr + |f |

)
|4k,hu| 〉L2(D)

≤ L
(
‖D4k,huη‖L2(D) + 2‖4k,huDη‖L2(D)

)
‖4k,huη‖θ

L
2n
n−2 (D)

× ‖4k,huη‖1−θL2(D)

(
‖Du‖

2
n+2

L
2n

(n+2)θ (D)
+ ‖u‖

2
n

L
2
θ (D)

+ ‖f‖
L
n
θ (D)

)
≤
(
‖D4k,huη‖1+θ

L2(D) + ‖4k,huDη‖1+θ
L2(D)

)
× c(n,D,L)‖4k,huη‖1−θL2(D)

(
‖Du‖

2
n+2

L
2n

(n+2)θ (D)
+ ‖u‖

2
n

L
2
θ (D)

+ ‖f‖
L
n
θ (D)

)
(4.7)

for every θ ∈ (0, 1); in the two-dimensional case n = 2, 2n/(n − 2) shall be interpreted as any arbitrary
number greater than 2. We note that we have omitted the step of passing from the shifted to the original
domain in the first inequality and we have applied cdθ + cθd ≤ c1+θ + d1+θ for all c, d ≥ 0 to get from the
first to the second inequality. To estimate further we choose θ = n/(n+ 2), according to the integrability
assumptions of u (using the embedding given in (2.4)), Du and f . Thus, Young’s inequality gives∣∣〈D(4k,huη2),B(h) 〉L2(D)

∣∣
≤ ε‖D4k,huη‖2L2(D) + c(n,D,L, ‖Dη‖L∞(D), ε)

(
‖4k,huη‖2L2(D) + 1

)
×
(
‖Du‖2L2(D) + ‖u‖

2(n+2)
n

L
2(n+2)
n (D)

+ ‖f‖n+2
Ln+2(D)

)
.

Finally, using Young’s inequality and standard properties of finite difference quotients, we estimate the
last term involving C(h) by∣∣〈D(4k,huη2),C(h) 〉L2(D)

∣∣
≤ L

(
‖D4k,huη‖L2(D) + 2‖4k,huDη‖L2(D)

)(
‖Du‖L2(D) + ‖u‖

n+2
n

L
2(n+2)
n (D)

+ ‖f‖2L4(D)

)
≤ ε‖D4k,huη‖2L2(D) + c(D,L, ‖Dη‖L∞(D), ε)

(
1 + ‖Du‖2L2(D) + ‖u‖

2(n+2)
n

L
2(n+2)
n (D)

+ ‖f‖n+2
Ln+2(D)

)
.

Now we have estimated all terms coming from the integral involving 4k,hA(x, t, u,Du). Next we study
the last integral in equation (4.5). Employing the properties (2.2), we find

‖4k,hH(s,Du(s))η‖L2(D) ≤ ‖|fH |
a
a−2 (s) + |Du(s)|η‖L2(D) + LH‖D4k,hu(s)η‖L2(D) .

Before summarizing the previous estimates for the single terms, we introduce, for ease of notation, the
function

G′(u, f)(s) := 1 + ‖Du(s)‖2L2(D) + ‖u(s)‖
2(n+2)
n

L
2(n+2)
n (D)

+ ‖f(s)‖aLa(D) (4.8)

with s ∈ (0, T ), which belongs to L1(0, T ) almost surely. Note that by definition we have G′(u, f) ≥
G0(u, f) with G0(u, f) denoting the function introduced in Lemma 4.1. Combining the latter estimates
with the decomposition given in (4.6), using standard properties for finite difference quotients and choos-
ing ε = ε(κ, ν, LH) sufficiently small, we hence infer from (4.5) that for every ω ∈ Ω′ there holds

‖u′k(t)‖2L2(D) + c−1(LH , κ, ν)

∫ t

0

‖D4k,hu(s)η‖2L2(D) ds

≤ ‖4k,hu0η‖2L2(D) + c′
∫ t

0

(
‖4k,hu(s)η‖2L2(D) + 1

)
G′(u, f)(s) ds

+ 2

∫ t

0

〈u′k(s)η,4k,hH(·, s,Du(s)) dBs 〉L2(D) + 2

∫ t

0

‖fH(s)‖
2a
a−2

L
2a
a−2 (D)

ds , (4.9)
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and the constant c′ depends only on n,D,L, LH , d
′, κ and ν. Here we assume c′ ≥ c0 with c0 denoting the

constant given in Lemma 4.1. This is the preliminary pathwise estimate on the finite difference quotients
(which however involves the stochastic integral) and concludes the Step 1.

Step 2. Before passing to the expectation value as described in the beginning we still need the
announced Gronwall-type argument, similarly as in the proof of Lemma 4.1. However, we here observe
that the second integral on the right-hand side is in general not known to be finite, but the first factor
of the integrand “almost” happens to appear in the sum of its left-hand side (in the sense that u′k differs
from 4k,huη only on a negligible set). Hence, in order to get rid of this possibly uncontrollable term we
apply the one-dimensional Itô-formula (recalling a > n+ 2), and we obtain

e−
∫ t
0
c′G′(u,f)(s̃) ds̃‖u′k(t)‖2L2(D) + c−1

∫ t

0

e−
∫ s
0
c′G′(u,f)(s̃) ds̃‖D4k,hu(s)η‖2L2(D) ds

≤ c′
∫ t

0

e−
∫ s
0
c′G′(u,f)(s̃) ds̃G′(u, f)

(
‖4k,hu(s)η‖2L2(D) − ‖u

′
k(s)‖2L2(D)

)
ds

+ ‖4k,hu0η‖2L2(D) + 1 + 2

∫ t

0

e−
∫ s
0
c′G′(u,f)(s̃) ds̃〈u′k(s)η,4k,hH(·, s,Du(s)) dBs 〉L2(D)

+ 2

∫ t

0

e−
∫ s
0
c′G′(u,f)(s̃) ds̃‖fH(s)‖

2a
a−2

L
2a
a−2 (D)

ds . (4.10)

Here, we again note that the average of the first integral on the right-hand side vanishes, due to the fact
that u′k and 4k,huη coincide on [0, T ]× Ω except for a set of L1 × P -measure zero.

Step 3. We now derive the desired estimate for the average with weights. In contrast to Lemma 4.1,
we now derive in a first step an estimate for the (weighted) average of the L2(L2)-norm of D4k,hu (which
proceeds in exactly the same way as before). Then, we use this estimate to get also an upper bound for
the (weighted) average of the L∞(L2)-norm of 4k,hu.

We first note that identity (4.5) implies that the process ‖u′k(t)‖2L2(D) has a continuous version in t.
Now, for every R > 0, we introduce the random time

τR := inf
{
t ∈ [0, T ] :

∫ t

0

‖u′k(s)‖2L2(D)‖4k,hH(s,Du(s))η‖2L2(D) ds > R
}

with τR = T when the set is empty. Notice that∫ T

0

‖u′k(s)‖2L2(D)‖4k,hH(s,Du(s))η‖2L2(D) ds <∞

with probability one, because of the property u ∈ V 2
0 (DT ,RN ) combined with the assumption (2.2)2 on

H. Hence, when R→∞, τR is eventually equal to T , with probability one. In particular, P (limR→∞ τR =
T ) = 1 and for every t ∈ [0, T ] we have

P
(

lim
R→∞

‖u′k(t ∧ τR)‖2L2(D) = ‖u′k(t)‖2L2(D)

)
= 1 .

Step 3a. We compute inequality (4.10) at time t ∧ τR and get

e−
∫ t∧τR
0 c′G′(u,f)(s̃) ds̃‖u′k(t ∧ τR)‖2L2(D) + c−1

∫ t∧τR

0

e−
∫ s
0
c′G′(u,f)(s̃) ds̃‖D4k,hu(s)η‖2L2(D) ds

≤ c′
∫ t∧τR

0

e−
∫ s
0
c′G′(u,f)(s̃) ds̃G′(u, f)

(
‖4k,hu(s)η‖2L2(D) − ‖u

′
k(s)‖2L2(D)

)
ds

+ ‖4k,hu0η‖2L2(D) + 1 + 2

∫ t∧τR

0

e−
∫ s
0
c′G′(u,f)(s̃) ds̃〈u′k(s)η,4k,hH(s,Du(s)) dBs 〉L2(D)

+ 2

∫ t∧τR

0

e−
∫ s
0
c′G′(u,f)(s̃) ds̃‖fH(s)‖

2a
a−2

L
2a
a−2 (D)

ds .
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Now we have∫ t∧τR

0

e−
∫ s
0
c′G′(u,f)(s̃) ds̃〈u′k(s)η,4k,hH(s,Du(s)) dBs 〉L2(D)

=

∫ t

0

e−
∫ s
0
c′G′(u,f)(s̃) ds̃1s≤τR〈u′k(s)η,4k,hH(s,Du(s)) dBs 〉L2(D)

and ∫ t

0

e−2
∫ s
0
c′G′(u,f)(s̃) ds̃1s≤τR‖u′k(s)‖2L2(D)‖4k,hH(s,Du(s))η‖2L2(D) ds

≤
∫ t∧τR

0

‖u′k(s)‖2L2(D)‖4k,hH(s,Du(s))η‖2L2(D) ds ≤ R

by definition of τR. Thus, the stopped stochastic integral above is a martingale, hence with expected
value zero. This implies (using that u′k equals 4k,huη outside a set of L1 × P -measure zero)

E
[
e−

∫ t∧τR
0 c′G′(u,f)(s̃) ds̃‖u′k(t ∧ τR)‖2L2(D)

]
+ c−1E

[ ∫ t∧τR

0

e−
∫ s
0
c′G′(u,f)(s̃) ds̃‖D4k,hu(s)η‖2L2(D) ds

]
≤ ‖4k,hu0η‖2L2(D) + 1 + 2E

[ ∫ T

0

‖fH(s)‖
2a
a−2

L
2a
a−2 (D)

ds
]
.

We apply Fatou’s lemma to the first term and monotone convergence theorem to the second one on the
left-hand side, and we get

E
[
e−

∫ t
0
c′G′(u,f)(s̃) ds̃‖u′k(t)‖2L2(D)

]
+ c−1E

[ ∫ t

0

e−
∫ s
0
c′G′(u,f)(s̃) ds̃‖D4k,hu(s)η‖2L2(D) ds

]
≤ ‖4k,hu0η‖2L2(D) + 1 + 2E

[ ∫ T

0

‖fH(s)‖
2a
a−2

L
2a
a−2 (D)

ds
]

for every t ∈ [0, T ]. This proves one of the two bounds claimed by the Lemma.

Step 3b. It is almost our final estimate except that we need the supremum in time inside the first
expected value, and thus we have to repeat the previous computations by means of martingale inequalities.
The previous estimate (as well as the a priori estimate from Lemma 4.1) will be used in the next one; we
found it convenient to proceed in two steps. From the stopped inequality above we have

E
[

sup
t∈[0,T ]

e−
∫ t∧τR
0 c′G′(u,f)(s̃) ds̃‖u′k(t ∧ τR)‖2L2(D)

]
≤ ‖4k,hu0η‖2L2(D) + 1 + 2E

[ ∫ T

0

‖fH(s)‖
2a
a−2

L
2a
a−2 (D)

ds
]
.

+ 2E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

e−
∫ s
0
c′G′(u,f)(s̃) ds̃1s≤τR〈u′k(s)η,4k,hH(s,Du(s)) dBs 〉L2(D)

∣∣∣].
We apply again Fatou’s lemma to the expected value on the left-hand side. The last term on the right-
hand side is estimated, by means of the Burkholder-Davis-Gundy inequality, by

CE
[( ∫ T

0

e−2
∫ s
0
c′G′(u,f)(s̃) ds̃1s≤τR‖u′k(s)‖2L2(D)‖4k,hH(s,Du(s))η‖2L2(D) ds

)1/2]
= CE

[( ∫ T

0

e−2
∫ s∧τR
0 c′G′(u,f)(s̃) ds̃1s≤τR‖u′k(s ∧ τR)‖2L2(D)‖4k,hH(s,Du(s))η‖2L2(D) ds

)1/2]
≤ CE

[
I

1/2
1 I

1/2
2

]
≤ 1

2
E
[
I1
]

+
C2

2
E
[
I2
]
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where

I1 = sup
t∈[0,T ]

e−
∫ t∧τR
0 c′G′(u,f)(s̃) ds̃‖u′k(t ∧ τR)‖2L2(D) ,

I2 =

∫ T

0

e−
∫ s
0
c′G′(u,f)(s̃) ds̃‖4k,hH(s,Du(s))η‖2L2(D) ds.

Hence, we have proved

1

2
E
[
I1
]
≤ ‖4k,hu0η‖2L2(D) + 1 + 2E

[ ∫ T

0

‖fH(s)‖
2a
a−2

L
2a
a−2 (D)

ds
]

+
C2

2
E
[
I2
]
.

From the estimate above for ‖4k,hH(s,Du(s))η‖2L2(D) and the estimate of Step 3a, we know that E[I2]
is bounded from above via

E[I2] ≤ 4E
[ ∫ T

0

e−
∫ s
0
c′G′(u,f)(s̃) ds̃‖Du(s)η‖2L2(D) ds

]
+ c
(
‖4k,hu0η‖2L2(D) + 1 + E

[ ∫ T

0

‖fH(s)‖
2a
a−2

L
2a
a−2 (D)

ds
])
.

With the initial choice of D0 (in dependency of D and D′) and keeping in mind c′G′(u, f) ≥ c0G0(u, f) by
construction, the first average on the right-hand side of the last inequality is bounded due to Lemma 4.1.
Hence, keeping in mind that u′k coincides with 4k,huη as W 1,2(D,RN )-functions P × L1-almost every-
where, we get from the bound for E[I1] the asserted inequality in the lemma. Since h was arbitrary and
η = 1 on D′, the proof is complete.

Remark 4.3. For SPDEs having first space derivatives of the solution in the coefficient of the noise, the
most general condition for existence of solutions in L2, which becomes also a condition for an improvement
of W k,2-regularity, is more precise than just the control on the Lipschitz constant of H expressed by
the statement of Lemma 4.2; see [33, 26]. However, when we go to W k,p-regularity with p > 2, the
computations are too involved and the algebraic simplicity of the condition of [33, 26] seems to be lost.
For this reason we have simplified the estimate also for p = 2.

Applying Theorem 3.6 with (p, q) = (2, 2) and (p, q) = (2,∞) and summing over k ∈ {1, . . . , n} we
then infer from the previous lemma that second order spatial derivatives of u exist almost surely. We
should note that this result does not extend up to the boundary of D since the constant c′ blows up for
dist(D′, D)↘ 0, but the result holds on any fixed subset D′ b D.

Corollary 4.4. Let u ∈ V 2(DT ,RN ) be a weak solution under the assumptions of the Lemma 4.2. Then
there holds Du ∈ V 2(D′T ,RN ) with probability one, and

E
[

sup
t∈(0,T )

e−
∫ t
0
c′G′(u,f) ds‖Du‖2L2(D′) +

∫ T

0

e−
∫ t
0
c′G′(u,f) ds‖D2u‖2L2(D′) dt

]
≤ c′

(
‖Du0‖2L2(D) + 1 + E

[
‖fH‖

2a
a−2

L
2a
a−2 (DT )

])
for the constant c′ from Lemma 4.2. Moreover, we have for all k ∈ {1, . . . , n}

e−
1
2

∫ t
0
c′G′(u,f) ds4k,hDu→ e−

1
2

∫ t
0
c′G′(u,f) dsDkDu weakly in L2(D′T × Ω) .

4.3 Iteration

In the next step we iterate the procedure from the previous section, in a way such that we do not only
know the spatial gradient Du to belong to the space V 2 with probability one, but that we get this result
also up to a certain power of |Du|. For convenience we introduce the function

Wq : Rk → R defined by Wq(ξ) := |ξ|q
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for every q ≥ 0. We start by briefly describing the strategy how this regularity improvement is achieved.
First we observe from the results in Section 4.2 that there exists a subset of Ω of full measure on which
Du belongs to V 2

loc(DT ), hence we can now take advantage of higher integrability properties for u and
Du. This shall be done with the following (formal) iteration scheme:

Wqj (Du) ∈ V 2 −→ Du ∈ L2qj
n+2
n and u ∈ L2qj(

n+2
n )2 ∩ L∞(L2qj

n
n−2 )

−→ DuA(x, t, u,Du) ∈ Lmin{qj (n+2)2

n ,a} and DxA(x, t, u,Du) ∈ Lmin{2qj n+2
n , a2 }

−→ Wqj+1
(Du) ∈ V 2

for a sequence {qj}j∈N of numbers qj ≥ 1 for all j ∈ N. The first implication indeed follows from
Sobolev’s embedding for the space V 2,p, the second one from the growth conditions on the vector field A,
the third one from the iteration (and a convergence result concerning finite difference quotients). After a
finite number of steps we then arrive at a final (maximal) higher integrability exponent, which essentially
reflects how close the vector field A is to the Laplace system. This should be understood in the following
sense: the closer ν is to one (note that ν = 1 corresponds to the case A(x, t, u, z) = z plus potential
lower order terms), the more integrability for Du can be gained in the iteration and the better will be
the final regularity properties of u. Finally, we note that in every step of the iteration we will have to
reduce the radius of the parabolic cylinder and we will also have to restrict ourselves to smaller subsets
of Ω. Nevertheless, the higher integrability results will always be true on sets of probability one.

We now start with some preliminary remarks and consider again the equation (2.3)

du = divA(x, t, u,Du) dt+H(x, t,Du) dBt

in DT . We observe that divA(x, t, u,Du) is well defined in view of the regularity assumptions (2.1) and
the existence of second order spatial derivatives, see Corollary 4.4. More precisely, it is easy to check
that for every weak solution u ∈ V 2

0 (DT ,RN ) we have: divA(x, t, u,Du) ∈ L2
loc(D′,RN ) with probability

one, and the equation above holds for Ln-almost every x ∈ D′ for L1 × P -almost all (t, ω) ∈ (0, T )× Ω.
Hence, we can now work immediately with this equation without passing to its weak formulation.

In the next lemma we provide the main step of the iteration argument:

Lemma 4.5. Let u ∈ V 2(DT ,RN ) be a weak solution to the initial boundary value problem to (2.3) under
the assumptions (2.1), (2.2) and with initial values u( · , 0) = u0(·) ∈W 1,2(D,RN ), and assume that

E
[
‖Y ppWp(Du)‖

2
p

L2n+2
n (D′T )

]
≤ Cp <∞

for some p ≥ 1, a set D′ ⊂ D, and Yp : [0, T ] × Ω → (0, 1] given by Yp(t, ω) = exp(−
∫ t

0
Gp(s, ω) ds) for

some function Gp which is in L1(0, T ) with probability one. Let D′′ ⊂ D′ with d := dist(D′′, ∂D′) > 0.
Then for every number q ≥ 1 satisfying

q ≤ min
{
p
n+ 2

n
, 1+p

n+ 2

n

a− 4

a
,
a− 2

2

}
and L2

H <
1

κ(q − 1
2 )

([
1−
(q − 1

q

)2] 1
2−
[
1−ν2

] 1
2
)
, (4.11)

all initial values u0 ∈W 1,2q(D,RN ), and every k ∈ {1, . . . , n} there holds

sup
|h|<d

E
[(

sup
t∈(0,T )

‖Y qq Wq(4k,hu)‖2L2(D′′) +

∫ T

0

‖Y qq DWq(4k,hu)‖2L2(D′′) dt
) 1
q
]

≤ c
(
‖Wq(Dku0)‖2L2(D) + 1 + E

[
‖fH‖aLa(DT )

]) 1
q

,

for Yq : [0, T ] × Ω → (0, 1] given by Yq(t, ω) = exp(−
∫ t

0
Gq(s, ω) ds) for some function Gq which is in

L1(0, T ) with probability one, and a constant c depending only on n, p,D, T, L, LH , d, κ, ν, and Cp.

Remarks 4.6. In the case of additive noise (with LH = 0) the second condition (4.11) for the restriction
on the integrability exponent q reduces to the inequality q < 1/(1 − ν). For multiplicative noise instead,
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the right-hand side in the second inequality (4.11) is decreasing in q (note that for q = 1 it just reproduces
the condition required in Lemma 4.2) and allows the following interpretation. Obviously, the previous
restriction q < 1/(1 − ν) for additive noise remains valid, and in fact the more multiplicative noise is
considered (in the sense that LH should not be too small), the smaller will be the maximal integrability
exponent, which however still needs to satisfy both inequalities in (4.11). For this reason multiplicative
noise might destroy some regularity in form of a loss of integrability of the gradient Du.

Moreover, we comment on the scaling of the hypothesis and the assertion with respect to u and u0,
respectively, in order to avoid confusion. In view of the definition of Wp it is easy to see that Lemma 4.5
is stated in a way such that an weighted average of a quadratic quantity in Du gives an information about
the weighted average of a quadratic quantity in 4k,hu. In this sense, the scaling is the natural one.

Proof. We now follow the line of arguments from the proof of Lemma 4.2 (and of Lemma 4.1), with the
essential novelty that we estimate this time powers of the difference quotients 4k,hu.

Step 1. We consider k ∈ {1, . . . , n} arbitrary, h ∈ R with |h| < d, and η ∈ C∞(D′, [0, 1]) a standard
cut-off function satisfying η ≡ 1 on D′′ b D′ and |Dη| ≤ c(d). We first observe that, by the integrability
assumptions on Du and on Gp (which in particular implies strict positivity of inft∈[0,T ] Yp for P -almost
every ω), we have

u ∈ L2p(n+2
n )2

loc

(
D′T ,RN

)
∩ L∞loc

(
0, T ;L2p n

n−2 (D′,RN )
)

with probability one. Furthermore, due to the restriction on q, it is guaranteed that Wq(Du) belongs to
L2 locally on D′T with probability one. For almost every (fixed) x ∈ D we first consider finite differences
in direction ek and stepsize h of the differential equation (2.3), i.e.

d η
1
q4k,hu(x, t) = η

1
q div4k,hA(x, t, u,Du) dt+ η

1
q4k,hH(x, t,Du) dBt

in (0, T ) for q ≥ 1. We next introduce (for technical reasons) for K > 0 the approximating function
Tq,K(·) of class C2 according to Lemma 3.11, and we recall that Tq,K satisfies in particular the polynomial
growth conditions Tq,K(t) = t2q for all t ≤ K and Tq,K(t) ≤ c(q)K2q−2t2 for all t ∈ R. Employing the
one-dimensional Itô formula (note that divA(x, t, u,Du) is as a composition of Ft-adapted functions again
Ft-adapted) from Theorem 3.1, applied with g(t, u(x, t)) = η2Tq,K(|4k,hu(x, t)|), we obtain the identity

d
(
η2Tq,K(|4k,hu(x, t)|)

)
= η2T ′K(|4k,hu(x, t)|)|4k,hu(x, t)|−1〈4k,hu(x, t),div4k,hA(x, t, u,Du) 〉RN dt

+
1

2
η2
[
T ′′q,K(|4k,hu(x, t)|)|4k,hu(x, t)| − T ′q,K(|4k,hu(x, t)|)

]
× |4k,hu(x, t)|−3|〈4k,hu(x, t),4k,hH(x, t,Du) 〉|2 dt

+
1

2
η2T ′q,K(|4k,hu(x, t)|)|4k,hu(x, t)|−1|4k,hH(x, t,Du)|2 dt

+ η2T ′q,K(|4k,hu(x, t)|)|4k,hu(x, t)|−1〈4k,hu(x, t),4k,hH(x, t,Du)dBt 〉RN .

In order to prove the assertion of the lemma, we start with a simple observation concerning the terms
involving 4k,hH(x, t,Du). Taking into account the properties of the function Tq,K , see Lemma 3.11, we
estimate

[
T ′′q,K(|4k,hu(x, t)|)|4k,hu(x, t)| − T ′q,K(|4k,hu(x, t)|)

]
|4k,hu(x, t)|−3|〈4k,hu(x, t),4k,hH(x, t,Du) 〉|2

≤ 2(q − 1)T ′q,K(|4k,hu(x, t)|)|4k,hu(x, t)|−1|4k,hH(x, t,Du)|2 .

We next introduce the abbreviation

V (ξ) := T ′q,K(|ξ|)|ξ|−1ξ

for all ξ ∈ RN , and we note |V (ξ)| = T ′q,K(|ξ|). Now we integrate over x ∈ D, and we then apply Fubini
which is always allowed due to the truncation procedure, see Lemma 3.11 ii). Applying the integration
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by parts formula, we hence obtain

‖(Tq,K |4k,hu(t)|) 1
2 η‖2L2(D) +

∫ t

0

〈D
(
V (4k,hu(s))η2

)
,4k,hA(·, s, u,Du) 〉L2(D) ds

≤ ‖(Tq,K |4k,hu0|)
1
2 η‖2L2(D)

+ (q − 2−1)

∫ t

0

∥∥T ′q,K(|4k,hu(s)|) 1
2 |4k,hu(s)|− 1

24k,hH(·, s,Du)η
∥∥2

L2(D)
ds

+

∫ t

0

〈V (4k,hu(x, s))η2,4k,hH(·, s,Du) dBs 〉L2(D) . (4.12)

Now the second term on the left-hand side of this inequality shall be estimated. Using the decomposition
introduced in (4.6) and applying Lemma 3.11, we first find for every ε > 0:

〈D
(
V (4k,hu(s))η2

)
,A(h) 〉L2(D)

= κ−1〈D
(
V (4k,hu(s))η2

)
, D4k,hu 〉L2(D) − κ−1〈D

(
V (4k,hu(x, s))η2

)
, D4k,hu− κA(h) 〉L2(D)

≥ κ−1‖D
(
V (4k,hu(s))

)
·D4k,huη2‖L1(D) − 2ε‖T ′q,K(|4k,hu|)

1
2 |4k,hu|−

1
2D4k,huη‖2L2(D)

− c(q, κ, ε)‖|4k,hu|qDη‖2L2(D) − κ
−1(1− ν2)

1
2 ‖D

(
V (4k,hu(s))

)
|D4k,hu|η2‖L1(D)

≥
(
κ−1µ

1
2 (q)− κ−1(1− ν2)

1
2 − 2ε

)
‖T ′q,K(|4k,hu|)

1
2 |4k,hu|−

1
2D4k,huη‖2L2(D)

− c(q, κ, ε, ‖Dη‖L∞(D))‖Wq(4k,hu)‖2L2(D′) .

We observe from the definition of µ(q) and the second bound in (4.11) on q that the factor µ
1
2 (q) −

(1 − ν2)
1
2 appearing in the previous inequality is always strictly positive. Now, for the second term in

the decomposition (4.6) we proceed analogously to (4.7); in fact, via Hölder’s inequality, the inequalities
T ′′q,K(t)t2 ≤ c(q)T ′q,K(t)t ≤ c(q)Tq,K(t) on R+ and the Sobolev-Poincaré embedding (applied on every
time-slice), we obtain∣∣〈D(V (4k,hu(s))η2

)
,B(h) 〉L2(D)

∣∣
≤ c(L, q)

(
‖T ′q,K(|4k,hu|)

1
2 |4k,hu|−

1
2D4k,huη‖L2(D) + ‖T ′q,K(|4k,hu|)

1
2 |4k,hu|

1
2Dη‖L2(D)

)
× ‖T ′q,K(|4k,hu|)

1
2 |4k,hu|−

1
2B(h)η‖L2(D)

≤ c(L, q)
(
‖T ′q,K(|4k,hu|)

1
2 |4k,hu|−

1
2D4k,huη‖L2(D) + ‖Tq,K(|4k,hu|)

1
2Dη‖L2(D)

)
× ‖T ′q,K(|4k,hu|)

1
2 |4k,hu|−

1
24k,huη‖θ

L
2n
n−2 (D)

‖T ′q,K(|4k,hu|)
1
2 |4k,hu|−

1
24k,huη‖1−θL2(D)

×
(
‖Du‖

2
n+2

L
2n

(n+2)θ (spt η)
+ ‖u‖

2
n

L
2
θ (spt η)

+ ‖f‖
L
n
θ (D)

)
≤
(
‖T ′q,K(|4k,hu|)

1
2 |4k,hu|−

1
2D4k,huη‖1+θ

L2(D) + ‖Tq,K(|4k,hu|)
1
2Dη‖1+θ

L2(D)

)
× c(n,D, T, L, q)‖Tq,K(|4k,hu|)

1
2 η‖1−θL2(D)

(
‖Du‖

2
n+2

L
2n

(n+2)θ (spt η)
+ ‖u‖

2
n

L
2
θ (spt η)

+ ‖f‖
L
n
θ (D)

)
for every θ ∈ (0, 1). We now choose θ = max{p−1n2(n + 2)−2, na−1}, for which the last expression in
brackets of the previous inequality is consequently bounded with probability one, according to the inte-
grability assumptions on f,Du and the consequences on the integrability of u explained at the beginning
of the proof. Young’s inequality then implies∣∣〈D(V (4k,hu(x, s))η2

)
,B(h) 〉L2(D)

∣∣ ≤ ε‖T ′q,K(|4k,hu|)
1
2 |4k,hu|−

1
2D4k,huη‖2L2(D)

+ c(n,D, T, L, q, ‖Dη‖L∞(D), ε)
(
‖Tq,K(|4k,hu|)

1
2 η‖2L2(D) + 1

)
×
(
1 + ‖Du‖2p

n+2
n

L2pn+2
n (spt η)

+ ‖u‖2p(
n+2
n )2

L2p(n+2
n

)2 (spt η)
+ ‖f‖aLa(D)

)
.

Finally, via the bounds for q in terms of n, p, a and ν, the last term in the decomposition involving C(h)
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is estimated with Young’s inequality and the well-known estimates for finite difference quotients by∣∣〈D(V (4k,hu(s))η2
)
,C(h) 〉L2(D)

∣∣
≤ c
(
‖T ′q,K(|4k,hu|)

1
2 |4k,hu|−

1
2D4k,huη‖L2(D) + ‖Tq,K(|4k,hu|)

1
2Dη‖L2(D)

)
× ‖T ′q,K(|4k,hu|)

1
2 |4k,hu|−

1
2C(h)η‖L2(D)

≤ ε‖T ′q,K(|4k,hu|)
1
2 |4k,hu|−

1
2D4k,huη‖2L2(D)

+ c(D,T, L, q, ‖Dη‖L∞(D), ε)
(
1 + ‖Du‖2p

n+2
n

L2pn+2
n (spt η)

+ ‖u‖2p(
n+2
n )2

L2p(n+2
n

)2 (spt η)
+ ‖f‖aLa(D)

)
,

provided that 4q ≤ a. For the general case, one again has to argue more subtle, using the Sobolev
embedding on time slices as for the term with B(h). With the analogous calculations as before this yields∣∣〈D(V (4k,hu(s))η2

)
,C(h) 〉L2(D)

∣∣
≤ ε‖T ′q,K(|4k,hu|)

1
2 |4k,hu|−

1
2D4k,huη‖2L2(D)

+ c(n,D, T, L, q, ‖Dη‖L∞(D), ε)
(
‖Tq,K(|4k,hu|)

1
2 η‖2L2(D) + 1

)
×
(
1 + ‖Du‖2p

n+2
n

L2pn+2
n (spt η)

+ ‖u‖2p(
n+2
n )2

L2p(n+2
n

)2 (spt η)
+ ‖f‖aLa(D)

)
.

It still remains to handle the second term on the right-hand side of inequality (4.12). With the assump-
tions (2.2) on H and Young’s inequality, we easily find∥∥T ′q,K(|4k,hu(s)|) 1

2 |4k,hu(s)|− 1
24k,hH(·, s,Du)η

∥∥2

L2(D)

≤ (L2
H + ε)‖T ′q,K(|4k,hu|)

1
2 |4k,hu|−

1
2D4k,huη‖2L2(D)

+ c(L,LH , ε)
(
1 + ‖Du‖2p

n+2
n

L2pn+2
n (spt η)

+ ‖fH‖aLa(D)

)
.

For every s ∈ (0, T ) we now define

G′′(u, f)(s) :=
2q

c′′
Gp(s) + 1 + ‖Du‖2p

n+2
n

L2pn+2
n (D′)

+ ‖u‖2p(
n+2
n )2

L2p(n+2
n

)2 (D′)
+ ‖f‖aLa(D) , (4.13)

which is a L1(0, T ) with probability one. Furthermore, we set Gq := c′′G′′(u, f)/(2q) ≥ Gp which imme-
diately gives Yq ≤ Yp. Then, taking into account the smallness condition (4.11), choosing ε sufficiently
small and combining the previous estimates for the various terms arising in (4.12), we find a preliminary
(though still K-depending) pathwise estimate

‖Tq,K(|4k,hu(t)|) 1
2 η‖2L2(D) + c−1(LH , κ, ν)

∫ t

0

‖T ′q,K(|4k,hu|)
1
2 |4k,hu|−

1
2D4k,huη‖2L2(D) ds

≤ ‖Tq,K(|4k,hu0|)
1
2 η‖2L2(D) + c′′

∫ t

0

(
‖Tq,K(|4k,hu(t)|) 1

2 η‖2L2(D) + 1
)
G′′(u, f) ds

+ c

∫ t

0

‖fH(s)‖aLa(D) ds+

∫ t

0

〈V (4k,hu(x, t))η2,4k,hH(·, s,Du) dBs 〉L2(D) .

Step 2. We may now apply in a first step Itô’s formula in exactly the same way as before in the
derivation of estimate (4.10), and we this get

e−
∫ t
0
c′′G′′(u,f) ds‖Tq,K(|4k,hu(t)|) 1

2 η‖2L2(D)

+ c−1

∫ t

0

e−
∫ s
0
c′′G′′(u,f) ds̃

∥∥T ′q,K(|4k,hu|)
1
2 |4k,hu|−

1
2D4k,huη

∥∥2

L2(D)
ds

≤ ‖Tq,K(|4k,hu0|)
1
2 η‖2L2(D) + 1 + c

∫ t

0

‖fH(s)‖aLa(D) ds

+ c

∫ t

0

e−
∫ s
0
c′′G′′(u,f) ds̃〈V (4k,hu(x, t))η2,4k,hH(·, s,Du) dBs 〉L2(D) .
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Step 3. Similarly to the proof of Lemma 4.2, we introduce the random time

τR := inf
{
t ∈ [0, T ] :

∫ t

0

∥∥|4k,hu(s)|2q−1η2|4k,hH(·, s,Du)|
∥∥2

L1(D)
ds > R

}
with τR = T when the set is empty. Differently from Lemma 4.2, the property

P
(∫ T

0

∥∥|4k,hu(s)|2q−1η2|4k,hH(·, s,Du)|
∥∥2

L1(D)
ds <∞

)
= 1

which is needed to have P (limR→∞ τR = T ) = 1 is not clear a priori. We shall prove it a posteriori.
Notice that, by Lemma 3.11,∫ t∧τR

0

e−2
∫ s
0
c′′G′′(u,f) ds̃

(∫
D

|V (4k,hu(x, s))|η2|4k,hH(s,Du)| dx
)2

ds

≤
∫ t∧τR

0

∥∥|4k,hu(s)|2q−1η2|4k,hH(·, s,Du)|
∥∥2

L1(D)
ds ≤ R .

Step 3a. The last calculation shows that the stochastic integral from Step 2, stopped at τR, is a
martingale (and thus it has zero expectation). Therefore (as in Lemma 4.2)

E
[
e−

∫ t∧τR
0 c′′G′′(u,f) ds‖Tq,K(|4k,hu(t ∧ τR)|) 1

2 η‖2L2(D)

]
+ c−1E

[ ∫ t∧τR

0

e−
∫ s
0
c′′G′′(u,f) ds̃

∥∥T ′q,K(|4k,hu|)
1
2 |4k,hu|−

1
2D4k,huη

∥∥2

L2(D)
ds
]

≤ ‖Tq,K(|4k,hu0|)
1
2 η‖2L2(D) + 1 + cE

[ ∫ T

0

‖fH(s)‖aLa(D) ds
]
.

At this stage we may pass to the limit K → ∞ via Fatou’s Lemma on the left-hand side and monotone
convergence on the right-hand side, and we obtain

E
[
e−

∫ t∧τR
0 c′′G′′(u,f) ds‖Wq(4k,hu(t ∧ τR))η‖2L2(D)

]
+ c−1E

[ ∫ t∧τR

0

e−
∫ s
0
c′′G′′(u,f) ds̃

∥∥|4k,hu(s)|q−1D4k,hu(s)η
∥∥2

L2(D)
ds
]

≤ ‖Wq(4k,hu0)η‖2L2(D) + 1 + cE
[ ∫ T

0

‖fH(s)‖aLa(D) ds
]
. (4.14)

Step 3b. Next we apply Burkholder-Davis-Gundy inequality to the inequality above from Step 2,
stopped at τR and raised to the power 1/q. Taking the limit K →∞ as in (4.14), we get

E
[

sup
t∈[0,T ]

e−
1
q

∫ t∧τR
0 c′′G′′(u,f) ds‖Wq(4k,hu(t ∧ τR))η‖

2
q

L2(D)

]
≤ ‖Wq(4k,hu0)η‖

2
q

L2(D) + 1 + cE
[( ∫ T

0

‖fH(s)‖aLa(D) ds
) 1
q
]

+ CE
[( ∫ T∧τR

0

e−2
∫ s
0
c′′G′′(u,f) ds̃

∥∥|4k,hu(s)|2q−1η2|4k,hH(·, s,Du)|
∥∥2

L1(D)
ds
) 1

2q
]
.

Since due to Hölder’s inequality we have∥∥|4k,hu(s)|2q−1η2|4k,hH(·, s,Du)|
∥∥2

L1(D)

≤ ‖|4k,hu(s)|qη‖2L2(D)

∥∥|4k,hu(s)|q−1η|4k,hH(·, s,Du)|
∥∥2

L2(D)
,

the last term of the previous inequality, similarly to the proof of Lemma 4.2, is bounded by

CE
[
I

1/2
1 I

1/2
2

]
≤ 1

2
E[I1] +

C2

2
E[I2]
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where

I1 = sup
t∈[0,T ]

e−
1
q

∫ t∧τR
0 c′′G′′(u,f) ds̃‖Wq(4k,hu(t ∧ τR))η‖

2
q

L2(D) ,

I2 =
(∫ T∧τR

0

e−
∫ s
0
c′′G′′(u,f) ds̃

∥∥|4k,hu(s)|q−1η|4k,hH(·, s,Du)|
∥∥2

L2(D)
ds
) 1
q

.

Hence, we have proved that

1

2
E[I1] ≤ ‖Wq(4k,hu0)η‖

2
q

L2(D) + 1 + cE
[( ∫ T

0

‖fH(s)‖aLa(D) ds
) 1
q
]

+
C2

2
E[I2] .

Now, by the assumptions (2.2) on H, Young’s inequality and the bound on q (which in particular guar-
antees q2a/(a− 2) ≤ a), we have

C2

2
E[I2] ≤ CE

[( ∫ T∧τR

0

e−
∫ s
0
c′′G′′(u,f) ds̃

∥∥|4k,hu(s)|q−1D4k,hu(s)η
∥∥2

L2(D)
ds
) 1
q
]

+ C + CE
[( ∫ T

0

‖fH(s)‖aLa(D) ds
) 1
q
]

+
1

4
E[I1]

+ CE
[( ∫ T

0

e−
∫ s
0
c′′G′′(u,f) ds̃‖Wq(Du(s))‖2L2(D′) ds

) 1
q
]
.

We observe that the last term remains bounded, due to the assumption of the lemma on the average and
the choice of G′′(u, f) (which ensures that c′′G′′(u, f) ≥ 2qGp). Thus, by inequality (4.14) proved above,
we find

1

4
E[I1] ≤ c‖Wq(4k,hu0)η‖

2
q

L2(D) + c+ cE
[ ∫ T

0

‖fH(s)‖aLa(D) ds
] 1
q

with a new constant.
Step 3c. In Step 3a and Step 3b we have almost proved the two bounds claimed by the lemma since

the previous inequality along with (4.14) gives us

E
[

sup
t∈[0,T ]

e−
1
q

∫ t∧τR
0 c′′G′′(u,f) ds‖Wq(4k,hu(t ∧ τR))η‖

2
q

L2(D)

]
+ E

[( ∫ T∧τR

0

e−
∫ s
0
c′′G′′(u,f) ds̃

∥∥|4k,hu(s)|q−1D4k,hu(s)η
∥∥2

L2(D)
ds
) 1
q
]

≤ c
(
‖Wq(4k,hu0)η‖2L2(D) + c+ cE

[ ∫ T

0

‖fH(s)‖aLa(D) ds
]) 1

q

.

It now remains to justify (as already observed above) the limit τR → T as R→∞ with probability one.
Indeed, since R 7→ τR is non-decreasing and bounded above by T , there exists the a.s. limit

τ := lim
R→∞

τR

and τ(ω) ∈ [0, T ]. By Fatou’s lemma and monotone convergence,

E
[(

sup
t∈[0,τ ]

e−
∫ t
0
c′′G′′(u,f) ds‖Wq(4k,hu(t))η‖2L2(D)

+

∫ τ

0

e−
∫ s
0
c′′G′′(u,f) ds̃

∥∥|4k,hu(s)|q−1D4k,hu(s)η
∥∥2

L2(D)
ds
) 1
q
]

is finite, hence the argument of the expectation is finite with probability one. Since
∫ T

0
c′′G′′(u, f) ds is

finite with probability one, we get

sup
t∈[0,τ ]

‖Wq(4k,hu(t))η‖2L2(D) +

∫ τ

0

∥∥|4k,hu(s)|q−1D4k,hu(s)η
∥∥2

L2(D)
ds <∞
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with probability one. Thus (with the same inequalities used above)∫ τ

0

∥∥|4k,hu(s)|2q−1η2|4k,hH(·, s,Du)|
∥∥2

L1(D)
ds

≤ C
(

1 + sup
t∈[0,τ ]

‖Wq(4k,hu(t))η‖2L2(D) +

∫ τ

0

∥∥|4k,hu(s)|q−1D4k,hu(s)η
∥∥2

L2(D)
ds

+

∫ T

0

‖Wq(Du(s))‖2L2(D′) ds+

∫ T

0

‖fH(s)‖aLa(D) ds
)2

<∞

with probability one. If τ(ω) < T , by definition of τR we have∫ τ

0

∥∥|4k,hu(s)|2q−1η2|4k,hH(·, s,Du)|
∥∥2

L1(D)
ds =∞

which is false, hence P (τ = T ) = 1. Having this basic fact, the same estimates just proved give us the
result of the lemma, by taking into account the inequality |DW (4k,hu)| ≤ q|4k,hu|q−1|D4k,hu| and the
definition of Gq (and hence of Yq) given after (4.13).

5 Proof of the regularity result

Having the previous lemma at hand, we may now proceed to the main result of our paper.

Theorem 5.1. Let u ∈ V 2(DT ,RN ) be a weak solution to the initial boundary value problem to (2.3) with
initial values u( · , 0) = u0(·) ∈W 1,a−2(D,RN ). Assume further the assumptions (2.1) with ν > (n−2)/n
such that

L2
H < (L∗H)2(n) :=

2

κ(n− 1)

([
1−

(n− 2

n

)2] 1
2 −

[
1− ν2

] 1
2
)
.

Then there exists α > 0 depending only on n, ν and a such that for every subset Dc b D we have

P
(
‖u‖C0,α(Dc×[0,T ],RN ) <∞

)
= 1 .

Proof. For the proof of this result we want to apply Proposition 3.9. Therefore, the crucial point is to
show higher integrability of Du for “great” powers with probability one, in order that hypothesis (3.6)
of the proposition is satisfied. This will be established by an iterative improvement of the integrability
exponent. We start by defining a sequence (q̃j) via

q̃0 := 1 ,

q̃j+1 := min
{
q̃j
n+ 2

n
, 1 + q̃j

n+ 2

n

a− 4

a
,
a− 2

2
, q̃j + 1

}
for j ≥ 1 .

Before defining a further sequence (qj) in order to perform the iteration, we make some observations on
L∗H(s) as a function in s ∈ [n, 2/(1 − ν)] (we note that L∗H(2q) already appeared in hypothesis (4.11)
which gave an upper bound for q in the iteration). Clearly, L∗H(s) is continuous and strictly decreasing
in s, with L∗H(2/(1− ν)) = 0.

We now set qj = q̃j as long as q̃j > q̃j−1 and L∗H(2q̃j) > LH , and for the first index j which doesn’t
satisfy these assumptions any more we set qj = q∗ for a number q∗ > n/2 (which is determined below).
In what follows we shall denote this set of indices by J ⊂ N0. We first study some properties of the
sequence q̃ and give a definition of the final member q∗ of the sequence (qj)j∈J : the first and the forth
term in the rewritten formula for q̃ are strictly increasing in j and diverge for j → ∞, whereas the the
monotonicity properties of the second term depend on both the values of a and the size of qj . More
precisely, if a ≥ 2(n + 2), then the second term increases with j and diverges for j → ∞, but for
every a ∈ (n + 2, 2(n + 2)) it increases only up to qmax(a, n) = na/(4(n + 2) − 2a) > n/2. Observing
L∗H(n) > LH by assumption and L∗H(2/(1 − ν)) = 0, by continuity of L∗H(s) we hence can determine a
number s̃ ∈ (n, 2/(1− ν)] such that L∗H(s̃) = LH . We can thus define

q∗ := arbitrary number in
(n

2
,min

{ s̃
2
,
a− 2

2
, qmax

})
.
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It is easy to calculate that this number q∗ is reached after a finite number of steps (depending only on
n, ν, a and the difference qmax − q∗ (in the sense that the number of steps diverges as q∗ ↗ qmax), hence
|J | <∞, i.e. (qj)j∈J is a finite sequence.

We are now going to establish by induction that for every j ∈ J we have

(i) sup
|h|<dist(Dj ,∂Dj−1)

E
[∥∥Y qjqj Wqj (4k,hu)

∥∥2/qj

V 2(Dj×(0,T ))

]
≤ Cj for all k ∈ {1, . . . , n} ,

(ii) sup
|h|<dist(Dj ,∂Dj−1)

E
[∥∥Y qjqj Wqj (4k,hu)

∥∥2/qj

L2n+2
n (Dj×(0,T ))

]
≤ c(n,Dj)Cj for all k ∈ {1, . . . , n} ,

(iii) E
[∥∥Y qjqj Wqj (Du)

∥∥2/qj

L2n+2
n (Dj×(0,T ))

]
≤ C̃j ,

(iv) Du ∈ L∞(0, T ;L2qj (Dj ,RnN )) with probability one.

Here (Yqj )j∈J is a sequence of random variables given by Yqj (t, ω) = exp(−
∫ t

0
Gqj (s, ω) ds) for each

j ∈ J , for a sequence of functions (Gqj )j∈J which are in L1(0, T ) with probability one and which will
be determined later, and (Dj)j∈J is a monotone decreasing sequence of open sets satisfying Dc ⊂ Dj ⊂
Dj−1 ⊂ . . . ⊂ D0 ⊂ D−1 = D.

We start by setting

Y1 := e−
1
2

∫ t
0
c′G′(u,f) ds ,

where G′(u, f) was defined in (4.8). It is obvious from its definition that Y1 : [0, T ]× Ω→ (0, 1] satisfies
P (inft∈[0,T ] Y1 > 0) = 1. We then observe from Lemma 4.2 that

sup
|h|<d

E
[

sup
t∈(0,T )

‖Y14k,hu‖2L2(D0) +

∫ T

0

‖Y1D4k,hu‖2L2(D0) dt
]

≤ c′
(
‖Dku0‖2L2(D) + 1 + E

[
‖fH‖

2a
a−2

L
2a
a−2 (DT )

])
=: C0

is satisfied for every open set D0 compactly supported in D. By definition of the space V 2, this establishes
the statement (i)0. Furthermore, (ii)0 follows immediately from the Sobolev embedding (2.4), applied for
P -almost every ω to the functions Y14k,hu, for k ∈ {1, . . . , n}. To conclude the first step of the iteration
it only remains to justify the statements (iii)0 and (iv)0. To this end we take advantage of Theorem 3.6
twice, in the way as explained in Remark 3.7 (and actually as already performed in Corollary 4.4). First
we apply it with the choices p = q = 2q0(n + 2)/n to the inequality from (ii)0 (for all k ∈ {1, . . . , n}),
leading to the existence of Du in the Lebesgue space L2(n+2)/n(D0 × (0, T ),RnN ) with the required
estimate for the average of Y1Du; secondly, we apply it with the choice p = 2q0 and q =∞ to (i)0 – more
precisely to the first term in the V 2-norm – and, keeping in mind the pathwise strict positivity of Y1, we
end up with the existence of Du in L∞(0, T ;L2(D0,RnN )) with probability one.

We now proceed to the inductive step. Assume for a given j ∈ J that (i)`–(iv)` are valid on open sets
D` ⊂ D`−1 with random variables Yq` : [0, T ]× Ω→ (0, 1] of the required form for all ` ∈ {0, . . . , j − 1}.
Then, keeping in mind (iii)j−1 and the definition of the number q∗, we note that the assumptions of
Lemma 4.5 are satisfied (for p,D′ replaced by qj−1, Dj−1), and we hence deduce (with the admissible
choice q = qj) the estimate

sup
|h|<dj

E
[(

sup
t∈(0,T )

‖Y qjqj Wqj (4k,hu)‖2L2(Dj)
+

∫ T

0

‖Y qjqj DWqj (4k,hu)‖2L2(Dj)
dt
) 1
qj
]

≤ c
(
‖Wqj−1

(Dku(x, 0))‖2L2(D) + 1 + E
[
‖fH(s))‖aLa(DT )

]) 1
qj

=: Cj

for every k ∈ {1, . . . , n}, a domain Dj ⊂ Dj−1 satisfying dj := dist(Dj , ∂Dj−1) > 0 and a random variable
Yqj defined via Gqj given in Lemma 4.5 and satisfying in particular P (inft∈[0,T ] Yqj > 0) = 1. This shows
(i)j , and (ii)j in turn is an immediate consequence after the application of the Sobolev embedding as
above. Moreover, the statements (iii)j and (iv)j again follow from (ii)j and (i)j , respectively, after the
application of Theorem 3.6 with the choices p = q = 2qj(n+ 2)/n and p = 2qj , q =∞, respectively. This
finishes the proof of the induction.
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As an immediate consequence of the induction, we can now conclude the desired higher integrability
result to a great power, via the following observation. Via (iv) we find in the limit

Du ∈ L∞(0, T ;L2q∗(Dc,RnN ))

with probability one, and by definition the exponent 2q∗ is greater than the space dimension n. Hence, as-
sumption (3.6) of Proposition 3.9 is guaranteed. For its application we still need to check the integrability
condition on a(x, s), b(x, s) given by

a(x, s) := divA(x, s, u,Du) and b(x, s) := H(x, s,Du) .

Since A(x, t, u, z) is differentiable in x, u, and z with bounds (2.1), we obtain a ∈ L2(Dc×(0, T ),RN ) with
probability one as a direct consequence of Du ∈ V 2(Dc × (0, T ),RnN ) and f ∈ La(DT ) ⊂ L4(DT ). Fur-
thermore, the growth of H according to (2.2) with fH ∈ La(DT ×Ω) implies b ∈ L2+ε(0, T ;L2(Dc,Rn

′N )
with probability one. Thus, Proposition 3.9 yields the asserted Hölder continuity of u with probability
one and finishes the proof of the theorem.
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[22] E. Kalita, On the Hölder continuity of solutions of nonlinear parabolic systems, Commentat. Math. Univ. Carol. 35
(1994), no. 4, 675–680.

[23] A. Koshelev, Regularity of the solutions of quasilinear elliptic systems, Uspekhi Mat. Nauk 33 (1978), no. 4(202).

[24] A. Koshelev, Regularity of solutions for some quasilinear parabolic systems, Math. Nachr. 162 (1993), 59–88.

[25] A. Koshelev, Regularity problem for quasilinear elliptic and parabolic systems, Lecture Notes in Math., vol. 1614,
Springer, Berlin, 1995.

[26] N. V. Krylov and B. L. Rozovskii, Stochastic evolution equations, Current problems in mathematics, Vol. 14 (Russian),
Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1979, pp. 71–146, 256.

[27] M. Kurihara, On a Harnack inequality for nonlinear parabolic equations, Publ. Res. Inst. Math. Sci. Ser. A 3
(1967/1968), 211–241.

[28] G. Mingione, Regularity of minima: an invitation to the Dark Side of the Calculus of Variations, Appl. Math. 51
(2006), no. 4, 355–425.

[29] J. Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations,
Commun. Pure Appl. Math. 13 (1960), 457–468.

[30] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931–954.
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