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ABSTRACT. For control systems in discrete time, this paper discusses measure-
theoretic invariance entropy for a subset @ of the state space with respect
to a quasi-stationary measure obtained by endowing the control range with
a probability measure. The main results show that this entropy is invariant
under measurable transformations and that it is already determined by certain
subsets of @ which are characterized by controllability properties.

1. Introduction. Metric invariance entropy provides a measure-theoretic analogue
of the topological notion of (feedback) invariance entropy hin, (@) of deterministic
control systems, cf. Nair, Evans, Mareels and Moran [19] and Kawan [17]. The
present paper discusses metric invariance entropy and its relations to controllability
properties. We consider control systems in discrete time of the form

T4y = flae,ux), k eN={0,1,...}, (1)

where f: M x 2 = M is continuous and Af and Q are metric spaces.

For an initial value zg € M at time k = 0 and control u = (ux)xy0 € U := QN we
denote the solutions by rx = ¢(k,z0,u), k € N. The notion of invariance entropy
Itiny (@) describes the average data rate needed to keep the system in a given subset
@ of M (forward in time). It is constructed with some analogy to topological
entropy of dynamical systems. A major difference of entropy in a control context to
entropy for dynamical systems (cf. Walters [25] or Viana and Oliveira [24]) is that
the minimal required entropy for the considered control task is of interest instead
of the “total” entropy generated by the dynamical system, hence the infimum over
open covers or partitions is taken instead of the supremum.

The present paper discusses notions of metric invariance entropy modifying and
extending the analysis in Colonius [6, 7]. A probability measure on the space
of control values is fixed. Then an associated quasi-stationary measure 7 for @ is
considered and an entropy notion is constructed that takes into account information
on feedbacks. A significant relaxation compared to topological invariance entropy is
that only invariance with 7-probability one is required (this was not done in [6, 7]).
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The main results are Theorem 2.6 showing that the invariance entropy does not
decrease under semi-conjugacy, Theorem 2.8 showing that the topological invariance
entropy is an upper bound for the metric invariance entropy and Theorems 5.4
and 5.5 providing conditions under which the metric invariance entropy is already
determined by certain maximal subsets of approximate controllability within the
interior of Q (ie., invariant W-control sets with W := int@).

A general reference to quasi-stationary measures is the monograph Collett, Mar-
tinez and San Martin [5]; the survey Méléard and Villemonais [18] presents, in par-
ticular, applications to population dynamies where quasi-stationary distributions
correspond to plateaus of mortality rates. Intuitively speaking, quasi-stationarity
measures may exist when exit from @ occurs with probability one for time tending
to infinity, while in finite time a quasi-stationary behavior develops. A bibliography
for quasi-stationary measures with more than 400 entries is due to Pollett [21].

For controllability properties in discrete time, the results by Jakubezyk and Son-
tag [14] on reachability are fundamental. Related results, in particular on control
sets, are due to Albertini and Sontag [2, 1], Sontag and Wirth [23] and Wirth [27],
Patrio and San Martin [20] and Colonius, Homburg and Kliemann [8). The case
of W-control sets has only been discussed iu the continuous-time case, cf. Colonius
and Lettau [9]. Although many properties of control sets and W-control sets in
discrete time are analogous to those in continuous time, some additional difficulties
occur. In particular, in the proofs one has to replace the interior of a control set by
its transitivity set or its closely related core.

System (1) together with the measure v on § generates a random dynamical
system. Metric and topological entropy of such systems have been intensely stud-
ied, see, e.g., Bogenschiitz [4]. If the control range  in (1) is a finite set, say
@ ={1,...,p}, then the associated right hand sides g; = f(-,i),1 € §2, generate a
semigroup of continuous maps acting on M. The metric and topological entropy
theory of finitely generated semigroups acting on compact metric spaces has recently
found interest, see, e.g., Rodrigues and Varandas [22].

The contents of this paper is as follows: In Section 2 definitions of metric in-
variance entropy are presented and discussed. In particular, the behavior under
measurable transformations is characterized and it is shown that the topological in-
variance entropy is an upper bound for metric invariance entropy. Section 3 relates
the metric invariance entropy to properties of coder-controllers rendering @ invari-
ant. Section 4 presents conditions ensuring that this entropy is already determined
on a subset K which is invariant in @, i.e., a set which cannot be left by the sys-
tem without leaving @. In Section 3, invariant W-control sets are introduced and
their properties are analyzed. The union of their closures yields a set I satisfying
the conditions derived earlier guaranteeing that the metric invariance entropy of @
coincides with the metric invariance entropy of K. Examples 2.9 and 5.7 illustrate
some of the concepts in simple situations.

Notation. Given a probability measure g we say that a property holds for p-a.a.
(almost all} points if it is valid outside a set of y-measure zero.

2. Definition of metric invariance entropy. In this section, we present defi-
nitions of metri¢ invariance entropy and discuss their motivation. First we recall
entropy of dynamical systems which also serves to introduce some notation.

Let p be a probability measure on a space X endowed with a o-algebra §. For
every finite partition P = {P,..., P,} of X into measurable sets the entropy is
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defined as H,(P) = — >, ¢ (u(Pi)), where ¢(z) = zlogz,z € (0,1] with ¢(0) = 0.
The entropy specifies the expected information gained from the outcomes in P of an
experiment, or the amount of uncertainty removed upon learning the P-address of
a randomly chosen point. For a dynamical system generated by a continuous map
T on a compact metric space X one considers an invariant measure on the Borel
o-algebra B(X), i.e., p(T1E) = p(E) for all E € B(X). For a finite partition P of
X and j € N one finds with TP := {T-P|P € P} that

n—1 .
Pai=\/._ THP=PvI'Pyv...vT--lp
i=0

again is a finite partition of X (for two collections % and B of sets the join is
AVvB = {ANB|Ac U and BeB}). The entropy of T with respect to the
partition P is I, (T, P) = lim, 00 %H,‘ (P,). Using conditional entropy, one can
also write

n—1
Hﬂ (P'n) = Z HIJ (Pi-!r-] lpi ) . (2)
i=0
The metric entropy of T is h,(T") := supp hyu(T,P), where the supremum is taken
over all finite partitions P of X, i.e., it is the total information generated by the
dynamical system generated by 7.

This concept has to be modified when we want to determine the minimal infor-
mation that is needed to make a subset Q of the state space of n control system
(1) invariant under feedbacks. We suppuose that a closed set @ C M is given and
fix a probability measure ¥ on the Borel g-algebra B(f) of the control range 2.
Let p(x,A) = viwe Qif(z,w) € A},z € M, A C M, be the associated Markov
transition probabilities. A quasi-stationary measure with respect to @ of M is a
probability measure 7 on B(Af) such that for some p € (0, 1]

pn(4) = ]Q plz, Ay(dz) for all A4 € B(Q). @)

The measure 7 is stationary if and only if p = 1. With A = @ one obtains p =
fQ p(z, @n(dx) and the support suppn is contained in Q. Results on the existence
of quasi-stationary measures are given, e.g., in Collett, Martinez and San Martin
[5, Proposition 2.10 and Theorem 2.11} and Colonius {6, Theorem 2.9].

With the shift 8 : I — U, (ur)i>0 — (ur41)x>0, control system (1) can equiva-
lently be described by the continuous skew product map

S:Ux M- UxX M, (u,z) v (6u, f(x,u0)), {4)
where U = OF is endowed with the product topology. Then §*(u,z) = (0%u, ¢(k, z,
u)). A conditionally invariant measure p for the map S with respect to @ C M
is a probability measure on the Borel g-algebra of I x M such that 0 < p =
ST UXxQNUxQ)) <1 and
pu(B) = p(ST'BN (U x Q)) for all B € BU x M). (5)
We write 8 := Syxg : U x Q = U x M for the restriction. Then the condition in
(5) can be written as pu(B) = u(S5' B). For k € N the measure p is conditionally
invariant for 5% with constant p* and, in particular, p=* is a probability measure
on S5*U x Q).
If 5 is a quasi-stationary measure, one finds that with the product measure v
on U = NN the measure u = v~ x 1 is a probability measure on the product space
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U x Af satisfying (5), ef. [6, Proposition 2.8]. In the present paper only conditionally
invariant measures of this form are considered and v will be fixed (cf., e.g., Demers
and Young [12], Demers [11] for results on general conditionally invariant measures).
Often we will suppress the dependence on v and only indicate the dependence on
the quasi-stationary measure 7.

Next we construct certain partitions for subsets of U x @ whose entropy with
respect to = vN x 5 will be used to define metric invariance entropy.

Definition 2.1, For a closed subset @ C M an invariant (Q,n)-partition C; =
C.(P,F) is given by 7 € N, a finite partition P of @ into Borel measurable sets and
amap F : P — Q7 assigning to each set P in P a control function such that

wlk,z, F{(P))eQ forke{1,...,7} and 7a.a. z € P. (6)
When no misunderstanding can occur, we just talk about invariant )-partitions
or just invariant partitions. Clearly, condition (6} means that
n{z € Plo(k,z, F(P)) e Q for k=1,...,7} = n(P).
Fix an invariant (@, )-partition C; = C, (P, F) with P = {P,,..., P,}. Abbreviate
F,:=F(P) e Q,i=1,...,q, and define for every word ¢ := [ag,a1,...,0,-1],

n € N, with a; € {1,...,q} a control function u, on {0,...,n7 — 1} by applying
these feedback maps one after the other: fori=0,...,n—1land k=0,...,7—-1

(uﬂ)i‘r-é-k = (Fﬂi)k . (7)
We also write u, := (F,,, Fq,, .- Fa,_; ). A word a is called (1,C;)-admissible if
n{z € Q|plir,z,u,) € P, fori=10,1,...,n—1} >0. (8)

Note that for 7-a.a. it follows that p(k, z,u,) € Qlork =0,..., nTifp(it, r,u.) €

B, fori=0,...,n—1. If y and C, are clear from the context, we just say that

a is admissible. The admissible words describe the sequences of partition elements

under the feedbacks associated with C, which are followed with positive probability.
For P € P we define

AP ) ={ucl|plk,z,u)e€Qfork=1,...,7rand naa. t€ P} x P (9)

and
A(C-,m) = {A(P,n) |P € P} with union A(C,,n) = | ] A(Pn).
Pep

Here and in the following the dependence on C, (actually, these sets only depend
on (P, 7)) or 5 is omitted, if it is clear from the context. The controls u in (9) can
be considered as constant parts of feedbacks keeping r-alinost all z € P in Q up to
time 7.

Lemma 2.2. The sets A(P,n) defined in (9) are Dorel measurable, hence ¥ is a
measurable partition of A which, tn general, is a proper subset of U x Q.

Proof. Clearly the sets A(P,n) are pairwise disjoint, hence it only remains to show
measurability. We only prove this for the case 7 = 1, where it suffices to show that

{ueQlf(z,u) € Q for n-aa. z€ P} ={ueQn(f(,v)"'QNP)>n(P)}
is measurable. First we claim that for compact K C P and § > 0 the set
{uveQn(f(,u)'QNK) > 9(P)-5} (10)
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is closed. In fact, if this set is nonvoid, let u, € ), u, — u € §2 with

1(f(2n)T'QN K) > n(P) - 4.
The sets By, defined by

fs o} oc

Bm:= ) f(,w)'QNK,B:= (] B,
i=m m=1

are decreasing and 7(B) = limy, o 7(Bm) = 7(P) — 8. Furthermore, suppose that

a subsequence of y; € f(-,u;)"'Q N K,i € N, converges to y. Since f~1{Q,0) is

closed, it follows that y € f(-,u)"'QN K. This shows that B C f(-,u)"'QNK and

hence closedness of the set in (10) follows from

n(f(~u)"'@N K) = n(B) = n(P) - &.

Since € is a compact metric space, regularity of the probability measure 7 implies
that there are compact sets K, C P with n(P\ K,,) < 1 (cf. Viana and Oliveira
[24, Proposition A.3.2]). Hence

{veQn(fC,0)7'QNP) 2 n(P)} C {x €Qn(fw)'QNK,) 2 n(P) = 1/n},

and it follows that
(ue it enr) 2P} = () {ue |t enK) znP - 1 }.
n=1

Thus the set on the left hand side is measurable as countable intersection of closed
sets. O

A sequence (Ag, ..., An-1) of sets in A is called Cr-admissible (or a C,-itinerary}),
if there is an admissible word a = [ap,- - ., n-1] of length n with 4; = A(P,,) €2
for all {. Then also the set

n—1
Dy=AoNS"AIN---nS~D74, e \[ 5574 (11)
i=0
is called admissible. Only the sets D, with u{D,) > 0 will be relevant (as usual, if
w(D,) = 0, this set is simply omitted in the following).

Note that p-a.a. (u,z) € D, satisfy olk,z,u) € @ for k = 0,...,n7. The

collection of all sets D, is

n—-1
Ap 1= {Da e\ 5 %la admissible} s A= | Dac STV Q).

i=0

(12)
Observe that 21; = % and that 9, is a measurable partition of A, and, for conve-
nience, we set g = U x Q. Note that the inclusion A,+1 € A, holds for all n € N,
and that, in general, it is proper.

a admissible

Remark 1. For invariant {Q,n)-partitions the inclusion
Antm CU VST Uy, n,m €N, (13)

does not hold, in general (in contrast to Colonius [6, Lemma 3.3} where only exis-
tence of a trajectory following a sequence of partition elements is required). The
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problem is that for an (n,C;)-admissible word ¢ = [ag,-.-.an=1,qn, .-, Antm—1]
the word [ap,. .., n+m—1] need not be (1, C,)-admissible: Certainly, the inequality
n {y €Q |‘p(i7-v'y: L (T n+m-1]) € Pﬂn+£ fori=0,...,m—-1 }
2n{elnr,z,u.) € Qlr e Q,plin,z,ux) € Py, fori=0,...,n+m—1}
holds, but the term on the right hand side need not be positive. This could be
guaranteed by changing the definition of (1, C; )-admissible words a = [ao, - - ., 2n-1]
to: Forall j=0,1,...,n—1
n{y € Qlelit, i1 tta) € Po, fori=jj+1,....,n—-1}>0.
We do not adapt this definition since the inclusion (I3) is not needed below.

The direct way to define a notion of metric invariance entropy is to consider
the entropy of the partitions A, of the sets A,. An alternative is to consider the
additional information in every step. We start with the first choice.

We consider the entropy H ,—n-n» u(n(Cr)) of Aa (C;) in An(Cr) € S5 V7 (Ux
Q) with respect to the probability measure p~("~17p and then take the average of
the required information as time tends to oo to get the invariance u-entropy of C,,

) 1
by (Cr, Q) == limsup— H - (n-13-), (An (C7 ).

n—ooc NT
Definition 2.3. Let  be a quasi-stationary measure on a closed set  for a measure
v on {2 and set 1= LN x 7. The invariance entropy for control system (1) is

h, (@) = limsup iélf hu(Cr,Q), (14)
TG -
where for fixed 7 € N the infimum is taken over all invariant (Q,#)-partitions
Cr = C+(P,F). If no invariant (Q, n)-partition C; exists, we set hu(Q) := oo.
The following remarks comment on this definition.
Remark 2. An objection to the consideration of H,-¢i-1r,,(%,) might be that 21,
is not a partition of 55(”—”7(1/{ x @), while p~(*~1)7y is a probability measure on
this space. However, one may add to the collection 2,.(C.) the complement
Zo = (S5 U X Q) \ A(C)).

Thus one obtains a partition %, L {Z,} of Sé(”_l)f(ll x @) with entropy

Hp"(“""u (an(c,,-) u {Zn}) = Hp‘("—”"u(mﬂ(c‘r)) -¢ (p—(n— Ufﬂ(Zn)) .
For each n € N the second summand is bounded by 1/e = max,¢[o,1)(—¢(z)) and
hence

L f iy (@(Cr) U{Za)).

. 1 .
hu(Cr) = hrlgsgp;Hp—cn—mp(i’ln(Cr)) = limsup_~

This shows that h,(C,) is given by the entropy of bona fide partitions.

Remark 3. Definition (14) ensures that 7 — co. This will be needed in the proof
of Theorem 4.3(ii). Instead of the limit superior for n — oc¢ and 7 — o0 one also
might consider the limit inferior. However, the limit superior is advantageous in
Theorem 4.3(iii). For topological invariance entropy, one takes instead an infimum
over all invariant open covers (where the partition P is replaced by an open cover
of @). Then it follows that it suffices to take the limit for 7 — oo, cf. Kawan [17,
Theorem 2.3 and its proof].
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Remark 4. If the sets in invariant (Q,n)-partitions C; and C.. coincide modulo 7-
null sets, the entropies H,- (n-1)r, (An(Cr)) and H,—(n-1)=, (A (C;} )}, 7 € N, coincide.
Hence it suffices to specify a partition of @ outside of a set of 7-measure zero.

Remark 5. For a stationary measure 7 the trivial partition of Q yields an invariant
partition. In fact, for every 7 > 0 there is an invariant (Q,n)-partition C, =
C.({Q}, F)}, where the control F(Q) € I{ can be chosen arbitrarily in a set of full
vM-measure in U. Thus the associated metric invariance entropy vanishes. This is
seen as follows: Assume, contrary to the assertion, that there is a set Uy C U with
vM(Uy) > 0 such that for every u € Uy

HzeQlplkyz,u)eQfork=1,...,7}<n(@)=1. {15)
We may assume that there is k € {1,...,7} such that for every u € Uy

nz € Qlek,r,u) e Q) < 1.
By invariance of v x 5 Fubini’s theorem yields the contradiction

1= [ sgUx Q0 xn)idud) = [ [ xuateemcarnda )
UxQ UJIQ

< /u u Q) (du) + /u “ QWA (du) = fu Q)M (du) = 1.

Remark 6. If there exists an invariant partition, then invariant partitions with
arbitrarily large time step 7 exist. It suffices to see that for every invariant partition
C- = C.(P, F) there exists an invariant partition Car = Co-(P?, F%), In fact, for
B, Pj ePlet

Py = {z € P |¢(r,2, F(P)) € P;} = Ping(r,-, F(P)) Py},
This yields a partition of Q given by P2 := {P; |P;, F; € P}. Define feedbacks
F?2:P% 5 Q% by
20D (Y e F(P)r) for r=0,...,7-1
FA(Py)(r) = { F(PjY(r—7) for r=m7,...,21—1

Then Cz, = (P?, F?) is an invariant partition.

An alternative concept of metric invariance entropy can be based on the addi-
tiona! information gained in every time step {this was proposed in Colonius [6] and
is slightly reformulated below). The following construction has to take into account
that the space A, that is partitioned decreases in every time step.

Let an invariant partition C; be given. Then the partition 2,, = U, (C;) of A,
induces a partition of Ag41: For D € U, let

Anir(D) = {E€Aaa [END # 0} Auna(D) = o E- (10)

Since E N D # ¢ implies E C D and the sets A,41(D) are mutually disjoint, one
obtains an induced partition

At = {Ans2(D)[D € An} of Ansy = UDE"‘

Clearly, %41 is a refinement of A2+!. The information from %, that is relevant
for 2,41 comes from the partition 27*!. Assuming that the information encoded
in A7+ is known at the time step n, the incremental information is the conditional

entropy of ™, 13 given AP (with respect to p~""u). For every n € N
Hynr (A1) = Hpmnr (A7) + Hpmar (R |ARHY),

Any1 (D). (17)



2100

where the conditional entropy of 2,51 given %A7+! is

H, ~"Tu an ‘212“"1 = — —nT D ( u(DﬂE) ). 18
pmnr (1 | ) Dénp i{Ans( ))Eeg,;ﬂé A (D)) (18)

(Observe that in the argunent of ¢ one may multiply numerator and denominator
by p~"".) Taking the average incremental information one arrives at the following
notion.

Definition 2.4. Let 5 be a quasi-stationary measure on a closed set Q for a measure
von § and set 2 = vN x 5. For an invariant (Q, n)-partition C, = C,(P, F) define
the incremental invariance entropy of C, by

. - 1 n—1 i1
Br*(Cr, Q) = limsup— ZO Hyesry (%€ 2] (C))

and define the incremental invariance entropy for control system (1) by
thC(Q) := limsupinf h;"“(CT, Q), (19)
rass Cr

where the infimum is taken over all invariant (Q,#)-partitions C,(P,F). If no
invariant (Q,n)-partition C; exists, we set h(Q) := .

Regrettably, a formula analogous to (2) for dynamical systems is not available
for invariance entropy of control systems. Hence the relation between the invariance
entropy and the incremental invariance entropy remains unknown. The following
proposition only describes a relation between the entropy of U,, and of the induced
partition AT+
Proposition 1. There is K € N such that for alln e N

H,,-mﬂ(Qlﬁ‘H) < Hy-ne () + K/e.
Proaf. There is K € N such that for every probability measure mn there are at
most K mutually disjoint sets A, ..., Ag with m(A4;) > p" /e, since Z{:-.: m(A;) <
1. In particular, for every n € N there are at most K sets D € 2, such that
p~ D7 (D) > p /e, since every D € 9, is contained in Sa("_I)T(LI x Q) and
p~ DTy s g probability measure on this set. This inequality is equivalent to
p~ (D) > 1/e. Let A9 be the set of elements in A, with p~" (D) > 1/e. The
other elements D in A, satisfy
P B(Ae1(D)) £ p7 (D) < 1/
Since ¢ is monotonically decreasing on [0, 1/e] it follows that ¢(p~"" (A, +1(D))) >
(o™ (D)) and hence
Hp“n.-#(‘.)lf“l) < Hp-nr(Uy) — Kming < Hy-nr (An) + Ke.
|
Next we analyze the behavior of both notions of invariance entropy under measure

preserving transformations (cf. Walters [25, §2.3]). For notational simplicity, we
suppose that the control ranges and the measures on them coincide.

Definition 2.5. Consider two control systems of the form (1) on Af; and Af,
respectively, given by

Tisr = fi(@k, uk) and yry1 = folyk, ux) with (u) € U = Q. (20)
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Let v be a probability measure on ) and suppose that 1, and 72 are corresponding
quasi-stationary measures with respect to closed subsets Q, € M, and Q2 C My,
respectively. We say that (f2, ) is semi-conjugate to (f;,m), if there are subsets
cQand §; C Q; of full y-measure and full 7;-measure, i = 1,2, resp., with the
following properties:

(i) there exists a measurable map 7 : Q; — Q3 such that 7 maps Th onto 7g, i.e.,

(mem)(B) := ("' B) = 12(B) for all B € Q, (21)
(i1) one has fi(r,w) € @; for all (w,z) € 1% Q;,i=1,2, and

7(f1(x,w)) = fo(rz,w) for w € Q and z € Q. {22)
The map = is called a semi-conjugacy from (fi,1:) to (f2,72). In terms of the

solutions, condition (22) implies that for vaa, uwe Q¥ and -aa. z€ @

w1k, g, u) = ok, Tz, u) for all k € N.

With the associated skew product maps S;(u,z) = (u, f;(z, up)) one obtains S; (O
x Qi) C M x Q;,i=1,2, and for all (u,x) € QY x @,

(idy x m) 0 Sy{u,z) = (idy x m) (fu, fi(z, up)) = (u, f2(mz,up))  (23)
= Sy o (idy x 7) (u, T).

If the map = is a bimeasurable bijection, we obtain an equivalence relation called
conjugacy. A consequence of the following theorem is that the metric invariance
entropies are invariant under conjugacies.

Theorem 2.6. Suppose that for two control systems given by (20) there is a semi-
conjugacy 7 from (fy,m) to (fo,72). Then the constants p; coincide and with j; =
X 0,1 = 1,2, the metric invariance entropy satisfies

huy (Q1) < iy (Q2) and RE(Q1) < R (Qa)-
Proof. First observe that 15(Qs) = 71 (7~ 1Q9) = 1, (Q)) and
fro = VN x 1y = (idy x @), (VN x ) = (idy x 7), .

Furthermore p; = py, since properties (21) and (23) imply
p2 = puad x Q2) = pa{(u,y) €U x Q3 lsz(u: y) EUX Qa}

= ma{(uw,y) € MM x Q2 ISz(‘u,y) €U X Q)

= pr (idee x 1) {(,3) € O x Qo | Salw ) €U x @2}
=pm{(wz) e M x O, |52 o (idy x m)(u, ) €U x Q2 }

= p{(w,7) € O x Q1 |(idu x m) 0 $1(12) € U x @2}
=m{(u,2) e x O |5’1(u, z)elx (O}

= m{(n,z) €U X Q lSl(u,:n) eUx}

= pra x Q1) = py.

Let C2,» = Ca +(Pa, F) be an invariant (@2, 7)-partition. Then it follows that n=1P;
= {7~'P|P € P»} is a measurable partition of Q; = 7~1Q> modulo #;-null sets
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and we may assume that #~1P C @, for all P. For P € P it follows that for
tr-a.a. T € P one has ga(k,z, F(P)) € Q2 for all k € {1,...,7} if and only if for
m-a.a. y € 7P one has y = 7~ Lz for some z € P and

erlk.y, F(P)) € n7 gk, z, F(P)) € 771Qa = Qq for all k € {1,...,7}
(note that the preimage under m of an 7z-null set is an 7;-null set), By Remark 4
it follows that C1,, = C1 - (7~ Py, F) with F(x~1P) := F(P),#"1P € n~1P, is an
invariant (@1, )-partition. Then the preimage of the collection A{Ca ;) of U x Q4
equals the collection

A(C1,r) = {(idy x )" AJA € A(Cy-) ).

Let a be a {@Q2, n2)-admissible word. Then

=m {:1: € Q) |rei(it, T us) € P, fori=0,1,...,n— 1}
=mn {:c € Q1 |ei(in,z,us) € m7 P, fori=0,1,...,n 1}.

It follows that a is also (@;,m)-admissible. The same arguments show that every
(@1, )-admissible word is also (@Qs, 72)-admissible and hence for all n e N

(idy x @) 7" An(Car) = M(Cr)-
One finds for the entropy
le_(.,_nrm(ﬁn(cl,-r)) = sz_(n_.nfm(ﬂ,,(cz.,)),n €N,

and hence hy, (Cy 7} = h,.;(Co,+). Taking first the infimum over all invariant (G2, 72)-
partitions and then over all invariant (@, )-partitions one finds that i, (Q1)
< hy,(Q2). These arguments also show that hy, (Q1) = oo if &, (Q2) = . For
the incremental invariance entropy one similarly finds that for all n € N

(idye x M) ATFHC,7) = ARFTHCa,r)-
Then it follows that
Hparfy (Ans1(Cr,r) ]QIZH (€1,7)) = Hymnr 1y (UAn41(Co,r) |‘2(2+1 (C2,7))

and the inequality of the incremental invariance entropies is a consequence. a

Remark 7. Observe that the inequalities for invariance entropies under semi-
conjugacy are opposite to the inequalities for entropy of dynamical systems, cf.
Viana and Oliveira [24, Exercise 9.1.5). This is due to the fact that we construct
invariant (@i, )-partitions from invariant {Qs,1e)-partitions and then take the
infimum (instead of the supremum) of partitions. Note also that for topological
invariance entropy Kawan {17, Proposition 2.13] constructs from spanning sets of
controls for §; spanning sets for 2. Then letting the time tend to infinity and
taking the infimum over spanning sets one gets that the invariance entropy of @ is
greater than or equal to the invariance entropy of Q5.
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To conclude this section we show that the metric invariance entropy is bounded
above by the topological invariance entropy. As in Kawan [17, Definition 2.2 and
Proposition 2.3(ii)] consider for system (1) a compact controlled invariant set @ <
M, ie., for every x € Q there is w, € Q with f{z,w;) €Q. Forre Naset RC U
is called (7, @)-spanning if for all € @ there is u € R with ¢(n,z,u) € Q for
all n = 1,...,7. Denote by rin.(7,Q) the minimal number of elements such a set
can have (if no finite {r, Q)-spanning set exists, rino(7, @)} := oc). The topological
invariance entropy is defined by

hino(@) := lim llog Tine{7, Q).
T=30C T

In order to relate this notion to metric invariance entropy, we use a characteriza-
tion of topological invariance entropy by invariant partitions (the original definition
due to Nair et al. [19] uses invariant open covers). Here a (topological) invari-
ant partition C; = C(P, 1, F) is defined by 7 € N, a finite measurable partition
P={F,...,F} of @ and F : P — Q" such that
kb, bLF(P))CQfork=1,...,7.
Thus, in contrast to (Q,n)-invariant partitions (cf. Definition 2.1), it is required
that every z € P remains in @ under the feedback F(P). Then a word a =
[ao,a1,. .., an-1] is called admissible if there exists a point z € Q with ¢(iT, T,u,) €
Py, for i =0,1,...,n — 1. Write #W,(C;) for the number of elements in the set
W,.(C,) of all admissible words of length n and define the entropy of C, by
1 W, (C. 1
hrop(Cy) 1= lim [EFWa(Cr) _,p log #Wa(Cr)
n-—roc nr neN nr

A topological invariant partition of @ is also a {Q, n)-partition and an n-admissible
word is also admissible in the topological sense. The following characterization of
topological invariance entropy is given in Kawan [17, Theorem 2.3 and its proof].

Theorem 2.7. For a compact and controlled inveriant set @ it holds that
hiny (@) = iélrf h{Cr)= Tli}ngzo i&f h(Cr),
where the first infimum is taken over all invariant Q-partitions C, and the second
infimum is taken over all invariant Q-partitions C, with fired T € N.
The following theorem relates metric and topological invariance entropy.

Theorem 2.8. Let Q be a compact and controlled invariant set Q. Then for every
quasi-stationary measure 1 on @ the metric entropy with respect to pp = VN x g
satisfies
hﬂ(Q) < hinv(Q)-

Proof. Let n be a quasi-stationary measure on ¢ and fix a topological invari-
ant partition C,(P,F). Then C,(P,F) i also a (@, n)-invariant partition and
#U, (C,) < #Wn(C;) for every n € N, since an n-admissible word is also triv-
ially admissible in the topological sense. Using

Hyn-nyr,(An(Cr)) < log #2An(Cr)
one finds that

. 1 .
h,L(C‘rs Q) = hfifip;l;Hp-—fn"l)*p(mn(CT)) S nllbngo

This yields the assertion £,(Q) < hin,(Q)- a

log #Wn(cf) = h(C )
nr i
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The following example illustrates the existence of quasi-stationary measures in
a simple situation (it is a modification of Colonius, Homburg and Kliemann [8,
Example 1}).

Example 2.9. Consider the family of contro! systems depending on a real param-
eter given by f, : R/Z x [-1,1] = R/Z,

folz,w) =2+ ocos(2rz) + Aw+a mod 1. (24)

Suppose that the amplitudes A and o as well as a take on small positive values. Let
a probability measure v on £ := [—1,1] be given. One obtains Markov transition
probabilities

plx, B) = v{w € Q|fa(r,w) € B} for z € R/Z and B C R/Z.

For ap = ¢ — A the extremal graph f,, (-, 1) is tangent to the diagonal at a point ¢p.
Now let o > ay and consider @ = {0.2,0.5}. Colonius [6, Theorem 2.9] implies the
existence of a quasi-stationary measure 7 for Q with 0 < p < 1 if » has a density
with respect to Lebesgue measure and there is v > 0 such that p(z, Q) > v > 0 for
all z € Q. If we take the uniform distribution on @ = [-1,1], these condition are
satisfied. By [6, Proposition 2.4], the support of the corresponding conditionally
invariant measure z = N x 7 is contained in

{(w,2) €U x Q |Sg™(u,x) N (U x Q) # & for all n € N}.

Let d(&) < 0.5 be given by the intersection of the lower sinusoidal curve f.{-,~1)
{cf. the figure below) with the diagonal. Then points to the left of [d(a),0.5]
leave () backwards in time, hence they cannot be in the support of 7. Thus the
quasi-stationary measure 77 has support contained in [d(e),0.5]. Observe that for
the uniform distribution on §2 there is no stationary measure n with support in @,
hence there is no invariant measure g of the form p = M x 7.

1.0

08} p

06}

§ L7

N

/|

0.0 -
¥ 0.4 06 0.8 10

0.

Extremal graphs for (24) and the set [d(a),0.5] in @ = [0.2,0.5]
(here A =0.05,0 = 0.1 and & = 0.08)
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The Variational Principle for dynamical systems states that the supremum of
the metric entropies coincides with the topological entropy. Certainly, an analogous
result for invariance entropy would give considerable structural insight. Apart from
this, however, it would only be of limited interest. The metric invariance entropy
is introduced since it is smaller than the topological invariance entropy (see also
the discussion of coder-controllers in Section 3). Instead of asking for measures
maximizing the entropy one should instead look for measures minimizing h, over
a class Myq of admissible measures, hence to determine measures pg with minimal
invariance entropy, i.e.,

huo(Q) = infuent,, hu(Q)-

This induces the question over which class Mg,4 of measures one should minimize.
The set of all measures 1 = v™ x 1 where 7 is quasi-stationary with respect to v is
too big, since one would often obtain that the minimum is zero: This is illustrated
by Example 2.9. There are many stationary measures S with support in Q: Take
= (5U)N X by, where &, and d.(,) are Dirac measures with f(x(w),w) = z(w) €
(2 and h, = 0. The reason is that by the choice v = d,, the invariance problem is
already solved. Instead it seems reasonable to require at least that the support of v
coincides with the control range €2, since otherwise we would already know that we
do not need controls in 2 \ suppr. If @@ ¢ R™ has positive Lebesgue measure A(f2)
one might even restrict attention to the measures v which are absolutely continuous
with respect to A. Concerning the support of the quasi-stationary measure 7 it is
immediately clear that @ \ suppy does not contribute to hy,. Some further results
will be given in Sections 4 and 5.

3. Relations to coder-controllers. This section defines coder-controllers associ-
ated with a quasi-stationary measure rendering ¢ invariant, and shows that their
minimal entropy coincides with the entropy h,{Q).

A coder-controller {cf., e.g., Kawan [17, Section 2.5]) may be defined as a quadru-
ple H = (5,7,6,7) where § = (Sk)ren denotes finite coding alphabets and the
coder mapping v : M**!1 -3 S associates to the present and past states the
symbol 8, € Si. At time kr, the controller has k£ + 1 symbols sg,...,s; avail-
able and generates a control ux € §}7. The corresponding controller mapping is
0k 2 Sp % - -+ x S = Q7. Thus of interest are for xp € @ the sequences

Tr1 = (T, Tk, ’U-;‘-,), k€N, (25)
with
g = e (vo(To), m(zo, T1), - - -, W& (X0, 715+ ., TR)) € 17 (26)
satisfying
¢li,zp,up) €Qlorallie {1,...,7} and all k € N, (27)

In the following construction, we suppose that the coding alphabet S is independent
of k. Hence
e M*1 5 S and 6 SFTL 4 Q7.

Each sequence of symbols in S* defines a coding region in @ which is defined as
the set of all initial states xy which force the coder to generate this sequence. More
precisely, for 5 = (sp,...,8k—1) € S¥ let

P; = {z0 € @lvo(xa) = 50, -+, Yh—1(T0, L1, -+, Tk—1) = 561 },
where x;,7 = 1,...,k — 1, are generated by (25), (26). Furthermore, let

ug = (J0(30),1(50+ 81)s- - -, 81 (50, . ., 861)) € OF7.
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Thus P, consists of the points xg satisfying for j=0,...,k—1

(o, {7, To. %s), - - -, (I T, T0, Us)) € 7}'_1(51)1
and one has ¢{i, o, us) € @ forall i =0,..., k7.

Again, suppose that a quasi-stationary measure  with p = [, p(=, Q)n(dz)
corresponding to v on 2 is fixed and let g = N x 7. The set ¥, of (Q, n)-admissible
words is the set of s € §* with n(P,) > 0.

For a (@, n7)-admissible word we consider all controls u such that the application of
w yields the same word and renders Q invariant with probability 1. More explicitly,
define for g5 € §

AP ={uellpl,z,u)eQlori=1,...,7 and n-a.a. £ € Py, } X Py,
and for s = (sg,...,sk-1) € Sk,
D, := A(P,) NS TA(P,) N NS F VAR, ) c S5 T U x Q).

Observe that for (u,2¢) € D, one obtains ¢(jr,z9,u) € Ps,, = 0,...,k—1. Define
a measure ;. on the (finite) set S&, by

Mie(8) := p~ DT (D). (28)

The considered coder maps v : M*T! — S will only be defined on a set of full
n*+L.measure and the considered controller maps 6; will only be defined on a set
of full Mg 1-measure. The following coder-controllers render @ invariant,

Definition 3.1. A (@, n)-coder-controller is a quadruple H = (5,~,4,7) as above
such that {P, |s € §} forms a partition (modulo -null sets) of Q. The entropy of
H is defined as

Y 1 K
R(H) = h’r:isouopkr H;, (Sgq)-

Remark 8. In general, Ax(S¥;) < 1, hence the measures A are not probabili-
ty measures. Nevertheless, it makes sense to consider the associated entropy, cf.
Remark 2 for a similar situation.

Remark 9. Kawan [17, p. 72 and p. 83| (see also Nair, Evans, Mareels and Moran
[19}) defines coder-controllers with and without T (i.e., T = 1) and the coder maps
Y may or may not depend on the past symbols (in addition to the past states).
Furthermore, it is asually assumed that the size of the set of symbols may vary
with k. Using the same set of symbols for every k amounts to requiring that sup,p
#81. < oo where #5; is the size of the set Sk of symbols at time k7. In the
(topological) definition of data rates this might be taken into account by looking at
the number of symbols actually used at time k7. In fact, supgey #Sk < o0 in the
situations considered in [17, Theorem 2.1 and Theorem 2.4].

When one wants to relate coder-controllers to the invariance entropy in Definition
2.3, it may appear rather straightforward to identify the elements of an invariant
partition with the set of symbols for a coder-controller and the feedbacks F{P) with
the controls generated by a coder-controller. This is the content of the following
theorem.

Theorem 3.2. Consider system (1) and let 17 be o quasi-stationary measure for a
closed set Q corresponding to v on Q and denote u = v™ x . The p-invariance
entropy satisfies
h,(Q) = limsup inf R(H),
T H
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where the infimum is taken over all (Q,n)-coder-controllers H = (S,7,6, 7).

Proof. (i) First we show that for every invariant (@, 7)-partition C, = C,(P, F) with
P ={P,..., P} there exists a (Q,n)-coder-controller # = (S,7,4,7) rendering Q
invariant such that R(#) = h,(C,). In order to construct H let S := {1,...,q} and
fork>1let Sz"d be the set of C.-admissible words @ of length k. Denote by Ay the
measure on S&, given by

Ak(a) = P_(k—l)T”(Da)v D, € AUi(Cr). (29)
It follows that
Hy, (Sk:) = H, -1, (%k(C-))-
The coders v, : @+ — § are defined by
Y@, . .. 2n) = ag if 2 € Py,.
Then the entropy associated to this coder is
. 1 - 1
hfi,s::pEHAk (Sad) = h;_.ri,s;ipEH”_(k_m”(mk(cr” = h.u_(cf)
The controller is constructed as follows. Each set D, € %g(C,) is of the form

Do = AP, )N ---n S~ % D7A(p, )

with A(P,,) € A(C;) for all i. Upon receiving the symbol ai_; in addition to the
previous symbols ag,. .. ,az—2 the controller finds a = {ayp, ..., ax—1) which indexes
an element of YA.(C,). Then the controller is given by the maps é;—; : Sfd — 7,

5k_1(ag, cen ,ak_l) = F(Pa.,,_l)-

By the definition this yields for the corresponding solution that (1), € @, =
0,...,7, and hence the constructed coder-controller renders @ invariant. Taking
the infimam over all invariant (@, n)-partitions Cy, then the infimum over all (@, n)-
coder-controllers H = (S,,4,7) and, finally, the limit superior for 7 — oc one
obtains

limsup i%fR(H) <k, (Q).

T30
(ii) For the converse inequality it suffices to show that for an arbitrary (Q,n)-
coder-controller H = (5, 7,4, 7) there is an invariant (Q, n)-partition C, with A,,(C;)
= R(#M). For every sp € S consider the set P, of all points @p € (@ such that
so = Yo{xo). Since H renders @ invariant it follows that for ug = do(s) € Q7 (this
does not denote a Dirac measure!) one has ¢{i,xzp,up) € @ for i = 1,...,7 and
n-a.a. g € Py,. Since P = {F,, |30 € 5} is a partition modulo 7-null sets of @,
one obtains that C, = C(P, F) with F(F,,) = ug = dg(sp}, %0 € S, is an invariant
partition of Q. Then
APy,)={u e | pli,r,u) € Qiori=1,...,7 and for g-a.a. £ € Py, } X Py,
and A(C,) = {A(P,) |50 € S}. For s = (s0,...,8k_1) € S&; we have
D, = A(P,,)NSTTA(P,)N---nS~*-Um AR, ).
Then the probability measure Ag on Sc’fd satisfies Ag(s) = p~(*=V7u(D,) and hence
Hy (8% = Hpmn)e , (Ae(Cr)).
Thus one obtains for the entropy

. 1 . 1
R(H) = hin Sll}')k—‘r}:{;\,e (S(’:d) = hlI;u supk—THP_(u_m,, (Qlk(C,)) = h.u,(Cf). 0O
=0 00
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4. Invariance entropy and relative invariance. In this section and in Section
5, we analyze when the metric invariance entropy of @ is already determined on
certain subsets of Q. The analysis is based on the following relative invariance
property.

Definition 4.1. Consider for system (1) subsets K ¢ @ € M. The set K is called
invariant in @, if x € K and f(z,w) € K for some w € {2 implies f(z,w) &€ Q.

Thus a solution ¢(-, , u) can leave a set K which is invariant in Q only if it also
leaves Q.

For (measurable) subsets K which are invariant in ¢} and a quasi-stationary mea-
sure 7 on  we define invariant (K, n)-partitions as in Definition 2.1 with Q) replaced
by K. Then one can define the invariance entropy i, {K) of K as in Definition 2.3,
again replacing @ by K. In the following, objects associated with invariant (K, n)-
partitions and invariant (@, n)-partitions are denoted with a superscript K and @,
respectively.

First we determine relations between invariant partitions of K and . We call
a map F on @ nonsingular with respect to 5 if 7(E) = 0 implies n(F~1E) = 0 for
EcQ.

Lemma 4.2. Lel K be a closed set which is invariant in a closed set () C M.

(i) Then every invariant {Q, n)-partition C2 = C,(P?, F?) induces an invariant
(K, n) partztzon CK C.(PK,FX) given by

K= {PNK|PeP?} and FK(PNK):= F?(P).

(ii) Assume that there are a finite measurable cover of Q by sets V1,. ., VN,
control functions v',...,v"N € U and times 7%,...,7V € N such that for all j =
., N and a.a. TE€EVI
o(k,x,v’)eQ fork=1,...,77 and (3, z,v) e K

and the maps ¢(77,-,v7) on Q are nonsingular with respect o 7.

Then every tnvariant (K, n)-partition CX = Co(P¥, FX) witht > 7 := ma.xN i

J...
can be extended to an invariant (Q,7)-partition C9 = C,(P?, FQ) such that #P? <
(1+N#PK, PK c P? and
FQ(P)y = FE(P) if P € PX and ¢(r, PQ, F(P?)) C K for P9 € P.
Proof. (i) Let P € P2. Since K is invariant in Q it follows from PN K C K and
olk,z, FY(P)) € Q for all k=0,...,7 and 7-a.a. = € P that
ek, z, FK(PNK)) = @(k,z, FO(P)) € K for 7-a.a. x € P.

Thus C.(P¥,FX) is an invariant (I,)-partition. (ii) Let CX = C,(PX,FFK) be
an invariant K-partition with v > 7. The cover of @ 1nduces a finite partition Py
of @\ K such that for every P! € P; the control B (P} = (... ,v’, 1) € -
satisfies for a.a. z € Pf one has @(k, T, Fl(Pf)) €Qforall k=0,...,77. and
@(ri,z, 1(P])) € K. In fact, we obtain a partition of Q \ K by defining P} :=
(Q\K)NV!and

P} = [(Q\K)nVi]\ U,-<,- Piforj>1.

Then P} C V7 implying for a.a. € P} that w(k,z, FiI(P}) e Q for k=1,...,77
and @{77,z, F;(P])}) € P* C K for some P! € PX. By nonsingularity with respect
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to n of ¢(r7,.,v7) = @(rd,+, Fy(P])) it follows that for n-a.a. = € P there is
P e PK guch that for all k=0,...,7

o(k, (7,2, Fi(P))), F¥(PY) e K.

Define an invariant Q-partition C¢ = C,(P%, F?) in the following way: The parti-
tion consists of the sets in PX together with all (nonvoid) sets of the form

Pi={zep ’go('rj,z', n(P)) e P*}
with feedbacks defined as follows: Let

FQ(Pi’j)k :={ L'i for k:ﬂg...,‘l’j—-l

1 —_—
up__; for k=7,,..,7-1

and for P € PK let

FO(PY) 1= FX(PY) = (ud,...,ué_y).
This is well defined, since 7 — 79 > 0 (we use only the first part of F K (PY)) and
hence C,(P%, FQ) is an invariant Q-partition with #P2 < #PK + (#PH . #Py) <
(1+ N)#PE. O

The following theorem shows when the invariance entropy of @ is already deter-
mined on an subset K that is invariant in Q.

Theorem 4.3. Consider control system (1). Let K be a closed invariant subset in
Q, fiz a quasi-stationary measure 5 on Q for ¢ probability measure v on the control
range 2 and let p =™ x 1.

(i) Then the invariance entropy of K is bounded abave by the invariance entropy
of Q. h,(K) < h,(Q).

(i) Suppose that there are a finite measurable cover of Q by sets Vi,...,V¥N,
control functions v,...,v" € U and times v%,...,7V € N such that for all j =
1,....,Nand aa. z € Vi

ok, z,v') e @ fork=1,...,77 and ¢(r¥,z,17) € K,

and the mops o(73,-,v7) on Q are nonsingular with respect to 7.

Then b, {Q) = h, (K follows.

(iti) If the assumptions in (ii) are satisfied and K is the disjoint union of sets
K\, ..., K, which are closed and invariant in ), then

max; hy(K;) < hp(Q) < by (Ky) + -+ + hp(Km)-

Proof. (i) Let €2 = C.(P?,F?) be an invariant (Q,7)-partition and consider the
induced invariant (K, n)-partition CK = C,(P¥, FK) according to Lemma 4.2(i).
We will show that h,(CX) < h,(C?). Then, taking first the infimum over all
invariant Q-partitions C2 and then over all invariant K-partitions CX and, finally,
the limit superior for 7 — 0o, one concludes, as claimed, that hy,(K) < h,(@Q). For
P € P9 consider v € U with p(i,z,v) € Q foralli=1,...,7 and n-a.a. z € P.
If = is even in PN K, then invariance of K in @ implies that ¢(i,x,u) € K for all
i=1,...,7. It follows for all Px = PN K € P¥ that

A(PNK,CKy = A(P,CE)N (U x K)

showing that %K = A2 N (U x K). For a CX-admissible partition sequence cor-
responding to a word a abbreviate Aff‘, = A(P,, N K,CK) with P,, € P. Then
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(Pagy- -+ 3 Pa,_,) is a C2-admissible partition sequence and hence a C¥-admissible
word « is also C¥-admissible. Consider

DY =AKns"AE n...ng T AK
The corresponding C.?-admissible set

DE=A2NnS7AZN---N §—n-174Q
satisfies DZN(U x K} = DE, since (u,x) € AG N(U x K) satisfies (6" u, (i, x, u)
€ AK,i=0,...,(n — 1)r. This shows that

2% c A2 n (U x K) for all , (30)

where at the right hand side consists of the elements of A9 intersected with U x K.
In order to compute the entropy, first consider D € AZ with p~("~U7u(D) < 1/e.
Then also p~ "~V (D N (U x K)) < 1/e and it follows that

¢ (D)) < 6 (VTP N U x K))), (81)

since ¢ is monotonically decreasing on [0,1/e]. For every n € N there are at most
three sets D € A with p~ (=174 (D) > 1/e, since they are disjoint and the sum
of the measures of four mutually disjoint sets D ¢ A9 ¢ S&("_I)T(L{ x Q) would
be greater than or equal to 4/e > 1 = p‘("‘l)"u(Sa("—l)T(u x @)). Let

234 = (D e A |p~ V7w (D) 2 1/e}.
Then #A9*9 < 3 and, using é(z) > ¢(1/e) = —1/e,z € [0,1], it follows that
3 6 (p*(“-l)’u(Dn U x K))) > —3/e.
DE‘HS‘biy )
We find, using ¢(x} < 0 and (31), (30),
_Hp—(nq‘l)-rl‘ (Q[g)
= ¥ 9 (p—(n—l)‘r“(D)) + Y e (p-—(n—-l)-r“(D))
Den\aFb Deadbe
< Y o(rVuDN @ x KY)

Dead\adts

= ¥ o(prun@xK)) - Y p(p DN U x K)))

Deag DeaQe
< Y ¢(pr T uDR)) + 3/
DKeak )
L —Hpmtn-1pry, (91::) +3/e.
This implies

. 1 . 1
hu(C¥) = llmsup;Hr,._(n_m“(ﬁn (€%)) > Iﬂ sup— [H - tn-10-, (Aa(CFY)) - 3/e]

P
n—s0

= h,(CK).

(it) By Lemma 4.2 we can extend an invariant (K, #)-partition CX = C.(PX, FK)
with 7 > 7 := max;=y,. .~ 7’ to an invariant (Q,n)-partition C? = C,(P%, F9).
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We claim that £,,(C?) < h,(CX). Then assertion (ii) will follow, if we take first the
infimum over all invariant (K,7)-partitions CX, then the infimum over all invariant
(Q.n)-partitions C€ and, finally, let T — oo. Recall from Lemma 4.2 that P¥ ¢
PR, FK(P) = FR(P) for P € PX and ¢(r,z, F?(P)) € K for n-a.a. « € P and
all P € P9, It follows for all P € PK ¢ P9 that

AK(P) = A9(P) and hence A¥ = A(CK) c A2 .= A(C).

Let (Py,-..,Pa_1) be a C2-admissible partition sequence in P?. Since K is invari-

ant in (2, it follows that P; ¢ K foralli = 1,...,n—1, and hence for every k > 7 the

controls are given by feedbacks F¥ keeping the system in (. Hence (Py,..., Py1)

is a CR_admissible sequence in PX, Together, this implies for a C@-admissible word
a**! = [ag,ay,...,a,) of length n + 1 and for the elements

Dgntt = Agy NS4, N- NS A, UL,
that «™ := [ay,...,an] is a CX-admissible word with
Dgn = Ay, N---nS 0074, cak,
Hence Dgnt1 = Ay, N S™7" Dyn with A,, € A9 and we find

#(Dans1) = p(Aa, N S Dan) < p (557D ) = p"w(Dar) . (32)
Define
A 2= (Dyn € A o7 (D) 2 /e,
UL i= {Danss = Aay N S Dy € AY,; [ Ag, € A° and Don € A ).

Then, as above, #25%9 < 3. Furthermore, by Lemma 4.2, the number of elements
of ‘210 %i¢ is bounded, independently of n, by

#ATH < 3. 4% <3N+ 1) - #PK.

For Dgui1 = Agy NS~ "Dyn € anﬂ with Dye € AKX\ K9 it follows from (32)
that _
" (Danrr) S p7T T (Dan) = o7 (Dan) < 1/e

and hence, using monotonicity of ¢ on [0,1/¢], for all Dyu+r € Ql,? 1 \Qlf?_flig

é (p—nf” (Daﬂ+1)) >0 (p—(n—l)r”(Da“)) .
It follows that

Hyenry (93),) == Z ¢ (p"u(D))

Deng,,

<= Y ¢(pTVH(D) +3N +1) - #PK /e

DE“EH\ES:;Q

<- ¥ ¢ (p—(”—l)fu(p)) +3(N +1)-#PK /e
DemK\gk:bie

<= Y ¢ (D)) + 3N +1) - #PF e
De2t¥

= Hy-tn-vr, () +3(N + 1) - #PX fe.
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We conclude that, as claimed,

hu(CO) = llmsup—Hp (n-1yr (A (C2))

N—ro0

_.hm‘;up H p-nrp(An1(C2))

n—
< Iimsup"; [Hpﬁ(nﬁnfﬁ(ﬁln(crﬁ")) +3N+1)- #PK/e] = h, (CF).

(iii) The first assertion follows by (i) using that each K; is invariant in Q. For
the second inequality use that by (ii) 2,(Q) = hu(K). Take invariant partitions
CKe = C (P, F?) of K; for each i. Then CX = C,(PX,FK) defined by PX =
U F{T‘;.- = F;,i=1,...,m, forms an invariant partition of K and one finds

k) = UanKs(C,-) and Hp—(n—l;r,,(ﬁn((ff)) = Z Hp_(n_”m(mﬂ(cfi))-

i=1
This implies that

h, (CK )<hm9upiH ~r=1r, (A (CF))

= llmsup——ZHp (uﬂ)f“(‘lln(CK‘)) < Zh” (An(CFY) .

n=00 i=1

Now take the infimum over all invariant partitions CT’ of the Kj, then over all
invariant partitions of I and, finally, the limit superior for 7 — oco. O

Remark 10. If the assumptions of Theorem 4.3(ii) are satisfied, one might conjec-
ture that the support of any quasi-stationary measure is contained in K. However,
this cannot be expected as seen from the description of all quasi-stationary mea-
sures for finite state spaces given in van Doorn and Pollett [13, Theorem 4.2]. A
stinple example is given in Benaim, Cloez and Panloup [3, Example 3.5).

For a qnasi-stationary measure 7 and a closed invariant subset ¢}; in ¢ with
7{(Q1) > 0 let pg, == VN x ng,, where ng,(-) = n(- N Q1)/n(Q:) is the conditional
measure on Q.

Corollary 1. Consider control system (1) and fir a quasi-stationery measure 1) on
Q for a probabilily measure v on the control range Q@ and let p = v™ x . Suppose
that Q is the disjoint union of closed pairwise disjoint sets Q;,i =1,...,m, which
are tnvarignt in @ with 1(@Q;) > 0 for alii. Then all ng, are quasi-stationary for
Q; with the same constant as 1 and

max {n(@)hug, (Q1)} < hul(@) £ 1Q@1yg, Q1)+ + 1), (@m):
(33)
Proof. Abbreviate ; = g, for all i. One has the convex combination n =
(1 + <o+ Q) (@) Implying for all k € N
P~ =n(Qup  m + - + Q)P 1m(@nm)-
For A C Q;, invariance of @y, j # i, in @ implies

Ay T4 T .
on(4) = 055 = i e At = s [ ot Ania)
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= / plz, A {dz).
Qs

Hence 7; is quasi-stationary for Q; with the same constant p as 5. Then one easily
sees that h,(Q;) = 9(Q;)h, (Q;). Now the first inequality in (33) follows from
Theorem 4.3(i) and the second inequality follows from the arguments in the proof
of 4.3(iii} if one notes that here K = Q. O

For the incremental invariance entropy we can only show the analog of Theorem
4.3(i). Here the arguments are a bit more involved.

Theorem 4.4. Consider control system (1). Let K be a closed invariant subset in
Q. fiz a quasi-stationary measure n on Q for a probability measure v on the control
range 2 and let g = v™ x 7.

Then the incremental invarience entropy of K is bounded above by the incremen-
tal invariance entropy of Q, hiP°(K) < Ri(Q).

Proof. Let CQ = C.(P?,F?) be an invariant {(Q,n)-partition and consider the
induced invariant (I, n)-partition CX = C,(P¥, FK) according to Lemma 4.2. We
will show that A'¢(CK) < kir(CY). Then the assertion will follow. The arguments
used to prove formula (30) also show that for a set DN (U x K) € X = A,.(CK)
one obtains (cf. (16))

AL (DN U X K)) C AL, (D) N (U x K),
and hence the unions satisfy
ARa(DN U x K)) C A (D) N U x K) € AL (D).
Next we consider the conditional entropy (cf. (18)),
(34)

- H,,—Tl"';n (Qi:t\;-l
_ g 3 MALLDNUXEK) Y o (pl(i?:(%{;(z):lf)))))

DN x K)eni-nti Een’:

i

Fix an ¢lement DN U x K) € AK and let
o = i (A (DN (U X K)) , a2 = (AT (D)\ A% (DO U x K))),
=+ = (.A"H(D)) .
Observe that convexity of ¢ implies
o g |
& (S + 22pz) < Zgn) + 2 (o) for pr, 2 € 0,1
This, together with ¢(z) < 0, shows that for E € A%,

o ( (DN U x K)NE) )

o \p (AKX (DN U x K)))

>(r_1¢( (DN U x K)N E) ) a2 (DN U x (Q\ K))NE)
a " \p(Af (DN U x K))) (n+1(D)\A 1(Dn(uxf()))

a1 p(DNWUxK)NE)  ax  p(DNUx(Q\K)NE)
@ WAL (DNUXK)) oy (A2, (D)\ AR (DN (U x K)))
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pDOU=E)NE)  p(DNUx (Q\KNNE)) _ ( MDNE) )
n(42.(D)) u (A% () W(AZ(D)
With (34) it follows that
_Hn""l ( 1:-r1 Q"K)) Z P Z .U(-An+1(D) z ¢( ﬂ(DnE) )
DU K)eAX EcaE 1 ('An+1(D)

We may add further negative summands (corresponding to elements D € A2\ %X
and E € A3, \ 2%, ) and estimate this by
))-

—nr DnE
20 Y w(A%(D) ¥ ¢»( o ) S
Dead Eea?,, (D)
Next take the sum over the conditional entropies as specified in Definition 2.4,
divide by n and take the limit for n — oc. This shows, as claimed, that hf}'C(Ci" )<

Rir<(CL). Now take the infimum over all invariant (@, n)-partitions C&, the infimum

over all invariant (K, n)-partitions CX and, finally, let 7 - co. This concludes the
proof. O

5. Invariant W-control sets. In this section, we will describe certain subsets
of complete approximate controllability within a subset of the state space called
control sets. They will yield a relatively invariant set K as considered in Theoremns
4.3 and Theorem 4.4.

For systems in discrete time, subsets of the state space where approximate or
exact controllability holds, have been analyzed in diverse settings. Relevant contri-
butions are due, in particular, to Albertini and Sontag [1, 2], Sontag and Wirth [23],
Wirth [26, 27] as well as Patrdo and San Martin [20] (there are subtle differences
in the definitions).

We recall the following notions and facts from the abstract framework in [20],
slightly modified for our purposes. A local semigroup & on a topological space X
is a family of continuous maps ¢ : dom¢ — X with open domain domqb C X such
that for all ¢,v € S with ¥~ !(dome) # 0 it follows that ¢ o ¢ : v~ !(domg) = X
also is in S.

For z € X the orbit is Sz = {¢(z){¢ € § and z € dom¢ } and the backward
orbit is

= L . _ _ —1 4
Sz={yeXFpeS: o) =2s}=], 4@ (35)

A local semigroup S is called accessible if int(Sx) # @ and int(S*z) # @ for all
ze€ X.

Definition 5.1. A control set for a local semigroup S on X is a nonvoid subset
D C X such that (i} y € cl(Sz) for all z,y € D (ii) for every x € D there are
¢ € S,n € N, such that ¢, 0---0¢:(x) € D for all » € N and (iii) the set D is
maximal with this property.

The transitivity set Dy of D is the set of all elements z € D such that x €
int(S*z).

Remark 11. Patrio and San Martin [20] define control sets in the following slightly
different way: A control set for § is a subset D C X such that y € cl(Sz) for
all z,y € D, the set D is maximal with this property, and there is x € D with
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z € int(S*x). The latter condition means that the transitivity set is nonvoid.
Hence a control set as defined above with nonvoid transitivity set is a control set
in the sense of [20]. Conversely, for an accessible semigroup Patriao and San Martin
show that a control set D in their sense has the following properties:

The transitivity set Dy is open and dense in D and invariant in D, i.e., SDgND C
Dy (cf. [20, Proposition 4.10]) and, by [20, Proposition 4.8),

D =cl{(Sz) " 8"z for z € Do. {36)

It follows that property (ii) in Definition 5.1 is satisfied. In fact, this is clear for
z € Dy and for an arbitrary point z in D there is ¢ € & with ¢(x) € Dy, since Dy
is open. Thus for an accessible semigroup the control sets as defined above with
nonvoid transitivity set coincide with the control sets in the sense of [20].

The following result is Patrdo and San Martin [20, Propesition 4.15].

Proposition 2. Let D be a control set with nonvoid transitivity set Dy for an
accessible local semigroup &. Then the transitivity set Dy is open and dense in D
and the following stotements are equivalent:

(i) cl(Sx) CclD for allz € D.

(i) D is closed and S-invariant, i.e., St € D for all r € D.

(#i) clD is S-invariant.

Next we use these concepts in our context. Again we consider control system
(1), but now we will restrict the state space to an open subset of the state space
M. Forw € Q let f, := f(,w) : A — Af. Then the solutions ¢{k,z,u),u = (w;}
can be written in the form

(F(kvxtu) = fl&’k-i o---0 wa(I).
Let W be an open nonvoid subset of the state space M. The maps f.,« € {1,
generate the following family of continuous maps on W:
f2(z) := fo(x) : domf® — W,domfl := {z € W|f(z,w) € W}
and for k > 1 and u = (wp,...,wr-1) € OF
fox) = fu,_, 00 Juo(z) ! domfk - W,
donq.f;ic e {IE i'VlfWi-l °"‘°fwo(1) ceWiori=1,...,k— 1}.
Observe that the domain of f¥ is open and the maps f,, are continuous. Hence it
follows that ‘
Si={fflkeNuel} (37)
forms a local semigroup on X = W.

For x ¢ W,z € U and k € N the corresponding solution of (1) in W is denoted
by gw (k,z,u), if the solution of (1) satisfies ¢(f,x,u) € W for i = 1,...,k. Thus
ow(k,z,u) = ff(-’b‘)

Definition 5.2. For 2 € M the W-reachable set R" (z) and the W-controllable
set C"'(z), resp., are
RY(z):={yeW|Ik>1Tueld:y= pwlkx,u)},
CV(z):={yeW|FBueld Ik>1:pwkyu) =z}

Note that in the language of local semigroups one has R¥ (z) = Sz and CW (z) =
S*x. Next we specify maximal subsets of complete approximate controllability
within W,
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Definition 5.3. For system (1) a subset D C W is called a W-control set if
(i) D C clwRW(z) for all z € D, (ii) for every z € D there is © € U with
owlk,z,u) € D,k € N, and (iii) D is a maximal set with properties (i) and (ii).
A W-control set D is called an invariant W-control set if R% (z) ¢ clyy D for all
z € D.

Here the closures are taken with respect to W, and [or an invariant W-control set
cwRY(z) = cly D for all x € D. If W = M, we omit the index W and just speak
of control sets and invariant control sets (if they have nonvoid interior they actually
coincide with the control sets and invariant control sets, respectively, considered in
Colonius, Homburg, Kliemann [8]). The transitivity set Dy of & W-control set D is
the set of all z € D with z € intS*z = intC¥ (z).

1t is inunediate that the W-control sets coincide with the control sets for the
local semigroup § on X = W defined in (37). Accessibility of the considered local
semigroup S means that

intRY (z) # 0 and intCW(z) # @ for all z € W, (38)
This is certainly valid if
it flz, QNW £Band int{ye W|3w e Q: f(y,w)=z} #0 for all z € W. (39)

If accessibility holds, Proposition 2 shows that a W-control set I with nonvoid
transitivity set Dy is an invariant W-control set if and ounly if clyD = D and
RW(z) ¢ D for all z € D if and only if RW (2) C clyD for all z € cly-D. In
particular, an invariant We-control set is an invariant set in W.

It is also of interest to know when closedness in W of a W-control set already
implies that it is an invariant W-control set. The proof of the following proposition
is adapted from Wirth [26, Proposition 4.1.4].

Proposition 3. Suppose that control system (1) satisfies accessibility condition
(38).

(i) Then every invariant W-control set D is closed in W and has nonvoid inte-
TioT.

(i) If for every x € W the set cly [f(z, ) N W] is path connected, then a W-
control set D which is closed in W and has nonvoid interior is an invariont W-
control set.

Proof. (i) By the previous remarks the set D is closed and has nonvoid interior
since @ # intRY (y)  D. (ii) If D = W, there is nothing to prove, Otherwise
we have to show for every z € D that clwRW(z) C chy D or, equivalently, that
RW(z) C D, since D is closed in W. For every y € D there are k € N and a
control % such that @ (k,y,u) € intD. By continuous dependence on initial values
there exists an open neighborhood V (y) of y with ¢ (k, V(y),u) C intD. Taking
the union of all V(y) one finds an open set V' 3 D such that for every z € V
the intersection RY(z) NintD # @ and therefore D C clywRY(z). Assume now,
contrary to the assertion, that there exist x € D and a control value w such that
flx,w) € W\ D. As D C clwRW(z) there exists y € RW(z) N D and hence
there is w €  with f(z,w) € D, by maximality of W-control sets. We have shown
that clw [f(z, )N D] # 0 and el [f(z, Q)N W] & D. Since clw [f(z, Q)NW] is
path connected by assumption, it follows that there exists z € clw [f(z, Q)N W] N
(V\ D). By continuity, this implies that z € clyRW (y) for all y € D and, by
construction of V, one has D C clyRWY(z) and thus z € D hy the maximality
property of control sets. This is a contradiction. O
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The following result constructs a set K which is invariant in @ and satisfies the
assumptions of Theorem 4.3, hence it determines the invariance entropy.

Theorem 5.4. Suppose that control system (1) satisfies accessibility condition (38)
and let Q C M be compect and equal lo the closure of its interior W = intQ.
Furthermore, assume

(i) there are only finitely many invariant W-control sets Dy,..., D¢ and their
transitivity sets are nonvoid.

(ii) For every x € Q there is an invariant W-control set D; C cIRY (z).

(iii) Let K := Uf‘:l c1D;, suppose that this union is disjoint and that f{K,Q) N
(OQ\K)=0.

Then every set clD; and hence K is invariant in Q).

If n is a quasi-stationary measure for v on  and the maps f(-,w),w € N, are
nonsingular with respect to n, then the invariance entropies with respect to u = ' xn
of K and Q coincide with

[4
max hu(elDs) < hu(K) = ku(Q) <Y hu(clDy). (40)

ief1 P
Proof. The assumption implies that the boundaries of Q and W coincide, 8@ = oW,
First we show that for every invariant W-control set D its closure ¢lD is invariant
in the set @. This also implies that K is invariant in @. By Proposition 2 D is
closed in W and hence clD = DU{8D N SQ). Suppose, contrary to the assertion,
that there are z € clD and w € Q with f(x,w) € @\ clD. If z € D then invariance
in W of D = clw D implies that ¢ = f{z,Q)N(W\ D) = f(z, Q)N(W \ clD). Since
0Q = OW it follows that f(z,w) € 8Q \ ¢lC. But assumption (iil) excludes this
case. It remains to discuss the case z € D N JQ. Then either flz,w) € W\ D
or f(r,w) € 8Q\ D. In the first case, Proposition 2 implies D = cl{Dg) and
hence continuity of f implies that there is y € Dy with f(y,w) € W\ D. This is
excluded since D is invariant in W. The second case f(z,w) € 9Q \ D is excluded
by assumption (iii) and it follows that clD is invariant in Q. Assumptions (i} and
(ii) show that for every xr € @ there are an invariant W-control set D;, a natural
number ko and a control w stich that ¢(kp,z,u) is in the transitivity set Dy of D;.
Since Dy is open, continuity with respect to x and compactness of @ imply that
the assumptions of Theorem 4.3(ii) are satisfied and it follows that h,(Q) = k. (K).
The inequalities in (40) follow by invariance of ¢lD; in @ from Theorem 4.3(iii). O

Next we discuss when the assumptions of Theorem 5.4 are satisfied. The following
theorem characterizes the existence of finitely many invariant W-control sets.

Theorem 5.5. Consider a control system of the form (1) satisfying accessibility
condition (38).

(i) Let x € Q and assume that there ezists a compact set I C W such that for
ally € RY () one has clRY ()N F # 0. Then there exists an invariant W-control
set D C el RY (x).

(ii) If there is a compact set F C W such that lR¥ (@)NF # 0 for allz € Q,
then for every x € Q there is an invariant W-control set D with D € clRY (z) and
there are only finitely many invariant W-control sets Dy, ..., Dy.

(iii) Conversely, suppose that for every x € Q there is an tnvariant W-control
set D with D C ¢IRW () and there are only finitely many invariant W -control scts
Dy,..., D¢ and they all have nonvoid trunsitivity set. Then there is a compact set
F CW such that RW(z)NF # 0 for allz € Q.
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Proof. (i) For y € R% () let F(y) := cIRY (y) N F. Consider the family of nonvoid
and compact subsets of W given by F = {F(y) [y € F(z)}. Then F is ordered via

F(y) < F(2) if z € ARY ().
Every linearly ordered subset {F(y;),i € I'} has an upper bound

F(y) = ier F(y;) for some y € ﬂie! F(y),

since the intersection of decreasing compact subsets of the compact set F is nonvoid.
Thus Zorn’s lemma implies that the family F has a maximal element F(y). Now
the set

D= cleW(y)

is an invariant W-control set: Note first that by condition (38) the set D has
nonvoid interior. Every z € D is in clyRW(y) and, conversely, ¥ € clyRW(2)
for every z € D since otherwise y ¢ F(2) = RV (2)NF C lwRY(y)NF =
F(y), hence F(y} = F(z) and F(y) # F(z) contradicting the maximality of F(y).
Continuity implies that for all 21, 22 € chyyR% (y) one has 22 € clywRY (1), hence
D = clywRY(y) is a W-control set. It is an invariant D-control set since for z €
D = dwRWY(y) continuity implies R¥(2) C clwRY(y) = D. (ii) Let z € Q.
Then, by (i), one finds an invariant W-control set in clR" (z). Suppose that there
are countably many pairwise different invariant W-control sets D,,,n € N. Thus
clRW(y) =D, CclyD,VdQ for all y € D,,. Since D, is closed in W = intQ
and F C W, the property cIlRWY(y) N F # @ implies that D, N F # (. There are
points ¥, € Dy, N F converging to some point ¥y € F. By part (i) one finds an
invariant W-control set I contained in cly R% (), and hence there is a point z in
the intersection of R%Y (y) and the interior of D. Now continuity implies that for
every n large enough there is a point z, in D, with RW(z,) NintD # @. This
contradicts invariance in W of the W-control sets D,,. (iii) Choose for each of the
finitely many invariant W-control sets D;,i = 1,...,¥, a point x; € D; and define
F = {z,...,2¢}. Let z € Q. By assumption, there is an invariant W-control
set D; contained in cIR" (x). Hence there is a point in the intersection of RW (z)
and the transitivity set of D;, thus (36) implies that z; € R" (z) and the assertion
follows. 0

It remains to discuss when an invariant W-control set has a nonvoid transitivity
set. Obviously, this holds if for the local semigroup & one has that Sz and §*z
‘are open, cf. San Martin and Patrdo [20, Corollary 5.4} for a situation where this
oceurs. Instead of this strong assumption, we will require smoothness of f and use
Sard’s Theorem as well as some arguments from Wirth [27].

Consider a control system of the form

Trr1 = f(Th, k) k EN= {O,IV - -}’ (41)

under the following assumptions: The state space M is a C°°- manifold of dimensicn
d endowed with a corresponding metric. The set of control values & C R™ satisfies
Q C cl(int€2). Let €2 be an open set containing clf2. Themap f: M xQ — M isa
C*-map and W C Af is a nonvoid open subset.

We define for k£ > 1 a C*°-map

Fi : W x intQ* o W, Fi(z, 1) := ow(k, T, u).
The domain of Fy is an open subset of W x QF,
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A pair (z,u) € W x intQ* is called regular, if rank 9k (z,u) = d (clearly, this
implies mk > d). For € M and k € N the regular W-reachability set and the
regular IV-controllability set, resp., are

RY () := {yeW|3ue intQ* : y = g (k, z,u) and (z,u) is regular },
Cl(r):={yew |3u € intQ* : pw(k,y,u) =z and (y, u) is regular },

and the regular W-reachability set R"(z) and W-controllability set CW (z) are
given by the respective union over all £ € N. It is not difficult to see that RW (z)
and C% (z) are open for every x (cf. Wirth [27, Lemma 8]). In the notation of the
local semigroup S defined in (37) one has

CY¥(z) c imCY(z) = intS"z.
In order to show that the transitivity set of a control set is nonvoid, we start with
the following observations. IfR}Y (x) # @ it follows that R}¥ (z) # @ for all k > ko.

Accessibility condition (38) implies for all z € W that there is ko € N such that for
all k > ko one has intR} (z) # @ and
RY(x) C iy = ew(k, z,u) € intRY (x) lu € intQ*}.

Sard’s Theorem (cf., e.g., Katok and Hasselblatt {15, Theorem A.3.13]) implies that
the set of points oy (k, z,u) € R}¥ (z) such that (z, ) is not regular has Lebesgue
measure zero.

The following proposition presents conditions which imply that the transitivity
set of a control set is nonvoid.

Proposition 4. Consider system (41) and assume that accessibility condition (38)
holds. Then for every W-control set D C W with nonvoid inlerior the transitivity
set Dy is nonvoid.

Proof. Let x € intD and consider an open neighborhood Vi € D of . There is
ko € N such that the reachable set R}Y (x) at time % has nonvoid interior for all
k > ky. There are k > ky and @ (k,z,u) € RY (z) NintD, hence we may assume
that there is y = pw(k,z,u) € intR} (z) NintD. Then, by Sard's Theorem,
it follows that there is a point y = pu(k,z,u) € intD with regular (z,u), ie.,
y € intDNRY (). Then z € Ci(y) C intC(y). Let V C intC(y) be a neighborhood
ofx. Thenx € D C cIRW(y), hence there is z € VNRY (y) € D and thus y € C(z).
By construction, the point 2 € D satisfies z € intC(y) C intC(z), hence it is in the
transitivity set of D. ()

Remark 12. Wirth [27] defines (for W = M) the regular core of a control set D
denoted by core( D)) as the set of points in D for which the regular reachability and
controllability sets intersect D and shows, under real analyticity assumptions, that
core(D) is open and dense in clD. Thus core(D) C Dy. This generalizes earlier
results by Albertini and Sontag [1, Section 3] and [2, Section 7] (again for W = AM).
They define the core of a control set as

{r e intD}intR(z) N D # & and intC{z) N D # &}, {42)
and assume, in particular, that for every w € Q the map f, := f(-,w) is a global
diffeomorphism on M and that for all z € A the set of points which can be reached
by finite compositions of maps of the form f,, and f;?! applied to z coincides with
M. They show that the core is open and that it is dense in D. Again, it is clear
that the transitivity set of I is contained in the core as defined in (42).
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The results above give conditions which imply that the metric invariance entropy
for a quasi-stationary measure is determined by the invariant W-control sets. It may
be of interest to analyze the relations between the supports of quasi-stationary mea-
sures and IW-control sets. For ergodic stationary measures 5, Colonius, Homburg
and Kliemann [8, Lemma 5] shows (for certain random diffeomorphisms) that the
support of 7 coincides with an invariant control set. The following proposition gives
a result in that direction.

In the setting of (3) define the k-step transition function ka(a:, A, re Q,ACQ,

P20, A) i= plz, A),p2 (2, A) = fQ 121, Apla, dy), k> 1.
Then {cf. Colonius [6, Remark 2.8]) it follows for all k > 1 and all A C @ that
FniA) = jQ P2z, An(dz). (43)

Proposition 5. Consider control system (1) and let Q C M be equal to the closure
of its interior W := intQ). Consider an inveriant W-control set D with nonvoid
transitivity set Dy and let 1 be a quasi-stationary measure for v on Q. Assume
that for every x € W,k > 1 and y € R (z) every ncighborhood V(y) satisfies
Pk(l‘, V(y)) > 0.

Then every quasi-stationary measure n with suppnyN D # & salisfies D C suppn.

Proof. Suppose, contrary to the assertion, that there is y € D \ suppy. Since
W \ suppn is open in W there is a neighborhood V' (y) of y in W suach that V(y) N
suppn = &. By Proposition 2 the transitivity set Dy is dense in D, hence we may
take y € Dy. By assumption, there is z € suppnN D. Thus £ € R} (y) for some
k > 1. By continuity, there is a neighborhood V(z) such that R}V () NV (y) # &
for all z € V{z) and, by the definition of the support, one has 5(V(z}) > 0. The
assumption guarantees that p,?(z, V(y)) > 0 for all z € V(z). This contradicts the
quasi-stationarity property (43), since (D \ suppn) = 0, while

f P (2, D \ suppn)n(dz) > / p2(z, V{y))n(dz) > 0.
Q V()
O

The results above show that the metric invariance entropy of a subset @ of
the state space is already determined on a subset K that can be characterized
using controllability properties. For the topological invariance entropy of systems
in continuous time, an analogous result has been shown in Colonius and Lettan [0,
Theorem 5.2].

Finally, we present two examples illustrating W -control sets and their relation
to invariance entropy. First we take a closer look at Example 2.9 in order to discuss
W-control sets in a simple situation.

Example 5.6. Recall that f, : R/Z x [-1,1] — R/Z is given by
felz,w) =z + occos(2rz) + Aw+a mod 1.
For a < ag there is an invariant control set D® = [d(a), e{a)] # R/Z that varics
cpntinuously with a. For a > ap the only control set is the invariant control set
D> =R/Z.
Now consider @ > ag and W = (0.2,0.5). There is a unique invariant W-
control set D™, which has the form D™ = [d(c),0.5). Then one easily sees that the
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invariant 1V-control sets D® are closed in W and their transitivity sets are nonvoid.

Furthermore, the closure clD* = [d(«),0.5] is invariant in @ := W = [0,2,0.5].
For the uniform distribution » on Q := [~1,1], [8, Theorem 3] implies that for ali

a > 0 there is a unique stationary measure 7* satisfying n(B) = [, sz.P(z, B)n(dx)

for all B < R/Z. It has support equal to the invariant control set D>, TFora >
ag Theorem 5.4 shows that for every quasi-stationary measure 7* of @ = W
the invariance entropy of @ coincides with the invariance entropy of the closure
clD* = [d(ex), 0.5] of the invariant W-control set D™ as already seen in Example 2.9.
From Proposition 5 we obtain the additional information that the quasi-stationary
measure 7j, has support equal to ¢1D® = [d(a), 0.5].
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Extremal graphs for (44) and the WW-control sets )
Dy(0) = [a(a), b(a)) and Dy(w) = [d(a},0.7) in Q = [0.1,0.7}
{here A = 0.05,0 = 0.1 and & = 0.08)

We modify this example, so that in addition to an invariant W-control set D there
is there is a second W-control set D§ (to the left of D§) which is not invariant.

Example 5.7. Define f, : R/Z x [-1,1] - R/Z by
falz,w) =z + ocos(drz) + Aw+a mod 1. (44)

This is illustrated in the figure above. Here @ = [0,1,0.7] and with W = (0.1,0.7)
the invariant W-control set is D§ = [d(«x),0.7) (to the right). The W-control set
D§ = [a{a),b{e)) (to the left) is not invariant in W, since exit to the right is
possible. Invoking Theorem 5.4 one sees that for every quasi-stationary measure 5®
of Q = clW (such that fo(-,w),w € [-1, 1], are nonsingular) the invariance entropy
for p™ of @ coincides with the invariance entropy of clDg. As above, for the uniform
distribution r on § there is no stationary measure with support contained in @Q.

The many open problems in this area include the following, When is the support
of a quasi-stationary measure contained in the (closure of) the union of the invariant
W-control sets? In this situation, Theorems 4.3 and 4.4 would hold trivially, since,
naturally, the metric invariance entropy is determined on the support of the quasi-
stationary measure {cf. also Remark 10). Theorem 5.4 reduces the analysis of the
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invariance entropy from arbitrary closed sets @ to invariant W-control sets. Hence
their measure theoretic invariance entropy is of particular interest. For control sets,
the topological invariance entropy has been characterized in Kawan [16] and da
Silva and Kawan [10] using hyperbolicity and Lyapunov exponents.

Acknowledgments. I would like to thank two anonymous reviewers for their help-
ful comments.
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