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1 Introduction

Although the direct effects of greenhouse gases on global temperature are relatively
well understood, estimation of the overall effects is complicated due to the existence
of feedback mechanisms in the climate system. These mechanisms have the
potential to accelerate global warming due to their self-enforcing character (e.g.,
Wolff et al. 2015)." The most important feedback mechanisms in the climate system
are:

— Snow and ice albedo feedback Albedo is the fraction of the incoming solar
radiation which is reflected from the earth back into space. Hence, the lower the
albedo, the higher is the atmospheric temperature. Snow and ice have a high
albedo, whereas water and land surface uncovered by snow or ice have a much
lower albedo. Consequently, as snow and ice melts due to increasing
temperatures, more of the sun’s energy is absorbed. This leads to a further
warming which in turn melts even more snow and ice implying a further
decrease in albedo and further rising temperatures (IPCC 2013).

— Ocean carbon sink feedback Oceans absorb huge amounts of carbon dioxide
depending on the atmospheric CO, concentration, the water temperature and
biological processes triggered by plankton. As global warming can affect all
parts of the atmospheric-ocean carbon exchange chain, long-term projections are
difficult. However, it is obvious that an increase in water temperatures reduces
the oceans’ uptake capacity (Arora et al. 2013; Heinze et al. 2015).
Consequently, with increasing temperatures a larger share of CO, emissions
remains in the atmosphere leading to a further warming.

— Permafrost carbon feedback Permafrost is permanently frozen soil which often
contains large amounts of organic carbon. When the soil thaws due to rising
temperatures, the carbon content will become unlocked and be released to the
atmosphere as CO, or CHy. These additional emissions lead to further
increasing temperatures and a further thawing of permafrost soils (see Sect. 2
for more details).

Evaluating the economic consequences of climate feedback mechanisms is a
relatively new challenge. So far, these mechanisms have been omitted almost
completely in the integrated assessment of climate change and the economy.” In the
present paper we focus on the permafrost carbon feedback (PCF) which is one of the
most studied and best understood climate feedback mechanisms. We show how to
incorporate the PCF into the mathematical setup of the well-known integrated
assessn;ent model DICE-2013R (see Nordhaus 2013) and derive some empirical
results.

' Additionally, there also exist some so-called negative feedback mechanisms that can slow down global
warming (see, e.g., Wolff et al. 2015).

2 The only exception is a short paper recently published by Gonziles-Eguino and Neumann (2016)
which, however, is more limited in scope than our analysis—see also Sect. 3.

* For readers not familiar with the DICE-2013R model we provide a short description in the Appendix.
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Integrated assessment models (IAMs) are a popular tool when studying the
economics of climate change (e.g., Hof et al. 2012). The major components of those
IAMs are a neoclassical growth model and a climate module that is linked to the
economic model. Important characteristics of those IAMs are their intertemporal
formulation and the incorporation of a long time horizon. Since greenhouse gases
have a long residence time in the atmosphere (often more than 100 years), this
model setup is necessary for a meaningful assessment of climate change. Taking
into account the mitigation costs and potential climate damage costs, one major
subject of study in IAMs is the economically optimal emission mitigation path.
Although we are aware of massive reservations against these models, we do not
agree with the part of criticism that climatic feedback loops are “largely unknown”
(Pindyck 2013, p. 870). On the contrary, we try to improve the model results by
integrating the PCF to slightly reduce the simplifications of DICE-2013R.

The use of DICE-2013R for this paper has several reasons. Since the
development of the first version of DICE (Nordhaus 1994), it is probably the most
popular ITAM in the economics of climate change and its codes are publicly
available.* Due to its popularity, DICE entails the advantage that our results are
comparable with those of many other studies using the same model family. This is
particularly important since climatic feedbacks are closely related to tipping points5
and potential catastrophes which have been assessed in a couple of studies within
the DICE framework. For example, Mastrandrea et al. (2001) and Keller et al.
(2004) show that optimal emission mitigation increases when uncertainty and
potential catastrophes are included in the DICE-94 model. Ackerman et al. (2010)
present a similar analysis for DICE-07, and Rezai (2010) introduces an upper limit
for the atmospheric carbon absorption to account for potential catastrophes.
Moreover, Lemoine and Traeger (2014) use DICE-07 to analyze the impact of
multiple tipping points that reinforce each other’s economic impacts.

The paper is organized as follows. In the next section, we describe the PCF in
more detail by summarizing the current state of theory and empirical evidence. In
Sect. 3 we show how to incorporate the PCF into DICE-2013R and how to calibrate
the new PCF-related parameters. In Sect. 4 we discuss some empirical results
derived from our extended model, and in Sect. 5 we summarize the paper.

2 The permafrost carbon feedback

Permafrost is soil (sediment or rock) which remains below 0 °C for 2 or more years
and covers about a quarter of the northern hemispheric land surface. Especially in
the high-latitude permafrost regions temperatures have risen 0.6 °C per decade over
the last 30 years, which is twice as fast as the global average (IPCC 2013). Thus,

* See http://www.econ.yale.edu/ ~ nordhaus/homepage/.

> The term “tipping point” refers to critical thresholds where earth’s climate abruptly moves between
relatively stable states. When the system is already close to such a tipping point, even small changes in
temperature can have dramatic consequences which are hard to predict. Examples are the melt of the
Greenland ice sheet, the shutoff of the Atlantic deep water formation or the collapse of the Indian summer
monsoon (Lenton et al. 2008).
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permafrost regions are very sensitive to global climate change. Moreover, in these
regions soils have the highest mean soil organic carbon contents. Boreal and Arctic
ecosystems contain approximately 50% of global terrestrial organic carbon below
ground (Tarnocai et al. 2009). At higher latitudes, these are frozen over by
permafrost, and the embedded greenhouse gases are effectively locked away.
However, when the soil thaws due to rising temperatures, the greenhouse gases will
become unlocked and be released as carbon dioxide and methane due to the
microbial decomposition of organic carbon. These additional emissions accumulate
in the atmosphere, accelerate global warming and constitute the PCF.

However, uncertainties exist about the timing and the range of the potential
carbon release (Bradford et al. 2016) as the details of the decomposition processes,
the quality of soil carbon and the horizontal and vertical distribution of soil carbon
are not entirely known (Burke et al. 2012). Further sources of uncertainty include
differences in snow and organic matter properties, the spatial variability of thawing
permafrost, the amount of thawed carbon which decomposes into carbon dioxide or
into methane and the assumptions about the initial carbon stock as the effects of
increasing temperatures are contingent.’® Higher carbon fluxes (e.g., Schaefer et al.
2011) are due to faster permafrost degradation simulations. As a consequence,
estimates about the permafrost sensitivity, which describes the carbon release per
degree of warming, differ considerably and range from 20 to 177 Gt/°C
(Friedlingstein et al. 2006). Additionally, negative feedbacks might be triggered,
as increasing decomposition in thawing permafrost can lead to a higher nitrogen
availability which in turn can intensify plant growth, mitigating previous carbon
losses (Koven et al. 2015). Although this effect is regarded as rather small, it
highlights further uncertainties.

Despite the uncertainties discussed above, it is obvious that the PCF leads to
irreversible consequences. According to a survey by Schuur et al. (2015) different
climate models using the RCP 8.5 scenario’ (as most studies do) estimate that the
carbon release from thawing permafrost by the year 2100 will lie in the range of
37-174 Gt carbon with an average of 92 + 17 Gt. Moreover, a study by
MacDougall et al. (2012) which is not included in the survey above estimates a
maximum carbon release between 68 and 508 Gt by the year 2100. In contrast, as
will be justified in more detail below, our analysis is based on a rather conservative
estimate by Schneider von Deimling et al. (2012) indicating a carbon release of 63
Gt by the year 2100 which is even below the above mentioned average of 92 + 17
Gt.

There is clear evidence that the additional carbon release due to the PCF leads to
an enhanced surface warming but the estimated values differ considerably due to the
uncertainties discussed above. Most studies that investigate the impact of thawing
permafrost on temperature refer to the high concentration pathway RPCS8.5.
Schaefer et al. (2014) show by comparing 14 published estimates on impacts of the

© According to Schuur et al. (2015) these assumptions range from 500 Gt to 1488 Gt carbon.

7 The abbreviation RCP refers to the four “Representative Concentration Pathways” (RCP2.6, RCP4.5,
RCP6, RCP8.5) that describe greenhouse gas concentration trajectories used for climate modeling. These
scenarios define different radiative forcing values (2.6, 4.5, 6.0, 8.5 W/mz) by the year 2100 relative to
pre-industrial values in 1850 (see van Vuuren et al. 2011).
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Table 1 Additional increase in atmospheric temperature due to the PCF in the years 2100 and 2200 for
different RCP emission scenarios (Schneider von Deimling et al. 2012)

Lower boundary Best guess Upper boundary

2100 (°C) 2200 (°C) 2100 (°C) 2200 (°C) 2100 (°C) 2200 (°C)

RCP2.6 0.01 0.03 0.03 0.06 0.06 0.13
RCP4.5 0.02 0.07 0.05 0.14 0.10 0.29
RCP6.0 0.02 0.10 0.05 0.20 0.11 0.46
RCP8.5 0.04 0.18 0.10 0.38 0.23 0.78

PCF on global temperatures based on RCP8.5 scenarios values from 0.13 °C up to
0.7 °C by the year 2100. Burke et al. (2012) calculate for the same period a
temperature increase between 0.08 and 0.36 °C for RCP8.5 and between 0.02 and
0.11 °C for RCP2.6 (each referring to the Sth to 95th percentile). These values are
slightly higher compared to the median estimates (68% range) by Schneider von
Deimling et al. (2012) shown in Table 1.

In principle, each of the studies mentioned above could be used for calibrating
our extension of DICE-2013R. However, due to three reasons we decided to use the
estimates of Schneider von Deimling et al. (2012) shown in Table 1. First, the
authors provide the most comprehensive assessment of the temperature increase
caused by the PCF considering different RCP scenarios and multiple points in time.
Second, the authors did calculate not only a “best guess” for each RCP scenario but
they also specified an upper and lower boundary. And third, compared to other
studies the estimates of Schneider von Deimling et al. (2012) are rather conservative
which ensures that our results will not overrate the consequences of the PCF.

3 Integrating the PCF into DICE-2013R

When modeling climate feedback mechanisms it is most important to account for
their self-enforcing character: An increase in temperature triggers a feedback
mechanism which leads to a further increase in temperature. Consequently, for
integrating the PCF into the mathematical setup of DICE-2013R we include the
atmospheric temperature increase ATa7(f) as an additional endogenous argument
into the equation which describes greenhouse gas emissions E(?):

E(t) = Ena(t) + Eqer(t) + &1 (1) x ATap(1)?". (1)

The variables E;,q(f) and Eg4.((?) represent endogenous emissions from industrial
processes and exogenous emissions from land use changes as in the original model,

and our extension & () X ATAT(t)Sz(’) causes the respective feedback loop:® Due to
increasing temperatures AT 51(?) the permafrost thaws step by step which leads to an
increased release of greenhouse gases depending on the parameters ¢;(f) > 0 and

% Our extension in (1) represents the simplest functional form that suffices to meet the requirements as
described in the calibration section.
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ex(f) > 0.° As a result, the greenhouse gas concentration in the atmosphere
intensifies which leads to further rising temperatures and a further thawing of
permafrost.

In the next step, a reliable calibration of ¢,(f) and &,(¢) requires that our extended
version of DICE-2013R is able to reproduce the temperature increase caused by the
PCF as estimated by Schneider von Deimling et al. (2012). Their estimates,
however, are based on the assumption that climate policy does not respond to the
PCF. Consequently, to ensure compatibility with them, for our calibration runs we
have to fix the mitigation rates in the extended version of DICE-2013R to the
magnitudes resulting from the original DICE-2013R which does not account for the
PCF. The accumulated emissions as well as the radiative forcing resulting from the
original model represent a close match of the respective magnitudes assumed in the
RCP4.5 scenario.'® Therefore, we use the RCP4.5 estimates of Schneider von
Deimling et al. (2012) for calibrating ¢;(¢) and &(¢).

Following the approach outlined above, we fixed the mitigation rates according
to the outcome of the original DICE-2013R model and calculated the temperature
increase resulting from these fixed rates in our extended version of DICE-2013R."!
This proceeding ensures that climate policy in the calibration runs ignores the PCF
as assumed by Schneider von Deimling et al. (2012). Next, we run this setup
multiple times resetting the parameters ¢(f) each time until the additional
temperature increase caused by the PCF in the years 2100 and 2200 resulted
exactly in the “best guess”-magnitudes for the RCP4.5 scenario shown above in
Table 1. Moreover, for the starting year 2010 we required an additional temperature
increase of zero which is also in line with the underlying study of Schneider von
Deimling et al. (2012). Finally, we repeated this procedure for the lower as well as
for the upper boundary estimates shown in Table 1.

The parameters ¢;(¢) resulting from our calibration are shown in Table 2 for the
best guess scenario as well as the lower and the upper boundary scenario. These
expressions look somewhat peculiar due to the variable ord(f) which is part of the
GAMS syntax. It simply displays the number of the period that is currently
considered [e.g., in period 10 we obtain ord(f) = 10]. This time-dependent
formulation is necessary to meet the estimates by Schneider von Deimling et al.
(2012). The reasons for this complication are twofold: On the one hand, the long
residence time of greenhouse gases in the atmosphere entails that additional
emissions due to thawing permafrost take effect for many subsequent periods. On
the other hand, when a certain degree of warming is reached, the majority of the

° As will be explained below, the additional parameters ¢,(f) and &,(f) must be time-dependent to allow
for a reliable calibration.

1% More precisely, the accumulated emissions and the radiative forcing of the original DICE-2013R
model are slightly above the respective values of RCP4.5 and considerably below RCP6.0. Consequently,
using the RCP4.5 estimates of Schneider von Deimling et al. (2012) for calibrating €; implies that we
slightly underrate the impacts of the PCF. In contrast, using the RCP6.0 estimates would lead to
considerably overrating these impacts.

"' All calculations in this paper have been processed with the GAMS-software (“general algebraic
modeling system”) using the CONOPT-3 solver. This is the same setup that is used by Nordhaus (2013)
for solving the DICE-2013R model. The program file is available from the corresponding author on
request.
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Table 2 Calibration results for the parameters €, and €, based on the RCP4.5 scenario

Lower boundary Best guess Upper boundary
€ 0.750rd(r) " 2.550rd(r) ™! 5.20rd(r) "
& 2.9 4 20rd(r) " 2.35 4 20rd(r) ! 2.35 4 20rd(r) "

permafrost has already thawed and less additional emissions are released into the
atmosphere. Taken together, these two effects imply that the additional increase in
temperature caused by the PCF follows a logistic trend in time, which is
disproportionately high during the first part of the time horizon and disproportion-
ately low afterwards. Consequently, with constant parameters & we would meet
either the estimate for 2100 or the estimate for 2200, but never both. In contrast, the
time-dependent expressions in Table 2 become smaller over time because
ord(?) increases. As a result, the impact of the PCF is diminishing in the long run
as it is projected by the natural sciences.

To demonstrate the validity of our calibration, Fig. 1 shows the additional
increase in temperature due to the PCF that results if we employ the parameter
values ¢(f) that stem from our calibration runs using the best guess scenario.
Additionally, the three points marked by the symbol A represent the underlying
estimates by Schneider von Deimling et al. (2012) which are in line with our
simulation results. Moreover, the turning point in the graph shown in Fig. 1, where
the additional temperature increase becomes disproportionately low, occurs by the
year 2150. This is also consistent with Schneider von Deimling et al. (2012) who
estimate that most of the emissions caused by thawing permafrost will occur
roughly up to 2150.

Finally, before presenting our empirical results it is necessary to distinguish our
analysis from the work recently published by Gonzales-Eguino and Neumann
(2016). Except for some technical features, there are three main differences:

0,2 1
0,15 A+
0,1 1

0,05

temperature increase due to PCF [°C]

our simulation results A estimates by Schneider von Deimling et al. (2012)

Fig. 1 Temperature increase due to the PCF in the best guess scenario: comparing our simulation results
with the estimates of Schneider von Deimling et al. (2012)
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e First, Gonzéles-Eguino and Neumann (2016) use a carbon budget approach
where the temperature increase is handled as an additional restriction and kept
below 2 °C. For this constrained scenario, the authors calculate the welfare
maximizing mitigation rates. In contrast, we follow the original approach of
DICE-2013R and calculate the unconstrained welfare maximum. Hence, in our
analysis the resulting increase in temperature is completely endogenous.

e Second, in the work of Gonzales-Eguino and Neumann (2016) emissions from
permafrost follow an exogenously given time path, whereas in our analysis PCF-
related emissions explicitly depend on temperature thereby constituting an
endogenous feedback loop.

e Third, Gonzales-Eguino and Neumann (2016) calculate the increase in
mitigation rates and the associated cost to society that occur if the 2 °C target
has to be met in the presence of emissions from permafrost. In contrast, we also
calculate the economic losses resulting from a mitigation policy which ignores
the PCF.

4 Results for the PCF

In this section, we discuss the results from using the DICE-2013R model with the
PCF extension as described above and compare them to the original results of
Nordhaus (2013). The major endogenous policy variables are the mitigation rates
() which describes the share of emissions avoided. Figure 2 shows the “base
level” of the mitigation rates resulting from the original DICE-2013R model as
calculated by Nordhaus (2013).'* For the first period (i.e., the year 2010) the
mitigation rate is exogenously fixed. The first endogenously optimized mitigation
rate occurs in the year 2015 with roughly 20%. From that point on, the mitigation
rate rises steadily until it reaches its (temporary) upper limit of 100% in the year

120% -

100% A

80% A

60% A

40% A

20% A

mitigation rates [%]: base level

0%

Fig. 2 Optimal mitigation rates in the original DICE-2013R model (“base level”)

'2 For convenience, in the text as well as in the figures mitigation rates are expressed as percentages
although in the original GAMS file the variables u(f) are expressed as decimals.
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2120. Subsequently, beginning in 2155 the upper limit is relaxed to 120% which
causes another jump in Fig. 2. Of course, mitigation rates above 100% imply that
more emissions are avoided than even occurring. This could be interpreted as the
employment of some carbon removal techniques which become available by 2155
(e.g., climate engineering)."”

Next, we present the results of our own calculations using the DICE-2013R
model with the PCF extension for the best guess scenario as well as for the upper
and the lower boundary.'* To enhance the graphical depiction, Fig. 3 does not show
the absolute mitigation rates but their difference to the base levels as shown in
Fig. 2. As indicated by Fig. 3, in all scenarios the resulting mitigation rates are
slightly above the base levels.'> The reason for this difference is obvious: The PCF
leads to increased emissions, and therefore, to increasing climate damages. Hence,
mitigation becomes more favorable.

For all three scenarios the mitigation rates’ differences to the base level
increase steadily until they drop down to zero in 2125 since mitigation rates
approach to their upper limit in our extended model as well as in the original
version. The differences to the base level are biggest in the upper boundary
scenario where the PCF is most severe. In this scenario, the differences rise up
to roughly 2.7% points. This might seem to be rather small but two crucial
points need to be emphasized. First, as already mentioned in Sect. 2, the
magnitudes concerning the PCFs impact on the temperature as shown in Table 1
are quite conservative guesses compared to other studies. And second, our model
considers only one type of feedback mechanism; when multiple feedbacks are
considered simultaneously, the overall impact could be expected to be much
higher.

Also the differences shown in Fig. 3 are small compared to the results of related
papers investigating uncertainty and potential catastrophes (Keller et al. 2004;
Ackerman et al. 2010). However, these results are only partially comparable. We
deal with climate feedbacks that enhance damages but we do not deal with
uncertainty about these damages. In contrast, the above cited papers explicitly
consider uncertainty leading to much higher emission mitigation rates that can be
considered as a risk premium to insure against catastrophes (Nordhaus 2008
pp. 137; Weitzman 2010).

An important variable directly related to the mitigation rate is the temperature
increase. Although our extended model leads to higher mitigation rates compared to
Nordhaus (2013) the corresponding atmospheric temperature exceeds the base level
resulting from the original version of DICE-2013R. These differences in

13 However, neither Nordhaus (2013) nor Nordhaus and Sztorc (2013) offer an explicit justification for
relaxing the upper limit in 2155.

14 It should carefully be noted, that the fixation of the mitigation rates u(¢) to the base level in Sect. 3 was
only for the purpose of calibrating the parameters g;. The results discussed here, of course, rely on
endogenously optimized mitigation rates.

!> Generally, the PCF-related increase in mitigation rates calculated with our approach is smaller
compared to the results obtained by Gonzales-Eguino and Neumann (2016). The reason is that their
model forces the increase in temperature to stay below 2 °C, whereas unconstrained welfare
maximization in our model leads to a peak increase in temperature of about 3.4 °C.
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Fig. 3 Difference between optimal mitigation rates with PCF and base level mitigation rates according
to Fig. 2
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Fig. 4 Temperature increase—difference between our results with optimized mitigation rates and the
original DICE2013R model

temperature, as shown in Fig. 4, indicate that even in the optimum, enhanced
mitigation will only avoid a part of the temperature increase caused by the PCF.
However, as easily can be checked, the additional increase in temperature that
remains after enhanced mitigation stays well below the reference values for the
RCP4.5 scenario presented in Table 1.

Next, to investigate potential economic impacts, we compute the output losses
that are caused if climate policy ignores that optimal adaption to the PCF requires
increasing mitigation rates. Each calculation for the best guess scenario as well as
for the upper and the lower boundary proceeds in three steps:
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output loss [trillions of $ US]

=—hest guess —&—lower bound —8&— upper bound

Fig. 5 Output loss that is caused if climate policy ignores the PCF

e In the first step, we calculate the output that results if the optimal mitigation
rates as derived from our extended model are employed.

e In the second step, the mitigation rates are fixed to the reference values (base
level) that stem from the original DICE-2013R without the PCF. Hence, our
model is forced to employ suboptimal low mitigation rates. This yields the
output that results if climate policy ignores the PCF although its mechanism is
present in the model.

e In the third step, the differences in output between the optimal run (first step)
and the run with fixed mitigation rates (second step) are calculated. These
differences can be interpreted as the economic losses that occur if the PCF is
ignored.

The undiscounted losses in output (trillions of $US) resulting from these
calculations are shown in Fig. 5.'° Noticeable, the economic impact for roughly the
first 100 years is very small since output losses tend to be around zero or even
slightly below in all three scenarios. Negative losses imply that actually the
suboptimal climate policy with fixed mitigation rates is economically beneficial in
those periods. The reason for this is obvious: The optimal climate policy requires
higher mitigation rates. This leads immediately to higher mitigation costs, whereas
the majority of the benefits in terms of a lower atmospheric carbon concentration
accrue in the distant future. Consequently, when considering only the first couple of
periods, employing suboptimal low mitigation rates is beneficial.

However, things change drastically by the year 2125 when the graphs suddenly
get steeper and output losses become considerably positive. This turn can easily be
explained: As indicated by Fig. 3, in 2125 the optimal mitigation rates converge to
the base level rates shown in Fig. 2. Hence, in the following years there are no more

' The same calculations can be performed for the variables consumption and investment. The resulting
diagrams are mostly similar to those for output.
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additional mitigation costs implied by the optimal policy but the economy still
profits from the increased mitigation rates in the past.

Finally, we calculated the net present value of output losses employing a pure
rate of social time preference of 1.5% as used by Nordhaus (2013). The resulting
magnitudes range from 0.9 trillion $US in the lower boundary scenario, to 1.5
trillion $US in the best guess scenario and 3.2 trillion $US in the upper boundary
scenario. Compared to the overall net output this implies relative losses ranging
from 0.02 to 0.08%. These figures might seem pretty low. However, since the
benefits of taking into account the PCF when determining the optimal mitigation
rates occur in the distant future, there is an enormous bias caused by discounting.
Moreover, as already mentioned above, our results are based on rather conservative
estimates of the impact on temperature caused by the PCF.

5 Conclusions

Previous studies on the economics of climate change based on integrated assessment
models almost completely omitted the additional effects of feedback mechanisms
within the climate system. From the viewpoint of integrated assessment modeling,
the most important feature of these mechanisms is their self-enforcing character
which leads to endogenous feedback loops. In this paper, we focused on the
permafrost carbon feedback (PCF) which is one of the most studied and best
understood climate feedback mechanisms. We showed how to incorporate the PCF
into DICE-2013R and how to calibrate the new parameters. Subsequently, we
derived some empirical results concerning the economic impacts of the PCF.

Our results showed that maximizing welfare in the presence of an endogenous
feedback loop caused by PCF-related emissions requires an increase in mitigation
rates that amounts up to 2.7% points (depending on the scenario considered). At first
glance, this might seem rather small. However, analyzing multiple feedback
mechanisms simultaneously should considerably amplify the impacts illustrated.
Moreover, our results are based on rather conservative estimates concerning the
impact of the PCF on temperature.

Concerning overall welfare we calculated the economic losses resulting from a
mitigation policy which ignores the PCF. It turned out that the main losses occur far
in the future when mitigation rates with and without considering the PCF converge
such that there are no more additional mitigation costs but the economy would still
profit from increased (optimal) mitigation rates in the past. Moreover, this delayed
occurrence of losses together with the impact of discounting leads to comparatively
small economic effects ranging from —0.02 to —0.08% when the present value of
output is considered.

Of course, we are aware that our analysis can provide only some first insights
concerning the incorporation of endogenous feedback loops into integrated
assessment models and the resulting economic consequences. Except for the PCF
there is still huge uncertainty about the different feedback mechanisms’ quantitative
impacts on the climate system. Consequently, more studies from the natural
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sciences are necessary before these mechanisms can be properly calibrated and
included into integrated assessment models like DICE.

Appendix: Short description of the DICE-2013R model

The utility in DICE is expressed as a standard constant-relative-risk-aversion utility
function for neoclassical growth models:

(1)

Ule(t),L(1)] = L(1) [C(’) ]

1—o

with 7 indicating the specific period (one period accounts for 5 years), c(f) is per
capita consumption, L(f) is the population and « is the elasticity of marginal utility
of consumption. The objective is to maximize the welfare function W. The latter
consists of the discounted utility summed over a finite time horizon:

Wie(r), L(1)] = Zﬁmcw,wn. )

The parameter p is the pure rate of social time preference such that 1 / (1+ ,o)t_1

is the discount factor. The production function is of Cobb—Douglas type:
Y(t) = A()K(t)'L(r)" 7. (3)

A(?) is the total factor productivity, K(7) is the capital stock, L(#) is not only the
population but also the labor input and y is the elasticity of output with respect to
capital. The link to the climate module is formed via greenhouse gas emissions
which are caused by production due to an exogenous emission coefficient [see also
Eq. (7)]. These emissions accumulate in the atmosphere. The carbon dioxide con-
centrations in the atmosphere and in the oceans are interrelated, since oceans are
considered a huge sink for emissions (Nordhaus 2008 p. 43). As described below by
Egs. (9)—(14), the accumulated emissions lead to a higher atmospheric greenhouse
gas concentration which causes the radiative forcing to increase and ultimately
cause the surface temperature to increase. The impact of this temperature increase is
given by the following damage function Q(#) which indicates the share of output that
is lost due to climate damages:

Q1) = o1 x ATar(t) + 02 x ATar(1)”. (4)

AT A1(2) is the increase of the atmospheric global mean temperature compared to
the pre-industrial level, and o, as well as g, are parameters that determine the shape
of the damage function. To avoid damages, emissions can be reduced by mitigation
activities. The accompanying costs A(?) are expressed as the share of output that is
lost due to mitigation activities. The cost function describing A(?) is given by:
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A(t) = oy - u(0)" (5)

with u(?) indicating the share of avoided emissions, and /; as well as i, are
parameters that determine the shape of the mitigation cost function.

To sum up, €(¢) indicates the share of output lost due to climate damages,
whereas A(t) indicates the share of output lost due to mitigation activities.
Consequently, weighting the gross output Y(#) by the multipliers [1 — Q(7)] and
[1 — A(»)] yields the remaining net output:

Vo) = [1 = QO[T = AWDJADK (L)' (6)

Equation (6) highlights the typical trade-off in climate policy: More emission
mitigation leads to higher mitigation costs A(¢) resulting in a decreasing net output.
However, at the same time, more emission mitigation leads to lower damages
Q(¢) resulting in an increasing net output.

Finally, the net output is divided into consumption and investment:
Yuet (1) = C(t) + I(t). This creates the typical trade-off in neoclassical growth
models. Output is either consumed directly or invested in physical capital to
increase the consumption possibilities in the future.

Emissions are caused by production depending on an exogenous emission
coefficient () which declines over time to simulate carbon-saving technological
change. Accounting for abatement activities, the remaining emissions from
production are given by:

Eina() = o(1)[1 — u(t)]A(1)K (1) 'L(1) " (7)

with p(7) indicating the mitigation rate, i.e., the share of emissions avoided. Besides
emissions from production the model also accounts for exogenously given emis-
sions from land use changes (e.g., deforestation) which are denoted by Eg.¢(?).
Hence, the complete emissions are given by:

E(t) = Eina(t) + Eger(2). (8)

These emissions accumulate in the atmosphere and cause the atmospheric carbon
concentration to increase. The latter is interrelated with the concentrations in
different layers of the oceans. The concentrations in the atmosphere M1(?), in the
upper ocean Myp(f) and in the lower ocean M| o(f) and their interrelationship are
shown in Egs. (9)—(11):

Mar(t) = E(t) + [1 — @3] X Mar(t — 1) + @y X Myo(t — 1), 9)
Muyo(t) = Q1o X Mar(t — 1) + @ay X Myo(t — 1) + @3 X Mro(t — 1),  (10)
ML()(Z) = @23 X MU()(I — 1) + @33 X MLO(I — 1) (11)

The atmospheric concentration Mar(f) is composed of the current emissions, the
share of the concentration remaining from the previous period plus the share of the
upper oceanic concentration from the previous period that diffuses into the
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atmosphere. The upper oceanic concentration Myp(f) consists of the remaining
share from the previous period plus the absorptions from the atmosphere and the
lower oceans. The concentration in the lower oceans M| () is the remaining share
of the previous period plus the absorption from the upper oceans. The parameters ¢;;
control these relationships between different reservoirs and periods.

In the next step, the atmospheric carbon concentration Mar(f) increases the
radiative forcing from the sun F(7) represented by:

MAT(t)

F(t) =nx —200
(1) = > M a1 (preind)

Fexog(?) (12)
with # being a parameter that controls the impact of increasing greenhouse gas
concentrations and Mar(preind) indicating the pre-industrial level of these con-
centrations. The term F,,,4(7) covers the additional radiative forcing caused by other
greenhouse gases or aerosols that are exogenous in the model.

Finally, the increasing radiative forcing results in an increase of temperatures in
the atmosphere ATA1(¢) as well as in the oceans AT(t) as given by Egs. (13) and
(14):

ATar(t) = ATar(r — 1)
+ G)I[F(l) — a)zATAT(Z — 1) — 0)3(ATAT(Z — 1) — ATo(Z — 1))], (13)

ATo(t) = ATo(f — 1) + 0)4[ATAT(f — 1) — ATo(t — 1)] (14)

The change in atmospheric temperatures according to (13) results from the
change of the previous period, as well as from the current radiative forcing that is
corrected for the previous period and the interference between atmosphere and
oceans. Analogously, the temperature change in the oceans according to (14) is
computed from the change of the previous period that is corrected for the
interference between the oceans and the atmosphere. These relationships between
radiative forcing and the temperature in different carbon reservoirs or different
periods, respectively, are controlled by the parameters ;.
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