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Abstract We present a partial Hölder regularity result for differential forms solving degen-
erate systems

d∗ A( · , ω) = 0 and dω = 0

on bounded domains in the weak sense. Here certain continuity, monotonicity, growth and
structure condition are imposed on the coefficients, including an asymptotic Uhlenbeck
behavior close to the origin. Pursuing an approach of Duzaar and Mingione (J Math Anal
Appl 352(1):301–335, 2009), we combine non-degenerate and degenerate harmonic-type
approximation lemmas for the proof of the partial regularity result, giving several exten-
sions and simplifications. In particular, we benefit from a direct proof of the approximation
lemma (Diening et al. 2010) that simplifies and unifies the proof in the power growth case.
Moreover, we give the dimension reduction for the set of singular points.

Mathematics Subject Classification (2000) 35J45 · 35J70

1 Introduction

In this paper we are interested in the regularity of weak solutions to possibly degenerate ellip-
tic problems. In the easiest case considered below we study weak solutions u ∈ W 1,p(�, R

N )

with � a bounded domain in R
n, n ≥ 2, N ≥ 1, to nonlinear systems of the form
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div A( · , Du) = 0 in �, (1.1)

where the coefficients are Hölder continuous with respect to the first variable, with some
exponent β ∈ (0, 1), and of class C1 (possibly apart from the origin) with respect to the
second variable with a standard p-growth condition. The main focus is set on the ellipticity
condition: we allow a monotonicity or ellipticity condition which shows a degenerate (when
p > 2) or singular (when p < 2) behavior in the origin and which is usually expressed by
the assumption

〈 A(x, z) − A(x, z̄), z − z̄ 〉 ≥ ν (μ2 + |z|2 + |z̄|2) p−2
2 |z − z̄|2

for all x ∈ � and all z, z̄ ∈ R
N , for some μ ≥ 0. The nondegenerate situation refers to the

case where μ > 0 (and by changing the value ν these cases can be reduced to the model case
μ = 1), whereas we here treat the degenerate case μ = 0, meaning that we are dealing with
a lack of ellipticity in the sense that no uniform bound on the ellipticity constant is available
for p �= 2. We highlight that the quadratic case does not impose any additional difficulties
and is already covered by the standard regularity theory.

Let us first recall some of the well known facts for nondegenerate systems. In the vectorial
case N > 1—in contrast to the scalar case N = 1—we cannot in general expect that a weak
solution to the nonlinear elliptic system (1.1) is a classical solution (see e.g. the counterex-
amples in [6,24]). Instead, only a partial regularity result holds true, in the sense that we find
an open subset �0 ⊂ � with Ln(� \ �0) = 0 such that Du is locally Hölder continuous
on �0 with optimal exponent β given by the exponent in the Hölder continuity assumption
on the x-dependency of the coefficients. These results were obtained by Morrey [37], using
an adaptation of an idea introduced by Almgren, by Giusti and Miranda [23] via the indirect
blow-up technique, and then by Giaquinta, Modica and Ivert [21,27] via the direct method.
Finally Duzaar and Grotowski [12] gave a new proof based on the method of A-harmonic
approximation introduced by Duzaar and Steffen [18]. For further references and in particular
for related results concerning variational problems we refer to Mingione’s survey article [36].

In the degenerate case μ = 0 no (partial) regularity result seems to be known for such
general systems. However, supposing some additional assumptions on the structure of the
system, Uraltseva [42] and Uhlenbeck [41] succeeded in showing full regularity results for
weak solution. In particular, for systems of what is called nowadays “Uhlenbeck” structure
(cp. Proposition 3.9) Moser-type techniques may be applied, and the classical regularity
results of De Giorgi, Nash and Moser can thus be extended to such systems. A prototype of
these systems is the p-Laplace system with A(z) = |z|p−2z. More precisely, she stated in
the superquadratic case (for systems without explicit dependency on the space variable) that
the gradient of the solution is globally Hölder continuous in the interior with an exponent
depending only on the space dimension n and the ellipticity ratio ν/L . We emphasize that
Uhlenbeck’s proof was carried out in the more general setting of R

N -valued closed �-differ-
ential forms ω ∈ L p(�,��

R
n) solving the weak formulation to

d∗ρ(|ω|)ω = 0 in �,

where ρ satisfies the assumptions on p. 781. Further results concerning the regularity theory
under such structure assumptions can for instance be found in [40,22,1,20,25,32,33,10].
We highlight that Hamburger [25] gave an extension of Uhlenbeck’s results in the setting of
differential forms on Riemannian manifolds with sufficiently smooth boundary. In particular,
he used an elegant duality argument to derive the subquadratic result from the superquadratic
one (see also [26]). Restricting ourselves to the special case of 1-forms it is clear that the
regularity result also covers weak solutions u ∈ W 1,p(�, R

N ). In what follows, we will
follow the same strategy and we will give the proof of our regularity result in the setting of

   



                                                                        

differential forms. Nevertheless, for convenience of the reader we describe in this introduc-
tion most of ideas behind the generalizations obtained in this paper only for classical Sobolev
functions, and we postpone the notation, difficulties and modifications needed in order to
deal with differential forms to Sect. 3.

Minimizers to variational integrals with possibly degenerately quasiconvex integrands
were already considered by Duzaar and Mingione [14]. They observed that the non-degener-
ate and the degenerate theory can be combined in the following way: as long as the gradient
variable keeps away from the origin, the system is also for μ = 0 not singular/degenerate,
and therefore a local partial regularity result holds true without an additional Uhlenbeck
structure assumption. In contrast, if the origin is approached, then by requiring this crucial
structure assumption one even expects local full regularity. In fact, this strategy of distin-
guishing the local type of ellipticity was applied successfully in [14] in case of an asymptotic
behavior like the p-Laplace system close to the origin, and as a final result minimizers were
proved to be locally of class C1,α for some α > 0 (specified in the neighborhood of points
where Du does not vanish) outside a set of Lebesgue measure zero. Since we will argue in a
similar way, we comment on some aspects of the regularity proof in more detail. In order to
obtain an estimate for the decay of a suitable excess quantity, we employ local comparison
principles based on harmonic-type approximation lemmas, see Lemmas 4.5 and 4.7 further
below. These are inspired by Simon’s proof of the regularity theorem of Allard and extend
the method of harmonic approximation (i. e. the approximation with functions solving the
Laplace equation) in a natural way to bounded elliptic operators with constant coefficients
or to even more general monotone operators. Here it is worth to remark that we give a direct
proof of this approximation result, motivated from [11]. In this version the approximating
harmonic function preserves the boundary values of the original function (which is only
approximately harmonic), and moreover, it is shown that the gradients of these two functions
are close in some suitable norm, rather than just the functions. As a consequence the proof
of the main partial regularity result is direct and gives a control of the regularity estimates in
terms of the structure constants. The important feature of the comparison system resulting
from this harmonic-type approximation is the availability of good a priori estimates for its
weak solutions (more precisely, solutions to linear systems with constant coefficients are
known to be smooth, and solutions to Uhlenbeck systems are known to admit at least Hölder
continuous gradients). In case of systems with degeneracy in the origin the above-mentioned
distinction of the two different situations is accomplished as follows: if the average of the gra-
dient is not too small compared to the excess quantity, then we deal with the non-degenerate
situation and the usual comparison with the solution to the linearized system is performed via
the A-harmonic approximation lemma (see Proposition 7.1). If in contrast the average of the
gradient is very small (again compared to the excess), then we are in the degenerate situation,
meaning that the solution is approximately solving an Uhlenbeck system. Therefore, it is
compared to the exact solution of this Uhlenbeck system (see Proposition 7.3). These two
decay estimates are then matched together in an iteration scheme as in [14], ending up with
the desired partial regularity result.

In this paper we have two primary goals. On the one hand, we give a generalization of the
existing results concerning possibly degenerate problems. We pursue an approach proposed
by Duzaar and Mingione [17] in order to extend the known results dealing with a possible
degeneracy at the origin like the p-Laplace system to more general ones that may behave
at the origin like any arbitrary system of Uhlenbeck structure; a similar generalization was
also suggested by Schmidt [39] who obtained the corresponding partial regularity result for
degenerate variational functionals under (p, q)-growth conditions. This first aim is essen-
tially achieved by the use of an extension of the p-harmonic approximation lemma from [15]

   



                       

(and similar to the one in [11]), namely the a-harmonic approximation Lemma 4.5. Moreover,
the context is the one of differential forms (but as already pointed out before the correspond-
ing result for weak solutions u ∈ W 1,p(�, R

N ) follows immediately by restricting ourselves
to 1-forms). The intention of this further generalization requires some variants of the Lemmas
which are usually applied in the regularity proofs. However, the arguments needed in case
of differential forms are available from the literature (e.g. a Poincaré-type inequality can be
obtained by means of the Hodge decomposition [30]).

On the other hand we present a unified and simplified proof of the partial regularity result
for the sub- and the superquadratic case. This is accomplished by the use of a slightly differ-
ent excess functional (which is up to a constant equivalent to the ones in [17] and which is
in a similar form already used in [39]) and some elementary observations. More precisely,
in order to derive an excess-decay estimate for elliptic problems of p-growth with p > 2,

the existing proofs usually make use of a minimizing polynomial in the following sense:
given a map u ∈ L2(Bρ, R

N ) let us denote by Pρ the unique affine function which mini-
mizes P 	→ ∫

Bρ
|u − P|2 dx among all affine functions P : R

n → R
N . With an explicit

formula for Pρ in terms of u at hand it is then possible to control differences of Pρ on balls
of different radii, which in turn is used (via its minimization property) to gain suitable decay
estimates also in case of powers different from 2. In contrast, we here avoid the use of this
minimizing affine function and we instead take advantage a technical lemma involving an
immediate quasi-minimizing property which is adjusted to our specific excess-functional and
which gives the right excess-decay estimate in only one step. Furthermore, the combination
of the degenerate and the non-degenerate decay estimates is performed in a simplified way.
Nevertheless, all the arguments are essentially known, but we believe that some of them have
not been used in the same way before.

Once the partial regularity result is achieved, it is natural to ask whether the Hausdorff
dimension of the singular set can still be improved. We first note that for degenerate Uh-
lenbeck systems the (interior) singular set is indeed empty—due to the special structure of
the coefficients. Turning our attention to the non-degenerate situation without any structure
assumptions, much less is known. Indeed, in the course of proving regularity of the gradi-
ent Du for classical solutions u ∈ W 1,p(�, R

N ), the set of regular points is characterized,
which in turn yields as a first and immediate consequence of a measure density result that
the singular set is of Lebesgue measure zero. An estimate of the Hausdorff dimension was
first investigated in the case of differentiable systems by Campanato in the 80’s. The proof
relied on the possibility of differentiating the system and obtaining existence of second-order
derivatives of the solution. The first one who built a bridge between Hölder continuity of the
coefficients and size of the singular set was Mingione [35,34]: he showed that the singular
set � \�0 is not only negligible with respect to the Lebesgue measure, but that its Hausdorff
dimension is actually not greater than n − 2β (with β the degree of Hölder continuity of
the coefficients). For related results on dimension reduction of the singular set in the context
of convex variational integrals we refer to [31]. By means of the machinery of fractional
Sobolev spaces and the differentiability of the system in a fractional sense developed in the
previous papers, this upper bound on the Hausdorff dimension of the singular set is shown
to be still valid for the solutions under consideration in this paper.

In conclusion, the main regularity result of our paper in the special case of classical weak
solution can be stated as follows:

Theorem 1.1 Let � ⊂ R
n be a bounded domain, p ∈ (1,∞), and consider a weak solution

u ∈ W 1,p(�, R
N ) to the system (1.1) under assumptions corresponding to (H1)–(H1) given

   



                                                                        

in Sect. 2. Then there exists an open subset �0 ⊂ � such that

u ∈ C1,σ
loc (�0, R

N ) and dimH (� \ �0) ≤ n − 2β,

where σ is an exponent depending only on n, N , p, L , ν and β.

As noted above, this result will be established in the general framework of differential
forms, see the corresponding results in Theorems 2.1 and 2.2. Lastly, we mention that the the-
ory provided in this paper could also serve to deal with other regularity issues for differential
forms, such as partial regularity (and dimension reduction for the singular set) in the con-
text of parabolic systems as in [16], or Calderón-Zygmund-type estimates with nonstandard
growth as in [2].

A possible application of our results might be a nonlinear weighted projection where the
weight is a Hölder continuous function of the point or a bundle map coming from a metric
tensor which is Hölder continuous. In addition, the partial regularity result might apply to
Yang-Mills connections with weighted Hölder continuous norms.

2 Structure conditions and main results

In what follows we shall denote by �� := (��(Rn))N the vector bundle of all exterior differ-
ential �-forms over an open subset in R

n taking values in R
N , suppressing in the notation the

space dimensions n, N . Furthermore, we shall use d and d∗ for the usual exterior derivative
and codifferential (see also Sect. 3 further below). We start with � a bounded domain in R

n

and we suppose that ω ∈ L p(�,��), with 1 < p < ∞, is a weak solution to the elliptic
system

d∗ A( · , ω) = 0 and dω = 0 in �, (2.1)

for a vector field A : � × �� → �� satisfying some structure conditions: the mapping
ω 	→ A(x, ω) is of class C0(��,��)∩C1(�� \ {0},��), and for fixed numbers 0 < ν ≤ L ,

all x, x̄ ∈ � and all ω, ω̄ ∈ �� the following assumptions concerning growth, ellipticity and
continuity hold true:

(H1) A is Lipschitz continuous with respect to ω with

|A(x, ω) − A(x, ω̄)| ≤ L (|ω|2 + |ω̄|2) p−2
2 |ω − ω̄| ,

(H2) Dω A is Hölder continuous with some exponent α ∈ (0, |p − 2|) such that

|Dω A(x, ω) − Dω A(x, ω̄)| ≤ L (|ω|2 + |ω̄|2) p−2−α
2 |ω − ω̄|α

holds for p > 2, whereas in the subquadratic case p ∈ (1, 2) there holds for all

ω, ω̄ �= 0

|Dω A(x, ω) − Dω A(x, ω̄)| ≤ L |ω|p−2|ω̄|p−2(|ω|2 + |ω̄|2) 2−p−α
2 |ω − ω̄|α,

(H3) A is degenerately monotone:

〈 A(x, ω) − A(x, ω̄), ω − ω̄ 〉 ≥ ν (|ω|2 + |ω̄|2) p−2
2 |ω − ω̄|2,

(H4) A is Hölder continuous with respect to the first variable with exponent β ∈ (0, 1):

|A(x, ω) − A(x̄, ω)| ≤ L |ω|p−1 |x − x̄ |β ,

(H5) A is of Uhlenbeck structure at 0, i. e. there exists a non-decreasing function

μ̃ : R
+ → R

+ such that for all ω̃ ∈ �� with |ω̃| ≤ μ̃(t) there holds

   



                       

|A(x, ω̃) − ρx (|ω̃|) ω̃| ≤ t |ω̃|p−1

uniformly for all x ∈ �, where ρx is a family of functions satisfying (G1)–(G3)

introduced on p. 781 further below.

We first note that—due to the growth condition (H1), the monotonicity in (H1) and the Uh-
lenbeck type behavior at 0 in (H1)—the coefficients A(x, ω) exhibit a polynomial growth
with respect to the variable ω, namely for all x ∈ �,ω ∈ �� there holds

ν |ω|p−1 ≤ |A(x, ω)| ≤ L |ω|p−1. (2.2)

Secondly, in view of the differentiability of ω 	→ A(x, z), we remark that (H1) and (H1)
imply a growth and (degenerate) ellipticity condition for Dω A(x, ω), more precisely, we
have

|Dω A(x, ω)| ≤ L |ω|p−2 , (2.3)

〈 Dω A(x, ω) ξ, ξ 〉 ≥ ν |ω|p−2 |ξ |2 (2.4)

for all ξ ∈ ��, every x ∈ �, and all ω ∈ �� \ {0} (for p > 2 these inequalities are also valid
for ω = 0).

Example A simple example or model case for the systems under consideration in this paper
are the following x-depending versions of the p-Laplace system:

A(x, ω) := β(x) |ω|p−2 ω

for all ω ∈ �� and with β(·) a continuous function in � taking values in [ν, L] with Hölder
exponent β. In order to verify that this system satisfies all assumptions (H1)–(H1) we first
observe that (H1) follows from Lemma 3.6 further below. The second condition is easy to
check for p > 2, whereas for 1 < p < 2 it is derived by distinguishing the cases where
|ω − ω̄|2 ≥ |ω||ω̄| holds or were the opposite inequality is satisfied. Next, (H1) is exactly
formula [15, (10)], and the last two conditions are trivially satisfied (noting that A(x, ·) as a
definition for the family ρx (·) is admissible).

For a form ω ∈ L p(Br (x0),�
�) we now introduce the excess

�(ω; x0, r, ω0) :=
∫
−

Br (x0)

|V|ω0|(ω − ω0)|2 for every ω0 ∈ �� ,

where Vμ(ξ) := (μ2 + |ξ |2)(p−2)/4ξ . In the sequel this excess shall frequently be used for
the choice ω0 = (ω)x0,ρ, where (ω)x0,r = –

∫
Br (x0)

ω is an abbreviation for the meanvalue of
ω on the ball Br (x0). As mentioned in [39] this excess is equivalent to

∫
−

Br (x0)

|V0(ω) − V0(ω0)|2 (2.5)

up to a constant depending only on n, N , p and �, and also to the one used in [14] (see
Remark 3.8 below). With this notation at hand we can now state our main regularity result
for weak solutions to (2.1) on a bounded domain in R

n :

Theorem 2.1 Let � ⊂ R
n be a bounded domain, p ∈ (1,∞) and consider a weak solution

ω ∈ L p(�,��) to the homogeneous system (2.1) under the assumptions (H1)–(H1). Then
there exists σ = σ(n, N , p, �, L , ν, β) and an open subset �0(ω) ⊂ � such that

ω ∈ C0,σ
loc (�0(ω),��) and |� \ �0(ω)| = 0

   



                                                                        

with the following characterization of the set of regular points:

�0(ω) :=
{

x0 ∈ � : : lim inf
r↘0

�(ω; x0, r, (ω)x0,r ) = 0 and lim sup
r↘0

∣
∣(ω)x0,r

∣
∣ < ∞

}

.

Moreover, if x0 ∈ �0(ω) and

lim sup
r↘0

∣
∣(ω)x0,r

∣
∣p

�(ω; x0, r, (ω)x0,r )
= ∞ , (2.6)

then ω is locally Hölder continuous with exponent min{β, 2β/p}. Furthermore, if ω(x0) �= 0,

then ω ∈ C0,β(Bs(x0),�
�) for some s > 0.

Remark More precisely, in regular points x0 ∈ �0(ω) where (2.6) is not satisfied, the local
Hölder continuity is determined by the exponent from the Hölder continuity of the coeffi-
cients with respect to the first variable and the asymptotic degenerate system in the origin in a
neighborhood of x0. In this case the exponent σ is given by min{γ, β} in the subquadratic case
and by min{2γ /p, 2β/p} in the superquadratic case. Here γ ∈ (0, 1) is the number from the
a priori estimate for weak solutions to systems of Uhlenbeck-type given in Proposition 3.9
below (we note that γ does not depend on the point x0 since the parameters n, N , �, p, L
and ν remain fixed for all functions ρx ).

As a second result we give the dimension reduction for the singular set, which states a
relation between the degree of regularity of the coefficients and the size of the Hausdorff
dimension of the singular set:

Theorem 2.2 Let � ⊂ R
n be a bounded domain, p ∈ (1,∞) and consider a weak solution

ω ∈ L p(�,��) to the system (2.1) under the assumptions (H1)–(H1). Then we have

dimH (� \ �0(ω)) ≤ n − 2β.

At the end of this paper we shall deal briefly with a related regularity questions: in Sect. 9
we study the inhomogeneous situation, sketching the modifications required in the proofs
in order to obtain the same results concerning partial regularity and dimension reduction as
above in the homogeneous situation.

3 Notation and preliminaries

We now explain some general terminology that shall be used in the whole paper, introduce
the general setting, give some technical results, and recall a by-now classical regularity result.

Exterior forms and pullback. We here recall some basic notations and technical details
associated with differential forms. For a more extensive discussion we refer to [30, Sect.
2–5]. Let E denote a real vector space of dimension n endowed with an inner product 〈 , 〉
and let {e1, . . . , en} be an orthonormal basis. We first note that the inner product on E induces
in a natural way an inner product on the dual space E ′ via

〈 ξ1, ζ1 〉 :=
n∑

k=1

ξ1(ek) ζ1(ek) ,

and then also on general �-forms for all � = 0, 1, . . . , n, according to the relation

〈 ξ, ζ 〉 := det〈 ξi , ζ j 〉 ,

   



                       

where ξ, ζ ∈ ��E with ξ = ξ1 ∧ . . . ∧ ξ�, ζ = ζ1 ∧ . . . ∧ ζ� and ξi , ζi ∈ E ′ for all
i ∈ {1, . . . , �}. We further denote the dual basis by {e1, . . . , en} (in the sense ei (e j ) = δi j )
and we refer to e = e1 ∧ . . . ∧ en as an orientation on E . We next introduce the Hodge star
operator

∗: ��E → �n−�E (for � = 0, 1, . . . , n)

which is uniquely determined by

∗1 = e and ξ ∧ ∗ζ = 〈 ξ, ζ 〉 e.

We observe that ∗ is an isometry and ∗∗ is the multiplication by (−1)�(n−�) on ��E . To define
the orthogonal and the normal part of a differential form ω ∈ ��E, let V be a subspace of
E and let us denote by π : E → V the orthogonal projection. Then the tangential part of ω

with respect to V is given by

ωT (X1, . . . , X�) := ω(π X1, . . . , π X�)

for all X1, . . . , X� ∈ E . Hence, we have ωT ∈ ��E with the property that

ωT (X1, . . . , X�) = ω(X1, . . . , X�)

whenever X1, . . . , X� ∈ V . Furthermore, the normal part of ω is defined as ωN := ω − ωT .
This definition of tangential and normal part is to be understood pointwise if applied to
sections on �̄.

Function spaces of differential forms. For what follows, � shall always be a bounded
domain in R

n, n ≥ 2. We denote by L p(�,��), p ∈ [1,∞], the Lebesgue space of all
measurable �-forms ω on � for which

‖ω‖L p(�,��) :=
{ (∫

�
|ω|p

)1/p if1 ≤ p < ∞,

ess sup� |ω| if p = ∞
is finite (with norm |ω| := 〈 ω,ω 〉1/2 inherited from the scalar product). We here consider
as measure the one induced by the volume form ∗1 and we will always omit the notation of
the measure under the integral sign. If p, q ∈ [1,∞] are Hölder conjugate exponents, then
the scalar product of ω ∈ L p(�,��) and ϕ ∈ Lq(�,��) is finite and given by

〈ω, ϕ 〉� :=
∫

�

〈 ω, ϕ 〉 :=
∫

�

ω ∧ ∗ϕ =
∫

�

ϕ ∧ ∗ω.

We will further employ the standard definitions for the Sobolev spaces W k,p(�,��) and
the Hölder space Ck,α(�,��), k ∈ N, α ∈ [0, 1], and we refer for more details on general
Sobolev spaces to the literature since we will mostly deal only with partly Sobolev classes
introduced below). If we restrict ourselves to functions with vanishing tangential or nor-
mal part, we will indicate this restriction by the notion W k,p

T (�,��) and W k,p
N (�,��),

respectively. At this stage, we mention that the Meyers and Serrin approximation by smooth
functions is also possible, in the sense that for 1 ≤ p < ∞ the space C∞(�̄,��) is dense
in W 1,p(�,��), C∞

0 (�̄,��) is dense in W 1,p
0 (�,��), and the same holds for the Sobolev

spaces with vanishing tangential and normal part; see [30, Corollary 3.2, 3.3, 3.4].
We now recall the notion of (weak) exterior derivatives. As usually, we denote by d the

exterior derivative

d : C∞(�,��) → C∞(�,��+1),

   



                                                                        

for which we have a product formula of the form

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)�ω1 ∧ dω2

(with � the degree of the form ω1), whereas the Hodge co-differential d∗, the formal adjoint
of d, is given by

d∗ = (−1)n�+1 ∗ d∗: C∞(�,��+1) → C∞(�,��)

for � = 1, . . . , n (we note that also the opposite sign in the definition of d∗ is found in
the literature). Taking into account the product formula given above, it is easy to see that
the following integration by parts formula—a duality relation between the two differential
operators—holds true for all ω ∈ C∞(�̄,��) and ϕ ∈ C∞(�̄,��+1):

∫

�

〈 ω, d∗ϕ 〉 −
∫

�

〈 dω, ϕ 〉 =
∫

∂�

ωT ∧ ∗ϕN .

Similar to the notion of weak derivative, we can introduce weak or generalized exterior (co-)
derivatives by requiring only the validity of the integration by parts formula for arbitrary test
functions with compact support. More precisely, we have the following

Definition ([30], Definition 3.1) A differential form ω ∈ L1(�,��) has a generalized
exterior derivative if there exists an integrable (� + 1)-form, denoted by dω, which satisfies

∫

�

〈 ω, d∗ϕ 〉 =
∫

�

〈 dω, ϕ 〉

for every test form ϕ ∈ C∞
0 (�,��+1). If this identity holds for every ϕ ∈ C∞(�,��+1),

then ωT = 0 and we say that ω has vanishing tangential part. The notion of generalized
exterior coderivative and vanishing normal part are defined analogously. Lastly, we denote
by

ker d : = {
ω ∈ L1(�,��) with dω = 0

}

ker d∗ : = {
ω ∈ L1(�,��) with d∗ω = 0

}

the set of closed and coclosed �-forms, respectively.

One feature of the system under consideration is that we demand only the partial differ-
entiation of the system with respect to d . So there are spaces of differential forms coming
naturally by differential equations where the differentiation occurs only via the operators d
or d∗, these are the so-called partly Sobolev classes of first order for which we require only
that both the form and its generalized exterior derivative or coderivative are L p integrable:

W d,p(�,��) : = {
ω ∈ L p(�,��) : dω ∈ L p(�,��+1)

}
,

W d∗,p(�,��) : = {
ω ∈ L p(�,��) : d∗ω ∈ L p(�,��−1)

}
,

and both spaces are Banach spaces when equipped with the norm ‖ω‖W d,p := ‖ω‖L p +
‖dω‖L p resp. ‖ω‖W d∗,p := ‖ω‖L p +‖d∗ω‖L p . It is worth mentioning that the Sobolev space
W 1,p(�,��) coincides with the intersection of the two partly Sobolev spaces W d,p(�,��)

and W d∗,p(�,��). Like before, we can also introduce the subspaces which are suitable to

consider boundary value problems, namely the spaces W d,p
T (�,��) and W d∗,p

N (�,��) of
differential forms with vanishing tangential resp. normal part on the boundary ∂�. Further-
more, an according result concerning the approximation by smooth functions analogous to

   



                       

above holds true for the partly Sobolev spaces W d,p
(T ) (�,��) and W d∗,p

(N ) (�,��) (whereas if

we consider �̄ the density holds only true if the tangential resp. normal part vanishes). An
important inequality that relates Sobolev spaces and partly Sobolev spaces is the following
extension of Gaffney’s inequality:

Theorem 3.1 ([30], Theorem 4.8) For every p ∈ (1,∞) there exists a constant c depending
only on p and � such that

‖ω‖W 1,p ≤ c
(‖ω‖L p + ‖dω‖L p + ‖d∗ω‖L p

)

holds true for all ω ∈ W 1,p
T (�,��) ∪ W 1,p

N (�,��).

Before stating (Sobolev-)Poincaré-type inequalities in the setting of differential forms,
we introduce the spaces of exact, coexact and harmonic (meaning both exact and coexact)
forms, integrable to the power p:

dW 1,p
(T ) (�,��−2) : = {

dω : ω ∈ W 1,p
(T ) (�,��−2)

}
,

d∗W 1,p
(N )(�,��) : = {

d∗ω : ω ∈ W 1,p
(N )(�,��)

}
,

H p
(N ,T )(�,��−1) : = {

h ∈ W 1,p
(N ,T )(�,��−1) : dh = 0 = d∗h

}
.

These spaces allow us to state a result on the decomposition of differential forms in L p into
exact, coexact and harmonic components, which is known as Hodge decomposition (for the
related theory on R

n see also [29]). In order to get a direct sum decomposition, we have
several choices to partially fix the boundary values of the components, see [30, Theorem
5.4]:

L p(�,��−1) = dW 1,p
T (�,��−2) ⊕ d∗W 1,p

N (�,��) ⊕ H p(�,��−1) ,

L p(�,��−1) = dW 1,p
T (�,��−2) ⊕ d∗W 1,p(�,��) ⊕ H p

T (�,��−1) ,

L p(�,��−1) = dW 1,p(�,��−2) ⊕ d∗W 1,p
N (�,��) ⊕ H p

N (�,��−1).

We wish to take advantage of the first one, and therefore, we shall also work with the orthog-
onal projections associated to this decomposition:

• Exact projection ET ( · ;�) : L p(�,��−1) → dW 1,p
T (�,��−2),

• Coexact projection E∗
N ( · ;�) : L p(�,��−1) → d∗W 1,p

N (�,��),

• Harmonic projection H( · ;�) : L p(�,��−1) → H p(�,��−1).

Hence, the identity operator Id : L p(�,��−1) → L p(�,��−1) may in particular be
rewritten as

Id = ET ( · ;�) + E∗
N ( · ;�) + H( · ;�). (3.1)

For 1-forms in the Sobolev space W d,p, a Poincaré-type inequality can be proved by sub-
tracting the meanvalue. For forms of higher order instead, such an inequality can be obtained
by replacing the mean values with a suitable, more complicated averaging operator applied to
the form under consideration (which by construction is also a closed form), see the Poincaré
and the Sobolev-Poincaré-inequalities [28, Corollary 4.1, 4.2]. A different approach based
on the Hodge decomposition was given in [30, Theorem 6.4], and the results read as follows:

   



                                                                        

Lemma 3.2 (Poincaré inequality) Let p ∈ (1,∞) and consider ω ∈ W d,p(Br ,�
�) (resp.

ω ∈ W d∗,p(Br ,�
�)). Then ω0 = ET (ω; Br ) + H(ω; Br ) (resp. ω0 = E∗

N (ω; Br ) +
H(ω; Br )) is a closed (coclosed) form, and ω−ω0 belongs to W 1,p(Br ,�

�) with the estimate

‖ω − ω0‖W 1,p(Br ,��) ≤ c(n, p) ‖dω‖L p(Br ,��)

(
c(n, p) ‖d∗ω‖L p(Br ,��)

)
.

Remark 3.3 There exists a formulation for differential forms ω ∈ W d,p(Br ,�
�) with vanish-

ing tangential part ωT , stating that if ωT = 0 then there exists a closed �-form ω0 satisfying
(ω0)T = 0 such that ω − ω0 ∈ W 1,p

T (Br ,�
�) with the corresponding estimate (see [30,

Theorem 6.4]).

Lemma 3.4 (Sobolev-Poincaré inequality) Let p ∈ (1, n) and consider ω ∈ W d,p(Br ,�
�)

(resp. ω ∈ W d∗,p(Br ,�
�)). Then there exists ω0 ∈ L p(Br ,�

�) ∩ ker d (resp. ω0 ∈
L p(Br ,�

�) ∩ ker d∗) such that ω − ω0 belongs to Lnp/(n−p)(Br ,�
�) with the estimate

‖ω − ω0‖Lnp/(n−p)(Br ,��) ≤ c(n, p) ‖dω‖L p(Br ,��)

(
c(n, p) ‖d∗ω‖L p(Br ,��)

)
.

Some technical lemmas. In what follows, the functions Vμ, V : �� → ��, � ∈
{0, 1, . . . , n}, will be useful. For ξ ∈ ��, μ ≥ 0 and p > 1 they are defined by

Vμ(ξ) = (
μ2 + |ξ |2)

p−2
4 ξ and V (ξ) = V0(ξ) = |ξ | p−2

2 ξ,

which are locally bi-Lipschitz bijections on ��. Some algebraic properties of the function
Vμ, V and a Young-type inequality are given in the following

Lemma 3.5 (cf. [14], Lemma 1; [5], Lemma 2.1) Let p ∈ (1,∞), μ ≥ 0, and consider
the function Vμ : R

k → R
k defined above. Then for all ξ, η ∈ R

k and t > 0 there hold:

(i) 2
p−2

4 min{μ p−2
2 |ξ |, |ξ | p

2 } ≤ |Vμ(ξ)| ≤ min{μ p−2
2 |ξ |, |ξ | p

2 } for p ∈ (1, 2),

max{μ p−2
2 |ξ |, |ξ | p

2 } ≤ |Vμ(ξ)| ≤ 2
p−2

4 max{μ p−2
2 |ξ |, |ξ | p

2 } for p ≥ 2,

(ii) |Vμ(tξ)| ≤ max{t, t
p
2 }|Vμ(ξ)|,

(iii) |Vμ(ξ + η)| ≤ c(p)
(|Vμ(ξ)| + |Vμ(η)|) ,

(iv) c−1(p)
(
μ2 + |η|2 + |ξ |2)

p−2
4 |η − ξ | ≤ |Vμ(η) − Vμ(ξ)|

≤ c(k, p)
(
μ2 + |η|2 + |ξ |2)

p−2
4 |η − ξ |,

(v) |Vμ(ξ) − Vμ(η)| ≤ c(k, p) |Vμ(ξ − η)| for p ∈ (1, 2),

|Vμ(ξ) − Vμ(η)| ≤ c(k, p, M) |Vμ(ξ − η)|, provided |ξ | ≤ Mμ, for p ≥ 2,

(vi) |Vμ(ξ − η)| ≤ c(p, M) |Vμ(ξ) − Vμ(η)|, provided |ξ | ≤ Mμ, for p ∈ (1, 2),

|Vμ(ξ − η)| ≤ c(p) |Vμ(ξ) − Vμ(η)| for p ≥ 2,

(vii) (μ2 + |η|2) p−2
2 |η| |ξ | ≤ ε |Vμ(η)|2 + max{ε−1, ε1−p} |Vμ(ξ)|2 for every ε ∈ (0, 1).

Lemma 3.6 (cf. [1], Lemma 2.1) Let ξ, η be vectors in R
k, μ ∈ [0, 1] and q > −1. Then

there exist constants c1, c2 ≥ 1, which depend only on q but which are independent of μ,

such that

c−1
1 (μ + |ξ | + |η|)q ≤

1∫

0

(μ + |ξ + tη|)q dt ≤ c2 (μ + |ξ | + |η|)q .

In [38, Lemma 6.2] it was proved that the mapping ξ 	→ ∫
�

|Vμ(ω − ξ)|2 is quasi-
minimized by the mean value of ω on �, i. e. this mapping is minimized by (ω)� up to

   



                       

a multiplicative constant which depends only on the parameter p. In the sequel, a slight
modification of this statement (adjusted to the excess used in this paper) involving different
indices of the Vμ-function will be useful:

Lemma 3.7 Let ω ∈ L p(B,��), p ∈ (1,∞), with B ⊂ R
n a ball. Then, for all χ ∈ �� we

have
∫

B

∣
∣V|(ω)B | (ω − (ω)B)

∣
∣2 ≤ c(p)

∫

B

∣
∣V|χ | (ω − χ)

∣
∣2

for a constant c depending only on p.

Proof We first note that the function Wμ(ξ) := (μ + |ξ |)(p−2)/2 ξ is equivalent to Vμ(ξ) up
to a constant depending only on p (and independent of μ ≥ 0). It is thus sufficient to prove
the statement with V replaced by W . Furthermore, the mapping μ 	→ Wμ(ξ) is differentiable
with derivative d/dμ Wμ(ξ) = (μ+|ξ |)(p−4)/2 ξ (p −2)/2 for every ξ �= 0. Therefore, due
to the technical Lemma 3.6 (applying Young’s inequality and keeping in mind the definition
of the Wμ-function in the superquadratic case) we observe

∣
∣W|(ω)B | (ω − (ω)B) − W|χ | (ω − (ω)B)

∣
∣

≤ c(p)

∫ 1

0
(|χ + t ((ω)B − χ)| + |ω − (ω)B |) p−4

2 dt |ω − (ω)B | |(ω)B − χ |

≤ c(p)

∫ 1

0
(|χ + t ((ω)B − χ)| + |ω − (ω)B |) p−2

2 dt |(ω)B − χ |

≤ c(p) (|χ | + |(ω)B − χ | + |ω − (ω)B |) p−2
2 |(ω)B − χ |

≤ c(p)
∣
∣W|χ | (ω − (ω)B)

∣
∣ + c(p)

∣
∣W|χ | ((ω)B − χ)

∣
∣

(note that the left-hand side vanishes trivially in points where ω = (ω)B ). Since |Wμ(ξ)|2 is
convex with respect to ξ, we then conclude the desired inequality via Jensen’s inequality
∫
−

B

∣
∣W|(ω)B | (ω − (ω)B)

∣
∣2

≤ 2
∫
−

B

(∣
∣W|χ | (ω − (ω)B)

∣
∣2 + ∣

∣W|(ω)B | (ω − (ω)B) − W|χ | (ω − (ω)B)
∣
∣2

)

≤ c(p)

∫
−

B

∣
∣W|χ | (ω − (ω)B)

∣
∣2 + c(p)

∣
∣W|χ | ((ω)B − χ)

∣
∣2

≤ c(p)

∫
−

B

∣
∣W|χ | (ω − χ)

∣
∣2 + c(p)

∣
∣
∣W|χ |

( ∫
−

B

(ω−χ)

)∣
∣
∣
2 ≤ c(p)

∫
−

B

∣
∣W|χ | (ω−χ)

∣
∣2

.

��
Remark 3.8 As emphasized above, the excess �(ω; x0, r, (ω)x0,r ) used throughout this paper
is equivalent to the one from [14]. For the superquadratic case their excess defined as

∫
−

Br (x0)

|(ω)x0,r |p−2|ω − (ω)x0,r |2 + |ω − (ω)x0,r |p

   



                                                                        

is obviously equivalent up to a constant depending only on p. With the previous two lemmas
at hand, the equivalence to

∫− Br (x0)
|V (ω)− (V (ω))x0,r |2 in the subquadratic case can be seen

as follows: Since Vμ is surjective, we find (ω)V
x0,r such that V ((ω)V

x0,r ) = (V (ω))x0,r , and
we then obtain

∫
−

Br (x0)

∣
∣V|(ω)x0,r |

(
ω − (ω)x0,r

) ∣
∣2 ≤ c(p)

∫
−

Br (x0)

(
|(ω)V

x0,r |2 + |ω|2
) p−2

2 |ω − (ω)V
x0,r |2

≤ c(p)

∫
−

Br (x0)

∣
∣V (ω) − (V (ω))x0,r

∣
∣2

≤ c(p)

∫
−

Br (x0)

∣
∣V (ω) − V ((ω)x0,r )

∣
∣2

≤ c(n, N , p, �)

∫
−

Br (x0)

(|(ω)x0,r |2+|ω|2)
p−2

2 |ω − (ω)x0,r |2

≤ c(n, N , p, �)

∫
−

Br (x0)

∣
∣V|(ω)x0,r |

(
ω − (ω)x0,r

) ∣
∣2

.

A regularity result for degenerate Uhlenbeck systems. We next state a comparison estimate
for special nonlinear degenerate systems which exhibit a particular structure that allows to
prove everywhere regularity of the solution. More precisely, we consider vector fields of the
form

a(ω̄) = ρ(|ω̄|) ω̄

for every ω̄ ∈ ��. For the function ρ : [0,∞) → [0,∞) we shall assume the following
continuity, ellipticity and growth conditions:

(G1) The function t 	→ ρ(t) is of class C0([0,∞]) ∩ C1((0,∞]),
(G2) There hold the inequalities

ν t p−2 ≤ ρ(t) ≤ L t p−2

and

ν t p−2 ≤ ρ(t) + ρ′(t) t ≤ L t p−2 ,

(G3) There exists a Hölder exponent βρ ∈ (0, min{1, |p − 2|}) such that

|ρ′(s) s − ρ′(t) t | ≤ L (|s|2 + |t |2) p−2−βρ
2 |s − t |βρ .

for all s, t ∈ (0,∞), and some p ≥ 2, 0 < ν ≤ L . The model case of a vector field satisfying
these conditions is the p-Laplace system, i. e. the vector field give by a(ω̄) = |ω̄|p−2ω̄ for
all ω̄ ∈ ��. For systems satisfying the above structure assumptions the following regularity
result can be retrieved from [41, Theorem 3.2], [33] and [25, Theorem 4.1]:

Proposition 3.9 Let p ∈ (1,∞). There exists a constant c ≥ 1 and an exponent γ ∈ (0, 1)

depending only on n, N , �, p, L and ν such that the following statement holds true: whenever
h ∈ L p(BR(x0),�

�) is a weak solution of the system

d∗ (ρ(|h|) h) = 0 and dh = 0 in BR(x0) ,

   



                       

where ρ(·) fullfills the assumptions (G1)–(G1), then for every 0 < r < R there hold

sup
BR/2(x0)

|h|p ≤ c
∫
−

BR(x0)

|h|p and �(h; x0, r, (h)x0,r ) ≤ c
( r

R

)2γ

�(h; x0, R, (h)x0,R).

4 Harmonic approximation lemmas

In this section we shall state two harmonic-type approximation lemmas which are adapted
to the degenerate and the non-degenerate situation and which will allow us to compare the
solution to the original system to the solution of an easier systems (for which good a priori
estimates are available). To this aim we first need a result on Lipschitz-truncation, which
from its original formulation can be restated as follows:

Proposition 4.1 (Lipschitz truncation, cf. [19], Prop. 4.1) Let B ⊂ R
n be a ball. There

exists a constant c depending only on n, N , � and B such that whenever χk ⇀ 0 weakly
in W 1,p

T (B,��), then for every λ > 0 there exists a sequence {χλ
k }k∈N of maps χλ

k ∈
W 1,∞

T (B,��) such that

‖χλ
k ‖W 1,∞ ≤ c λ.

Moreover, up to a set of Lebesgue measure zero we have

{z ∈ B : χλ
k (z) �= χk(z)} ⊂ {z ∈ B : M(Dχk)(z) > λ} ,

where M denotes the maximal operator restricted to B, i. e.

M(Dχk)(z) = sup
r>0,Br (z)⊂B

∫
−

Br (z)

|Dχk |.

Due to the direct approach for the proof of Lemma 4.5 we in fact need it only in a simpler
version, namely for single functions instead of weakly converging sequences. However, there
are much more involved Lipschitz truncation lemmas available in the literature, such as on
general domains, versions involving sequences of truncations and variable exponent in [9,
Theorem 2.5, Theorem 4.4]), or versions truncating at two different levels (one for the func-
tion itself, the second one as above for its gradient). In this paper we shall use a consequence
of the previous truncation Lemma 4.1 from [11] for a version concerning the existence of a
good truncation level in the setting of Sobolev-Orlicz spaces W 1,φ

T (B,��). The assumptions
on φ are the following:

Assumptions 4.2 Let φ : [0,∞) → [0,∞) be a convex function, hence in particular of
class C1 in (0,∞), such that φ(0) = 0, φ′(t) ↘ 0 as t ↘ 0 and φ′(t) ↗ +∞ as t → ∞.
Furthermore, denoting by φ∗(t) := sups≥0{st −φ(s)} its conjugate function, we require that
both φ and φ∗ verify the �2-condition, meaning that φ(2t) ≤ cφ(t) and φ∗(2t) ≤ cφ∗(t)
for all t ≥ 0 and universal constants c (the smallest such constant is usually denoted by
�2(φ) and �2(φ

∗), respectively).

Some useful properties for functions satisfying Assumptions 4.2 can be immediately
deduced. We first observe (φ∗)∗ = φ and φ(t) ≤ tφ(t) for all t ≥ 0. We further recall the
well known Young-type inequalities

t s ≤ δ φ(s) + c(δ,�2(φ
∗)) φ∗(t),

φ′(s) t ≤ δ φ(s) + c(δ,�2(φ)) φ(t)

   



                                                                        

for all δ, s, t ≥ 0. Under the previous assumption we then have:

Corollary 4.3 ([11]) Let φ be a function verifying Assumptions 4.2. For every ε > 0 there
exists c > 0 depending only on n, N , � and �2({φ, φ∗}) such that the following statement
holds: If B ⊂ R

n is a ball and χ ∈ W 1,φ
0 (B,��), then for every m0 ∈ N and γ > 0 there

exists λ ∈ [γ, 2m0γ ] such that the Lipschitz truncation χλ ∈ W 1,∞
T (B,��) of Theorem 4.1

satisfies

‖Dχλ‖∞ ≤ c λ ,
∫
−

B

φ
(|Dχλ|1{χλ �=χ}

)
dx ≤ c

∫
−

B

φ
(
λ1{χλ �=χ}

)
dx ≤ c

m0

∫
−

B

φ(|Dχ |) dx .

Using this tool and assuming an additional assumption on second order derivatives of
the form φ′(t) ∼ tφ′′(t), an extension of the p-harmonic approximation lemma to general
convex function in the framework of Sobolev-Orlicz spaces, the φ-harmonic approximation
lemma, was proved in [11]. For sake of completeness, we recall it here:

Lemma 4.4 (φ-harmonic approximation lemma, [11]) Let φ satisfy Assumptions 4.2. For
every ε > 0 and θ ∈ (0, 1) there exists δ > 0 which only depends on ε, θ, and the charac-
teristics of φ such that the following holds. If u ∈ W 1,φ(B, R

N ) is almost φ-harmonic on a
ball B ⊂ R

n in the sense that
∣
∣
∣

∫
−

B

φ′|Du|) Du

|Du| Dϕ dx
∣
∣
∣ ≤ δ

( ∫
−

B

φ(|Du|) dx + φ (‖Dϕ‖∞)
)

(4.1)

for all ϕ ∈ C∞
0 (B, R

N ), then the unique φ-harmonic map h ∈ W 1,φ(B, R
N ) with h = u on

∂ B satisfies

( ∫
−

B

|Vφ(Du) − Vφ(Dh)|2θ dx
) 1

θ ≤ ε

∫
−

B

φ(|Du|) dx .

where Vφ(Q) =
√

φ′(|Q|)
|Q| Q.

Note that this definition of almost φ-harmonic slightly differs from the original definition
of almost p-harmonic from [15]. As it is easily seen, it is weaker; so any almost p-harmonic
function in the sense of [15] is almost φ-harmonic for φ(t) = 1

p t p in the sense of (4.1).
The reason for choosing this version of almost harmonic is, that (4.1) has very good scaling
properties.

The φ-harmonic approximation Lemma improves the result of Duzaar and Mingione [15]
in three different directions. First, it is proved by a direct approach (and not via contradic-
tion), and therefore allows to keep good track of the dependencies of the constants involved
in the approximation. Second, the boundary values of the original function are preserved
(i. e. u = h on ∂ B). Third, h and u are close with respect to the gradients rather than just the
functions.

Restricting ourselves to the case of power growth in order to keep the setting as simple as
possible, we now derive by similar techniques a suitable version in the context of differential
forms which will apply not only to the p-Laplace system, but also to more general monotone
operators. In what follows we consider vector fields a : �×�� → �� which are measurable

   



                       

with respect to the first variable, continuous in the second, and which satisfy growth and
monotonicity conditions of the form

⎧
⎪⎪⎨

⎪⎪⎩

∣
∣a(x, ω)

∣
∣ ≤ L

(
μ2 + |ω|2)

p−1
2 ,

a(x, ω) · ω ≥ ν
(
μ2 + |ω|2)

p−2
2 |ω|2 ,

(a(x, ω) − a(x, ω̄)) · (ω − ω̄) ≥ ν
(
μ2 + |ω̄|2 + |ω|2)

p−2
2 |ω − ω̄|2

(4.2)

for all x ∈ �,ω, ω̄ ∈ ��, p > 1, μ ∈ [0, 1] and 0 < ν ≤ L . Furthermore, we assume that
a(·, ·) is uniformly continuous on bounded subsets, i. e. that

|a(x, ω) − a(x, ω̄)| ≤ K (|ω| + |ω̄|) ϑ(|ω − ω̄|) (4.3)

whenever x ∈ �,ω, ω̄ ∈ ��, where K : [0,∞) → [0,∞) is a locally bounded, nondecreas-
ing function and ϑ : [0,∞) → [0, 1] is a nondecreasing function with limt↘0 ϑ(t) = 0.
We note that these assumptions are in particular satisfied with μ = 0 for vector fields
a(ω) := ρ(|ω|) ω where ρ fullfills conditions (G1) and (G1) from the previous section.
Following the notation of [7], we define for a convex function φ ∈ C1((0,∞)) and μ ≥ 0
the shifted function φμ by

φμ(t) :=
t∫

0

φ′
μ(s) ds with φ′

μ(t) := φ′(μ + t)

μ + t
t

for t > 0. If φ satisfies the Assumptions 4.2, then also the shifted function satisfies the
Assumptions 4.2 uniformly for every μ ≥ 0, see also [7, Appendix]. In the case of pow-
ers φ(t) := t p, the excess function Vμ(t) introduced in Sect. 3 is equivalent to the shifted
function (φμ(t))1/2 (up to a constant depending only on p) and relates to the operator a(·, ·)
satisfying the assumption (4.2) above via the inequalities:

⎧
⎨

⎩

|a(x, ω)| ≤ c(p, L) φ′
μ(|ω|) ,

a(x, ω) · ω ≥ ν |Vμ(ω)|2 ≥ c−1(p) ν φμ(|ω|) ,

(a(x, ω) − a(x, ω̄)) · (ω − ω̄) ≥ c−1(p) ν |Vμ(ω) − Vμ(ω̄)|2.
(4.4)

We may now introduce the notion of an a-harmonic form: a form ω ∈ L p(�,��) ∩ ker d
is called a-harmonic in a domain � (with a slight abuse of notation because in case of 1-
forms the function and not its derivative is called a-harmonic) if a(·, ·) fulfills the growth
assumption (4.2)1 and if

∫

�

〈 a(x, ω), dϕ 〉 = 0 for every ϕ ∈ C∞
T (�,��−1).

Lemma 4.5 (a-harmonic approximation; cf. [17], Lemma 3.2) Let p ∈ (1,∞)andφ(t) =
t p for all t ≥ 0. For every ε > 0 and every θ ∈ (0, 1) there exists δ > 0 which depends only
on n, N , p, �, ν, L , θ and ε such that the following statement holds true: Let B ⊂ R

n be a
ball. Whenever a(·, ·) : B×�� → �� is a vector field satisfying (4.2) and (4.3) and whenever
χ ∈ W d,p(B,��−1) is a differential form such that dχ is approximately a-harmonic in the
sense that

∣
∣
∣

∫
−

B

〈 a(x, dχ), dϕ 〉
∣
∣
∣ ≤ δ

( ∫
−

B

φμ(|dχ |) + φμ(‖dϕ‖∞)
)

(4.5)

   



                                                                        

holds for all ϕ ∈ C1
T (B,��−1), then there exists a form h ∈ W d,p(B,��−1), (h)T = (χ)T

on ∂ B, such that dh is a-harmonic and such that it satisfies
∫
−
B

φμ(|dh|) ≤ c
∫
−
B

φμ(|dχ |) and
( ∫

−
B

|Vμ(dχ) − Vμ(dh)|2θ
) 1

θ ≤ ε

∫
−
B

φμ(|dχ |)

for a constant c depending only on p, ν and L.

Proof We proceed similarly to the proof of the φ-harmonic approximation lemma in [11]
and start by γ ≥ 0 via φμ(γ ) := ∫− B φμ(|dχ |) which is possible due to the fact that

φμ is a bijective on [0,∞). We next define h ∈ χ + W d,p
T (B,��−1) to the differential

form satisfying ET (h; B) = ET (χ; B), H(h; B) = H(χ; B), and solving the Dirichlet
problem

∫

B

〈 a(x, dh), dϕ 〉 = 0 for every ϕ ∈ C∞
T (B,��−1) ,

i. e. dh is in particular an a-harmonic form with the required boundary condition. We want
to comment briefly on the existence of the differential form h: we first note that the space
dW 1,p

T (B,��−1) is a Banach space, and its dual space can be identified with dW 1,q
T (B,��−1)

for 1/p + 1/q = 1 (see [30, Theorem 5.7]). We then observe from the assumptions (4.2)
and (4.3) on the coefficients that the (nonlinear) map

dχ ∈ dW 1,p
T (B,��−1) 	→ ET (a(x, dχ + dχ); B) ∈ dW 1,q

T (B,��−1)

satisfies the prerequisites of the Browder-Minty Theorem, see [4, Theorem 2]. In particular,
we find τ ∈ W 1,p

T (B,��−1) satisfying ET (τ ; B) = H(τ ; B) = 0 such that ET (a(x, dχ +
dτ)) = 0. Setting h := χ + τ, using the Hodge decomposition in (3.1) and integrating by
parts formula, we hence end up with

∫

B

〈 a(x, dh), dϕ 〉 =
∫

B

〈 ET (a(x, dh); B) , dϕ 〉 +
∫

B

〈 E∗
N (a(x, dh); B) , dϕ 〉

+
∫

B

〈 H (a(x, dh); B) , dϕ 〉

=
∫

B

〈 d∗E∗
N (a(x, dh); B) , ϕ 〉 +

∫

B

〈 d∗ H (a(x, dh); B) , ϕ 〉 = 0

for all ϕ ∈ C∞
T (B,��−1) (and thus for all ϕ ∈ W d,p

T (B,��−1) by approximation). Since

h − χ ∈ W d,p
T (B), we get

∫

B

〈 a(x, dh), dh 〉 =
∫

B

〈 a(x, dh), dχ 〉

Therefore, employing (4.4) we observe
∫

B

φμ(|dh|) ≤ c(p, ν, L)

∫

B

φ′
μ(|dh|)|dχ |.

   



                       

As a consequence, we observe that if dχ = 0 on B then dh = 0 follows and the statement
of the lemma is trivially satisfied. Thus, recalling the definition of γ, we may assume γ > 0.
We apply Young’s inequality on the right-hand side of the previous inequality and, after
absorbing one of the terms on the left-hand side, we get

∫

B

φμ(|dh|) ≤ c(p, ν, L)

∫

B

φμ(|dχ |) , (4.6)

where we have also used the fact �2(φ) = c(p). Therefore the convexity of φμ implies

∫
−

B

φμ(|dχ − dh|) ≤ c
∫
−

B

φμ(|dχ |) dx ≤ c(p, ν, L) φμ(γ ). (4.7)

Let m0 ∈ N (to be fixed later). Then, by the Lipschitz truncation from Corollary 4.3 applied
to the difference χ − h, we find λ ∈ [γ, 2m0γ ] such that the Lipschitz truncation (χ − h)λ

satisfies

‖d(χ − h)λ‖∞ ≤ c λ and
∫
−

B

φμ

(
λ1{(χ−h)λ �=χ−h}

) ≤ c φ(γ )

m0
(4.8)

with a constant c depending only on n, N and �. We next compute

∫
−

B

〈 a(x, dχ) − a(x, dh), d(χ − h)λ 〉 =
∫
−

B

〈 a(x, dχ), d(χ − h)λ 〉

and define

I : =
∫
−

B

〈 a(x, dχ) − a(x, dh), dχ − dh 〉1{(χ−h)λ=χ−h}

=
∫
−

B

〈 a(x, dχ) − a(x, dh), d(χ − h)λ 〉1{(χ−h)λ=χ−h}

=
∫
−

B

〈 a(x, dχ), d(χ − h)λ 〉

−
∫
−

B

〈 a(x, dχ) − a(x, dh), d(χ − h)λ 〉1{(χ−h)λ �=χ−h} =: I I + I I I.

Keeping in mind that φμ satisfies the �2-condition, assumption (4.5), λ ≤ 2m0γ, and (4.7)
yield

∣
∣I I

∣
∣ ≤ ∣

∣
∫
−

B

〈 a(x, dχ), d(χ − h)λ 〉∣∣ ≤ δ
( ∫

−
B

φμ(|dχ |) + c φμ(2m0γ )
)

≤ δ c(n, N , �) c(p, m0) φμ(γ ).

   



                                                                        

Due to the growth condition (4.4)1 and Young’s inequality we get for δ2 > 0

|I I I | ≤ c
∫
−

B

(
φ′

μ(|dχ |) + φ′
μ(|dh)|) λ1{(χ−h)λ �=χ−h}

≤ δ2

∫
−

B

(
φμ(|dχ |) + φμ(|dh|)) + cδ2

∫
−

B

φμ(λ)1{(χ−h)λ �=χ−h}

≤ c(n, N , �, p, ν, L)

(

δ2 + cδ2

m0

)

φμ(γ ).

We now apply Jensen’s inequality and combine the estimates for I I and I I I with the ellip-
ticity condition to find

( ∫
−

B

|Vμ(dχ) − Vμ(dh)|2θ χ{(χ−h)λ=χ−h}
) 1

θ ≤
∫
−

B

|Vμ(dχ) − Vμ(dh)|2 χ{(χ−h)λ=χ−h}

≤ c(p, ν) I = c(p, ν) (I I + I I I )

≤ c

(

δ c(p, m0) + δ2 + cδ2

m0

)

φμ(γ ),

(4.9)

for a constant c depending only on n, N , �, p, ν and L , and for every θ ∈ (0, 1). To finish
the proof it still remains to bound the integral of |Vμ(dχ) − Vμ(dh)|2θ on the remaining set
where (χ − h)λ �= χ − h. To this aim we define

I V :=
( ∫

−
B

|Vμ(dχ) − Vμ(dh)|2θ 1{(χ−h)λ �=χ−h}
) 1

θ
.

Then Hölder’s inequality, (4.6)–(4.8) and γ ≤ λ imply

I V ≤
( ∫

−
B

|Vμ(dh) − Vμ(dχ)|2
)( ∫

−
B

1{(χ−h)λ �=χ−h}
) 1−θ

θ

≤ c φμ(γ )

( |{(χ − h)λ �= χ − h}|
|B|

) 1−θ
θ

≤ c φμ(γ )

(
φμ(λ)

φμ(γ )

|{(χ − h)λ �= χ − h}|
|B|

) 1−θ
θ

≤ c(n, N , �, p, ν, L) φμ(γ ) m
θ−1
θ

0 .

A combination of (4.9) with the estimate for (I V ) gives

( ∫
−

B

|Vμ(dχ) − Vμ(dh)|2θ
) 1

θ ≤ c

(

m
θ−1
θ

0 + δ c(p, m0) + δ2 + cδ2
m0

)

φμ(γ )

for c still depending only on n, N , �, p, ν and L . Thus for every θ ∈ (0, 1) and every ε > 0,

we can find first small δ2 > 0 (depending on these quantities and on ε), second large m0 > 0
(depending additionally on the choice of θ ), and third small δ > 0 such that the right hand-
side of the previous inequality can be made less than εφμ(γ ), which by definition of γ proves
the claim and thus finishes the proof of the lemma. ��

   



                       

Remark 4.6 It is possible to derive from the previous lemma and a Sobolev-Poincaré inequal-
ity (see [11, Theorem 2.3]) other approximation properties of χ by h. For example for given
ε > 0 and θ ∈ (0, 1) we can choose δ > 0 such that additionally

∫
−

B

φμ

( |χ − h|
R

)

≤ ε

∫
−

B

φμ(|dχ |).

where R is the radius of the ball B. Hence, we also obtain the version in which the harmonic-
type approximation lemmas were originally formulated. To prove this version, the so-called
shift-change estimate in [8, Corollary 26] is employed, which allows to change from one
index of φ to another in the following way: for every β > 0 there exists cβ (depending only
on φμ and β) such that for all a, b ∈ R

k and t ≥ 0 there holds φμ+|a|(t) ≤ cβφμ+|b|(t) +
β|Vμ(a) − Vμ(b)|2. Since φμ+|a|(|a − b|) ∼ |Vμ(a) − Vμ(b)|2, and φμ(|a|) ∼ |Vμ(a)|2,
the choice b = 0 and t = |a − b| implies

φμ(|a − b|) ≤ cβ |Vμ(a) − Vμ(b)|2 + β c φμ(|a|).
Secondly, we state a suitable version of the A-harmonic approximation lemma for differ-

ential forms for both the super- and the subquadratic case. This version is proved by adjusting
the proof of [18, Lemma 3.3], [13, Lemma 6] and [38, Lemma 6.8], respectively, to differ-
ential forms, or in a similar way as in the proof of the a-harmonic approximation lemma
presented above.

Lemma 4.7 (A-harmonic approximation) Let ν ≤ L be positive constants, p ∈ (1,∞)

and � ∈ {0, . . . , n − 1}. Then for every ε > 0 there exists a positive number δ ∈ (0, 1]
depending only on n, N , �, ν/L and ε with the following property: whenever A is a bilinear
form on �� which is elliptic in the sense of Legendre-Hadamard with ellipticity constant
ν and upper bound L and whenever χ ∈ W d,p(Br ,�

�−1) is a differential form such that∫− Br
|V1(dχ)|2 ≤ ς2 ≤ 1 and such that dχ is approximately A-harmonic in the sense that

∣
∣
∣

∫
−
Br

A(dχ, dϕ)

∣
∣
∣ ≤ ς δ sup

Br

|dϕ| (4.10)

holds for all ϕ ∈ C1
T (Br ,�

�−1), then there exists a form h ∈ W d,p(Br ,�
�−1), (h)T = (χ)T

on ∂ Br , such that dh is A-harmonic and such that it satisfies

sup
Br/2

|dh| + r sup
Br/2

|Ddh| ≤ c and
∫
−

Br/2

∣
∣
∣V1

(
χ − ςh

r

) ∣
∣
∣
2 ≤ ς2 ε.

for a constant c depending only on n, N , p, �, ν and L.

5 A Caccioppoli inequality

The first step in proving a regularity theorem for solutions of elliptic systems is to establish a
suitable reverse-Poincaré or Caccioppoli-type inequality. In the situation under consideration
in this paper, this means that a certain integral of ω on a ball is essentially controlled in terms
of a differential form χ on a larger ball, and χ has the property that its exterior derivative dχ

coincides with ω. As emphasized in [14, Sect. 3], the crucial point is that we actually prove
a version for perturbations of ω in terms of Vμ, and the number μ depends only on the per-
turbation (when the perturbation converges to the identity this implies that μ approaches 0).

   



                                                                        

Hence, this version of the Caccioppoli inequality takes into account the possible degeneracy
of the monotonicity condition (H1) (and therefore also of the ellipticity condition).

Lemma 5.1 Let p ∈ (1,∞) and consider a weak solution ω ∈ L p(Br (x0),�
�), r < 1, to

the system (2.1) under the assumptions (H1), (H1) and (H1). Then, for every closed form
ξ ∈ L p(Br (x0),�

�−1) ∩ ker d and ζ ∈ �� there holds
∫
−

Br/2(x0)

∣
∣V|ζ |(ω − ζ )

∣
∣2 ≤ c

∫
−

Br (x0)

∣
∣
∣V|ζ |

(
χ − ξ − ζ · (x − x0)

r

) ∣
∣
∣
2 + c |ζ |p r2β

(5.1)

for a constant c depending only on p, L and ν and an arbitrary formχ ∈ W 1,p(Br (x0),�
�−1)

satisfying dχ = ω on Br (x0).

Proof Let ξ ∈ L p(Br (x0),�
�−1) ∩ ker d and ζ ∈ �� be fixed. Without loss of generality

we may assume x0 = 0. We choose an arbitrary differential form χ ∈ W 1,p(Br ,�
�−1)

satisfying dχ = ω on Br (x0) (which exists according to the Hodge decomposition, meaning
that dχ is the exact projection of ω) and we consider a cut-off function η ∈ C∞

0 (Br , [0, 1])
such that η ≡ 1 on Br/2 and |Dη| ≤ c/r . We may take ηp(χ − ξ − ζ · x) as a test function
in (2.1). Hence, since A(x0, ζ ) is constant, we obtain

∫
−

Br

〈 A(x, ω) − A(x, ζ ), ω − ζ 〉 ηp

= −p
∫
−

Br

〈 A(x, ω) − A(x, ζ ), dη ∧ (χ − ξ − ζ · x) 〉 ηp−1

−
∫
−

Br

〈 A(x, ζ )− A(x0, ζ ), d
(
ηp(χ−ξ−ζ · x)

) 〉. (5.2)

Applying (H1) and Lemma 3.5 (applied on the space (��(Rn))N instead of R
k, this means

that the constants will depend on n, N , � instead of k) , we find for the first integral on the
right-hand side of the last inequality

∣
∣
∣p

∫
−

Br

〈 A(x, ω) − A(x, ζ ), dη ∧ (χ − ξ − ζ · x) 〉 ηp−1
∣
∣
∣

≤ c(p, L)

∫
−

Br

(|ζ |2 + |ω|2)
p−2

2 |ω − ζ | r−1 |χ − ξ − ζ · x |ηp−1

≤ c(p, L)

∫
−

Br

(|ζ |2 + |ω − ζ |2)
p−2

2 |ω − ζ | r−1|χ − ξ − ζ · x |ηp−1

≤ ε

∫
−

Br

∣
∣V|ζ |(ω − ζ )

∣
∣2

ηp + c(p, L)

∫
−

Br

ε1−p
∣
∣
∣V|ζ |

(
χ − ξ − ζ · x

r

) ∣
∣
∣
2

(5.3)

for every ε ∈ (0, 1). For the second integral on the right-hand side of (5.2) we infer similarly
from (H1) concerning the Hölder continuity of the coefficients A(·, ·) with respect to the
x-variable that

   



                       

∣
∣
∣

∫
−

Br

〈 A(x, ζ ) − A(x0, ζ ), d(ηp(χ − ξ − ζ · x)) 〉
∣
∣
∣

≤ c(p, L) rβ

∫
−

Br

|ζ |p−2 |ζ |
(

|ω − ζ | ηp +
∣
∣
∣
χ − ξ − ζ · x

r

∣
∣
∣ ηp−1

)

≤ ε

∫
−

Br

∣
∣V|ζ |(ω − ζ )

∣
∣2

ηp + c(p, L)

∫
−

Br

∣
∣
∣V|ζ |

(
χ − ξ − ζ · x

r

) ∣
∣
∣
2

+c(p, L) ε1−p |ζ |p r2β . (5.4)

Finally, we estimate the left-hand side of (5.2) using the monotonicity assumption (H1) and
we find

∫
−
Br

〈 A(x, ω) − A(x, ζ ), ω − ζ 〉 ηp ≥ ν

∫
−
Br

(|ζ |2 + |ω|2)
p−2

2 |ω − ζ |2 ηp

≥ c(p) ν

∫
−
Br

∣
∣V|ζ |(ω − ζ )

∣
∣2

ηp. (5.5)

Choosing ε = c(p)ν/4 we may then combine the estimates in (5.3), (5.4) and (5.5) together
with (5.2). Keeping in mind the properties of the cut-off function η, we thus arrive at the
desired inequality. ��

6 Approximate A- and a-harmonicity

Our next aim is to find a framework in which the A-harmonic and the a-harmonic approx-
imation lemma, respectively, can be applied. This means that we have to identify systems
for which the smallness conditions in the sense of (4.10) and (4.5) hold true (provided that
additional smallness assumptions are satisfied). This shall be accomplished in the non-degen-
erate case by linearization of the coefficients, whereas in the degenerate case assumption (H1)
allows to define a suitable Uhlenbeck-type system.

To start with the non-degenerate case we first recall the definition of the excess: for every
ball Br (x0) ⊂ R

n, a fixed function ω ∈ L p(Br (x0),�
�), p ∈ (1,∞), and every ω0 ∈ ��

the excess of ω is defined via

�(x0, r, ω0) := �(ω; x0, r, ω0) =
∫
−

Br (x0)

∣
∣V|ω0|(ω − ω0)

∣
∣2

.

Lemma 6.1 (Approximate A-harmonicity) Let p ∈ (1,∞). There exists a constant cA

depending only on p and L such that for every weak solution ω ∈ L p(Br (x0),�
�), r < 1,

to system (2.1) under the assumptions (H1) and (H1), and every ω0 ∈ �� such that |ω0| �=
0 �= �(x0, r, ω0) we have

∣
∣
∣

∫
−

Br (x0)

〈 Dω A(x0, ω0) |ω0|1−p (ω − ω0), dϕ 〉
∣
∣
∣

≤ cA

[(
�(r)

|ω0|p

) 1
2 + |p−2|

2p +
(

�(r)

|ω0|p

) 1
2 + α

2 + rβ
]

sup
Br (x0)

|dϕ|

   



                                                                        

for all ϕ ∈ C1
T (Br (x0),�

�−1). Here we have abbreviated �(x0, r, ω0) by �(r).

Proof In what follows, we assume without loss of generality x0 = 0 and that the test function
ϕ ∈ C1

T (Br ,�
�−1) satisfies supBr

|dϕ| ≤ 1. Since A(0, ω0) is constant, we first observe

∫
−
Br

〈∫ 1

0
Dω A(0, ω0 + t (ω − ω0)) dt (ω − ω0)dϕ

〉

=
∫
−
Br

〈 A(0, ω) − A(x, ω), dϕ 〉 ,

and we then obtain

∣
∣
∣

∫
−
Br

〈 Dω A(0, ω0) (ω − ω0), dϕ 〉
∣
∣
∣

≤
∣
∣
∣

∫
−
Br

〈
∫ 1

0
[Dω A(0, ω0) − Dω A(0, ω0 + t (ω − ω0))] dt (ω − ω0), dϕ 〉

∣
∣
∣

+
∣
∣
∣

∫
−
Br

〈 A(0, ω) − A(x, ω), dϕ 〉
∣
∣
∣ = I + I I. (6.1)

We are now going to estimate the two terms on the right-hand side distinguishing the super-
and the subquadratic case. We start with p ≥ 2 and apply assumption (H1) to term I . Since
(p−2−α)/2 > 0 by assumption, we may take advantage of the convexity of t 	→ t (p−2−α)/2,

and in view of Jensen’s inequality we then find

I ≤ c(p, L)

∫
−

Br

(|ω0|2 + |ω − ω0|2
) p−2−α

2 |ω − ω0|1+α

≤ c(p, L)

∫
−

Br

(|ω − ω0|p−1 + |ω0|p−2−α |ω − ω0|1+α
)

≤ c(p, L)
( ∫

−
Br

|ω − ω0|p
) p−1

p + c(p, L) |ω0| p−2
2 − pα

2

( ∫
−

Br

|ω0|p−2 |ω − ω0|2
) 1+α

2

≤ c(p, L)

(

�(r)
p−1

p + |ω0| p−2
2 − pα

2 �(r)
1+α

2

)

where in the last line we have also taken into account the definition of the excess �(r). For
the second term in (6.1) we infer from r < 1:

I I ≤ L
∫
−

Br

|ω|p−1 |x |β

≤ c(p, L)

∫
−

Br

|ω − ω0|p−1 + c(p, L) |ω0|p−1 rβ

≤ c(p, L)�(r)
p−1

p + c(p, L) |ω0|p−1 rβ .

   



                       

In the subquadratic case instead, the application of the assumption (H1) gives

I ≤ L
∫
−

Br

∫ 1

0
|ω0|p−2 |ω + t (ω − ω0)|p−2

× (|ω0|2 + |ω + t (ω − ω0)|2
) 2−p−α

2 dt |ω − ω0|1+α.

We here note that ω0 �= 0 by assumption. Hence, (H1) may be applied formally only for
all t ∈ [0, 1] such that ω + t (ω − ω0) �= 0. However it is not difficult to see that the latter
formula is justified in any case. We next distinguish the cases where |ω0| ≥ |ω − ω0| or
where the opposite inequality holds. Thus, using the technical Lemma 3.6, the growth of the
Vμ-function and Jensen’s inequality, we see

I ≤ c(L)

∫
−

Br

|ω0|−α

1∫

0

|ω + t (ω − ω0)|p−2 dt |ω − ω0|1+α

+L |Br |−1
∫

{x∈Br :|ω0|<|ω−ω0|}
|ω0|p−2

1∫

0

|ω + t (ω − ω0)|−α dt |ω − ω0|1+α

≤ c(p, L)

∫
−

Br

|ω0|−α
(|ω0|2 + |ω − ω0|2

) p−2
2 |ω − ω0|1+α

+c(p, L) |Br |−1
∫

{x∈Br :|ω0|<|ω−ω0|}
|ω0|p−2 (|ω0| + |ω − ω0|)−α |ω − ω0|1+α

≤ c(p, L)

∫
−

Br

|ω0|
p−2

2 − pα
2

∣
∣V|ω0|(ω − ω0)

∣
∣1+α

+c(p, L) |Br |−1
∫
−

{x∈Br :|ω0|<|ω−ω0|}
|ω0|p−2

∣
∣V|ω0|(ω − ω0)

∣
∣

2
p

≤ c(p, L)
(
|ω0|

p−2
2 − pα

2 �(r)
1+α

2 + |ω0|p−2 �(r)
1
p

)
.

For the second integral we proceed similar to the superquadratic case and again distinguish
the cases to finally obtain

I I ≤ c(p, L) |Br |−1
∫

{x∈Br :|ω0|<|ω−ω0|}
|ω − ω0|p−1 + c(p, L) |ω0|p−1 rβ

≤ c(p, L) |Br |−1
∫

{x∈Br :|ω0|<|ω−ω0|}
|ω0|p−2

∣
∣V|ω0|(ω − ω0)

∣
∣

2
p + c(p, L) |ω0|p−1 rβ

≤ c(p, L)
(
|ω0|p−2 �(r)

1
p + |ω0|p−1 rβ

)
.

   



                                                                        

Inserting the inequalities for the terms I and I I in the super- and subquadratic case in (6.1),
we hence end up with

∣
∣
∣

∫
−

Br

〈 Dω A(x0, ω0) (ω − ω0), dϕ 〉
∣
∣
∣

≤ c(p, L)

(

�(r)
1
2 + |p−2|

2p |ω0|
p−2

2 |ω0|−
|p−2|

2 + |ω0|
p−2

2 − pα
2 �(r)

1
2 + α

2 + |ω0|p−1 rβ

)

which, divided by |ω0|p−1 and after a rescaling argument in order to include general test
functions ϕ ∈ C1

T (Br ,�
�−1), immediately yields the desired result. ��

To treat the degenerate case where the system is close to a possibly degenerate system of
Uhlenbeck structure, we define analogously to [14] the excess via

�(x0, r) =
∫
−

Br (x0)

|ω|p.

Then, the structure assumption (H1) allows us to prove the following

Lemma 6.2 (Approximate a-harmonicity) Let p ∈ (1,∞). There exists a constant cH

depending only on L such that for every weak solution ω ∈ L p(Br (x0),�
�), r < 1, to

system (2.1) under the assumptions (H1), (H1) and (H1) and for every t > 0 we have
∣
∣
∣

∫
−

Br (x0)

〈 ρx0(|ω|) ω, dϕ 〉
∣
∣
∣ ≤ cH

[

t �(r)
p−1

p + rβ �(r)
p−1

p + �(r)

μ̃(t)

]

sup
Br (x0)

|dϕ|

for all ϕ ∈ C1
T (Br (x0),�

�−1). Here we have abbreviated �(x0, r) by �(r).

Proof We again assume without loss of generality x0 = 0 and that the test function ϕ ∈
C1

T (Br ,�
�−1) satisfies supBr

|dϕ| ≤ 1. We fix t > 0. Since ω is a weak solution to (2.1) we
first observe

∣
∣
∣

∫
−
Br

〈 ρ0(|ω|) ω, dϕ 〉
∣
∣
∣ =

∣
∣
∣

∫
−
Br

〈 A(x, ω) − ρ0(|ω|) ω, dϕ 〉
∣
∣
∣

≤
∫
−
Br

∣
∣A(x, ω) − A(0, ω)

∣
∣ +

∣
∣
∣

∫
−
Br

〈 A(0, ω) − ρ0(|ω|) ω, dϕ 〉
∣
∣
∣.

(6.2)

Using assumption (H1) on the Hölder continuity of the coefficients A(·, ·) with respect to
the x-variable and Jensen’s inequality, we easily find

∫
−

Br

∣
∣A(x, ω) − A(0, ω)

∣
∣ ≤ L rβ �(r)

p−1
p . (6.3)

To estimate the second integral on the right-hand side of the previous inequality we now
distinguish the cases where |ω| ≤ μ̃(t) and where |ω| > μ̃(t). In the first case, we may
apply (H1) and see

|Br |−1
∣
∣
∣

∫

Br ∩{|ω|≤μ̃(t)}
〈 A(0, ω) − ρ0(|ω|) ω, dϕ 〉

∣
∣
∣ ≤ t

∫
−

Br

|ω|p−1 ≤ t
( ∫

−
Br

|ω|p
) p−1

p
.

   



                       

In order to give an estimate for the integral on the remaining set {|ω| > μ̃(t)} we first recall
the weak L p-type estimate stating

∣
∣Br ∩ {|ω| > μ̃(t)}∣∣ ≤ μ̃(t)−p

∫

Br

|ω|p.

Thus, we infer from the upper bound (2.2) on the growth of A(x, ω) and Hölder’s inequality
that there holds

|Br |−1
∣
∣
∣

∫

Br ∩{|ω|>μ̃(t)}
〈 A(0, ω) − ρ0(|ω|) ω, dϕ 〉

∣
∣
∣

≤ 2L |Br |−1
∫

Br ∩{|ω|>μ̃(t)}
|ω|p−1

≤ 2L |Br |−1
∣
∣Br ∩ {|ω| > μ̃(t)}∣∣ 1

p
( ∫

Br

|ω|p
) p−1

p ≤ 2L

μ̃(t)

∫
−

Br

|ω|p.

Merging the previous estimates together, we finally arrive at the inequality
∣
∣
∣

∫
−

Br

〈 A(0, ω) − ρ0(|ω|) ω, dϕ 〉
∣
∣
∣ ≤ t (�(r))

p−1
p + 2L

μ̃(t)
�(r) ,

where we have used the definition of �(r). In combination with (6.3) the assertion of the
lemma follows (after rescaling) immediately from (6.2). ��

7 Excess decay estimates

In this section we take advantage of the results of the previous sections and deduce decay
estimates for the excess of the solution on different balls in terms of the ratio of the radii. To
this aim, the crucial ingredients in the non-degenerate and the degenerate situation—iden-
tified by a criterion involving the ratio of the excess to a suitable power of the meanvalue
(which of course changes with the radius)—are the a priori estimates available for solutions
to linear systems and to Uhlenbeck systems, respectively. In a second step these excess decay
estimates have to be iterated. Once the non-degeneracy criterion is satisfied, the iteration pro-
ceeds in a standard way, but the criterion for degeneracy might fail as the radius decreases,
i. e. at a certain radius the situation might become non-degenerate (and as we will see then
remains non-degenerate for all smaller ones), and therefore, the two iterations finally have
to be combined in a suitable iteration schemes.

Proposition 7.1 Let p ∈ (1,∞). For every β ′ ∈ (0, 1) there exist constants θ =
θ(n, N , �, p, ν, L , β ′) ∈ (0, 1/4], ε0 = ε0(n, N , �, p, ν, L , α, β ′) ∈ (0, 1/2) and r0 =
r0(n, N , �, p, ν, L , α, β, β ′) ∈ (0, 1) such that the following is true: for every weak solu-
tion ω ∈ L p(Br (x0),�

�), r ≤ r0, to system (2.1) under the assumptions (H1)–(H1) which
satisfies the smallness condition

�(x0, r, (ω)x0,r ) < ε0 |(ω)x0,r |p , (7.1)

we have the following growth condition:

�(x0, θr, (ω)x0,θr ) ≤ 1
2 θ2β ′

�(x0, r, (ω)x0,r ) + c0 |(ω)x0,r |p (θr)2β , (7.2)

   



                                                                        

and the constant c0 depends on n, N , �, p, ν, L and β ′.

Proof Without loss of generality we take x0 = 0, and we shall further use the abbreviation
�(r) = �(0, r, (ω)0,r ). Moreover, we assume �(r) > 0, otherwise �(θr) = 0 and the
assertion in (7.2) is trivially satisfied. Now let ε > 0 (to be determined later) and choose
δ ∈ (0, 1] according to the A-harmonic approximation Lemma 4.7. From (7.1) follows
|(ω)0,r | > 0. Hence, denoting by χ ∈ W 1,p(Br ,�

�−1) ∩ d∗W 1,p(Br ,�
�) the differential

form which arises from the Hodge decomposition and satisfies dχ = ω, we define χ̃ via

χ̃ = χ − (ω)0,r · x

|(ω)0,r | on Br .

Then, by definition of χ̃ and �(r) there holds

∫
−

Br

|V1(dχ̃)|2 = |ω0,r |−p �(r) ≤ 1.

The approximate A-harmonicity result from Lemma 6.1 further ensures

∣
∣
∣

∫
−

Br

〈
Dω A(x0, (ω)0,r )

|(ω)0,r |p−2 , dχ̃

〉

dϕ

∣
∣
∣

≤ cA

(
�(r)

|(ω)0,r |p
+ 2 δ−2 c2

A r2β

) 1
2

( (
�(r)

|(ω)0,r |p

) |p−2|
p +

(
�(r)

|(ω)0,r |p

)α

+ δ2

2c2
A

) 1
2

× sup
Br

|dϕ|

= : cAς

( (
�(r)

|(ω)0,r |p

) |p−2|
p +

(
�(r)

|(ω)0,r |p

)α

+ δ2

2c2
A

) 1
2

sup
Br

|dϕ|

for all functions ϕ ∈ C1
T (Br ,�

�−1) with the obvious abbreviation for ς . Now we assume

(
�(r)

|(ω)0,r |p

) |p−2|
p +

(
�(r)

|(ω)0,r |p

)α

<
δ2

2c2
A

. (SC.1)

Then, provided that r is chosen sufficiently small (in dependency of the parameters cA and
δ) and that consequently ς is bounded from above by 1, we find that dχ̃ is approximately
A-harmonic with respect to A = |(ω)0,r |2−p Dω A(x0, (ω)0,r ), and A is elliptic with ellip-
ticity constant ν and upper bound L, (see (2.4) and (2.3)). Hence, we infer the existence of a
differential form h ∈ W d,2(Br ,�

�) such that dh is A-harmonic and such that the estimates

sup
Br/2

|dh| + r sup
Br/2

|Ddh| ≤ c(n, N , p, �, ν, L) and
∫
−

Br/2

∣
∣
∣V1

(
χ̃ − ςh

r

) ∣
∣
∣
2 ≤ ς2 ε

(7.3)

   



                       

are satisfied. From the first inequality we obtain by Taylor expansion

sup
x∈B2θr

|dh(x) − (dh)0,2θr | ≤ (2θr) sup
Br/2

|Ddh| ≤ c θ

for c depending only on n, N , p, �, ν and L as above. Hence, for θ ∈ (0, 1/4] (to be chosen
later) we now use Lemma 3.5 on the properties of Vμ, Poincaré’s inequality (for its applica-
tion we denote by h0 = ET (h − (dh)0,2θr · x; B2θr )+ H(h − (dh)0,2θr · x; B2θr ) the closed
form introduced in Lemmas 3.2) and (7.3). In this way we find

∫
−

B2θr

∣
∣
∣V1

(
χ̃ − ςh0 − ς(dh)0,2θr · x

2θr

) ∣
∣
∣
2

≤ c(p)

∫
−

B2θr

∣
∣
∣V1

(
χ̃ − ςh

2θr

) ∣
∣
∣
2 + c(p)

∫
−

B2θr

∣
∣
∣V1

(
ς(h − h0 − (dh)0,2θr · x)

2θr

) ∣
∣
∣
2

≤ c(p) θ−n−max{2,p}
∫
−

Br/2

∣
∣
∣V1

(
χ̃ − ςh

r

) ∣
∣
∣
2

+c(n, N , p)

∫
−

B2θr

(
|ς(dh − (dh)0,2θr )|2 + |ς(dh − (dh)0,2θr )|max{2,p})

≤ c(p) θ−n−max{2,p} ς2 ε + c(n, N , p, �, ν, L) ς2 θ2

≤ c(n, N , p, �, ν, L) ς2
(
θ−n−max{2,p} ε + θ2

)
.

Setting ε = θn+2+max{2,p} and recalling the definitions of χ̃ and ς we hence find the prelim-
inary decay estimate

∫
−

B2θr

∣
∣
∣V|(ω)0,r |

(
χ − (ω)0,r · x − |(ω)0,r |ς (h0 + (dh)2θr · x)

2θr

) ∣
∣
∣
2

≤ c θ2 (
�(ρ) + δ−2 |(ω)0,r |p r2β

)
, (7.4)

and the constant c depends only on n, N , �, p, ν and L . In order to apply the Caccioppoli
inequality from Lemma 5.1 we now have to pass from Vμ(·) in the previous inequality with
index μ1 = |(ω)0,r | to a corresponding one with index μ2 = |(ω)0,r + |(ω)0,r |ς(dh)2θr |.
This can be done if the indices are equivalent up to a constant. Therefore, since |dh| is
bounded in B2θr by a constant depending only on n, N , �, p, ν and L , we now require an
additional smallness condition on ς which guarantees the comparability of μ1 and μ2 in the
sense that μ1/2 ≤ μ2 ≤ 3μ1/2. To this end we assume

c2 �(r)
|(ω)0,r |p ≤ min

{ 1
8 , θn

}
, (SC.2)

c2 δ−2 c2
A r2β ≤ 1

16 (SC.3)

where c (without loss of generality we assume c ≥ 4) is the constant appearing in (7.3)
(the reason for requiring the smallness assumption with respect to θ−n will become clear
in the iteration immediately after this lemma). We now apply Lemma 3.7, the Caccioppoli
inequality and the decay estimate (7.4) to find

   



                                                                        

�(θr) =
∫

Bθr

∣
∣V|(ω)0,θr |

(
ω − (ω)0,θr

) ∣
∣2

≤ c(p)

∫

Bθr

∣
∣V|(ω)0,r +|(ω)0,r |ς(dh)2θr |

(
ω − (ω)0,r − |(ω)0,r |ς(dh)2θr

) ∣
∣2

≤ c(p, L , ν)

∫
−

B2θr

∣
∣
∣Vμ2

(
χ − (ω)0,r · x − |(ω)0,r |ς (h0 + (dh)2θr · x)

2θr

) ∣
∣
∣
2

+ c(p, L , ν) μ
p
2 (θr)2β

≤ c(p, L , ν)

∫
−

B2θr

∣
∣
∣Vμ1

(
χ − (ω)0,r · x − |(ω)0,r |ς (h0 + (dh)2θr · x)

2θr

) ∣
∣
∣
2

+ c(p, L , ν) μ
p
1 (θr)2β

≤ c θ2 (
�(r) + δ−2 |(ω)0,r |p r2β

) + c |(ω)0,r |p (θr)2β =: c1 θ2 �(r)

+ c0 |(ω)0,r |p (θr)2β ,

and the constants c1 depends only on n, N , �, p, ν and L , and c0 depends additionally on
θ . Given β ′ ∈ (0, 1) we now choose θ ∈ (0, 1) sufficiently small such that 2c1θ

2 ≤ θ2β ′
.

For later purposes we also assume that 2max{2,p}θ2β ′
< 1 is fullfilled. Note that this fixes

θ in dependency of n, N , �, p, ν, L and β ′ which in turn determines ε = θn+2+max{2,p}
and δ in dependency of the same quantities. Then we infer from the latter inequality the
desired excess decay estimate stated in the proposition, provided that the smallness con-
ditions (SC.1), (SC.2) and (SC.3) hold true. Taking into consideration the dependencies
in (SC.1), (SC.2) on �(r)/|(ω)0,r |p, we observe that they are satisfied if �(r) ≤ ε0|(ω)0,r |p

is required for a number ε0 chosen sufficiently small in dependency of n, N , �, p, ν, L , α

and β ′. For the iteration we will need an additional smallness condition 3p+3c0 r2β ′ ≤ ε0,

thus, in view of the dependencies in the smallness condition (SC.3) on the radius, it suffices
to choose r < r0 for a number r0 > 0 depending only on n, N , �, p, ν, L , α, β and β ′, and
the proof of the proposition is complete. ��
Lemma 7.2 Let p ∈ (1,∞), β ′ ∈ (0, β] and m ≥ 1. Then, with the numbers ε0 and r0

defined above, the following is true: for every weak solution ω ∈ L p(BR(x0),�
�), R ≤ r0,

to system (2.1) under the assumptions (H1)–(H1) which satisfies the smallness conditions

�(x0, R, (ω)x0,R) < ε0 |(ω)x0,R |p and |(ω)x0,R | < 2m , (7.5)

we have |(ω)x0,r | < 6m and

�(x0, r, (ω)x0,r ) ≤ ci t

(( r

R

)2β ′
�(x0, R, (ω)x0,R) + r2β ′

)

(7.6)

for all r ≤ R, and the constant ci t depends only on n, N , �, p, ν, L , β ′ and m.

Proof The assertion follows by a more or less standard iteration procedure. However, for
the convenience of the reader we give the main steps and refer to by now classical regularity
papers for the details. In the first step one proves that the smallness condition (7.5) implies
for every k ∈ N0:

(i) �(x0, θ
k R, (ω)x0,θk R) ≤ 2−k θ2β ′k �(x0, R, (ω)x0,R)+3p+2 c0 (θk R)2β ′ |(ω)x0,R |p,

(ii) �(x0, θ
k R, (ω)x0,θk R) < θ2β ′k ε0 |(ω)x0,R |p,

(iii) |(ω)x0,R | ≤ 2k |(ω)x0,θk R |,

   



                       

(iv) �(x0, θ
k R, (ω)x0,θk R) < ε0 |(ω)x0,θk R |p,

(v) |(ω)x0,θk R | ≤ 3 |(ω)x0,R |,
and θ, c0 are the constants appearing in the previous Proposition 7.1. These estimates

are established by induction and essentially rely on Proposition 7.1 (sometimes one has to
distinguish the sub- and superquadratic case and use Lemma 3.5).

In the second step we then derive a continuous version and consider r ∈ (0, R] arbitrary.
Then there exists a unique number k ∈ N0 such that r ∈ (θk+1 R, θk R], and exactly as above
in (v), we find

|(ω)x0,r | ≤ 3 |(ω)x0,R | < 6 m.

Moreover, in view of (i) and Lemma 3.7, we get

�(x0, r, (ω)x0,r ) ≤
(

θk R

r

)n ∫
−

B
θk R(x0)

∣
∣V|(ω)x0,r |

(
ω − (ω)x0,r

) ∣
∣2

≤ c(p) θ−n
∫
−

B
θk R(x0)

∣
∣V|(ω)x0,θk R |

(
ω − (ω)x0,θk R

) ∣
∣2

≤ c(p) θ−n
(

2−k θ2β ′k �(x0, R, (ω)x0,R) + 3p+2 c0 (θk R)2β ′ |(ω)x0,R |p
)

≤ ci t

(( r

R

)2β ′
�(x0, R, (ω)x0,R) + r2β ′

)

,

and due to the dependencies of θ we have ci t = ci t (n, N , �, p, ν, L , β ′, m). This completes
the proof of the excess decay estimate (7.6) and thus of the lemma. ��

As already mentioned before we derive an excess decay estimate for the degenerate situ-
ation where the mean value of ω on a ball BR(x0) is “small” with respect to the excess (in
some sense this assumption is equivalent to the system being degenerate). Duzaar and Mingi-
one [14] had considered a degeneracy as the p-Laplace system, and they then concluded that
approximate p-harmonicity allows to find an excess-decay estimate. We here argue similarly,
namely we show that if the system exhibits a degeneracy as a system of Uhlenbeck-structure,
then approximate a-harmonicity implies the desired excess-decay estimate. Nevertheless,
our proof is slightly different in order to succeed in showing that also in the superquadratic
situation one smallness condition on the mean value of ω (instead of an additional second
condition on a smaller ball) is sufficient to prove the decay estimate. In what follows, we
denote by γ ∈ (0, 1) the exponent from the excess decay estimate in Proposition 3.9 for weak
solutions of systems with Uhlenbeck structure (meaning that the weak solution has Hölder
exponent 2γ /p in the superquadratic case and Hölder exponent γ in the subquadratic case).

Proposition 7.3 Let p ∈ (1,∞). For every exponent γ ′ ∈ (0, min{γ, β}) and every number
κ > 0 there exist constants τ ∈ (0, 1/4] and r1 < 1 depending on n, N , �, p, ν, L , γ, γ ′, β
and κ, and a constant ε1 > 0 depending additionally on μ̃(·) such that the following is true:
Let ω ∈ L p(Br (x0),�

�), r ≤ r1, be a weak solution to system (2.1) under the assump-
tions (H1)–(H1). If

κ |(ω)x0,r |p ≤ �(x0, r, (ω)x0,r ) < ε1 (7.7)

is fullfilled, then we have

�(x0, τr, (ω)x0,τr ) ≤ τ 2γ ′
�(x0, r, (ω)x0,r ). (7.8)

   



                                                                        

Proof We proceed similarly as in the proof of [14, Lemma 12], with some modifications
mentioned in [17, Sect. 3.2]. Without loss of generality we take x0 = 0, and we use the
abbreviations �(r) = �(0, r, (ω)0,r ) and �(r) = �(0, r). From |(ω)0,r |p ≤ κ−1�(r) we
see for the superquadratic case p ≥ 2

�(r) ≤ 2p−1
∫
−

Br

|ω − (ω)0,r |p + 2p−1 |(ω)0,r |p ≤ 2p−1(1 + κ−1)�(r),

whereas in the subquadratic case p ∈ (1, 2) we distinguish the cases where |ω − (ω)0,r | ≥
|(ω)0,r | and where the opposite inequality holds true, and we obtain

�(r) ≤ 2p−1
∫
−

Br

|ω − (ω)0,r |p + 2p−1 |(ω)0,r |p

≤ 2p−1 2
2−p

2

∫
−

Br

∣
∣V|(ω)0,r |

(
ω − (ω)0,r

) ∣
∣2 + 2p |(ω)0,r |p ≤ 2p (1 + κ−1)�(r).

Hence, in any case we get

�(r) ≤ c� �(r) , (7.9)

where we have set c� = 2p(1 + κ−1). We again denote by χ ∈ W 1,p(Br ,�
�−1) a form

satisfying dχ = ω. In view of Lemma 6.2 on approximate a-harmonicity we have for every
t > 0 and every ϕ ∈ C1

T (Br ,�
�−1):

∣
∣
∣

∫
−

Br

〈 ρx0(|dχ |) dχ, dϕ 〉
∣
∣
∣ ≤ cH

[

t �(r)
p−1

p + rβ �(r)
p−1

p + �(r)

μ̃(t)

]

sup
Br

|dϕ|

Now let τ ∈ (0, 1/4] a parameter to be specified later and define ε = τ p+max{1,p/2}(n+2γ ).
Furthermore, let δ = δ(n, N , �, p, ν, L , ε) ∈ (0, 1] be the constant according to the a-har-
monic approximation with θ = n/(n + p): For all assumptions of Lemma 4.5 to be fullfilled
it still remains to verify assumption (4.5). For this purpose we fix t = t (L , δ) > 0 and a
radius r1 = r1(L , δ, β) > 0 such that cH t ≤ δ/3 and cH rβ

1 ≤ δ/3, which in turn fixes μ̃(t).
If we assume that the smallness condition

cH
(c��(r))1/p

μ̃(t)
≤ δ

3
(SC.4)

holds, then, after application of Young’s inequality, χ satisfies all assumption of Lemma 4.5,
provided that r ≤ r1. Consequently, there exists a differential form h ∈ W d,p(Br ,�

�−1),

(h)T = (ω)T on ∂ Br , such that dh is a-harmonic for a(ω̄) = ρ0(ω̄) ω̄ and which satisfies
∫
−

Br

|dh|p ≤ c
∫
−

Br

|dχ |p and
( ∫

−
Br

|dχ − dh| np
n+p

) n+p
n ≤ c(n, N , �, p) ε

∫
−

Br

|dχ |p

(7.10)

for a constant c depending only on p, ν and L . We here have used the fact that for all possible
choices of ρ satisfying the assumptions (G1)–(G1) the statement of Lemma 4.5 holds true
with μ = 0 (and hence Vμ(ω̄) = |ω̄|(p−2)/2ω̄) as well as a simple property of the V -func-
tion. We now use (7.10), the Sobolev-Poincaré and the Poincaré inequality (note that the first
one can by applied immediately by construction of h and for the second one we denote by

   



                       

h0 = ET (h − (dh)0,2τr · x; B2τr ) + H(h − (dh)0,2τr · x; B2τr ) the associated closed form
on B2τr ). Due to the a priori estimate in Proposition 3.9 and (7.9) we thus find

(2τr)−p
∫
−

B2τr

|χ − h0 − (dh)0,2τr · x |p

≤ 2p−1
[
(2τr)−p

∫
−

B2τr

|χ − h|p + (2τr)−p
∫
−

B2τr

|h − h0 − (dh)0,2τr · x |p
]

≤ c
[
τ−n−p

( ∫
−

Br

|dχ − dh| np
n+p

) n+p
n +

∫
−

B2τr

|dh − (dh)0,2τr |p
]

≤ c
[
τ−n−p ε

∫
−

Br

|dχ |p + �(h; 2τr)
]

≤ c τ 2γ [c� �(r) + �(h; r)] (7.11)

with a constant c depending only on n, N , �, p, ν and L . The excess of the a-harmonic
approximation h at radius r is estimated from above by a constant times the excess of ω, due
to (7.10) and the inequality |(dh)0,r |p ≤ ∫− Br

|dh|p . Similarly, introducing the abbreviation
P = h0 + (dh)0,2τr · x and recalling that h0 is closed, we infer from Proposition 3.9 the
following estimate for |d P| in terms of the excess

|d P| = |(dh)0,2τr | ≤ c(n, N , �, p, ν, L) (c� �(r))1/p. (7.12)

We now distinguish the cases p ∈ (1, 2) and p ≥ 2 in order to find a preliminary decay
estimate for χ . In the subquadratic we note that Vμ(ξ) is decreasing in μ, and we hence
arrive at

∫
−

B2τr

∣
∣
∣V|d P|

(
χ − P

2τr

) ∣
∣
∣
2 ≤ (2τr)−p

∫
−

B2τr

|χ − P|p ≤ c(n, N , �, p, L , ν) c� τ 2γ �(r).

To obtain the analogous estimate in the superquadratic case we observe that due to the pre-
vious inequality (7.11), it only remains to estimate the quadratic term similarly to (7.11) via
Jensen’s inequality:

(2τr)−2
∫
−

B2τr

|d P|p−2|χ − P|2 = (2τr)−2
∫
−

B2τr

|(dh)0,2τr |p−2|χ − h0 − (dh)0,2τr · x |2

≤ 2 (2τr)−2 |(dh)0,2τr |p−2
∫
−

B2τr

|χ − h|2

+2 (2τr)−2|(dh)0,2τr |p−2
∫
−

B2τr

|h−h0−(dh)0,2τr · x |2

≤ c
[
τ−n−2 (

c� �(r)
) p−2

p ε
2
p

( ∫
−

Br

|dχ |p
) 2

p +�(h; 2τr)
]

≤ c c� τ 2γ �(r)

   



                                                                        

with c depending only on n, N , �, p, L and ν. Therefore, combining this inequality with the
estimate for the integral over |χ − P|p and taking into account the subquadratic case, we
end up with the following preliminary decay estimate for every p ∈ (1,∞):

∫
−

B2τr

∣
∣
∣V|d P|

(
χ − P

2τr

) ∣
∣
∣
2 ≤ c(n, N , �, p, L , ν) c� τ 2γ �(r).

We next apply Lemma 3.7, the Caccioppoli inequality from Lemma 5.1, the previous inequal-
ity and the estimate (7.12). We then obtain similarly to the proof of the previous proposition
(and recalling dχ = ω):

�(τr) =
∫

Bτr

∣
∣V|(ω)0,τr |

(
ω − (ω)0,τr

) ∣
∣2

≤ c(p)

∫

Bτr

∣
∣V|d P| (ω − d P)

∣
∣2

≤ c(p, L , ν)

∫
−

B2τr

∣
∣
∣V|d P|

(
χ − P

2τr

) ∣
∣
∣
2 + c(p, L , ν) |d P|p (2τr)2β

≤ c3(n, N , �, p, L , ν, κ)
(
τ 2γ + (τr)2β

)
�(r). (7.13)

For a given exponent γ ′ ∈ (0, min{γ, β}) we now fix τ ∈ (0, 1/4] such that

c3 τmin{2γ,2β} ≤ τ 2γ ′
. (SC.5)

Hence, τ is fixed in dependency of n, N , �, p, L , ν, γ, γ ′, β and κ . The choice ε =
τ p+max{1,p/2}(n+2γ ) further fixes δ—and therefore also t and the radius r1—with exactly
the same dependencies as those appearing in τ . We now remark that (SC.4) may be rewritten
as

�(r) ≤ c−1
�

(
δ μ̃(t)

3cH

)p

= 2−p κ

1 + κ

(
δ μ̃(t)

3cH

)p

.

For later purposes, we additionally assume that

�(r)
1
p

τ−n/2

1 − τ γ ′ κ
p−2
2p + �(r)

1
p

τ−n/p

1 − τ 2γ ′/p
≤ 1. (SC.6)

Hence, we observe that these smallness conditions are fullfilled if we choose ε1 suffi-
ciently small in dependency of the parameters stated in the proposition. This completes the
proof. ��

Remark We mention that the radius r appears in inequality (7.13) as a factor. Thus, we may
replace (SC.5) by the following smallness condition concerning r and τ :

c3 rβ τ 2β ≤ 1

2
τ 2β and c3 τ

2γ
p ≤ 1

2
τ 2β ,

where c3 = c3(n, N , �, p, L , ν, κ). This enables us to state the excess decay estimate also
with exponent γ ′ = β when β < γ .

Lemma 7.4 (Excess decay) Let p ∈ (1,∞). For every exponent γ ′ ∈ (0, min{γ, β})
and m ≥ 1 there exist ε1 = ε1(n, N , �, p, ν, L , γ, γ ′, α, β, μ̃(·)) > 0 and a radius

   



                       

r2 = r2(n, N , �, p, ν, L , γ, γ ′, α, β) > 0 such that the following is true: Let ω ∈
L p(BR(x0),�

�), R ≤ r2, be a weak solution to system (2.1) under the assumptions (H1)–
(H1). If the smallness conditions

�(x0, R, (ω)x0,R) < ε1 and |(ω)x0,R | < m (7.14)

are fullfilled, then we have

�(x0, r, (ω)x0,r ) ≤ c

(( r

R

)2γ ′
�(x0, R, (ω)x0,R) + r2γ ′

)

for all r ≤ R , (7.15)

and c depends on n, N , �, p, ν, L , γ, γ ′, β, α and m.

Proof We again take x0 = 0 and use the abbreviation �(R) = �(0, R, (ω)0,R). Let
γ ′ ∈ (0, min{γ, β}), where γ is the exponent from Proposition 3.9, and choose β ′ = γ ′
in Lemma 7.2. This fixes two positive constants

ε0 = ε0(n, N , �, p, ν, L , α, γ ′),
r0 = r0(n, N , �, p, ν, L , α, β, γ ′).

Furthermore, we set κ = ε0 and we find from Proposition 7.3 positive constants

τ = τ(n, N , �, p, ν, L , γ, γ ′, β, α),

r1 = r1(n, N , �, p, ν, L , γ, γ ′, β, α),

ε1 = ε1(n, N , �, p, ν, L , γ, γ ′, β, α, μ̃(·)).
We define r2 := min{r0, r1}. We next observe that (7.14) ensures that the second inequality
in the smallness assumption (7.7) required for the application of Proposition 7.3 is satisfied.
We introduce the set of natural numbers

S := {
n ∈ N0 : �(τ n R) ≥ ε0 |(ω)0,τ n R |p}

(we note that due to the different conditions in the excess-decay estimate [14, Proposition 4]
we need - in contrast to [14, Lemma 13]—only one condition). In order to prove the desired
excess decay estimate we have to distinguish the cases where the mean values of ω is always
small (i. e. where the system is purely degenerate) and where the mean value for a certain
radius (and then for every smaller radius) dominates the excess of ω:

Case S = N : By induction we prove for every k ∈ N0

�(τ k R) < ε1 and �(τ k R) ≤ τ 2kγ ′
�(R). (7.16)

For k = 0 these inequalities are trivially satisfied due to (7.14). Now, for a given k ∈ N0, we
suppose (7.16) j for j ∈ {0, . . . , k}. In view of k ∈ S we may apply Proposition 7.3 on the ball
Bτ k R and we find �(τ k+1 R) ≤ τ 2γ ′

�(τ k R) ≤ τ 2(k+1)γ ′
�(R). Moreover, �(τ k+1 R) < ε1

follows from (7.16)0 and τ < 1. This shows that (7.16) is valid for k + 1 and therefore, for
every k ∈ N0. For proving the excess decay estimate (7.15) we first infer from Lemma 3.7

�(r) =
∫
−

Br

∣
∣V|(ω)0,r |

(
ω − (ω)0,r

) ∣
∣2

≤ c(p)
( r

R

)−n
∫
−

BR

∣
∣V|(ω)0,R |

(
ω − (ω)0,R

) ∣
∣2 = c(p)

( r

R

)−n
�(R) (7.17)

   



                                                                        

for all 0 < r ≤ R. For a continuous analogue of the decay estimate in (7.16) we consider
r ∈ (0, R] arbitrary. Then there exists a unique k ∈ N such that r ∈ (τ k+1 R, τ k R], and
using (7.16) and (7.17) we conclude

�(r) ≤ c(p)
( r

τ k R

)−n
�(τ k R) ≤ c(p) τ−n τ 2kγ ′

�(R)

≤ c(p) τ−n−2γ ′ ( r

R

)2γ ′
�(R) , (7.18)

and the statement of the lemma follows taking into account the dependencies of τ given
above.

Case S �= N : We define k0 := min N \ S. We obtain �(τ k0 R) < ε0 |(ω)τ k0 R |p by
definition of k0, and the calculations leading to (7.16) reveal

�(τ k R) ≤ τ 2kγ ′
�(R) for every k ≤ k0. (7.19)

Furthermore, we observe that (7.14) and (7.19) combined with the smallness condition (SC.6)
ensure that the mean values of ω remain uniformly bounded in the sense that we have
|(ω)0,τ k R | < 2m for every k ≤ k0: In the subquadratic case this can be seen as follows:

|(ω)0,τ k R | ≤ |(ω)0,R | +
k−1∑

j=0

|(ω)0,τ j R − (ω)0,τ j+1 R |

< m + τ
− n

p

k−1∑

j=0

�(τ j R)
1
p + τ− n

2

k−1∑

j=0

�(τ j R)
1
2 |(ω)0,τ j R | 2−p

2

≤ m + τ
− n

p (1 − τ 2γ ′/p)−1 �(R)
1
p + τ− n

2 (1 − τ γ ′
)−1 �(R)

1
p ε

p−2
2p

0 ≤ 2 m.

In the superquadratic case instead, we proceed analogously (but the third term in the sum
does not appear) and get the same result. Hence, the assumptions of Lemma 7.2 are satisfied
on the ball Bτ k0 R . In view of (7.19) we thus infer for every r ∈ (0, τ k0 R]

�(r) ≤ ci t

(( r

τ k0 R

)2γ ′
�(τ k0 R) + r2γ ′

)

≤ ci t

(( r

R

)2γ ′
�(R) + r2γ ′

)

, (7.20)

where ci t is the constant from Lemma 7.2 and depends only on n, N , �, p, ν, L , γ ′ and
m. To finish the proof of the excess decay estimate (7.15) it still remains to consider radii
r ∈ (τ k0 R, R], but the assertion is then deduced easily from (7.19) following the line of
arguments for the case S = N. Exactly as in the proof of the excess decay result stated
in [14], the integer k0 (which cannot be controlled and which depends on the point x0 under
consideration) is not reflected in the dependencies of the constant c appearing in (7.15). ��
Remark As mentioned in the introduction, the proof presented here simplifies slightly the
one of [14, Lemma 13]. The key point here is the definition of the set S which was previously
defined in a way such that the condition was required to hold on two subsequent balls (see
the different smallness assumptions (7.7) and [14, (5.25)] in the excess decay estimate).

8 Proofs of the main results

We finally come to the proof of the partial regularity results and the dimension reduction
stated in Theorems 2.1 and 2.2.

   



                       

Proof (of Theorem 2.1) We consider an arbitrary point x0 ∈ �0(ω). Then, denoting by
r2 the radius from Lemma 7.4, we find m ≥ 1 and R ∈ (0, r2) such that BR(x0) ⊂
�,�(x0, R, (ω)x0,R) < ε1 and |(ω)x0,R | < m, i. e. such that the assumptions (7.14)
of Lemma 7.4 are fullfilled. Since (7.14) is an open condition and since the functions
x 	→ (ω)x,R, x 	→ �(x, R, (ω)x,R) are continuous, we observe that (7.14) is satis-
fied in a small neighborhood Bs(x0) of x0. Hence, due to the equivalence of the excess
�(x, R, (ω)x,R) and the one given in (2.5), the excess decay estimate (7.15) and Camp-
anato’s characterization of Hölder continuous functions imply the local Hölder continuity of
V0(ω), from which in turn the local Hölder continuity of ω is obtained via [15, Lemma 3].
Finally, |� \ �0(ω)| = 0 follows from Lebesgue’s differentiation theorem.

We now consider x0 ∈ �0(ω) such that additionally the assumption (2.6) is satisfied.
Then we choose ε0 and r0 according to Lemma 7.2 (with β ′ = β and an appropriate number
m ≥ 1). We observe that (2.6) guarantees that the assumptions in (7.5) are fullfilled for x0.
Since this is also an open condition we find a small neighborhood Bs(x0) of x0 such that it
is satisfied for all y ∈ Bs(x0), and therefore, we end up with the decay estimate (7.6) for
all y ∈ Bs(x0). Consequently, Campanato’s characterization of Hölder continuous functions
yields that V0(ω) is locally Hölder continuous with exponent β, which implies that ω is
Hölder continuous with exponent min{β, 2β/p}. Moreover, if ω(x0) �= 0, this result may
still be improved in the superquadratic case: since ω is already continuous, we may assume
|(ω)y,R | �= 0 in Bs(x0) (after possibly choosing s smaller if necessary), and we conclude that
the excess �(y, R, (ω)y,R) is dominated by the quadratic term for every y ∈ Bs(x0). This
immediately yields the improved local Hölder regularity result with exponent β and finishes
the proof. ��

We shall now address the estimate on the Hausdorff dimension for the singular set stated
in Theorem 2.2. To this aim we proceed as Mingione in [35,34] and differentiate the system
in a fractional sense. With this reasoning we first come up with the following fractional dif-
ferentiability result which states that weak solutions actually belongs to a suitable fractional
Sobolev space (these spaces can be viewed as interpolation spaces between Lebesgue spaces
and the classical Sobolev spaces of integer order; for the relevant definitions we refer to [3,
Chapter 7]).

Lemma 8.1 Let p ∈ (1,∞) and consider a weak solution ω ∈ L p(BR(x0),�
�) to

the system (2.1) under the assumptions (H1), (H1) and (H1). Then we have V (ω) ∈
W β ′,2

loc (BR(x0),�
�) for all β ′ < β.

Proof We start by proving an estimate for finite differences of V (ω). To this aim we denote
by χ ∈ W 1,p(BR(x0),�

�−1) ∩ d∗W 1,p(BR(x0),�
�) the differential form from the Hodge

decomposition which satisfies dχ = ω. Furthermore, consider Br (y) ⊂ BR(x0) and let
η ∈ C∞

0 (B3r/4(y), [0, 1]) be a cut-off function with η ≡ 1 on Br/2(y) and |Dη| ≤ c/r .
We then introduce the finite difference operator τs,h via τs,hτ(x) := τ(x + hes) − τ(x) for
an arbitrary form τ, every real number h ∈ R and s ∈ {1, . . . , n}. Analogously as in [35,
proof of Proposition 3.1] we then choose τs,−h(η2τs,hχ) with s ∈ {1, . . . , n} and h suffi-
ciently small as a test function in the weak formulation of (2.1). Then taking into account
the assumptions (H1), (H1) and (H1) it follows

∫
−

Br/2(y)

∣
∣τs,h V (ω)

∣
∣2 ≤ c |h|2β

∫
−

Br (y)

∣
∣V (ω)

∣
∣2

   



                                                                        

for all s ∈ {1, . . . , n} and a constant c depending only on p, L , ν and r (but independently of
h). Due to the uniform estimate in h and the fact that Br (y) ⊂ BR(x0) was chosen arbitrarily,
the assertion then follows from [3, 7.73]. ��
Proof (of Theorem 2.2) As a consequence of a measure density result going back to Giusti,
see [35, Sect. 4], the previous lemma implies that the singular set of every weak solution ω

to (2.1) is actually not only of Lebesgue measure zero, but that its Hausdorff dimension is
not greater than n − 2β. This finishes the dimension reduction. ��

9 Modifications for inhomogeneous systems

In this section we briefly describe the modifications which are necessary in order to treat
inhomogeneous systems of the form

d∗ A( · , ω) = B( · , ω) and dω = 0 (9.1)

on a bounded domain �, where the coefficients satisfy the assumptions (H1)–(H1) and where
the inhomogeneity B : � × �� → R

N satisfies for all x ∈ � and ω ∈ ��

(H6) a controllable growth condition, i. e. |B(x, ω)| ≤ L (1 + |ω|2) p−1
2 .

The regularity proof now has to be adapted slightly. For convenience of the reader we
here collect the major changes. Firstly, an additional term of the form
∫
−

Br

〈 B(x, ω), χ−ξ−ζ · x 〉 ηp ≤ c(p)

∫
−

Br

(
1 + |ω|2 + |ω − ζ |2)

p−1
2

∣
∣
∣
χ−ξ−ζ · x

r

∣
∣
∣ r ηp

appears in the proof of Caccioppoli inequality in Lemma 5.1. Distinguishing the cases where
|ω − ζ |2 ≥ 1 + |ζ |2 and where the opposite inequality holds, it is then easy to deduce from
the technical Lemma 3.5 that the statement continues to hold with |ζ |p replaced by (1+|ζ |)p

on the right-hand side of (5.1).
Next, the statements and proofs of the approximate A- and the approximate a-harmonicity

(see Lemmas 6.1 and 6.2, respectively) have to be adjusted. According to Remark 3.3, we
may first pass from an arbitrary test function ϕ ∈ C1

T (Br (x0),�
�−1) to the related function

ϕ − ϕ0 ∈ W 1,p
T (Br (x0),�

�−1), where ϕ0 is a closed (� − 1)-form satisfying (ϕ0)T = 0. We
observe that ϕ −ϕ0 is also admissible as a test function. Thus, in inequalities (6.1) and (6.2),
respectively, there appears an additional term arising from the inhomogeneity:

I I I :=
∣
∣
∣

∫
−

Br (x0)

〈 B(x, ω), ϕ − ϕ0 〉
∣
∣
∣.

Using Jensen’s and Poincaré’s inequality we gain one r -power and we find

I I I ≤
[

(1 + |ω0|)p−1 + �(r)
p−1

p

]

r sup
Br (x0)

|dϕ|

Then, for ω0 ∈ �� such that |ω0| �= 0 �= �(x0, r, ω0) we obtain approximate A-harmonicity,
and for ω0 = 0 (and hence �(r) = �(r)) we get instead approximate a-harmonicity, with
the following obvious modifications: in the statement of Lemma 6.1 the term rβ has to be
replaced by rβ +|ω0|1−pr, whereas in the one of Lemma 6.2 there appears on the right-hand
side cH r supBr (x0) |dϕ| as additional term.

   



                       

In Proposition 7.1 we now require a smallness assumption stronger than (7.1), namely

ε0 r
min

{
β,

p(1−β)
(p−1)

}

+ �(x0, r, (ω)x0,r ) < ε0 |(ω)x0,r |p ,

which helps to get in the position to control the (possibly diverging) term |ω0|2−pr from
above. The proof of the proposition is then done as before, and the only change is that again
|ω0| on the right-hand side of the assertion (7.2) is replaced by 1+|ω0|. Accordingly, chang-
ing the assumption (7.5) in the iteration and requiring some further smallness conditions on
θ, namely

2max{2,p}θmin
{
β ′, p(1−β)

(p−1)

}

< 1 ,

we may iterate in the non-degenerate situation similarly to before in Lemma 7.2, and as an
intermediate result we still obtain estimate (7.6). Accordingly, the smallness assumption (7.7)
in Proposition 7.3 has to be replaced by

κ |(ω)x0,r |p ≤ �(x0, r, (ω)x0,r ) + κ r
min

{
β,

p(1−β)
(p−1)

}

,

and its proof changes slightly as follows. We first note that �(r) ≤ c��(r)

+ c(p)rmin{β,p(1−β)/(p−1)}. The approximate a-harmonicity condition is then verified as
before, ending up with nearly the same assertion, but finding now instead of (7.8) the esti-
mate

�(x0, τr, (ω)x0,τr ) ≤ 2−1 τ 2γ ′
�(x0, r, (ω)x0,r ) + c̃0 (τr)min{β,p(1−β)/(p−1)}.

Assuming an additional smallness assumption on r1 (in dependency of ε1 which results in
an additional dependency of μ(·) for r1), an excess decay estimate—which combines the
non-degenerate and the degenerate situation—can be proved as in Lemma 7.4 (with the obvi-
ous modification of the set S). It should be noted that as a final regularity result we again
obtain partial regularity, and the Hölder exponent in regular points with (2.6) is optimal,
whereas in the remaining points the Hölder exponent might be smaller as in the correspond-
ing homogeneous situation, due to the radius-related term rmin{β,p(1−β)/(p−1)} appearing on
the right-hand side of the previous inequality.

With these modifications we then obtain the extension of Theorem 2.1 to weak solutions
of inhomogeneous systems. Furthermore, establishing a variant of Lemma 8.1 for the inho-
mogeneous case (with β ′ < min{β, p/(2p − 2)}), we also achieve a dimension reduction of
the singular set. The final result can then be stated as follows:

Theorem 9.1 Let � ⊂ R
n be a bounded domain, p ∈ (1,∞) and consider a weak solution

ω ∈ L p(�,��) to the inhomogeneous system (9.1) under the assumptions (H1)–(H6). Then
there exists σ = σ(n, N , p, �, L , ν, β) and an open subset �0(ω) ⊂ � such that

ω ∈ C0,σ
loc (�0,�

�) and dimH (� \ �0(ω)) ≤ n − min

{

2β,
p

p − 1

}

.
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