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Abstract

In [12] it is suggested that due to topological reasons, a suitable modi�cation of the holomorphic curve equation is
crucial for proving Weinstein conjecture in dimension three. In this regard, instead of the usual pseudoholomorphic
curves, the following H−holomorphic curves (here H stands for �harmonic�) are considered. For a closed contact
co-oriented 3−manifold (M,α), where α is the contact form, a closed Riemann surface (S, j) with complex structure
j, and a �nite subset P ⊂ S, a smooth map u = (a, f) : S\P→ R×M is called a H−holomorphic curve if

παdf ◦ j = J(f) ◦ παdf,
f∗α ◦ j = da+ γ,

holds, where πα : TM → ξ is the projection along the Reeb vector �eld Xα to the contact structure ξ = ker(α), J
is a dα−compatible almost complex structure on ξ, and γ is a harmonic 1−form on S with respect to the complex
structure j, i.e. dγ = d(γ ◦ j) = 0. Moreover, it is assumed that the energy of u, de�ned by

E(u,S\P) := sup
ϕ∈A

∫

S

ϕ ′(a)da ◦ j∧ da+

∫

S

f∗dα

is �nite, where A = {ϕ : R→ [0, 1] | ϕ ′(r) > 0,∀r ∈ R}. In [3], the proof of Weinstein conjecture in dimension three
is reduced to a compactness problem of certain moduli spaces for the H−holomorphic curve equation. The aim of
the thesis is to analyze the compactness properties of the space of H−holomorphic curves. As a matter of fact, we
give a positive answer the following question. Given a sequence of H−holomorphic curves (un,Sn, jn,Pn,γn) with
the properties:

� the cardinality of the set of punctures Pn and the genus of Sn is constant;

� the L2−norm of γn, de�ned by

‖γn‖2L2(S) :=
∫
Sn

γn ◦ jn ∧ γn,

is uniformly bounded by a constant C0 > 0;

� the energies E(un; 
S) are uniformly bounded by a constant E0 > 0;

is it possible to derive a notion of convergence and to describe the limit object? It should be pointed out that the
classical convergence results of Symplectic Field Theory (SFT) established in [6] and [7] cannot be applied here;
both versions rely on the monotonicity lemma, a result which is unknown for H−holomorphic curves.
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Chapter 1

Introduction

Let M be a closed, connected, 3−dimensional manifold and let α be a 1−form on M such that (M,α) is a contact
manifold. Denote by Xα the Reeb vector �eld with respect to the contact form α on M. There is a major interest
in describing the orbit structure of the dynamical system


x = Xα(x). (1.0.1)

In general, this is a very hard problem, and in particular, the question on the existence of periodic orbits is relevant.
A very in�uential conjecture on the existence of periodic orbits is due to A. Weinstein [22].

Conjecture 1. (Weinstein conjecture) Every Reeb vector �eld Xα on a closed connected 3−dimensional

contact manifold (M,α) admits a periodic orbit.

Actually, the Weinstein conjecture which is formulated for contact manifolds of arbitrary odd dimension, was proven
by Taubes in dimension three [19]. There is however a strong version of the Weinstein conjecture [3], which is still
an open problem. To solve it, one is hoping to apply pseudoholomorphic curve techniques.

Conjecture 2. (Strong Weinstein conjecture) For every Reeb vector �eld Xα on a closed connected 3−dimensional

contact manifold (M,α), there exists �nitely many periodic orbits xi : R/TiZ → M of period Ti > 0, for
i = 1, ...,n, so that

n∑
i=1

[xi] = 0,

where [xi] is the �rst homology class represented by the loop xi.

An interesting feature of the Weinstein conjecture or the strong Weinstein conjecture is that it is closely related to
pseudoholomorphic curve theory for contact manifolds. Let us make this more precise. Denote by ξ = ker(α) the
contact structure and let πα : TM → ξ be the canonical projection along the Reeb vector �eld Xα. Furthermore,
choose J : ξ → ξ as a dα−compatible almost complex structure. Denote by J the extension of J to a R−invariant
almost complex structure on R×M by mapping 1 ∈ TR to Xα and Xα to −1 ∈ TR. Let (S, j) be a closed Riemann
surface and denote by P ⊂ S a �nite subset whose elements are called �punctures�. The following de�nition is due
to Hofer in [12].

De�nition 3. A proper map u = (a, f) : S\P→ R×M is called pseudoholomorphic if

J(u) ◦ du = du ◦ j on S\P (1.0.2)

2



CHAPTER 1. INTRODUCTION 3

and ∫
S\P

f∗dα <∞
is satis�ed.

Remark 4. We have the following.

1. By projecting onto the contact structure through πα, the pseudoholomorphic curve equation (1.0.2) can be
written as

παdf ◦ j = J(u) ◦ παdf
f∗α ◦ j = da

(1.0.3)

From the second equation of (1.0.3) it is apparent that f∗α ◦ j de�nes the trivial cohomology class.

2. The quantity ∫
S\P

f∗dα

will be referred to as the dα−energy and denoted by Edα(u;S\P). By local computation it can be shown
that the integrand f∗dα is non-negative.

3. If P 6= ∅ then the function a of a pseudoholomorphic curve u = (a, f) is unbounded in a neighborhood
of each puncture from p ∈ P. To prove the unboundedness, assume that U is a closed neighborhood of
p in S\P such that a(U) ⊂ [−K,K] for some K > 0. Because u|U is proper, (u|U)−1([−K,K] ×M) = U

has to be compact which is a contradiction. In this case, the function a tends either to +∞ or −∞ in a
neighborhood of a puncture p ∈ P. To show this, assume that this is not the case. Then there exists a point
p ∈ P and two sequences {xn}n∈N and {yn}n∈N in S\P with the properties: limn→∞ xn = limn→∞ yn = p,
limn→∞ a(xn) = ∞, and limn→∞ a(yn) = −∞. By continuity, there exists a sequence of points pn ∈ S\P
such that pn → p and a(pn) = 0 for all n ∈ N, while by properness, u−1({0} ×M) = a−1(0) is a compact
subset of S\P; this is a contradiction to the fact that pn ∈ a−1(0) and pn → p ∈ P. As a result, the set P
can be written as P = Pq P, where P is the subset of punctures p ∈ P at which the function a tends to +∞
in a neighborhood of p and P is the subset of punctures at which a tends to −∞.

4. For a non-constant pseudoholomorphic curve u, the set of punctures P is not empty. Assume that P = ∅.
Then by Stokes theorem, the dα−energy is zero, and so, the image of f lies in a Reeb trajectory. By the
maximum principle, the a coordinate is constant, and we have that f(p) = x(h(p)) for p ∈ S . Here, x is a
Reeb trajectory, and h : S→ S1 if x is periodic and h : S→ R if x is not periodic; in both cases, dh = 0. By
local computation it follows that h has to be constant. Hence u is constant and we are led to a contradiction.

5. If u is a pseudoholomorphic curve and P 6= ∅, then u is non-constant.

6. From the properness condition of De�nition 3, the Hofer energy EH of a pseudoholomorphic curve u, de�ned
by

EH(u;S\P) = sup
ϕ∈A

∫
S\P

u∗d(ϕα), (1.0.4)

is �nite, i.e.
EH(u;S\P) < +∞.

Here, the set A consists of all smooth maps ϕ : R→ [0, 1] with ϕ ′(r) > 0 for all r ∈ R. To prove this assertion
we express the Hofer energy as

EH(u;S\P) = sup
ϕ∈A

∫
S\P

u∗d(ϕα) = sup
ϕ∈A

[∫
S\P

ϕ ′(a)da ◦ j∧ da+

∫
S\P

ϕ(a)f∗dα

]
, (1.0.5)
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and note that ϕ ′(a)da ◦ j∧ da is non-negative. Since the function ϕ is bounded by 1 and the dα−energy is
bounded, the term ∫

S\P

ϕ(a)f∗dα

is bounded. What is left to show is that

sup
ϕ∈A

∫
S\P

ϕ ′(a)da ◦ j∧ da

is bounded. To prove this result we employ the same arguments as in Lemma 5.15 from [6]. More precisely,
for a function ϕ ∈ A we compute∫

S\P

ϕ ′(a)da ◦ j∧ da =
∑
p∈P

lim
n→∞

∫
∂D 1

n
(p)

ϕ(a)f∗α−

∫
S\P

ϕ(a)f∗dα. (1.0.6)

The second term on the right hand side of (1.0.6) is bounded since the dα−energy of u is bounded. To estimate
the �rst term on the right-hand side of (1.0.6) we proceed as follows. We assume that the function ϕ has the
asymptotic ϕ(r) → c± ∈ [0, 1] as r → ±∞. Let Mn,p := a(D1/n(p)) ⊂ R. For p ∈ P set rn,p := inf(Mn,p),
for p ∈ P set rn,p := sup(Mn,p), and de�ne accordingly r+n := minp∈P(rn,p) and r−n := maxp∈P(rn,p).
Obviously, from the properness condition of De�nition 3, r±n → ±∞ as n → ∞ . De�ne now the following
sequence of functions

ϕn(r) =


ϕ(r+n) , r > r+n
ϕ(r) , r ∈ (r−n , r

+
n)

ϕ(r−n) , r 6 r−n

.

At the points r±n we make this function smooth and still denote it by ϕn. Since ϕ ′(r) > 0 for all r ∈ R, we
have ϕn(r) 6 ϕ(r) for all r ∈ R. Furthermore, for every r ∈ R,

|ϕ(r) −ϕn(r)| 6 εn,

where
εn = max{|c+ −ϕ(r+n)|, |c

− −ϕ(r−n)|}.

Obviously, εn → 0 as n→∞, and so,∫
S\P

ϕ ′n(a)da ◦ j∧ da =
∑
p∈P

lim
n→∞

∫
∂D 1

n
(p)

ϕn(a)f
∗α−

∫
S\P

ϕn(a)f
∗dα

=
∑
p∈P

lim
n→∞

∫
∂D 1

n
(p)

ϕn(a)f
∗α+

∑
p∈P

lim
n→∞

∫
∂D 1

n
(p)

ϕn(a)f
∗α

−

∫
S\P

ϕn(a)f
∗dα

= ϕ(r+n)
∑
p∈P

lim
n→∞

∫
∂D 1

n
(p)

f∗α+ϕ(r−n)
∑
p∈P

lim
n→∞

∫
∂D 1

n
(p)

f∗α

−

∫
S\P

ϕn(a)f
∗dα.



CHAPTER 1. INTRODUCTION 5

Moreover, by means of Stokes theorem,∣∣∣∣∣
∫
∂D 1

n
(p)

f∗α

∣∣∣∣∣ 6
∫
S\P

f∗α+

∣∣∣∣∫
∂D1(p)

f∗α

∣∣∣∣
for all n ∈ N and all p ∈ P. Hence, ∫

S\P

ϕ ′n(a)da ◦ j∧ da <∞
for all n ∈ N. Since ϕ ′n is a monotone sequence converging pointwise to ϕ ′, and the quantity da ◦ j∧ da is
non-negative, the monotone convergence theorem gives∫

S\P

ϕ ′n(a)da ◦ j∧ da→
∫
S\P

ϕ ′(a)da ◦ j∧ da

as n→∞.

The next result which is due to Hofer [11] shows that the Weinstein conjecture is equivalent to the existence of a
non-constant pseudoholomorphic curve. For this reason, throughout this thesis, we assume that all periodic orbits
are non-degenerate. This means that for every periodic orbit x of period T , the linear map dφαT (x(0)) : ξx(0) → ξx(T)
does not contain 1 in its spectrum.

Theorem 5. For the closed, 3−dimensional contact manifold (M,α), the associated Reeb vector �eld Xα has

a periodic orbit if and only if the nonlinear partial di�erential equation (1.0.2) has a non-constant solution

of �nite Hofer energy.

Having a solution u of (1.0.2) with �nite Hofer energy, a periodic orbit of the Reeb vector �eld Xα can be obtained
by investigating the local behavior of u in a neighborhood of a puncture. In this regard, it has been shown that a
non-constant solution of (1.0.2) with �nite Hofer energy is asymptotic to a periodic orbit of the Reeb vector �eld
Xα in a neighborhood of a puncture [13]. To explain how periodic orbits of Xα are related to pseudoholomorphic
curves, let u : S\P→ R×M be a pseudoholomorphic curve in the sense of De�nition 3 and let p ∈ P. A su�ciently
small neighborhood of p in S\P can be biholomorphically identi�ed with [0,∞)× S1 with respect to the standard
complex structure i. Then there exists a periodic orbit x of period |T | 6= 0 of Xα, such that

lim
s→∞ f(s, t) = x(Tt), and lim

s→∞ a(s, t)s
= T in C∞(S1),

where (s, t) are the coordinates on [0,∞)× S1. It should be pointed out that the assumption on a non-empty set
of punctures is essential for the existence of a non-constant solution of the nonlinear partial di�erential equation
(1.0.2) and so of the existence of a periodic orbit of the Reeb vector �eld Xα.
There is one obvious question which should be addressed. Why does one replace the problem dealing with the
behavior of an ordinary di�erential equation (i.e. �nding periodic orbits) by the apparently much more sophisticated
question about the existence of a certain solution for a nonlinear �rst order elliptic partial di�erential equation?
The reason is the following. Due to Darboux theorem in the contact setting, periodic orbits of the Reeb vector �eld
Xα are not completely contained in such a Darboux chart. Thus the reason for the existence of periodic orbits of
the Reeb vector �eld Xα has to be global and linked with the topology of the manifold M and the Reeb condition
of the vector �eld Xα. For the moment it is very promising to study the orbit structure of the dynamical system
as described in (1.0.1) or more precisely the Weinstein conjecture in dimension three, with pseudoholomorphic
curve methods. The pseudoholomorphic curve problem exhibits an enormous amount of structure and helps to
view the Weinstein conjecture from a global point of view. So far, a proof of the Weinstein conjecture with
pseudoholomorphic curve techniques is unknown. In the following we will sketch a strategy suggested by Hofer [12]
and developed further by Abbas et al. [3].
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In [12] Hofer suggested an interesting modi�cation of equation (1.0.3), which depends on the genus of the domain;
in the case of genus 0, the old equation is obtained. In this modi�ed version, f∗α ◦ j does not represent the trivial
cohomology class, but rather some non-trivial cohomology class. Hence f∗α◦ j in the second equation of (1.0.3) can
be replaced by

d(f∗α ◦ j) = 0.

It turns out that if we insist on keeping the speci�c behavior of the pseudoholomorphic curve near the punctures
(which is essential for the existence of a periodic orbit of Xα) we have to require that the cohomology class of f∗α◦ j
is trivial on a punctured neighborhood of each puncture. Thus in a neighborhood of each puncture we can still
write f∗α ◦ j = da. As in [12] we will call (a, f) a local lift of f in a neighborhood of a puncture. This additional
cohomology condition can be formulated as

[f∗α ◦ j] ∈ τ∗H1(S;R),

where τ : S\P ↪→ S is the inclusion. Hence we have replaced the second equation f∗α ◦ j = da of (1.0.3) by the two
requirements d(f∗α ◦ j) = 0 and [f∗α ◦ j] ∈ τ∗H1(S;R). We point out that these two conditions do not involve the
R−coordinate a from u = (a, f). Summing up, the modi�cation of the partial di�erential equation (1.0.3) are

De�nition 6. A smooth map f : S\P→M is called H−holomorphic if

the map f is non-constant; (1.0.7)

παdf ◦ j = J(u) ◦ παdf on S\P; (1.0.8)

d(f∗α ◦ j) = 0 on S\P; (1.0.9)

[f∗α ◦ j] ∈ τ∗H1(S;R); (1.0.10)

near each puncture a local lift (a, f) is proper; (1.0.11)∫
S\P

f∗dα <∞. (1.0.12)

Note that if S is a Riemann sphere (of genus 0) we have H1(S;R) = 0, and so, these equations are equivalent to the
old ones and the local analysis of such a solution remains the same. Let us describe an equivalent de�nition of this
modi�ed pseudoholomorphic curve equation which is much more usable and will be used throughout this thesis.
Conditions (1.0.9) and (1.0.10) imply that

[f∗α ◦ j] = τ∗[ψ]

for a speci�c [ψ] ∈ H1(S;R). Here ψ is a closed 1−form on S, and due to the Hodge theorem, which states that
H1(S;R) ∼= H1

j (S) where H
1
j (S) is the vector space of harmonic 1−forms with respect to the complex structure j on

S, we can assume ψ to be a harmonic 1−form on S. Hence we obtain [f∗α ◦ j] = [τ∗ψ], where τ∗ψ is a harmonic
1−form on S\P. Consequently, there exists a function a : S\P → R which is unique up to addition by a constant
such that

f∗α ◦ j = da+ τ∗ψ on S\P,

where τ∗ψ is a harmonic 1−form. In this regard, the following de�nition makes sense.

De�nition 7. A smooth and proper map u = (a, f) : S\P→ R×M with a bounded Hofer energy (EH(u;S\P) <
+∞) is called H−holomorphic if it satis�es the equations

παdf ◦ j = J(u) ◦ παdf
f∗α ◦ j = da+ γ

on S\P (1.0.13)

for a harmonic 1−form γ ∈ H1
j (S).
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Remark 8. From the above discussion it is apparent that equations (1.0.8)�(1.0.10) imply (1.0.13). Conversely,
every smooth map u = (a, f) : S\P → R ×M satisfying f∗α ◦ j = da + γ for a harmonic 1−form γ ∈ H1

j (S) also
satis�es the conditions d(f∗α ◦ j) = 0 and [f∗α ◦ j] ∈ τ∗H1(S;R). Thus, conditions (1.0.7)�(1.0.11) are equivalent
to (1.0.13). It is also obvious that condition (1.0.11) is equivalent to the properness condition of De�nition 7. The
boundedness of the energy in De�nitions 6 and 7 are equivalent. In the case P = ∅ this is evident. For P 6= ∅ this
can be seen as follows. Assume that f : S\P→M is a H−holomorphic curve in the sense of De�nition 6. Applying
the above procedure we obtain a smooth, proper map u = (a, f) : S\P → R×M satisfying equations (1.0.13) and
having a �nite dα−energy. To prove that the Hofer energy of u is bounded, we argue as in Remark 4. A general
representation for the Hofer energy of H−holomorphic curves is

EH(u;S\P) = sup
ϕ∈A

∫
S\P

ϕ ′(a)da ◦ j∧ da−
∑
p∈P

lim
r→0

∫
∂Dr(p)

ϕ(a)γ ◦ j+
∫
S\P

ϕ(a)f∗dα

 . (1.0.14)

Obviously, (1.0.14) is similar to (1.0.5) for usual pseudoholomorphic curves, excepting the term∑
p∈P

lim
r→0

∫
∂Dr(p)

ϕ(a)γ ◦ j.

However, even in the case of H−holomorphic curves, this additional term vanishes; from∣∣∣∣∫
∂Dr(0)

ϕ(a)γ ◦ j
∣∣∣∣ 6 ∫

∂Dr(0)

|ϕ(a)||γ ◦ j| 6 d(r) ‖γ ◦ j‖C0(S) ,

where d(r) is the circumference of ∂Dr(p) with respect to some Riemannian metric on S, and the fact that d(r)→ 0
as r→ 0 (the Riemannian metric is de�ned over the set of punctures P), the conclusion readily follows. Hence, the
Hofer energy of H−holomorphic curves can also be computed by means of (1.0.5). As a result, the energy condition
(1.0.12) implies the boundedness of the Hofer energy from De�nition 7. Conversely, the boundedness of the Hofer
energy trivially implies the boundedness of the dα−energy. In the case P 6= ∅ we deduce using De�nition 7 that f
is non-constant. Indeed, if f is constant, the Hofer energy vanishes, and from

0 = sup
ϕ∈A

∫
S\P

ϕ ′(a)da ◦ j∧ da

we get da = 0; thus, a is constant. Consequently, u is constant, and so, the properness property is contradicted.
Hence for P 6= ∅, De�nitions 6 and 7 are equivalent.

In our treatment, theH−holomorphic curves are de�ned as in De�nition 7. Note that the second equation of (1.0.13)
has the same form as the old pseudoholomorphic curve equation up to addition by an element from H1

j (S)
∼= R2g,

where g is the genus of the Riemann surface (S, j). Therefore, such solutions are called H−holomorphic curves (H
standing for harmonic).
The modi�ed pseudoholomorphic curve equation plays an important role in [3] and in particular, in [1]. In [3]
the authors initiated a program of proving the general Weinstein conjecture in dimension three with methods
of symplectic geometry, or more precisely with pseudoholomorphic curve techniques. Essentially, they reduced
the proof of the general Weinstein conjecture to a compactness problem of the moduli space of solutions of the
H−holomorphic curve equation. One of the main tools in [3] is based on the so-called Abbas solutions, which have
been constructed in [1]. Here the use of the H−holomorphic curve equation is essential. To understand the main
motivation for the use of the H−holomorphic curve equation we explain brie�y the main results of [1], and how
the Abbas' solutions �t in the context of [3]. In this way the motivation of the H−holomorphic curve equation will
become apparent. We begin with some relevant de�nitions of [1].
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De�nition 9. (Open Book Decompositions) Assume K ⊂M is a link in M and that τ :M\K → S1 is a �bration
so that the �bers Fϑ := τ−1(ϑ) are interiors of compact embedded surfaces Fϑ with boundary ∂Fϑ = K, where ϑ is
the coordinate along K. We also assume that K has a tubular neighborhood K ×D, D ⊂ R2 being the open unit
disk, such that τ restricted to K× (D\{0}) is given by τ(ϑ, r,φ) = φ, where (r,φ) are polar coordinates on D. Then
we call τ an open book decomposition ofM, the link K is called the binding of the open book decomposition, and
the surfaces Fϑ are called the pages of the open book decomposition.

It is known that every closed, 3−dimensional, orientable manifold admits an open book decomposition. In par-
ticular, the notion of an open book decomposition on a contact, 3−dimensional manifold can be connected to the
contact data.

De�nition 10. (Supporting Open Book Decomposition) If (M,α) is a closed, 3−dimensional contact manifold
and τ an open book decomposition with binding K we say that τ supports the contact structure ξ = ker(α) if there
exists a contact form α ′ representing the same contact structure as α so that dα ′ induces an area-form on each �ber
Fϑ with K consisting of closed orbits of the Reeb vector �eld Xα, and α ′ orients K as the boundary of (Fϑ,dα ′).

The above contact form α ′ will be referred to as the Giroux contact form. Every co-oriented contact, 3−manifold
(M,α) is supported by some open book [10]. Now we will state the main result of [1].

Theorem 11. Let (M,α) be a closed 3−dimensional contact manifold. Then there exists a contact form

α ′ = fα on M, where f : M → R is a smooth positive function such that the following holds. There exists

a smooth family (S, jτ,Pτ,uτ = (aτ, fτ),γτ)τ∈S1 of solutions of (1.0.13) for a suitable compatible complex

structure J : ker(α ′)→ ker(α ′) such that

1. all maps fτ have the same asymptotic limit K at the punctures, where K is a �nite union of periodic

orbits of the Reeb vector �eld Xα;

2. for τ 6= τ ′, fτ( 
S) ∩ fτ′( 
S) = ∅;

3. M\K =
∐
τ∈S1 fτ(


S);

4. the projection P onto S1 de�ned by p ∈ fτ( 
S) 7→ τ is a �bration;

5. the open book decomposition given by (P,K) supports the contact structure ker(α ′), and α ′ is a Giroux

contact form.

Practically, Abbas constructed a supporting open book decomposition whose pages are images of solutions of the
H−holomorphic curve equation. His construction is as follows. Starting with a supporting open book decomposition
for the closed 3−dimensional contact manifold (M,α), which is possible due to Giroux [10], a Giroux contact form,
which has a certain normal form near the binding, is constructed. By an argument established �rst by Chris Wendl
in [21] and [20], the Giroux leaves are transformed to pseudoholomorphic curves by taking into account that one
has a confoliation form (α∧ dα > 0) instead of a contact form. Picking one Giroux leaf as starting point, a result
which enables to perturb the Giroux leaf into a H−holomorphic curve, while at the same time transforming the
confoliation form into a contact form, is established. At this step the harmonic perturbation 1−form in the equation
(1.0.13) plays an essential role. Actually, a 1−dimensional local family of solutions of the H−holomorphic curve
equation (and not just one) is constructed. Let us describe this step in more detail. Starting with a Giroux leaf
which is a solution of the pseudoholomorphic curve equation, the problem of �nding a local 1−dimensional family
of leaves, which are solutions of the H−holomorphic curve equation, is transformed into a transversality issue of a
certain elliptic perturbed Cauchy-Riemann type operator and whose perturbation is a compact operator determined
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by the harmonic perturbation 1−form. This transformation is achieved by using the �ow of the Reeb vector �eld
in a similar way as we do in Appendix B. Having on honest transversality result, the index of the linearization of
this operator has to be positive. If S has a genus di�erent from 0, the index of this operator without considering
the harmonic perturbation is 2 − 2g; hence if g > 1, the index is non-positive and a transversality result cannot
be established. By adding the harmonic perturbation, the index of the unperturbed linearized Cauchy-Riemann
type operator changes by adding dim(H1

j (S)) = 2g. Thus its index is 2, and by dividing out the R−action in
the �rst coordinate of R ×M, the transversality theorem enables the construction of a 1−dimensional family of
H−holomorphic curves. At this stage, the H−holomorphic curve equation plays an essential role. As a �nal step, a
compactness result which extends the local 1−dimensional family of H−holomorphic curves into a global S1−family
is proved; this in turn will serve as the foliation of the open book. The S1−family of solutions is referred as Abbas
solutions [3].
We explain now the use of Abbas solutions for proving the general Weinstein conjecture in the program described
in [3]. Here, the generalized Weinstein conjecture is proved for a planar contact structure, i.e. when the pages
of the open book decomposition have genus 0, using the classical SFT compactness result. The main idea of
proving the general Weinstein conjecture is the following. Starting with a closed contact 3−dimensional manifold
(M,α), a cobordism between α and the Giroux contact form α ′ is introduced. For the Giroux contact form α ′,
Abbas solutions can be constructed following the guidelines above. By the local behaviour near punctures, we
know that the H−holomorphic curves are asymptotic to Reeb orbits; thus the generalized Weinstein conjecture
for α ′ readily follows. In the next step, the cobordism and the classical SFT compactness result is used to deform
the Abbas solutions into H−holomorphic curves with respect to the initial contact form α. If a compactness
result for H−holomorphic curves is established, the program can be adapted to prove the generalized Weinstein
conjecture for genus di�erent that 0. In this thesis we describe a compacti�cation of the moduli space of �nite
energy H−holomorphic curves. However, we are only able to do this under certain conditions.
In the case of vanishing harmonic perturbation 1−form, there exists a canonical SFT compactness result which was
established in [6], and in parallel, in [7]. Even though these works describe almost the same result, the techniques
are di�erent. In the following we sketch both techniques.

� In [6], the proof is based on the Deligne-Mumford convergence of stable Riemann surfaces, bubbling-o� analy-
sis, and the results of Hofer et al. [14]. First, the concept of a pseudoholomorphic building, which serves as the
compacti�cation of the moduli space of pseudoholomorphic curves in symplectizations, is introduced. Let us
sketch this concept, while for a detailed analysis, we refer to [6] and [2]. By the behavior of pseudoholomorphic
curves u = (a, f) : S\P→ R×M in a neighborhood of the punctures P, i.e. its asymptotic, the set of punctures
P can be divided into two disjoint subsets. One subset P consists of positive punctures which correspond to
positive asymptotics of u, and the other subset P consists of negative punctures which correspond to negative
asymptotics of u. To the punctured surface S\P, a compact surface with boundary SP can be associated as
follows. The compact surface with boundary SP is obtained by blowing-up the punctures. Roughly speaking,
a circle is attached to the corresponding puncture. The boundary Γ of SP consists of a �nite disjoint union of
circles that can be divided into positive Γ and negative Γ boundary components corresponding to the charge
of the blow-up. By the asymptotic behavior of u near the punctures, f can be continously extended to SP.
This surface is referred to as the blow-up surface. Additionally, a �nite number of pairs of points are chosen
on the punctured surface D = {d ′1,d

′′
1 , ...,d

′
k,d

′′
k } ⊂ SP and the pairs d ′i ∼ d

′′
i for i = 1, ...,k are identi�ed.

The set D is called the set of nodes and the identi�ed pair d ′i ∼ d
′′
i is called a node. The pseudoholomorphic

curve u is called a pseudoholomorphic building of height 1 if in addition, u(d ′i) = u(d
′′
i ) for all i = 1, ...,k.

Hence a pseudoholomorphic building of height N is a collection of N nodal pseudoholomorphic buildings
of height 1, such that the j−th pseudoholomorphic curve corresponds at the negative punctures to the same
Reeb orbits, while the (j− 1)−th pseudoholomorphic curve corresponds at the positive punctures. Note that
the extended M−components at the blow-up surface of each nodal pseudoholomorphic building of height 1
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glue togehter at the boundary circles according to their correspondence; hence a continous map is obtained.
The main result of [6] is the following. Starting with a sequence of pseudoholomorphic curves with uniformly
bounded Hofer energies, there exists a subsequence that converges in a certain way to a nodal pseudoholo-
morphic building of height N for some N ∈ N. Here, the notion of convergence is de�ned on two subsets.
Essentially, on the thick part, due to the Thick-Thin decomposition [2], the sequence of pseudoholomorphic
curves is required to converge in C∞loc , while on the thin part, the results of [14] are used to describe a C∞loc,
as well as a C0 convergence. The idea of the proof is now the following. Using bubbling-o� analysis, uniform
gradient bounds are derived on the thick part of the surface, and so, elliptic regularity and application of
Arzelà-Ascoli theorem yield a C∞loc−convergence result on the thick part. The convergence on components
of the thin part, which by methods of hyperbolic geometry are conformaly equivalent to cusps or hyperbolic
cylinders, is performed using essentially the results of [14].

� While the analysis of the compactness in [6] is performed on the domain, the technique in [7] is di�erent.
Although the de�nition of the pseudoholomorphic buildings and the notion of the convergence are the same,
the bubbling-o� analysis is not performed on the domain; instead, the images un(Sn\Pn) of the pseudoholo-
morphic curves in the symplectization R×M are considered. These are divided into the so-called essential

regions which can be regarded as compact manifolds with �xed boundaries, and cylindrical regions which
are like the components of the thin part and are conformaly equivalent to long hyperbolic cylinders. The
compactness on each of these components is then proved, and the results are �glued� together to obtain a
global convergence result. The convergence of the essential regions is established by the Gromov convergence
with free boundary, which essentially is the same as the Gromov convergence theorem for pseudoholomorphic
curves. For cylindrical components, the result of [14] is used to prove convergence.

In the following we brie�y describe the strategy which is used to derive a notion of compactness in theH−holomorphic
curve setting. The integrand of the Hofer energy for a H−holomorphic curve is not always non-negative. This is a
�rst di�erence to the classical SFT compactness. In order to have an honest version of the energy we slightly change
the Hofer energy in order to make the integrands positive. For a H−holomorphic curve u = (a, f) : S\P→ R×M,
de�ned on a punctured closed Riemann surface S\P, where P ⊂ S is the set of punctures, we de�ne the energy of
u as

E(u;S\P) = sup
ϕ∈A

∫
S\P

ϕ ′(a)da ◦ j∧ da+

∫
S\P

f∗dα. (1.0.15)

In the analysis of compactness for H−holomorphic curves we will use (1.0.15) as the notion of energy instead the
Hofer energy. Arguing as in Remark 8, it can be shown that

E(u;S\P) = EH(u;S\P). (1.0.16)

However, if we restrict the domain of integration on subsets of S\P, then in general, the Hofer energy is di�erent from
the energy de�ned by (1.0.15). Also note that the integrand of the Hofer energy, when restricted to subsets of S\P,
can be negative, wheras the integrand of the energy de�ned by (1.0.15) is non-negative. The �rst term in (1.0.15) is
called the α−energy of u on S\P and will be denoted by Eα(u;S\P), while the second term is called the dα−energy
of u on S\P and will be denoted by Edα(u;S\P). Since u is H−holomorphic, by straightforward calculation it can
be shown that the integrands of the α− and dα−energies are non-negative. It should be pointed out that in the
case of pseudoholomorphic curves, (1.0.16) holds even on subsets of S\P. For the harmonic perturbation 1−form
γ of a H−holomorphic curve de�ned on a Riemann surface (S, j), we de�ne the L2−norm of γ with respect to the
complex structure j by

‖γ‖2L2(S) =
∫
S

γ ◦ j∧ γ. (1.0.17)

This quantity depends only on the complex structure j and the topology of the underlying surface S. In addition,
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for every isotopy class [c] which is represented by a smooth loop c the period and co-period of γ over [c] are

Pγ([c]) =

∫
c

γ (1.0.18)

and

Sγ([c]) =

∫
c

γ ◦ j, (1.0.19)

respectively. Since γ is a harmonic 1−form with respect to the complex structure j, the period and co-period do
not depend on the speci�c choice of the representative of the isotopy class. Let R[c] be the conformal modulus of
[c] as de�ned in [7]. The conformal period of γ over c is de�ned by

τγ,[c] = R[c]Pγ([c]), (1.0.20)

where the conformal co-period of γ over c is de�ned by

σγ,[c] = R[c]Sγ([c]). (1.0.21)

These two quantities connect the topology of the surface, the harmonic 1−form γ and the conformal structure.
The signi�cance of these two quantities will become apparent in Section 2.3 when dealing with the convergence
issue. The main result of this thesis, which is stated in Theorem 33 is the following. Starting with a sequence
of H−holomorphic curves (Sn, jn,Pn,un = (an, fn),γn) with uniformly bounded energies, uniformly bounded
L2−norms of the harmonic perturbation 1−forms γn, and uniformly bounded conformal periods and co-periods, we
will introduce a notion of convergence which is a generalization of the convergence of the classical SFT compactness
theory. In this context, we will show that there exists a subsequence converging in the sense of De�nition 31 to a
limit H−holomorphic curve which will be called strati�ed H−holomorphic building (see De�nition 27).
In the following we give an outline of this thesis and a rough description of the techniques used in the proof of the
compactness result.
In Chapter 2 we review the basic concepts related to the compactness of H−holomorphic curves. More precisely,
Chapter 2 is organized as follows. In Section 2.1 we present the Deligne-Mumford convergence theorem for stable
Riemann surfaces by following the analysis of [6] and [2]. We conclude this section by stating the Deligne-Mumford
convergence. In Section 2.2 we provide the necessary information on contact manifolds, as well as a precise de�nition
of H−holomorphic curves. By Proposition 22, we recall a result similar to that established by Hofer et al. [13]
stating that the behavior of H−holomorphic curves in a neighborhood of the punctures is similar to that of usual
pseudoholomorphic curves. This result will enable us to split the set of punctures into positive and negative
punctures, which in turn are used in Section 2.3 to de�ne a strati�ed H−holomorphic building. This de�nition is
similar to that of pseudoholomorphic buildings given in [6], [2], and [7]; the di�erence is that we allow two points,
lying in the same level, to be connected by a �nite length trajectory of the Reeb vector �eld. After de�ning this
object, we formulate Theorem 33, which states that a sequence of H−holomorphic curves with uniformly bounded
energies, uniformly bounded L2−norms of the harmonic perturbations, uniformly bounded conformal period and
co-period posseses a subsequence that converges to a strati�ed H−holomorphic building, in a C∞loc and a C0 sense.
Essentially, the H−holomorphic curves converge in C∞loc away from the punctures and certain loops that degenerate
to nodes, while the projections of the H−holomorphic curves to M converge in C0. In addition we derive a notion
of level structure, which is similar to that from [6] and [7], and serves as a notion of C0−convergence for the
R−coordinates.
The proof of the main compactness result on the thick part with certain points removed, and on the thin part
and in a neighborhood of the removed points, are carried out in Sections 3.1 and 3.2 of Chapter 3, respectively.
For the thick part, we use the Deligne-Mumford convergence and the thick-thin decomposition to show that the
domains converge in the Deligne-Mumford sense to a punctured nodal Riemann surface. By using bubbling-o�
analysis and the results of Appendix D (to generate a sequence of holomorphic coordinates that behaves well
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under Deligne-Mumford limit process) we prove, after introducing additional punctures, that the H−holomorphic
curves have uniformly bounded gradients in the complement of the special circles and certain marked points. By
using the elliptic regularity theorem for pseudoholomorphic curves and Arzelà-Ascoli theorem we show that the
H−holomorphic curves together with the harmonic perturbations converge in C∞loc on the thick part with certain
points removed to a H−holomorphic curve with harmonic perturbation. This set of points is denoted by Z. This
result is similar to the bubbling-o� analysis performed in [6]. However, in contrast to Lemma 10.7 of [6], we do not
change the hyperbolic structure each time after adding the additional marked point generated by the bubbling-o�
analysis. The thin part is decomposed into cusps corresponding to neighborhoods of punctures and hyperbolic
cylinders corresponding to nodes in the limit. As the perturbation harmonic 1−forms are exact in a neighborhood
of the punctures or the points that were removed in the �rst part, by means of a change of the R−coordinate,
the H−holomorphic curves are turned into usual pseudoholomorphic curves on which the classical theory [6] or [7]
is applicable. The case of hyperbolic cylinders is more interesting because the di�erence from the classical SFT
compactness result is evident. Due to a lack of the monotonicity lemma, we cannot expect the H−holomorphic
curves to have uniformly bounded gradients, and so, to apply the classical SFT convergence theory. To deal with
this problem we decompose the hyperbolic cylinder into a �nite uniform number of smaller cylinders of two types:

� type ∞: cylinders having conformal modulus tending to in�nity but dα−energies strictly smaller than  h;

� type b1: cylinders having bounded modulus but dα−energies possibly larger than  h.

The cylinders of type ∞ and b1 appear alternately, while here the constant  h > 0 is de�ned by

 h := min{|P1 − P2| | P1,P2 ∈ Pα,P1 6= P2,P1,P2 6 E0}, (1.0.22)

where Pα is the action spectrum of α as de�ned in [14] and E0 > 0 is the uniform bound on the energy. Convergence
results are derived for each cylinder type, and then glued together to obtain a convergence result on the whole
hyperbolic cylinder. As cylinders of type∞ have small dα−energies, we prove by the classical bubbling-o� analysis,
that the H−holomorphic curves have uniformly bounded gradients. To turn these maps into pseudoholomorphic
curves, we perform a transformation by pushing them along the Reeb �ow up to some speci�c time characterized
by the uniformly bounded conformal period. These transformed curves are now pseudoholomorphic with respect
to a domain-dependent almost complex structure on M, which due to the uniform boundedness of the conformal
period varies in a compact set. In a �nal step, we use the results established in Appendices B and E to prove a
convergence result (C∞loc and C0) for cylinders of type ∞. In the case of cylinders of type b1 we proceed as follows.
Relying on a bubbling-o� argument, as we did in the case of the thick part, we prove that the gradient blows
up only in a �nite uniform number of points and remains uniformly bounded on a compact complement of them.
In this compact region we use Arzelà-Ascoli theorem to show that the H−holomorphic curves together with the
harmonic perturbations converge in C∞ to some H−holomorphic curve. What is then left is the convergence in
a neighborhood of the �nitely many punctures where the gradient blows up. Here, a neighborhood of a puncture
is a disc on which the harmonic perturbation can be made exact and can be encoded in the R−coordinate of the
H−holomorphic curve. By this procedure we transform the H−holomorphic curve into a usual pseudoholomorphic
curve de�ned on a discD. By the C∞−convergence established before on any compact complement of the punctures,
we assume that the transformed curves converge on an arbitrary neighborhood of ∂D. Then we use the results of
[7], especially Gromov compactness with free boundary, to obtain a convergence results for cylinders of type b1.
This part uses extensively the results established in Appendix A and Appendix E.
In Chapter 4 we discuss the condition imposed on the conformal period and co-period, that is, for a sequence of
H−holomorphic curves, the conformal period and co-period have to be uniformly bounded. The conformal period
and co-period can be seen as a link between the conformal data and the topology on the Riemann surface as well
as the harmonic perturbation 1−form. Without these conditions, the transformation performed in Appendix B
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cannot be established. The reason is that the domain-dependent almost complex structure, which was constructed
in order to change the H−holomorphic curve into a usual pseudoholomorphic curve, does not vary in a compact
space, and so, the results established in [14] cannot be applied. By means of a counterexample stated in Proposition
57 we show that the condition on the uniform bound of the conformal period is not always satis�ed. It should
be pointed out that Bergmann [5] claimed to have established a compacti�cation of the space of H−holomorphic
curves by performing the same transformation as we did in Appendix B, i.e. by pushing the M−component of the
H−holomorphic curve by the Reeb �ow up to some speci�c time determined by the conformal period, and then by
assuming that the conformal period can be universally bounded by a quantity which depends only on the periods
of the harmonic perturbation 1−form (note that if the L2−norm of a sequence of harmonic 1−forms is uniformly
bounded then their periods are also uniformly bounded). In this context, Proposition 57 contradicts his argument.



Chapter 2

De�nitions and main results

In this chapter we present the basic concepts related to the compactness ofH−holomorphic curves. In particular, we
provide the Deligne-Mumford compactness in order to describe the convergence of a sequence of Riemann surfaces,
introduce the concept of a strati�ed H−holomorphic buildings of height N, which serves as limit object, and discuss
the convergence of such maps. The main result of this chapter is summarized in Theorem 33.

2.1 Deligne-Mumford convergence

In this section we review the Deligne-Mumford convergence following the analysis given in [6] and [2].
Consider the surface (S, j,MqD), where (S, j) is a closed Riemann surface, and M and D are �nite disjoint subsets
of S. Assume that the cardinality of D is even. The points from M are called marked points, while the points
from D are called nodal points. The points from D are organized in pairs, D = {d ′1,d

′′
1 ,d

′
2,d
′′
2 , ...,d

′
k,d

′′
k }. A nodal

surface (S, j,MqD) is said to be stable if the stability condition 2g+ |M∪D| > 3 is satis�ed for each component of
the surface S. In our analysis we do not deal with the stability of Riemann surfaces; this is only a technical condition
and can always be achieved by adding additional marked points to M. The stability ensures the convergence of
the domains of H−holomorphic curves; for more details we refer to [2]. With a nodal surface (S, j,MqD) we can
associate the following singular surface with double points,

�SD = S/{d ′i ∼ d
′′
i | i = 1, ...,k}.

The identi�ed points d ′i ∼ d
′′
i are called nodes (see Figures 2.1.1 and 2.1.2). The nodal surface (S, j,MqD) is said

to be connected if the singular surface �SD is connected. For each p ∈ M qD of a stable nodal Riemann surface

m1 m2 m3

m4m5

d ′′1

d ′1

S

Figure 2.1.1: The surface S with marked points M = {m1, ...,m5} and nodal points D = {d ′1,d
′′
1 }.

14
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m1 m2 m3

m4m5

d1

�SD

Figure 2.1.2: The singular surface �SD with one node d1 = d ′1 ∼ d ′′1 .

(S, j,M qD), we de�ne the surface Sp with boundary as the oriented blow-up of S at the point p. Thus Sp is the
circle compacti�cation of S\{p}; it is a compact surface bounded by the circle Γp = (TpS\{0})/R+. The canonical
projection π : Sp → S sends the circle Γp to the point p and maps Sp\Γp di�eomorphically to S\{p}. Similarly,
given a �nite set M ′ = {p1, ...,pk} ⊂ M q D of punctures, we consider a blow-up surface SM

′
with k boundary

components Γ1, ..., Γk. It comes with the projection π : SM
′ → S, which collapses the boundary circles Γ1, ..., Γk to

points p1, ...,pk and the maps SM
′
\
∐k
i=1 Γi di�eomorphically to 
S = S\M ′.

The arithmetic genus g of a nodal surface (S, j,MqD) is de�ned as

g =
1
2
|D|− b0 +

b0∑
i=1

gi + 1,

where |D| = 2k is the cardinality of D, b0 is the number of connected components of the surface S, and
∑b0
i=1 gi

is the sum of the genera of the connected components of S. The signature of a nodal curve (S, j,M q D) is the
pair (g,µ), where g is the arithmetic genus and µ = |M|. A stable nodal Riemann surface (S, j,M q D) is called
decorated if for each node there is an orientation reversing orthogonal map

ri : Γ i = (TdiS\{0})/R+ → Γ i = (TdiS\{0})/R+. (2.1.1)

For the orthogonal orientation reversing map ri, we must have that ri(e2πiϑp) = e−2πiϑr(p) for all p ∈ Γ i.
In the following we argue as in [6]. Consider the oriented blow-up SD at the points of D as described above.
The circles Γ i and Γ i de�ned by (2.1.1) are boundary circles for the points d ′i,d

′′
i ∈ D. The canonical projection

π : SD → S, collapsing the circles Γ i and Γ i to the points d ′i and d
′′
i , respectively, induces a conformal structure

on SD\
∐k
i=1 Γ i q Γ i. The smooth structure of SD\

∐k
i=1 Γ i q Γ i extends to SD, while the extended conformal

structure degenerates along the boundary circles Γ i and Γ i (see Figure 2.1.3). Let (S, j,M qD, r) be a decorated
surface, where r = (r1, ..., rk). By means of the mappings ri, i = 1, ...,k, Γ i and Γ i can be glued together to yield a
closed surface SD,r. The genus of the surface SD,r is equal to the arithmetic genus of (S, j,MqD). There exists a
canonical projection p : SD,r → �SD which projects the circle Γi = {Γ i, Γ i} to the node di = {d ′i,d

′′
i }. The projection

p induces on the surface SD,r a conformal structure in the complement of the special circles Γi (see Figure 2.1.4);
the conformal structure is still denoted by j. The continous extension of j to SD,r degenerates along the special
circles Γi.
According to the uniformization theorem, for a stable surface (S, j,MqD) there exists a unique complete hyperbolic
metric of constant curvature −1 of �nite volume, in the given conformal class j on 
S = S\(M q D). For details
see [2]. This metric is denoted by hj,MqD. Each point in M qD corresponds to a cusp of the hyperbolic metric
hj,MqD. Assume that for a given stable Riemann surface (S, j,M qD), the punctured surface 
S = S\(M qD) is
endowed with the uniformizing hyperbolic metric hj,MqD.
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m1 m2 m3

m4m5

d ′′1

d ′1

S m1 m2 m3

m4m5

Γ1

Γ1

yπ

SD

Figure 2.1.3: The surface SD with boundary circles Γ1 and Γ1 and the projection π : SD → S. π maps SD\(Γ1q Γ1)
di�eomorphically to S\{d ′1,d

′′
1 }.

m1 m2 m3

m4m5

yp

SD,r

Γ1

m1 m2 m3

m4m5

d1

�SD

Figure 2.1.4: The surface SD,r and the projection p : SD,r → �SD. p maps SD,r\Γ1 di�eomorphically to �SD\d1.
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Fix δ > 0, and denote by

Thickδ(S,h
j,MqD) =

{
x ∈ 
S | ρ(x) > δ

}
and

Thinδ(S,h
j,MqD) =

{
x ∈ 
S | ρ(x) < δ

}
,

the δ−thick and δ−thin parts, respectively, where ρ(x) is the injectivity radius of the metric hj,MqD at the point
x ∈ 
S. A fundamental result of hyperbolic geometry states that there exists a universal constant δ0 = sinh−1(1) such
that for any δ < δ0, 
S can be written as the disjoint union of Thickδ(S,hj,MqD) and Thinδ(S,hj,MqD), and each
component C of Thinδ(S,hj,MqD) is conformally equivalent either to a �nite cylinder [−R,R]×S1 if the component
C is not adjacent to a puncture, or to the punctured disk D\{0} ∼= [0,∞) × S1 if it is adjacent to a puncture (see,
for example, [15] and [2]). Each compact component C of the thin part contains a unique closed geodesic of length
2ρ(C) denoted by ΓC, where ρ(C) = infx∈C ρ(x). When considering the δ−thick−thin decomposition we always
assume that δ is chosen smaller than δ0.
The uniformization metric hj,MqD can be lifted to a metric h

j,MqD
on 
SD,r := SD,r\M. The lifted metric degen-

erates along each circle Γi in the sense that the length of Γi is 0, and the distance of Γi to any other point in 
SD,r

is in�nite. However, we can still speak about geodesics on 
SD,r which are orthogonal to Γi, i.e., two geodesics rays,
whose asymptotic directions at the cusps d ′i and d

′′
i are related via the map ri, and which correspond to a compact

geodesic interval in SD,r intersecting orthogonally the circle Γi. It is convenient to regard Thinδ(S,hj,MqD) and
Thickδ(S,hj,MqD) as subsets of 
SD,r. This interpretation provides a compacti�cation of the non-compact compo-
nents of Thinδ(S,hj,MqD) not adjacent to points from M. Any compact component C of Thinδ(S,hj,MqD) ⊂ 
SD,r

is a compact annulus; it contains either a closed geodesic ΓC, or one of the special circles, still denoted by ΓC, which
projects to a node (as described above).
Consider a sequence of decorated stable nodal marked Riemann surfaces (Sn, jn,Mn qDn, rn) indexed by n ∈ N.
De�nition 12. The sequence (Sn, jn,MnqDn, rn) is said to converge in the Deligne-Mumford sense to a decorated
stable nodal surface (S, j,MqD, r) if for su�ciently large n, there exists a sequence of di�eomorphisms ϕn : SD,r →
SDn,rnn with ϕn(M) = Mn such that the following are satis�ed.

1. For any n > 1, the images ϕn(Γi) of the special circles Γi ⊂ SD,r for i = 1, ...,k, are special circles or closed
geodesics of the metrics hjn,MnqDn on 
SDn,rn . All special circles on SDn,rn are among these images.

2. hn → h in C∞loc( 
SD,r\
∐k
i=1 Γi), where hn := ϕ∗nh

jn,MnqDn and h := h
j,MqD

.

3. Given a component C of Thinδ(S,hj,MqD) ⊂ 
SD,r containing a special circle Γi, and given a point ci ∈ Γi, let
δni be the geodesic arc corresponding to the induced metric hn = ϕ∗nh

jn,MnqDn for any n > 1, intersecting
Γi orthogonally at the point ci, and having the ends in the δ−thick part of the metric hn. Then, in the limit
n→∞, (C ∩ δni ) converge in C0 to a continous geodesic for a metric h passing through the point ci.

Remark 13. In view of the uniformization theorem, Condition 2 of De�nition 12 is equivalent to the condition

ϕ∗njn → j in C∞loc
(

SD,r\

k∐
i=1

Γi

)
,

which in turn, by the removable singularity theorem, is equivalent to

ϕ∗njn → j in C∞loc
(
SD,r\

k∐
i=1

Γi

)
.
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In this context, a sequence (Sn, jn,Mn q Dn) is said to converge in the Deligne-Mumford sense to (S, j,M q D)

if there exists a sequence of decorations rn for (Sn, jn,Mn q Dn) and a decoration r of (S, j,M q D) such that
(Sn, jn,Mn q Dn, rn) converges to (S, j,M q D, r) as De�nition 12. We are now in the position to state the
Deligne-Mumford convergence theorem.

Theorem 14. (Deligne-Mumford) Any sequence of nodal stable Riemann surfaces (Sn, jn,Mn q Dn, rn) of
signature (g,µ) has a subsequence which converges in the DeligneMumford sense to a decorated nodal stable

Riemann surface (S, j,MqD, r) of signature (g,µ).

Corollary 15. Any sequence of stable Riemann surfaces (Sn, jn,Mn) of signature (g,µ) has a subsequence

which converges in the Deligne-Mumford sense to a decorated nodal stable Riemann surface (S, j,M qD, r)
of signature (g,µ).

2.2 H−holomorphic curves

Let (M,α) be a 3−dimensional compact manifold equipped with a contact form α, which by de�nition, is a 1−form
on M such that α ∧ dα is a volume form. Associated to a pair (M,α) we have the contact structure ξ = ker(α).
The contact structure is a 2−dimensional subbundle of TM and dα|ξ de�nes on any �ber a symplectic form. Hence
ξ→M is a symplectic vector bundle with the symplectic form dα. Furthermore, there exists a unique vector �eld
Xα, called the Reeb vector �eld, de�ned by the two conditions

ιXαα = 1 and ιXαdα = 0.

The vector �eld Xα spans a line bundle with global section Xα. Thus, a contact form α on M de�nes a natural
splitting

TM = XαR⊕ ξ

of the tangent bundle into a line bundle and a symplectic vector bundle (ξ,dα).
A compatible complex structure J for the contact structure ξ → M is a smooth �ber preserving �berwise linear
map J : ξ→ ξ such that J2 = −1 and being compatible with the symplectic form dα on ξ. As a result

gJ(·, ·) := dα(·, J·)

de�nes a smooth �berwise metric on the vector bundle ξ→M and

g(p)(v,w) := α(p)(v)α(p)(w) + dα(p)(παv, J(p)παw)

for p ∈ M and v,w ∈ TpM de�nes a smooth metric on M, where πα : TM → ξ is the projection along Xα. It is
well known that the space of all such J's equipped with the C∞−topology is contractible.
Given J as above, there is an associated almost complex structure J and an associate Riemann metric g on R×M
de�ned by

J(a, f)(h,k) := (−α(f)(w), J(f)(παw) + vXα(f)),

g(a, f)((v,w), (v ′,w ′)) := vv ′ + α(w)α(w ′) + dα(παw, J(f)παw
′), (2.2.1)

where (a, f) ∈ R×M, (v,w), (v ′,w ′) ∈ T(a,f)(R×M).
In our treatment we assume that all periodic orbits are non-degenerate. This means that for every periodic orbit
x of period T , the linear map dφαT (x(0)) : ξx(0) → ξx(T) does not contain 1 in its spectrum. Consider now a
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5−tuple (S, j,P,u,γ) consisting of a closed Riemann surface (S, j), a �nite subset P ⊂ S called the set of punctures,
a smooth map u = (a, f) : 
S→ R×M, where 
S = S\P, and a 1−form γ ∈ H1

j (S), where H
1
j (S) represents the space

of harmonic 1-forms on S with respect to j. The energy E(u; 
S) of u is de�ned as in (1.0.15).

De�nition 16. The 5−tuple (S, j,P,u,γ) is called a H−holomorphic curve with harmonic perturbation γ if

παdf ◦ j = J ◦ παdf on 
S
(f∗α) ◦ j = da+ γ on 
S
E(u; 
S) < +∞.

(2.2.2)

Here we consider a more general setting as in De�nition 7 in the sense that the properness requirement is dismissed.
The L2−norm, period, co-period, conformal period and conformal co-period of the harmonic 1−form γ is de�ned
as in (1.0.17), (1.0.18), (1.0.19), (1.0.20) and (1.0.21). Note that the closedness of γ and γ ◦ j implies that all these
quantities depend only on the isotopy class of c.

Remark 17. Equation (2.2.2) can be also written as

∂Ju = g

with

∂Ju =
1
2
(du+ J(u) ◦ du ◦ j) (2.2.3)

and

g =
1
2

(
−γ⊗ ∂

∂r
,−(γ ◦ j)⊗ Xα

)
being an anti-holomorphic section of the bundle Hom(u∗T(R×M))→ 
S.

Locally, with respect to holomorphic coordinates s+ it, Equation (2.2.2) takes the form

πα∂sf+ J(u) ◦ πα∂tf = 0
α(∂sf) = −∂ta− γt
α(∂tf) = ∂sa+ γs

(2.2.4)

where γ = γsds + γtdt. It is important to note that the integrands of the α− and dα−energies are non-negative.
Indeed, in the local holomorphic coordinates s+ it, we have

ϕ ′(a)da ◦ j∧ da = ϕ ′(a)
[
(∂sa)

2 + (∂ta)
2
]
ds∧ dt

and
f∗dα =

[
‖πα∂sf‖2gJ + ‖πα∂tf‖

2
gJ

]
ds∧ dt.

Remark 18. If Edα(u; 
S) = 0, then f( 
S) is contained in some trajectory of the Reeb vector �eld Xα.

To describe the behavior of a H−holomorphic curve near the puncture from P we need some auxiliary tools. One
of these is the lemma about the removal of singularity. Consider a H−holomorphic curve (S, j,P,u,γ), and assume
that the set of punctures P ⊂ S is not empty. For p ∈ P, consider a neighborhood U(p) = U ⊂ S, which is
biholomorphic to the standard open disk D ⊂ C, such that, under this biholomorphism, the point p is mapped to
0.
First we mention a removable singularity result for a harmonic 1−form γ de�ned on the punctured unit disk D\{0}.

Lemma 19. If γ is a harmonic 1−form de�ned on the punctured disk D\{0}, and having a bounded L2−norm

with respect to the standard complex structure i on D, i.e. ‖γ‖2L2(D\{0}) < ∞ then γ can be extended across

the puncture.
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Proof. With z = s + it = (s, t) being the coordinates on D, we express γ as γ = f(s, t)ds + g(s, t)dt, where
f,g : D\{0} → R are harmonic functions. As γ is harmonic with respect to the standard complex structure i,
F := f+ ig : D\{0}→ C is a meromorphic function with a bounded L2−norm, i.e.,∫

D\{0}

|F(s, t)|2dsdt =
∫
D\{0}

(
|f(s, t)|2 + |g(s, t)|2

)
dsdt <∞.

Consider the Laurent series of F,

F(z) =

∞∑
n=−∞ Fnz

n,

where Fn ∈ C. Since the Laurent series converges in C0
loc to F and e

2πinθ is an orthonormal system in L2(S1), we
infer that for every �xed 0 < ρ < 1, ∫1

0

|F(ρe2πiθ)|2dθ =

∞∑
n=−∞ |Fn|

2ρ2n.

Consequently, due to Fubini's theorem,∫
D\{0}

|F(z)|2dsdt = 2π
∫
(0,1]×S1

ρ|F(ρe2πiθ)|2dθdρ = 2π
∫1
0

∞∑
n=−∞ |Fn|

2ρ2n+1dρ.

As the terms in the sum are all non-negative, it follows that∫
D\{0}

|F(z)|2dsdt > 2π|Fn|
2

∫1
0

ρ2n+1dρ

for all n ∈ Z. However, for n < 0 and because of∫1
0

ρ2n+1dρ =∞,

this yields a contradiction to the �niteness of the L2−norm of F. Hence F−n = 0 for all n > 1, and so, F can be
extended to a holomorphic function on D. Therefore γ can be extended across the puncture.

A removable singularity result for H−holomorphic curves is the following

Proposition 20. Let (D, i, {0},u,γ) be a H−holomorphic curve de�ned on D\{0} such that the image of u lies

in a compact subset of R×M. Then u extends continously to a H−holomorphic map on the whole disk D.

Before proving Proposition 20 we state the following lemma.

Lemma 21. Let u = (a, f) : [0,∞)×S1 → R×M be a H−holomorphic curve with harmonic perturbation γ with

respect to the standard complex structure i on the half cylinder [0,∞)×S1. Assume that E(u; [0,∞)×S1) 6 E0
and Edα(u; [0,∞)× S1) 6  h/2, where  h > 0 is the constant de�ned in (1.0.22) with respect to E0. Then, for

every δ ∈ (0, 1) there exists a constant κδ > 0 such that

‖du(z)‖ := sup
‖v‖

eucl.
=1

‖du(z)v‖g < κδ

for all z ∈ [δ,∞)× S1.
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Proof. The proof is analogous to that of Lemma 37, by contradiction and using the standard bubbling-o� analysis,
hence omitted.

We come to the proof of Proposition 20.

Proof. (Proposition 20) Without loss of generality, we assume that the dα−energy of u is less than  h/2. If this is
not the case we can consider a smaller disk around 0. Since D is contractible and dγ = d(γ ◦ i) = 0, the harmonic
perturbation γ can be written as γ = dΓ , where Γ : D → R is a harmonic function. Hence u = (a, f) := (a + Γ , f)
is a pseudoholomorphic curve (unperturbed), which still has the property that its image lies in a (maybe larger)
compact subset of R ×M. By the biholomorphism ψ : [0,∞) × S1 → D\{0}, (s, t) 7→ e−2π(s+it), we consider the
map �u = (�a, �f) = u ◦ ψ : [0,∞) × S1 → R ×M. Obviously, �u has a �nite energy and a dα−energy less than  h/2.
The Hofer energy of u is bounded. Indeed, we have

EH(u;D\{0}) = sup
ϕ∈A

∫
D\{0}

u∗d(ϕα)

= sup
ϕ∈A

∫
[0,∞)×S1

�u∗d(ϕα)

= sup
ϕ∈A

lim
R→∞

∫
[0,R]×S1

�u∗d(ϕα)

= sup
ϕ∈A

[∫
{0}×S1

ϕ(�a)�f∗α− lim
R→∞

∫
{R}×S1

ϕ(�a)�f∗α

]
.

From Lemma 21 it follows that u has a bounded energy. Application of the usual removable singularity theorem
(see Lemma 5.5 of [6]) then �nishes the proof of the proposition.

In a neighborhood of a puncture, the map a is either bounded or unbounded. In the �rst case, Proposition 20 can
be used to extend the H−holomorphic curve across the puncture. In the second case, in which a : D\{0} → R is
unbounded, we have the following result.

Proposition 22. Let (D, i, {0},u,γ) be a H−holomorphic curve de�ned on D\{0} such that the image of u

is unbounded in R ×M. Then u is asymptotic to a trivial cylinder over a periodic orbit of Xα, i.e. after

identifying D\{0} with the half open cylinder [0,∞) × S1 there exists a periodic orbit x of period |T | of Xα,

where T 6= 0 such that

lim
s→∞ f(s, t) = x(Tt) and lim

s→∞ a(s, t)s
= T in C∞(S1)

where (s, t) denote the coordinates on [0,∞)× S1.

Proof. As we restrict the curve to the disk, the harmonic perturbations γ are exact, i.e. there exists a harmonic
function Γ de�ned on the unit open disk such that γ = dΓ . The new curve u = (a, f) = (a + Γ , f) is pseudoholo-
morphic. Let

ψ : R+ × S1 → D\{0}

(s, t) 7→ e−2π(s+it)

be a biholomorphism, which maps D\{0} to the half open cylinder R+ × S1. We consider the pseudoholomorphic
curve u as being de�ned on the half open cylinder R+ × S1 with �nite energy and having an unbounded image in
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R ×M. Since the contact structure is non-degenerate, we obtain by Proposition 5.6 of [6], that there exist T 6= 0
and a periodic orbit x of Xα of period |T | such that

lim
s→+∞ f(s, t) = x(Tt) and lim

s→+∞ a(s, t)s
= T in C∞(S1).

By the boundedness of the harmonic function Γ , we have

lim
s→+∞ a(s, t)s

= T in C∞(S1).
Thus the proof of the proposition is �nished.

The puncture p ∈ P is called positive or negative depending on the sign of the coordinate function a when
approaching the puncture. Note that the holomorphic coordinates near the puncture a�ects only the choice of
the origin on the orbit x of Xα; the parametrization of the asymptotic orbits induced by the holomorphic polar
coordinates remains otherwise the same. Hence, the orientation induced on x by the holomorphic coordinates
coincides with the orientation de�ned by the vector �eld Xα if and only if the puncture is positive.
Let SP be the oriented blow-up of S at the punctures P = {p1, ...,pk} as de�ned in the previous section or in Section
4.3 of [6]. SP is a compact surface with boundary circles Γ1, ..., Γk. Noting that each of these circles is endowed with
a canonical S1−action and letting ϕi : S1 → Γi be (up to a choice of the base point) the canonical parametrization
of the boundary circle Γi, for i = 1, ...,k, we reformulate Proposition 22 as follows.

Proposition 23. Let (S, j,P,u,γ) be a H−holomorphic map without removable singularities. Then the map

f : 
S→M extends to a continous map f : SP →M such that

f(ϕi(e
2πit)) = xi(Tt), (2.2.5)

where xi : S
1 = R/Z→M is a periodic orbit of the Reeb vector �eld Xα of period |T |, where T 6= 0, parametrized

by the vector �eld Xα. The sign of T coincides with the sign of the puncture pi ∈ P.

2.3 Strati�ed H−holomorphic buildings

In this section we introduce the notion of a strati�ed H−holomorphic building. These are the objects which are
needed for the compacti�cation of the moduli space of H−holomorphic curves. In the �rst step of our analysis we
de�ne a H−holomorphic building of height 1. Then we introduce the general notion of a H−holomorphic building
of height greater than 1, describe the notion of convergence of a sequence of H−holomorphic curves to a strati�ed
H−holomorphic building, and �nally, state the main result.
Let (S, j) be a Riemann surface, and P ⊂ S and P ⊂ S two disjoint unordered �nite subsets called the sets of
negative and positive punctures, respectively. Let P = {p

1
, ...,p

l
}, P = {p1, ...,pf} and P = P q P. The set of

nodal points, de�ned by
D = {d ′1,d

′′
1 , ...,d

′
k,d

′′
k } ⊂ S,

is a �nite subset of S, where the pair {d ′i,d
′′
i } will be called node (see Figure 2.3.1). Denote by SP the blow-up of

the surface 
S = S\P at the punctures P. The surface SP has |P| boundary components, which due to the splitting
of P, are denoted by Γ = {Γ1, ..., Γ l} and Γ = {Γ1, ..., Γf} (see Figure 2.3.2).

De�nition 24. (S, j,u,P,D,γ, τ,σ), where τ = {τi}i=1,...,|D|/2, σ = {σi}i=1,...,|D|/2 and τi,σi ∈ R for all i =

1, ..., |D|/2 is called a strati�ed H−holomorphic building of height 1 if the following conditions are satis�ed.
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p1 p2 p3

p
2

p
1

d ′′1

d ′1

S

Figure 2.3.1: Surface S with punctures P = {p1,p2,p3}q {p
1
,p

2
} and nodes D = {d ′1,d

′′
1 }.

d ′′1

d ′1

SP

Γ1 Γ2

Γ3Γ2Γ1

Figure 2.3.2: Blow-up surface SP with boundary components Γ = {Γ1, Γ2, Γ3}q {Γ1, Γ2} and nodes D = {d ′1,d
′′
1 }.
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u(d ′i)

u(d ′′i )

∞

−∞

σi + b

−σi + b

Figure 2.3.3: A strati�ed H−holomorphic building of height 1.

1. (S, j,u,P,γ) is a H−holomorphic curve as in De�nition 16.

2. For each {d ′i,d
′′
i } ∈ D, τi,σi ∈ R the points u(d ′i) and u(d

′′
i ) are connected by the map [−1/2, 1/2]→ R×M,

s 7→ (−2σis + b,φα−2τis
(wf)) for some b ∈ R and wf ∈ M such that u(d ′i) = (σi + b,φατi(wf)) and

u(d ′′i ) = (−σi + b,φα−τi(wf)).

See Figure 2.3.3.

Remark 25. The M−component f : 
S → M of a strati�ed H−holomorphic building u = (a, f) : 
S → R ×M of
height 1 can be continously extended to SP. For the extension f : SP →M, it is apparent that f|Γ , where Γ = Γ q Γ ,
de�nes parametrizations of Reeb orbits.

Remark 26. The energy of a H−holomorphic building of height 1 is the sum of the α− and dα−energies of the
H−holomorphic curve, as de�ned in (1.0.15).

In a second step we de�ne a strati�ed H−holomorphic building of height N. Let (S1, j1), ..., (SN, jN) be closed
(possibly disconected) Riemann surfaces, and for any i ∈ {1, ...,N}, let Pi = {p

ij
} ⊂ Si and Pi = {pij} ⊂ Si be the

sets of negative and positive punctures on level i, respectively. We further assume that there is a one-to-one
correspondence between the elements Pi−1 and Pi given by a bijective map ϕi : Pi−1 → Pi. A pair {pi−1,j,pij},

where p
ij
= ϕi(pi−1,j), is called a breaking point between the levels Si−1 and Si.

Let P =
∐N
i=1 Pi q Pi be the set of punctures, Pi = Pi q Pi the set of punctures at level i,

Di = {d ′i1,d
′′
i1, ...,d

′
iki

,d ′′iki }

the set of nodes at level i, and D =
∐N
i=1Di the set of all nodes (see Figure 2.3.4).

If SPii is the blow-up of Si at the punctures Pi = Pi q Pi, then accounting of the splitting of the punctures Pi, we
denote the boundary components of SPii by Γ i and Γ i; they correspond to the negative and positive punctures Pi and
Pi, respectively. There is a one-to-one correspondence between the elements of Γ i−1 and Γ i given by an orientation
reversing di�eomorphism Φi : Γ i−1 → Γ i. A pair {Γ i−1,j, Γ ij}, where Γ ij = Φi(Γ i−1,j), is called a breaking orbit

for all i = 2, ...,N. This gives an identi�cation of the boundary components Γ i−1 from S
Pi−1

i−1 and the boundary
components Γ i from SPii (see Figure 2.3.5). Further on, let
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d ′21

d ′′21
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p
11

p31
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d ′11

d ′′11

d ′12

d ′′12

p
32

d ′31

d ′′31

(S1, j1)

(S3, j3)

x

xx

ϕ2

ϕ3ϕ3

Figure 2.3.4: The Riemann surface (S, j) = (S1, j1) q (S2, j2) q (S3, j3) with punctures P1 q P1 = {P11} q {P11},
P2 q P2 = {p

21
} q {p21,p22} and P3 q P3 = {p

31
,p

32
} q {p31}, nodes D1 = {d ′11,d

′′
11,d

′
12,d

′′
12}, D2 = {d ′21,d

′′
21} and

D3 = {d ′31,d
′′
31} and the maps ϕ2 and ϕ3.
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d ′11

d ′′11

d ′12

d ′′12

d ′31

d ′′31

SP1

1
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↑
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Γ31

Γ11

Γ31Γ32

Γ22 Γ21

Γ11

Γ21
Φ2

Φ3Φ3

�

�

�

Figure 2.3.5: The surface SP = SP1

1 q S
P2

2 q S
P3

3 with boundary components Γ1 q Γ1 = {Γ11} q {Γ11}, Γ2 q Γ2 =

{Γ21}q {Γ21, Γ22} and Γ3q Γ3 = {Γ31, Γ32}q {Γ31}, nodes D1 = {d ′11,d
′′
11,d

′
12,d

′′
12}, D2 = {d ′21,d

′′
21} and D3 = {d ′31,d

′′
31}

and orientation reversing di�eomorphisms Φ2 and Φ3.
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d ′21

d ′′21

d ′11

d ′′11

d ′12

d ′′12

d ′31

d ′′31

SP,Φ

Γ31

Γ11

Γ21

Γ31Γ32

Figure 2.3.6: The surface SP,Φ with nodes D1 = {d ′11,d
′′
11,d

′
12,d

′′
12}, D2 = {d ′21,d

′′
21} and D3 = {d ′31,d

′′
31} and

boundary circles Γ11 and Γ31.

SP,Φ := SP1

1 ∪Φ2
SP2

2 ∪Φ3
... ∪ΦN S

PN
N :=

(∐N
i=1 S

Pi
i

)
/∼

where ∼ is de�ned by identifying the circles Γ i−1,j and Γ ij via the di�eomorphism for all i = 2, ...,N and j = 1, ..., |Pi|.
Obviously, SP,Φ is a compact surface with |P1| + |PN| boundary components. The equivalence class of Γ i−1,j in
SP,Φ, denoted by Γij for all i = 2, ...,N and j = 1, ..., |Pi|, is called a special circle ; the collection of all special
circles is denoted by Γ (see Figure 2.3.6). A tuple (S, j,P,D) with the properties described above will be called a
broken building of height N.
We are now well prepared to introduce a strati�ed H−homolomorphic building of height N.

De�nition 27. A tuple (S, j,u,P,D,γ, τ,σ), where τ = {�τiji | i = 1, ...,N and ji = 1, ..., |Di|/2} ∪ {τiji | i =

1, ...,N − 1 and ji = 1, ..., |Γ i|}, σ = {�σiji | i = 1, ...,N and ji = 1, ..., |Di|/2} and (S, j,P,D) is a broken building of
height N, is called a strati�ed H−holomorphic building of height N if the following are satis�ed:

1. For any i = 1, ...,N, (Si, ji,ui,Pi q Pi,Di,γi, {�τiji | ji = 1, ..., |Di|/2}, {�σiji | ji = 1, ..., |Di|/2}) is a strati�ed
H−holomorphic building of height 1, where ui = u|Si\Pi , and ji is the complex structure on Si.
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�S

Γ31

Γ11

Γ21

Γ31Γ32

Γnod11 Γnod12

Γnod21

Γnod31

Figure 2.3.7: The surface �S with boundary circles Γ11 and Γ31, special circles Γ21, Γ31 and Γ32 and nodal special
circles Γnod11 , Γnod12 , Γnod21 and Γnod31 .

2. For all breaking points {pi−1,j,pij} and τij ∈ τ, there exist Tij > 0 such that the H−holomorphic building of

height 1, ui−1 : 
Si−1 → R×M is asymptotic at pi−1,j to a trivial cylinder over the Reeb orbit xij of period
Tij > 0, and ui : 
Si → R ×M is asymptotic at p

ij
to the trivial cylinder over the Reeb orbit xij(· + τij) of

period −Tij < 0.

Remark 28. The energy of a strati�ed H−holomorphic buidling of height N is de�ned by

E(u) = max
16i6N

Eα(ui) +

N∑
i=1

Edα(ui).

We come now to the convergence issue. Let let SPi∪Dii be the blow-up of Si at the punctures Pi and nodes Di.
To each pair of nodes {d ′ij,d

′′
ij}, the corresponding boundary of SPi∪Dii is denoted by {Γ ′ij, Γ

′′
ij}, and for each such

pair of boundary circles, let rij : Γ ′ij → Γ ′′ij be orientation reversing di�eomorphisms. The di�eomorphisms rij are

used to glue the boundary circles Γ ′ij and Γ
′′
ij together. Consider the surface �S := SP∪D,Φ∪r which is obtained from

S by blowing-up the punctures P and the nodes D, and by using the orientation reversing di�omorphisms Φ and
rij. �S is a compact surface with boundary components given by the sets Γ1 and ΓN. The equivalence class of Γ

′
ij in

�S is denoted by Γnodij and is called nodal special circles ; the set of all nodal special circles is denoted by Γnod (see
Figure 2.3.7).
The collar blow-up S is a modi�cation of the usual blow-up �S de�ned in [6]. Essentially, we insert the cylinders
[−1/2, 1/2] × S1 between the special circles Γ i−1,j and Γ ij, and between the nodal special circles Γ ′ij and Γ

′′
ij. To

obtain a surface with boundary components Γ1 and ΓN that has the same topology as �S we modify the orientation
reversing the di�eomorphismsm Φij and rij as follows:
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x

x

�

�

�

Γ ij

Γ i−1,j

{
− 1

2

}
× S1

{
1
2

}
× S1

Φij

Φij

Figure 2.3.8: The glueing of Γ i−1,j, the cylinder [−1/2, 1/2]×S1 and Γ ij via the orientation reversing di�eomorphisms
Φij : Γ i−1,j → {−1/2}× S1 and Φij : {1/2}× S1 → Γ i,j.

A1 The orientation reversing di�eomorphisms Φij correspond to two orientation reversing di�eomorphisms
Φij : Γ i−1,j → {−1/2}× S1 and Φij : {1/2}× S1 → Γ ij for all i = 2, ...,N and j = 1, ..., |Pi|.

A2 Instead of glueing Γ i−1,j and Γ ij via the orientation reversing di�eomorphisms Φij, we glue Γ i−1,j, the
cylinder [−1/2, 1/2]×S1, and Γ ij via the orientation reversing di�eomorphisms Φij and Φij (see Figure 2.3.8).

A3 For the nodal special circles Γ ′ij and Γ
′′
ij, we proceed analogously, and denote by r ′ij : Γ

′
ij → {−1/2} × S1

and r ′′ij : {1/2}×S1 → Γ ′′ij the orientation reversing di�eomorphisms that glue Γ ′ij, the cylinder [−1/2, 1/2]×S1
and Γ ′′ij together.

Let S be the surface obtained by applying the above construction to all special and nodal special circles. The
equivalence class of the cylinder [−1/2, 1/2]× S1 in S corresponding to the special circle Γij is denoted by Aij, and
is called special cylinder. The equivalence class of the cylinder [−1/2, 1/2] × S1 in S corresponding to the nodal
special circle Γnodij is denoted by Anod

ij , and is called nodal special cylinder. The boundary circles of Aij are still

denoted by Γ i−1,j and Γ ij, while the boundary circles of Anod
ij are also still denoted by Γ ′ij and Γ

′′
ij. Finally, the

collections of all special and nodal special cylinders are denoted by A and Anod, respectively. Take notice that
there exists a natural projection between the collar blow-up S and the blow-up surface �S, which is de�ned similarly
to [6], i.e. it maps S\(A q Anod) di�eomorphically to �S\(Γ q Γnod) and the annuli A and Anod are mapped to Γ
and Γnod. This induces a conformal structure on S\(A q Anod). Let �S be the closed surface obtained from S by
identifying the boundary components Γ1 and ΓN to points, i.e. by reversing the blow-up.
Having now a strati�edH−holomorphic building (S, j,u,P,D,γ, τ,σ) of heightN, we de�ne the continous extension
f of f on the surface S and the continous extension a of a on S\A. The extension f may be de�ned on the clinders
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Aij and Anod
ij , while the extension a is de�ned only on Anod

ij . Set

f(s, t) = φα−2s�τij
(wf), for all (s, t) ∈ Anod

ij = [−1/2, 1/2]× S1,

f(s, t) = φα
−(s+ 1

2 )τij
(xij(Tijt)), for all (s, t) ∈ Aij = [−1/2, 1/2]× S1

and
a(s, t) = 2�σijs+ b, for all (s, t) ∈ Anod

ij = [−1/2, 1/2]× S1

for some b ∈ R and wf ∈M. Here xij is the Reeb orbit of period Tij > 0.
We are now in the position to introduce the notion of convergence.

De�nition 29. A sequence of H−holomorphic curves (Sn, jn,un,P ′n = P ′n q P
′
n,γn) converges in the C∞loc sense

to a H−holomorphic curve (S, j,u,P,D,γ), if the tuple (S, j,P,D) is a broken building of height N and there exists
a sequence of di�eomorphisms ϕn : �S → Sn, where �S is the modi�ed collar blow-up as de�ned above, such that
ϕ−1
n (P

′
n) = P1 and ϕ−1

n (P ′n) = PN and such that the following conditions are satis�ed:

1. The sequence of complex structures (ϕn)∗jn converges in C∞loc on �S\(AqAnod) to j.

2. The special circles of (Sn, jn,Pn) are mapped by ϕ−1
n bijectively onto {0} × S1 of Aij or Anod

ij . For every

special cylinder Aij there exists an annulus Aij ∼= [−1, 1] × S1 such that Aij ⊂ Aij and (Aij, (ϕn)∗jn) and
(Aij, (ϕn)∗jn) are conformally equivalent to ([−Rn,Rn]×S1, i) and ([−Rn+hn,Rn−hn]×S1, i), respectively,
where Rn,hn,Rn/hn → ∞ as n → ∞, i is the standard complex structure and the di�eomorphisms are of
the form (s, t) 7→ (κ(s), t).

3. The H−holomorphic curves un ◦ϕn : 
�S := �S\(P1 q PN)→ R×M together with the harmonic perturbation

(ϕn)
∗γn which are de�ned on �S converge in C∞loc on 
�S\

(
AqAnod

)
to the H−holomorphic curve u with

harmonic perturbation γ. Note that 
�S\(AqAnod) may be conformally identi�ed with S\(PqD).

Next we describe the C0−convergence. Let (Sn, jn,un,P ′n,γn) be a sequence of H−holomorphic curves. For
any special circle Γij, let τnij ∈ R and σnij ∈ R be the conformal period of ϕ∗nγn on Γij with respect to the
complex structure ϕ∗njn, and the conformal co-period of ϕ∗nγn on Γij with respect to the complex structure ϕ∗njn,
respectively. For any nodal special circle Γnodij consider the numbers �τnij ∈ R and �σnij ∈ R, where �τnij is the conformal
period of ϕ∗nγn on Γnodij with respect to the complex structure ϕ∗njn, and �σnij is the conformal co-period of ϕ∗nγn
on Γnodij with respect to the complex structure ϕ∗njn, respectively.

Remark 30. For a sequence (Sn, jn,un,P ′n,γn) of H−holomorphic curves that converges to a H−holomorphic
curve (S, j,u,P,D,γ) in the sense of De�nition 29, the quantities τnij, σ

n
ij, �τ

n
ij and �σnij can be unbounded (see, e.g,

Chapter 4). If τnij, σ
n
ij, �τ

n
ij and �σnij are bounded, then after going over to a further subsequence, and assuming that

there exist the real numbers τij,σij, �τij, �σij ∈ R such that

τnij → τij, (2.3.1)

σnij → σij, (2.3.2)

�τnij → �τij, (2.3.3)

�σnij → �σij (2.3.4)

as n→∞, we are able to derive a C0− convergence result.

The convergence of a sequence of H−holomorphic curves to a strati�ed H−holomorphic building of height N should
be understood in the following sense:



CHAPTER 2. DEFINITIONS AND MAIN RESULTS 31

De�nition 31. A sequence of H−holomorphic curves (Sn, jn,P ′n,un,γn) converges in the C0 sense to a stati�ed
H−holomorphic building (S, j,u,P,D,γ, τ,σ) of height N if the following conditions are satis�ed.

1. The parameters τnij, σ
n
ij, �τ

n
ij and �σnij converge as in (2.3.1)-(2.3.4).

2. The sequence (Sn, jn,P ′n,un,γn) converges to the underlying H−holomorphic curve (S, j,u,P,D,γ) in the
sense of De�nition 29 with respect to a sequence of di�eomorphisms ϕn : �S→ Sn.

3. (S, j,u,P,D,γ, τ,σ) is a strati�ed H−holomorphic building of height N corresponding to the constants τij,
�τij and �σij, as in De�nition 27.

4. The maps un ◦ϕn converges in C0
loc on


�S\A to the blow-up map u de�ned on 
�S\A.

5. The maps fn ◦ϕn converges in C0 on S to the blow-up map f de�ned on S.

6. E(un; 
Sn)→ E(u; 
S) as n→∞.

The compactness result will be established for �nite energy H−holomorphic curves with harmonic perturbation
1−forms having uniformly bounded L2−norms and uniformly bounded conformal periods and co-periods. Speci�-
cally, we will consider a sequence of H−holomorphic curves un = (an, fn) : (Sn\Pn, jn) → R×M with harmonic
perturbations γn, satisfying the following conditions:

B1 (Sn, jn) are compact Riemann surfaces of the same genus and Pn ⊂ Sn is a �nite set of punctures whose
cardinality is independent of n.

B2 The energy of un, as well as the L2−norm of γn are uniformly bounded by the constants E0 > 0 and
C0 > 0, respectively.

Remark 32. For the sequence of punctured Riemann surfaces (Sn, jn,Pn), the Deligne-Mumford convergence
result implies that there exists a punctured nodal Riemann surface (S, j,P,D) and a sequence of di�eomorphisms
ϕn : SD,r → Sn, such that ϕ∗njn converges outside certain circles in C∞loc to j. Here, SD,r is the surface obtained
by blowing up the points from D and identifying them via the decoration r (see Section 2.1). Denote by Γnodi , for
i = 1, ..., |D|/2, the equivalence classes of the boundary circles of SDin SD,r. Let Γnodn,i = (ϕn)∗Γ

nod
i for all n ∈ N

and i = 1, ..., |D|/2.

The main result of our analysis is the following

Theorem 33. Let (Sn, jn,un,Pn,γn) be a sequence of H−holomorphic curves in R×M satisfying assumptions

B1 and B2. Then there exists a subsequence that converges to a H−holomorphic curve (S, j,u,P,D,γ) in
the sense of De�nition 29. Moreover, if there exists a constant C > 0 such that for all n ∈ N and all

1 6 i 6 |D|/2 we have |τ[Γnod

n,i],γn
|, |σ[Γnod

n,i],γn
| < C then (S, j,u,P,D,γ) is a strati�ed broken H−holomorphic

building of height N and after going over to a subsequence the H−holomorphic curves (Sn, jn,un,Pn,γn)
converges to (S, j,u,P,D,γ) in the sense of De�nition 31.





Part II

Proof of the compactness Theorem

33



Chapter 3

Proof of the Compactness Theorem

Let (Sn, jn,un,P ′n,γn) be a sequence of H−holomorphic curves satisfying Assumptions B1 and B2 from the end of
Section 2.3. After introducing an additional �nite set of points Mn disjoint from the set of punctures P ′n we assume
that the domains (Sn, jn,P ′nqMn) of the sequence of H−holomorphic curves are stable. This condition enables us
to use the Deligne-Mumford convergence (see Section 2.1) which makes it possible to formulate a convergence result
for the domains (Sn, jn,P ′nqMn). Note that Mn can be choosen in such a way that their cardinality is independent
of the index n. As an additional structure, let hjn be the hyperbolic metric on 
Sn := Sn\(P

′
n qMn). By the

Deligne-Mumford convergence result (Corollary 15) there exists a stable nodal decorated surface (S, j,PqM,D, r)
and a sequence of di�eomorphisms ϕn : SD,r → Sn, where SD,r is the closed surface obtained by blowing up the
nodes and glueing pairs of nodal points according to the decoration r as described in Section 2.1, such that the
following holds: Let h be the hyperbolic metric on S\(P qM qD). The di�eomorphisms ϕn map marked points
into marked points and punctures into punctures, i.e. ϕn(M) = Mn and ϕn(P) = P ′n. Via ϕn we pull-back the
complex structures jn and the hyperbolic metrics hjn , i.e. we de�ne j(n) := ϕ∗njn on SD,r and hn := ϕ∗nh

jn on

SD,r := SD,r\(MqP). By the Deligne-Mumford convergence, hn → h in C∞loc( 
SD,r\

∐
j Γj) as n→∞, where Γj are

the special circles in SD,r (see Section 2.1 for the de�nition of special circles) and by abuse of notation h denotes
the hyperbolic metric on 
SD,r. This yields j(n) → j in C∞loc(SD,r\

∐
j Γj) as n→∞.

LetM be a closed contact manifold with co-oriented contact structure ξ given by the contact form α, i.e. ξ = ker(α).
Let Xα be the Reeb vector �eld associated with the contact form α and let πα : TM → ξ be the projection along
the Reeb vector �eld. Furthermore, let J be a dα−compatible almost complex structure on the contact structure
ξ. Recall the metric g on M, de�ned by g(·, ·) = α⊗ α+ dα(·, J·) and the metric g on the symplectization R×M,
de�ned by g(·, ·) = dr ⊗ dr + g. Consider now the maps �un = (�an, �fn) := un ◦ ϕn : SD,r\P → R ×M and
�γn := ϕ∗nγn ∈ H1

j(n)(S
D,r). Then �un is a H−holomorphic curve with harmonic perturbation �γn; it satis�es the

equation
παd�fn ◦ j(n) = J ◦ παd�fn
(�f∗nα) ◦ j(n) = d�an + �γn

on SD,r\P

and has uniformly bounded energies, i.e. for E0 > 0 and all n ∈ N we have E(�un;SD,r\P) 6 E0. The L2−norm of
�γn goes over in

‖�γn‖2L2(SD,r) =

∫
SD,r

�γn ◦ j(n) ∧ �γn =

∫
SD,r

ϕ∗nγn ◦ϕ∗njn ∧ϕ∗nγn =

∫
Sn

γn ◦ jn ∧ γn = ‖γn‖2L2(Sn)

and it is apparent that the L2−norm of �γn is uniformly bounded by the constant C0 > 0. Hence B1 and B2 from
the end of Section 2.3 are satis�ed for �un.
In the following, we �rst establish a convergence result on the thick part, i.e. on SD,r away from special circles,
punctures and certain additional marked points, and then treat the components from the thin part.

34
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3.1 The Thick Part

For the sequence �un : SD,r\P→ R×M as de�ned above, we prove the C∞loc−convergence in the complement of the

special circles and of a �nite collection of points in 
SD,r := SD,r\(PqM). Set 
�SD,r := 
SD,r\
∐
j Γj. To simplify the

notation we continue to denote the maps �un by un and �γn by γn. The main result of this section is the following

Theorem 34. There exists a subsequence of un, still denoted by un, a �nite subset Z ⊂ 
�SD,r, and a

H−holomorphic curve u : 
�SD,r\Z → R × M with harmonic perturbation γ de�ned on SD,r with respect

to the complex structure j such that un → u in C∞
loc
( 
�SD,r\Z) and γn → γ in C∞

loc
( 
�SD,r).

Before proving Theorem 34 we establish some preliminary results.

Assume that there exists a point z1 ∈ K ⊂ 
�SD,r, where K is compact, and a sequence zn ∈ K such that

zn → z1 and ‖dun(zn)‖ →∞
as n→∞. The next lemma describing the convergence of conformal structures on Riemann surfaces is similar to
Lemma 10.7 of [6].

Lemma 35. There exist the open neighbourhoods Un(z
1) = Un and U(z1) = U of z1, and the di�eomorphisms

ψn : D→ Un, ψ : D→ U

such that

1. ψn are i− j(n)−biholomorphisms and ψ is a i− j−biholomorphism;

2. ψn → ψ in C∞
loc
(D) as n → ∞ with respect to the Euclidean metric on D and the hyperbolic metric h

on their images;

3. ψn(0) = z1 for every n and ψ(0) = z1;

4. zn ∈ Un for every su�ciently large n;

5. z(n) := ψ−1
n (zn)→ 0 as n→∞.

Proof. Lemma 97 applied to the compact Riemann surface with boundary K and the interior point z1, yields the
di�eomorphisms ψn : D → Un and ψ : D→ U for which the �rst three assertions hold true. The fourth and �fth
assertions are obvious since zn converge to z1.

Remark 36. The coordinate maps ψn and ψ have uniformly bounded gradients with respect to the Euclidian
metric on D and the hyperbolic metric h on their images. This follows from the second assertion of Lemma 35.

Let  h > 0 be de�ned by (1.0.22). The next lemma essentially states that the dα−energy concentrates around the
point z1 and is at least  h/2 > 0. The proof relies on bubbling-o� analysis and proceeds as in Section 5.6 of [6].

Lemma 37. For every open neighbourhood U(z1) = U ⊂ 
�SD,r we have

0 <  h 6 lim
n→∞Edα(un;U) 6 E0.



CHAPTER 3. PROOF OF THE COMPACTNESS THEOREM 36

In particular, for each open neighbourhood U of z1 there exists an integer N1 ∈ N such that for all n > N1

we have

Edα(un;U) >
 h

2
.

Proof. Consider the maps �un := un ◦ ψn : D → R ×M, where ψn are the biholomorphisms given by Lemma 35.
They satisfy the H−holomorphic equations

παd�fn ◦ i = J(�fn) ◦ παd�fn
(�f∗nα) ◦ i = d�an + �γn

on D,

where �γn := ψ∗nγn is a harmonic 1−form on D with respect to i. The energy of �un on D is uniformly bounded as
E(�un;D) 6 E0, while the L2−norm of the i−harmonic 1−form �γn is uniformly bounded on D as

‖�γn‖2L2(D) =

∫
D

�γn ◦ i∧ �γn =

∫
Un

γn ◦ j(n) ∧ γn 6 C0.

by the constant C0. Furthermore, for z(n) := ψ−1
n (zn),

∥∥d�un(z(n))∥∥→∞ as n→∞. This can be seen as follows.
If vn ∈ Tz(n)D with ‖vn‖eucl. = 1 is such that∥∥∥∥∥dun(zn) dψn(z

(n))vn∥∥dψn(z(n))vn∥∥hn
∥∥∥∥∥
g

= ‖dun(zn)‖ ,

then,

∥∥∥d�un(z(n))vn∥∥∥
�g

=

∥∥∥∥∥dun(zn) dψn(z
(n))vn∥∥dψn(z(n))vn∥∥hn

∥∥∥∥∥
g

∥∥∥dψn(z(n))vn∥∥∥
hn

= ‖dun(zn)‖
∥∥∥dψn(z(n))vn∥∥∥

hn

> ‖dun(zn)‖
1
2

∥∥∥dψn(z(n))∥∥∥
> ‖dun(zn)‖

1
4
‖dψ(0)‖ →∞

as n → ∞. The �rst inequality follows from the i − j(n)−holomorphicity of ψn. Set R ′n :=
∥∥d�un(z(n))∥∥ and note

that R ′n →∞ as n→∞. Choose ε ′n > 0 such that ε ′n → 0 and R ′nε
′
n →∞ as n→∞, and consider

ε ′′n := min

{
1− |z(n)|

4
, ε ′n

}
for all n ∈ N. Then, ε ′′n → 0 and R ′nε

′′
n →∞ as n→∞, and D2ε′′n(z

(n)) ⊂ D for all n ∈ N. By Hofer's topological
lemma (Lemma 2.39 of [2]) with respect to the sequences R ′n and ε ′′n, there exist εn ∈ (0, ε ′′n] and �z(n) ∈ D such
that

1. εn
∥∥d�un(�z(n))∥∥ > ε ′′nR ′n;

2. |z(n) − �z(n)| 6 2ε ′′n;

3. ‖d�un(z)‖ 6 2
∥∥d�un(�z(n))∥∥, for all z ∈ Dεn(�z(n)).

For Rn :=
∥∥d�un(�z(n))∥∥, the �rst assertion yield Rn → ∞, Rnεn → ∞ as n → ∞. From εn ∈ (0, ε ′′n], we get
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εn → 0, from the third assertion, we get
‖d�un(z)‖ 6 2Rn

for all z ∈ Dεn(�z(n)), and �nally, from the second assertion, we get �z(n) → 0 as n→∞. Doing rescaling we de�ne
the maps

vn(z) = (bn(z),gn(z)) :=

(
�an

(
�z(n) +

z

Rn

)
− �an(�z

(n)), �fn

(
�z(n) +

z

Rn

))
for all z ∈ DεnRn(0). The maps vn = (bn,gn) : DεnRn(0)→ R×M satisfy ‖dvn(0)‖ = 1 and ‖dvn(z)‖ 6 2 for all
z ∈ DεnRn(0), and we have

Eα(vn;DεnRn(0)) = Eα(�un;Dεn(�z
(n))) 6 Eα(�un;D)

and

Edα(vn;DεnRn(0)) = Edα(�un;Dεn(�z
(n))) 6 Edα(�un;D)

giving E(vn;DεnRn(0)) 6 E0. Moreover, vn solves the H−holomorphic equations

παdgn ◦ i = J ◦ παdgn,
(g∗nα) ◦ i = dbn + γ

n
,

where γ
n
:= �γn/Rn. Because vn has a bounded gradient, there exists a smooth map v : C→ R×M with a bounded

energy (by E0) such that vn → v in C∞loc(C) as n→∞. Nevertheless, because �γn is bounded in L2−norm, γ
n
→ 0

as n→ 0. Thus v = (b,g) : C→ R×M is a pseudoholomorphic plane, i.e. it solves the pseudoholomorphic curve
equation

παdg ◦ i = J ◦ παdg,
(g∗α) ◦ i = db.

We prove now that the α− and dα−energies of v are bounded. Let R > 0 be arbitrary and for some τ0 ∈ A consider∫
DR(0)

τ ′0(b)db ◦ i∧ db = lim
n→∞

∫
DR(0)

τ ′0(bn)dbn ◦ i∧ dbn

= lim
n→∞

∫
DR/Rn(�z(n))

τ ′0(�an − �an(�z
(n)))d�an ◦ i∧ d�an

= lim
n→∞

∫
DR/Rn(�z(n))

τ ′n(�an)d�an ◦ i∧ d�an

6 lim
n→∞ sup

τ∈A

∫
DR/Rn(�z(n))

τ ′(�an)d�an ◦ i∧ d�an

= lim
n→∞Eα(�un;DR/Rn(�z(n))),

where τn = τ0(· − �an(�z(n))) is a sequence of functions that belong to A. Taking the supremum of the left-hand
side over τ0 ∈ A, we get

Eα(v;DR(0)) 6 lim
n→∞Eα(�un;DR/Rn(�z(n))),

while picking some arbitrary ε > 0, we obtain

Eα(v;DR(0)) 6 lim
n→∞Eα(�un;DR/Rn(�z(n))) 6 lim

n→∞Eα(�un;Dε(0)).
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For the dα−energy, we proceed analogously: for R > 0 we have

Edα(v;DR(0)) = lim
n→∞

∫
DR(0)

g∗ndα = lim
n→∞

∫
DR/Rn(�z(n))

�f∗ndα,

while picking some arbitrary ε > 0, we �nd

Edα(v;DR(0)) = lim
n→∞

∫
DR/Rn(�z(n))

�f∗ndα 6 lim
n→∞

∫
Dε(0)

�f∗ndα 6 lim
n→∞Edα(�un;Dε(0)).

Because the α− and dα−energies are non-negative,

E(v;DR(0)) = Eα(v;DR(0)) + Edα(v;DR(0))

6 lim
n→∞Eα(�un;Dε(0)) + lim

n→∞Edα(�un;Dε(0))
= lim
n→∞E(�un;Dε(0))

6 E0,

and since R > 0 was arbitrary, we obtain Edα(v;C) 6 E0. As v is a usual pseudoholomorphic curve, it follows
that E(v;C) = EH(v;C), where EH is the Hofer energy de�ned by (1.0.4); thus EH(v;C) 6 E0. Moreover, as v is
non-constant we have by Remark 2.38 of [2], that for any ε > 0,

0 <  h 6 Edα(v;C) 6 lim
n→∞Edα(�un;Dε(0)) 6 lim

n→∞Edα(un;ψn(Dε(0))).
Choosing ε > 0 such that ψn(Dε(0)) ⊂ U for all n, we end up with

0 <  h 6 lim
n→∞Edα(un;U) 6 E0,

and the proof is �nished.

The next proposition is proved by contradiction by means of Lemma 37.

Proposition 38. There exists a subsequence of un, still denoted by un, and a �nite subset Z ⊂ 
�SD,r such

that for every compact subset K ⊂ 
�SD,r\Z, there exists a constant CK > 0 such that

‖dun(z)‖ := sup
v∈TzSD,r,‖v‖hn=1

‖dun(z)v‖g 6 CK

for all z ∈ K.

Proof. For the sequence un and any �nite subset Z ⊂ 
�SD,r, we de�ne

Z{un},Z :=
{
z ∈ 
�SD,r\Z | there exists a subsequence unk of un and a

sequence zk ∈ 
�SD,r\Z such that zk → z and ‖dunk(zk)‖ →∞ as k→∞} .
If Z{un},∅ is empty then the assertion is ful�lled for the sequence un and the �nite set Z = ∅. Otherwise, we

choose z1 ∈ Z{un},∅. In this case, there exists a sequence z1n ∈

�SD,r and a subsequence u1n of un such that

z1n → z1 and
∥∥du1n(z1n)∥∥→∞. Consider now the set Z{u1n},{z

1}. If Z{u1n},{z
1} is empty then the assertion is ful�lled

for the subsequence u1n and the �nite set Z = {z1}. Otherwise, we choose an element z2 ∈ Z{u2n},{z
1}. In this
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case, by de�nition, there exists a sequence z2n ∈

�SD,r\{z1} and a subsequence u2n of u1n such that z2n → z2 and∥∥du2n(z2n)∥∥ → ∞. Let us show that the set of points Z = {z1, z2, ...} constructed in this way is �nite, or more

precisely, that |Z| 6 2E0/ h. Assume |Z| > 2E0/ h and pick an integer k > 2E0/ h and pairwise di�erent points

z1, ..., zk ∈ Z. Let U1, ...,Uk ⊂ 
�SD,r be some open pairwise disjoint neighborhoods of z1, ..., zk. Applying Lemma
37 inductively, we deduce that there exists a positive integer N such that for every n > N, Edα(un;Ui) >  h/2 for
all i = 1, ...,k. Since the Ui are disjoint, we obtain

k
 h

2
6

k∑
i=1

Edα(un;Ui) 6 Edα(un;

�SD,r) 6 E0.

Thus k 6 2E0/ h which is a contradiction to our assumption.

By means of Proposition 38 we can prove the convergence of the H−holomorphic maps in a punctured thick part
of the Riemann surface.

Proof. (of Theorem 34) For some su�ciently small k ∈ N we consider the subsets

Ωk := Thick1/k(

�SD,r,h)\

N⋃
i=1

Dh1/k(z
i),

where Z = {z1, ..., zN} is the subset in Proposition 38 and Dh
1/k(zi) is the open disk around zi of radius 1/k with

respect to the metric h. In order to keep the notation simple, the subsequence obtained by applying Proposition

38 is still denoted by un. Obviously, Ωk build an exhaustion by compact sets of 
�SD,r\Z. These sets are compact
surfaces with boundary. By Proposition 38, the maps un have uniformly bounded gradients on Ω1. Thus after a
suitable translation of the maps un in the R−coordinate, there exists a subsequence u1n of un that converges in
C∞(Ω1) to a map u : Ω1 → R×M. Iteratively, at step k+1 there exists a subsequence uk+1

n of ukn that converges in
C∞(Ωk+1) to a map u : Ωk+1 → R×M which is an extension from Ωk to Ωk+1. This procedure allows us to de�ne

a map u : 
�SD,r\Z→ R×M. After passing to some diagonal subsequene unn, the maps unn converge in C∞loc( 
�SD,r\Z)

to the map u : 
�SD,r\Z → R ×M. Since the L2−norms of γn are uniformly bounded on SD,r, they converge in

C∞loc( 
�SD,r) to some harmonic 1−form γ with a bounded L2−norm on 
�SD,r. This can be seen as follows. For each

p ∈ Thickρ/2(

�SD,r,h), consider the charts ψpn : D→ Upn and ψp : D→ Up as in Lemma 35 for a su�ciently small

and �xed ρ > 0. As Thickρ(

�SD,r,h) is compact, there exist �nitely many {pi}i=1,...,N ∈ Thickρ/2(


�SD,r,h) such that

Upin , Upi , Upin,δ := ψ
pi
n (D1−δ(0)), and U

pi
δ := ψpi(D1−δ(0)) cover the whole Thickρ(


�SD,r,h) for a su�ciently small
and �xed δ� ρ. For some pi, we pull-back the harmonic 1−forms γn by ψpin to the harmonic 1−form γ ′n,i on D

with uniformly bounded L2−norms. By Lemmas 35 and 39, γn converges in C∞(Upiδ ) to a harmonic 1−form γ(i)

on Upiδ with respect to the hyperbolic metric h. Let l be an index such that Uplδ ∩ U
pi
δ 6= ∅. On U

pl
δ we go over

to a further subsequence and arguing as above, we �nd that γn converges in C∞(Uplδ ) to a harmonic 1−form γ(l).
The uniqueness of the limit implies that γ(i) and γ(l) agree on the overlaps Uplδ ∩U

pi
δ . Consequently, there exist a

harmonic 1−form γρ on Thickρ(

�SD,r,h) and a subsequence of γn, still denoted by γn, that converges in C∞ to γρ

with respect to the hyperbolic metric h. Passing to a diagonal subsequence, we �nd that γn converges in C∞loc to
a harmonic 1−form γ de�ned on 
�SD,r with respect to the hyperbolic metric h. What is left to show is that after

projecting γ from 
�SD,r to S\(MqP), γ can be extended across the punctures. This result follows from Lemma 19.

Hence the map u is a H−holomorphic curve on 
�SD,r\Z with harmonic perturbation γ.



CHAPTER 3. PROOF OF THE COMPACTNESS THEOREM 40

Lemma 39. Let γn be a sequence of harmonic 1−forms de�ned on the closed unit disk D and having

uniformly bounded L2−norms by the constant C0 > 0. Then, for each δ > 0 there exists a subsequence of γn,

still denoted by γn, which converges in C∞(D1−δ(0)) to a harmonic 1−form γ de�ned on D1−δ(0).

Proof. Let γn = fndx + gndy, where fn,gn : D → R is a sequence of harmonic functions and x,y are the
coordinates on D. Since γn has a uniformly bounded L2−norm, fn and gn are uniformly bounded in L2(D). Let
us show that the derivatives of fn and gn are uniformly bounded on D1−δ(0). For z ∈ D1−(δ/2)(0), the mean-value
theorem for harmonic functions yields

|fn(z)| 6
16
πδ2

∫
D δ

2
(0)

|fn(x,y)|dxdy

6
4C0

δ
√
π
,

and so, fn is uniformly bounded in D1−(δ/2)(0). Applying the same argument for the function gn, we �nd that
the holomorphic function Fn := fn + ign : D1−(δ/2)(0)→ C is uniformly bounded. In view of the Cauchy integral
formula we deduce that for k ∈ N and z ∈ D1−δ(0), we have

|F(k)n (z)| =
k!
2π

∣∣∣∣∣∣
∫
∂D δ

2
(z)

Fn(ξ)

(ξ− z)k+1
dξ

∣∣∣∣∣∣ = k!
2π

∣∣∣∣∫2π
0

2ki
Fn(z+ δe

it)

δkeikt
dt

∣∣∣∣ 6 2k+4k!
√
2C0

δk+1
√
π

.

Hence, for every k ∈ N0 the quantities ‖fn‖Ck(D1−δ(0))
and ‖gn‖Ck(D1−δ(0))

are uniformly bounded. From here
we deduce by Arzelà-Ascoli theorem that fn and gn converge in C∞(D1−δ(0)) to the harmonic functions f and g
de�ned on D1−δ(0), respectively.

3.2 Convergence on the thin part and around the points from Z

In this section we investigate the convergence of the H−holomorphic curves un on the components of the thin
part and in the neighborhood of the points from Z that were constructed in Theorem 34. For a su�cient small
δ > 0, the set Thinδ( 
SD,r,hn) can be decomposed in two types of connected components: (I) the so called cusps,
which are neighborhoods of punctures with respect to the hyperbolic metric, and (II) the components which are
biholomorphic to the hyperbolic cylinders that mutate to nodes in the Deligne-Mumford limiting process. For more
details we refer to Chapter 1 of [2]. This section is organized as follows. First, we analyze the convergence of un
on components that can be identi�ed with hyperbolic cylinders, and describe the limit object. Second, we treat
the convergence of un on components that can be identi�ed with cusps, and as before, describe the limit object.
The convergence results established here can be used to describe the convergence of un in a neighborhood of the
points from Z. Third, we use the description of the convergence of the H−holomorpic curves un on the thick
part (established in Section 3.1), the thin part, and in the neighborhood of the points from Z (established in this
section) to de�ne a new surface by gluing the two parts together. On this surface we describe the convergence of
un completely.
Before proceeding we emphasize that by techniques of hyperbolic geometry, the compact components of the thin
part, called hyperbolic cylinders, can be biholomorphically identi�ed, for a suitable R > 0, with the standard
cylinders [−R,R]× S1 endowed with the standard complex structure i.
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∞ b1 ∞ ∞b1

Figure 3.2.1: The component of the thin part, which is biholomorphic to a cylinder, is divided in cylinders of types
b1 and ∞ in an alternating order.

3.2.1 Cylinders

We analyze the convergence of un on compact components of the thin part which are biholomorphic to hyperbolic
cylinders. When restricted to these cylinders, the curves un can have a dα−energy larger than the constant  h > 0
de�ned in (1.0.22). Since we do not have a version of the monotonicity lemma in the H−holomorphic case, the
classical results on the asymptotic of holomorphic cylinders from [6] and [14] are not directly applicable. To deal
with this problem we shift the maps by the Reeb �ow to make them pseudoholomorphic. Actually we proceed as
follows. We decompose the hyperbolic cylinder into a �nite uniform number of smaller cylinders; some of them
having conformal modulus tending to in�nity but a dα−energy strictly smaller than  h, and the rest of them having
bounded modulus but a dα−energy possibly larger than  h. We refer to these cylinders as cylinders of types∞ and
b1, respectively. We consider an alternating appearance of these cylinders, as it can be seen in Figure 3.2.1.

The convergence and the description of the limit object are �rst treated for cylinders of type ∞, and then for
cylinders of type b1.
As cylinders of type∞ have a small dα−energy, we can assume, by the classical bubbling-o� analysis, that the maps
un have uniformly bounded gradients. To make the curves un pseudoholomorphic, we perform a transformation
by pushing them along the Reeb �ow up to some speci�c time. This procedure is made precise in Appendix B.
As the gradients of these transformed curves still remain uniformly bounded, we can adapt the results of [14] to
formulate a convergence result for the transformed curves (see Appendix B). Undoing the transformation we obtain
a convergence result for the H−holomorphic curves.
In the case of cylinders of type b1 we proceed as follows. Relying on a bubbling-o� argument, as we did in the case of
the thick part (see Section 3.1), we assume that the gradients blow up only in a �nite uniform number of points and
remain uniformly bounded in a compact complement of them. In this compact region, the Arzelà-Ascoli theorem
shows that the curves un together with the harmonic perturbations γn converge in C∞ to some H−holomorphic
curve. What is then left is the convergence in a neighborhood of the �nitely many punctures where the gradients
blow up. Here, a neighborhood of a puncture is a disk on which the harmonic perturbation can be made exact
and can be encoded in the R−coordinate of the curve un. By this procedure we transform the H−holomorphic
curve into a usual pseudoholomorphic curve de�ned on a disk D. By the C∞−convergence of un on any compact
complement of the punctures, we assume that the transformed curves converge on an arbitrary neighborhood of
∂D. This approach, which is described in detail in Section 3.2.3, uses a convergence result established in Appendix
A. As for cylinders of type ∞, we undo the transformation and derive a convergence result for the H−homolorphic
curves on cylinders of type b1. Finally, gluing all cylinders together, we are led to a convergence result for the
entire component which is biholomorphic to a hyperbolic cylinder from the thin part.
Let Cn be a component of Thinδ( 
SD,r,hn) which is conformally equivalent to the cylinder [−σδn,σ

δ
n]×S1. Observe

that from the de�nition of Deligne-Mumford convergence, σδn → ∞ as n → ∞. In the following, we drop the
�xed, su�ciently small constant δ > 0, and assume that the curves un are de�ned on [−σn,σn] × S1. Let
un = (an, fn) : [−σn,σn]×S1 → R×M be a sequence of H−holomorphic curves with harmonic perturbations γn,
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i.e.,

παdfn ◦ i = J(fn) ◦ παdfn,
(f∗nα) ◦ i = dan + γn

on [−σn,σn] × S1, and let us assume that the energy of un, as well as the L2−norm of γn on the cylinders are
uniformly bounded, i.e. for the constants E0,C0 > 0 we have E(un; [−σn,σn]×S1) 6 E0 and ‖γn‖2L2([−σn,σn]×S1) 6
C0 for all n ∈ N.
Before describing the decomposition of [−σn,σn]×S1 into cylinders of types∞ and b1 we give a proposition which
states that the C1−norm of the harmonic perturbation γn is uniformly bounded. This result will play an essential
role in Section 3.2.3. We set γn = fnds+gndt, where fn and gn are harmonic functions de�ned on [−σn,σn]×S1
with coordinates (s, t) such that fn + ign is holomorphic. By the uniform L2−bound of γn, we have

‖γn‖2L2([−σn,σn]×S1) =
∫
[−σn,σn]×S1

(
f2n + g2n

)
dsdt 6 C0

for all n ∈ N. As a result, the L2−norm of the holomorphic function fn + ign is uniformly bounded. Denote this
function by Gn = fn + ign.

Proposition 40. For any δ > 0 there exists a constant Cδ > 0 such that

‖Gn‖C1([−σn+δ,σn−δ]×S1) 6 Cδ

for all n ∈ N.

Proof. First, we prove that the sequence Gn is uniformly bounded in C0−norm. As Gn : [−σn,σn] × S1 → C is
holomorphic, fn = <(Gn) and gn = =(Gn) are harmonic functions de�ned on [−σn,σn] × S1. For a su�ciently
small δ > 0 we establish C0−bounds for fn on the subcylinders [−σn + (δ/2),σn − (δ/2)]× S1. By the mean value
theorem for harmonic function, we have

fn(p) =
16
πδ2

∫
D δ

4
(p)

fn(s, t)dsdt

for all p ∈ [−σn + (δ/2),σn − (δ/2)]× S1, where Dδ/4(p) ⊂ [−σn,σn]× S1. Then Hölder's inequality yields

|fn(p)| =
16
πδ2

∣∣∣∣∣∣
∫
B δ

4
(p)

fn(s, t)dsdt

∣∣∣∣∣∣
6

16
πδ2

∫
B δ

4
(p)

|fn(s, t)|dsdt

6
16
πδ2

∫
B δ

4
(p)

|fn(s, t)|
2dsdt

 1
2
∫

B δ
4
(p)

dsdt

 1
2

=
4√
πδ

∫
B δ

4
(p)

|fn(s, t)|
2dsdt

 1
2

6
4√
πδ

√
C0
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for all n ∈ N. As a result, we obtain

‖fn‖C0([−σn+ δ2 ,σn−
δ
2 ]×S1)

6
4√
πδ

√
C0,

and note that the same result holds for gn.
By means of bubbling-o� analysis we prove now that the gradient of Gn is uniformly bounded. Assume

sup
p∈[−σn+δ,σn−δ]×S1

|∇Gn(p)|→∞
as n→∞. Let pn ∈ [−σn + δ,σn − δ]× S1 be such that

|∇Gn(pn)| = sup
p∈[−σn+δ,σn−δ]×S1

|∇Gn(p)| ;

then Rn := |∇Gn(pn)| → ∞ as n → ∞. Set εn := R
− 1

2
n ↘ 0 as n → ∞, and observe that εnRn → ∞ as n → ∞.

Choose n0 ∈ N0 su�ciently large such that D10εn(pn) ⊂ [−σn,σn] × S1 for all n > n0. By Hofer's topologial
lemma there exist ε ′n ∈ (0, εn] and p ′n ∈ [−σn,σn]× S1 satisfying:

1. ε ′nR
′
n > εnRn;

2. p ′n ∈ D2εn(pn) ⊂ D10εn(pn);

3. |∇Gn(p)| 6 2R ′n, for all p ∈ Dε′n(p
′
n) ⊂ D10εn(pn),

where R ′n := |dun(p
′
n)|. Via rescaling consider the maps �Gn : Dε′nR′n(0)→ C, de�ned by

�Gn(w) := Gn

(
p ′n +

w

R ′n

)
for w ∈ Dε′nR′n(0). Observe that p

′
n + (w/R ′n) ∈ Dε′n(p

′
n) for w ∈ Dε′nR′n(0), and that for �Gn we have:

1. |∇ �Gn(0)| = 1;

2. |∇ �Gn(w)| 6 2 for w ∈ Dε′nR′n(0);

3. �Gn is holomorphic on Dε′nR′n(0);

4. �Gn is uniformly bounded on [−σn + δ,σn − δ]× S1 (by Assertion 1).

By the usual regularity theory for pseudoholomorphic maps and Arzelà-Ascoli theorem, �Gn converge in C∞loc(C) to
a bounded holomorphic map �G : C→ C with |∇ �G(0)| = 1. By Liouville theorem this map can be only the constant
map, and so, we arrive at a contradiction with |∇ �G(0)| = 1.

For δ > 0 we can replace the cylinder [−σn + δ,σn − δ]× S1 by [−σn,σn]× S1 if we consider Thinδ( 
SD,r,hn) for
a smaller δ > 0. We come now to the decomposition of [−σn,σn]× S1 into cylinders of types ∞ and b1. Consider
the parameter-dependent function with parameter h ∈ [−σn,σn] de�ned by

Fn,h : [h,σn]→ R, s 7→
∫
[h,s]×S1

f∗ndα.
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−σn = h0n h1n h2n h3n h4n h5n σn = h6n

Figure 3.2.2: Decomposition of [−σn,σn]× S1 into smaller cylinders [h(m)
n ,h(m+1)

n ]× S1 having dα−energy  h/4 or
less.

As f∗ndα is non-negative, Fn,h is positive and increasing. For the constant  h de�ned in (1.0.22), we set h(0)n = −σn,
and de�ne

h(m)
n := sup

(
F−1

n,h
(m−1)
n

([
0,

 h

4

]))
.

Since Edα(un; [−σn,σn] × S1) < E0, the sequence {h
(m)
n }m∈N0

has to end after Nn steps, where h(Nn)n = σn. On
the cylinder [h

(Nn−1)
n ,h(Nn)n ] × S1, the dα−energy of un can be smaller than  h/4. Obviously, we have −σn =

h
(0)
n < h

(1)
n < ... < h(m)

n < ... < h(Nn)n = σn giving Edα(un; [h
(m−1)
n ,h(m)

n ] × S1) =  h/4 for m = 1, ...,Nn − 1 and
Edα(un; [h

(Nn−1)
n ,h(Nn)n ]× S1) 6  h/4. Hence the dα−energy can be written as

Edα(un; [−σn,σn]× S1) = (Nn − 1)
 h

4
+ Edα(un; [h

(Nn−1)
n ,h(Nn)n ]× S1),

which implies the following bound on Nn:

0 6 Nn 6
4E0
 h

+ 1.

After going over to a subsequence, we can further assume that Nn is also independent of n; for this reason, we set
Nn = N. Thus the cylinders [−σn,σn] × S1 have been decomposed into N smaller subcylinders [h

(0)
n ,h(1)n ] ×

S1, ..., [h(N−1)
n ,h(N)

n ] × S1 on which we have Edα(un; [h
(m−1)
n ,h(m)

n ] × S1) =  h/4 for m ∈ {1, ...,N − 1} and
Edα(un; [h

(N−1)
n ,h(N)

n ]× S1) 6  h/4.

De�nition 41. A sequence of cylinders [an,bn]×S1, where an,bn ∈ R and an < bn is called of type b1 if bn−an
is bounded from above, and of type ∞ if bn − an →∞ as n→∞.

This is illustrated in Figure 3.2.2.

Lemma 42. Let [h
(m−1)
n ,h(m)

n ]× S1 be a cylinder of type ∞ and let h > 0 be chosen small enough such that

h
(m)
n − h

(m−1)
n − 2h = (h

(m)
n − h) − (h

(m−1)
n + h) > 0 for all n ∈ N. Then there exists a constant Ch > 0 such

that

‖dun(z)‖C0 = sup
‖v‖

eucl
=1

‖dun(z)v‖ < Ch

for all z ∈ [h
(m−1)
n + h,h(m)

n − h]× S1 and n ∈ N.

Proof. The proof makes use of bubbling-o� analysis. Assume that there exists h > 0 such that h(m)
n −h

(m−1)
n −2h >

0 and
sup

z∈[h(m−1)
n +h,h

(m)
n −h]×S1

‖dun(z)‖C0 =∞. (3.2.1)

Then there exists a sequence zn ∈ (h
(m−1)
n + h,h(m)

n − h) × S1 with the property Rn := ‖dun(zn)‖C0 → ∞ as

n→∞. Let εn = R
− 1

2
n ↘ 0 as n→∞, and observe that εnRn →∞ as n→∞. Choose n0 ∈ N su�ciently large
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such that D10εn(zn) ⊂ [h
(m−1)
n ,h(m)

n ] × S1 for all n > n0. By Hofer's topological lemma, there exist ε ′n ∈ (0, εn]
and z ′n ∈ [h

(m−1)
n ,h(m)

n ]× S1 satisfying:

1. ε ′nR
′
n > εnRn;

2. z ′n ∈ D2εn(zn) ⊂ D10εn(zn);

3. ‖dun(z)‖C0 6 2R ′n, for all z ∈ Dε′n(z
′
n) ⊂ D10εn(zn),

where R ′n := ‖dun(z ′n)‖C0 . Applying rescaling consider the map vn : Dε′nR′n(0)→ R×M, de�ned by

vn(w) = (bn(w),gn(w)) := un

(
z ′n +

w

R ′n

)
− an(z

′
n)

for w ∈ Dε′nR′n(0). Note that z
′
n + (w/R ′n) ∈ Dε′n(z

′
n) for w ∈ Dε′nR′n(0), and that for vn we have

1. ‖dvn(0)‖C0 = 1;

2. ‖dvn(w)‖C0 6 2 for w ∈ Dε′nR′n(0);

3. Edα(vn;Dε′nR′n(0)) 6  h/4 (straightforward calculation shows that the α−energy is also uniformly bounded);

4. vn solves

παdgn ◦ i = J ◦ παdgn,

(g∗nα) ◦ i = dbn +
γn

R ′n

on Dε′nR′n(0).

As the gradients of vn are uniformly bounded, vn converge in C∞loc(C) to a �nite energy plane v = (b,g) : C→ R×M
characterized by:

1. ‖dv(0)‖C0 = 1;

2. ‖dv(w)‖C0 6 2 for w ∈ C;

3. Edα(v;C) 6  h/4;

4. v is a �nite energy holomorphic plane.

Assertion 3 follows from the fact that for an arbitrary R > 0 we have

Edα(v,DR(0)) = lim
n→∞Edα(vn;DR(0)) 6 lim

n→∞Edα(vn;Dε′nR′n(0)) 6
 h

4
,

while Assertion 4 follows from the fact that γn has a uniformly bounded L2−norm. Note that by employing the
above argument, a bound for the α−energy can be also obtained. Now, as v is non-constant, Theorem 31 of [11]
gives Edα(v;C) >  h, which is a contradiction to Assertion 3. Thus Assumption (3.2.1) does not hold, and the
gradient of un on cylinders of type ∞ is uniformly bounded.
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Figure 3.2.3: On the white surface, the pseudoholomorphic curves have uniformly bounded gradients.

Now we change the above decomposition so that the lengths of the cylinders of type b1 are also bounded from
below and describe the alternating appearance of cylinders of types ∞ and b1. This process is necessary, because
on the cylinders of type b1 whose length tends to zero we cannot analyze the convergence behavior of the maps un
and cannot describe their limit object. We proceed as follows.

Step 1. We consider a cylinder [h(m)
n ,h(m+1)

n ] × S1 of type ∞, on which we apply Lemma 42. When doing
this we choose a su�ciently small constant h > 0, so that the gradients are uniformly bounded only on
[h

(m)
n + h,h(m+1)

n − h] × S1 by the constant Ch > 0, which in turn, is again a cylinder of type ∞. This
can be seen in Figure 3.2.3. By this procedure, a cylinder [h(m)

n ,h(m+1)
n ]× S1 of type ∞ is decomposed into

three smaller cylinders: two cylinders [h
(m)
n ,h(m)

n + h] × S1, [h(m+1)
n − h,h(m+1)

n ] × S1 of type b1 and one
cylinder [h

(m)
n + h,h(m+1)

n − h] × S1 of type ∞. The length of these two cylinders of type b1 is h > 0. To
any other cylinder of type ∞ we apply the same procedure with a �xed constant h > 0. Note that by Step
1, the gradients of un are uniformly bounded on the cylinders of type ∞ by the constant Ch > 0.

Step 2. We combine all cylinders of type b1, which are next to each other, to form a bigger cylinder of type
b1. This can be seen in Figure 3.2.4. By this procedure, we guarantee that in a constellation consisting of
three cylinders that lie next to each other, the type of the middle cylinder is di�erent to the types of the
left and right cylinders. Thus we got rid of the cylinders of type b1 with length tending to zero, and make
sure that the cylinders of types ∞ and b1 appear alternately. We additionally assume that the �rst and last
cylinders in the decomposition are of type ∞, since otherwise, we can glue the cylinder of type b1 to the
thick part of the surface and consider Thinδ( 
SD,r,hn) for a smaller δ > 0. By this procedure, we decompose
[−σn,σn] × S1 into cylinders of types ∞ and b1, while the �rst and last cylinders in the decomposition are
of type ∞.

Step 3. For �E0 = 2(E0 + Ch) (see Remark 70 for the explanation of this choice) and in view of the non-
degeneracy of the contact manifold (M,α), let the constant  h0 be given by

 h0 := min{|T1 − T2| | T1, T2 ∈ Pα, T1 6= T2, T1, T2 6 �E0}. (3.2.2)

Observe that because of �E0 > E0,  h0 6  h. If [h(m−1)
n ,h(m)

n ]×S1 is a cylinder of type∞ for somem ∈ {1, ...,N},
we de�ne the constant  h0 as above and apply Step 1 and Step 2 to decompose this cylinder into cylinders
of types ∞ and b1, while the �rst and last cylinders in the decomposition are of type ∞. The cylinders of
type ∞ have now a dα−energy smaller than  h0/4. We apply this procedure to all cylinders of type ∞. In
summary, [−σn,σn] × S1 is decomposed into cylinders of type ∞ with a dα−energy smaller than  h0/4 and
cylinders of type b1, with the �rst and last cylinders being of type ∞.

Step 4. We enlarge the cylinders of type b1 without changing their type. Let h > 0 be as in Lemma 42
and pick m ∈ {1, ...,N} such that [h

(m−1)
n ,h(m)

n ] × S1 is of type b1. For n su�ciently large, we replace the
cylinder [h(m−1)

n ,h(m)
n ]× S1 by the bigger cylinder [h(m−1)

n − 3h,h(m)
n + 3h]× S1, and apply this procedure
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Figure 3.2.4: Two cylinders of type b1 are combined to form a bigger cylinder of type b1.

∞ b1 b1∞ ∞
Figure 3.2.5: Decomposition of [−σn,σn]× S1 into cylinders of types ∞ and b1 in an alternating order.

to all cylinders of type b1. As a result, neighboring cylinders will overlap. Essentially, this means that if
[h

(m−2)
n ,h(m−1)

n ]×S1 is a cylinder of type∞, which lies to the left of a cylinder [h(m−1)
n −3h,h(m)

n +3h]×S1
of type b1, then their intersection is [h(m−1)

n − 3h,h(m−1)
n ]× S1. This can be seen in Figure 3.2.5.

By the above procedure, the cylinder [−σn,σn]×S1 is decomposed into an alternating constellation of cylinders of
types ∞ and b1. On cylinders of type ∞, the dα−energy is smaller than  h0/4, while on cylinders of type b1, the
dα−energy can be larger than  h0/4. By Lemma 42, the gradients of the H−holomorphic curves on the cylinders
of type∞ are uniformly bounded by the constant Ch > 0 with respect to the Euclidean metric on the domain, and
to the metric described in (2.2.1) on the target space R×M. Finally, the cylinders of types ∞ and b1 overlap.
We are now well prepared to analyse the convergence of the H−holomorphic curves on cylinders of types ∞ and
b1. After obtaining separate convergence results, we glue the limit objects of these cylinders on the overlaps, and
obtain a limit object on the whole cylinder [−σn,σn]× S1. Sections 3.2.2 and 3.2.3 deal with the convergence and
the description of the limit object on cylinders of types ∞ and b1, while in Section 3.2.4 we carry out the gluing
of these two convergence results.

3.2.2 Cylinders of type ∞
We describe the convergence and the limit object of the sequence of H−holomorphic curves un, de�ned on cylinders
of type ∞. Let m ∈ {1, ...,N} be such that [h(m−1)

n ,h(m)
n ]×S1 is a cylinder of type ∞ as described in Section 3.2.1,

i.e. h(m)
n − h

(m−1)
n → ∞ as n → ∞. Consider the di�eomorphism ψn : [−R

(m)
n ,R(m)

n ] → [h
(m)
n ,h(m+1)

n ] given by
ψn(s) = s+(h

(m)
n +h

(m+1)
n )/2 and the H−holomorphic maps un ◦ψn = (an ◦ψn, fn ◦ψn) : [−R(m)

n ,R(m)
n ]×S1 →

R×M with harmonic perturbation ψ∗nγn. For simplicity we continue to denote un ◦ψn and ψ∗nγn by un and γn,
respectively. For deriving a C∞loc−convergence result we consider the following setting:
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C1 R
(m)
n →∞ as n→∞.

C2 γn is a harmonic 1−form on [−R
(m)
n ,R(m)

n ] × S1 with respect to the standard complex structure i, i.e.
dγn = dγn ◦ i = 0.

C3 The dα−energy of un is uniformly small, i.e. Edα(un; [−R
(m)
n ,R(m)

n ]× S1) 6  h0/2 for all n, where  h0 is
the constant de�ned in (3.2.2).

C4 The energy of un is uniformly bounded, i.e. for the constant E0 > 0 we have E(un; [−R
(m)
n ,R(m)

n ]×S1) 6
E0 for all n ∈ N.

C5 The map un together with the 1−form γn solve the H−holomorphic curve equation

παdfn ◦ i = J(fn) ◦ παdfn,
(f∗nα) ◦ i = dan + γn.

on [−Rδn,R
δ
n]× S1

C6 The harmonic 1−form γn has a uniformly bounded L2−norm, i.e. for the constant C0 > 0 we have
‖γn‖2L2([−R(m)

n ,R
(m)
n ]×S1) 6 C0 for all n.

C7 The map un has a uniformly bounded gradient due to Lemma 42 and Step 4 of Section 3.2.1, i.e. for the
constant Ch > 0 we have

‖dun(z)‖C0 = sup
‖v‖eucl=1

‖dun(z)v‖ < Ch

for all z ∈ [−R
(m)
n ,R(m)

n ]× S1 and all n ∈ N.

C8 If Pn := Pγn({0}×S1) is the period of γn over the closed curve {0}×S1, as de�ned in (1.0.18), we assume
that the sequence RnPn is bounded by the constant C > 0. Moreover, after going over to some subsequence,
we assume that RnPn converges to some real number τ.

C9 If Sn := Sγn({0}×S1) is the co-period of γn over the curve {0}×S1 as de�ned in (1.0.19), we assume that
SnRn → σ as n→∞.

Remark 43. The special circles Γnodi in Remark 32 are of two types: contractible and non-contractible. In the
contractible case, Γnodi lies in the isotopy class of (ρn◦ψn)({0}×S1), where ρn is the biholomorphism from a compact
component Cn of the thin part to [−σn,σn]× S1 as described in Section 3.2.1, and the conformal periods and co-
periods of the harmonic 1−forms γn vanish. Hence, conditions C1-C9 are satis�ed on the sequence of degenerating
cylinders [−R(m)

n ,R(m)
n ]× S1. In the non-contractible case, Γnodi also lies in the isotopy class of (ρn ◦ψn)({0}× S1),

and by the assumptions of Theorem 33, conditions C1-C9 are satis�ed.

To simplify notation we drop the index m. By Theorem 72 and Remark 75 from Appendix B.1.2 we consider
two cases. In Case 1, there exists a subsequence of un with vanishing center action, and we use Theorem 63 and
Corollary 64 to describe the convergence of the H−holomorphic curves with harmonic perturbations γn. In Case
2, each subsequence of un has a center action larger than  h0, and we use Theorem 65 and Corollary 66 to describe
the convergence.

De�nition 44. For every sequence hn ∈ R+ with hn < Rn and hn,Rn/hn → ∞ as n → ∞, consider a sequence
of di�eomorphisms θn : [−Rn,Rn]→ [−1, 1] having the following properties:

1. The left and right shifts θ+n(s) := θn(s + Rn) and θ−n(s) := θn(s − Rn) de�ned on [−hn, 0] → [1/2, 1] and
[0,hn] → [−1,−1/2], respectively, converge in C∞loc to the di�eomorphisms θ− : [0,∞) → [−1,−1/2) and
θ+ : (−∞, 0]→ (1/2, 1], respectively.
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Figure 3.2.6: The di�eomorphism θn.

2. On [−Rn + hn,Rn − hn] we de�ne the di�eomorphism θn to be linear by requiring

θn : Op([−Rn + hn,Rn − hn])→ Op

([
−
1
2
,
1
2

])
, s 7→ s

2(Rn − hn)
,

where Op([−Rn + hn,Rn − hn]) and Op([−1/2, 1/2]) are su�ciently small neighborhoods of the intervals
[−Rn + hn,Rn − hn] and [−1/2, 1/2], respectively.

See Figure 3.2.6.

Note that the di�eomorphism θn gives rise to a di�eomorphism between the cylinders [−Rn,Rn]×S1 and [−1, 1]×S1,
according to [−Rn,Rn] × S1 → [−1, 1] × S1, (s, t) 7→ (θn(s), t). By abuse of notation these di�eomorphisms will
be still denoted by θn. Denote by u±n(s, t) := un(s ± Rn, t) the left and right shifts of the maps un, and by
γ±n := γn(s ± Rn, t) the left and right shifts of the harmonic perturbation, which are de�ned on [0,hn] × S1
and [−hn, 0] × S1, respectively. In both cases we use the di�eomorphisms θn to pull the structures back to
the cylinder [−1, 1] × S1. Let in := dθn ◦ i ◦ dθ−1

n be the induced complex structure on [−1, 1] × S1. Then
un ◦ θ−1

n : [−1, 1] × S1 → R ×M is a sequence of H−holomorphic curves with harmonic perturbations (θ−1
n )∗γn

with respect to the complex structure in on [−1, 1]×S1 and the cylindrical almost complex structure J on the target
space R ×M. From the result θ−1

n (s) = (θ−n)
−1(s) − Rn and θ−1

n (s) = (θ+n)
−1(s) + Rn, and the fact that θ−n and

θ+n converge in C∞loc to θ− on [−1,−1/2) and θ+ on (1/2, 1], respectively, it follows that the complex structures in
converge in C∞loc to a complex structure �i on [−1,−1/2)× S1 and (1/2, 1]× S1. First, we formulate the convergence
in the case when there exists a subsequence of un, still denoted by un, with a vanishing center action (see De�nition
74).

Theorem 45. Let un be a sequence of H−holomorphic cylinders with harmonic perturbations γn that satisfy

C1-C9 and possessing a subsequence having vanishing center action. Then there exists a subsequence of un,

still denoted by un, H−holomorphic cylinders u± de�ned on (−∞, 0]× S1 and [0,∞)× S1, respectively, and
a point w = (wa,wf) ∈ R×M such that for every sequence hn ∈ R+ and every sequence of di�eomorphisms

θn : [−Rn,Rn] → [−1, 1] constructed as in Remark 44 the following C∞
loc
− and C0−convergence results hold

(after a suitable shift of un in the R−coordinate)
C∞

loc
−convergence:

1. For any sequence sn ∈ [−Rn + hn,Rn − hn] there exists a constant τ{sn} ∈ [−τ, τ] (depending on the
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sequence {sn}) such that after passing to a subsequence, the shifted maps un(s + sn, t) + Snsn, de�ned
on [−Rn + hn − sn,Rn − hn − sn] × S1, converge in C∞

loc
to (wa,φα−τ{sn}

(wf)). The shifted harmonic

perturbation 1−forms γn(s+ sn, t) possess a subsequence converging in C∞
loc

to 0.

2. The left shifts u−
n(s, t) − RnSn := un(s − Rn, t) − RnSn, de�ned on [0,hn) × S1, possess a subsequence

that converges in C∞
loc

to a pseudoholomorphic half cylinder u− = (a−, f−), de�ned on [0,+∞)×S1. The
curve u− is asymptotic to (wa,φατ (wf)). The left shifted harmonic perturbation 1−forms γ−n converge

in C∞
loc

to an exact harmonic 1−form dΓ−, de�ned on [0,+∞)× S1. Its asymptotics is 0.

3. The right shifts u+
n(s, t) + RnSn := un(s+ Rn, t) + RnSn, de�ned on (−hn, 0]× S1, possess a subsequence

that converges in C∞
loc

to a pseudoholomorphic half cylinder u+ = (a+, f+), de�ned on (−∞, 0] × S1.
The curve u+ is asymptotic to (wa,φα−τ(wf)). The right shifted harmonic perturbation 1−forms γ+n
converge in C∞

loc
to an exact harmonic 1−form dΓ+, de�ned on (−∞, 0]× S1. Its asymptitics is 0.

C0−convergence:

1. The maps vn : [−1/2, 1/2] × S1 → R ×M de�ned by vn(s, t) = un(θ
−1
n (s), t), converge in C0 to (−2σs +

wa,φα−2τs(wf)).

2. The maps v−n−RnSn : [−1,−1/2]×S1 → R×M de�ned by v−n(s, t) = un((θ
−
n)

−1(s), t), converge in C0 to a

map v− : [−1,−1/2]× S1 → R×M such that v−(s, t) = u−((θ−)−1(s), t) and v−(−1/2, t) = (wa,φατ (wf)).

3. The maps v+n + RnSn : [1/2, 1]× S1 → R×M de�ned by v+n(s, t) = un((θ
+
n)

−1(s), t), converge in C0 to a

map v+ : [1/2, 1]× S1 → R×M such that v+(s, t) = u+((θ+)−1(s), t) and v+(1/2, t) = (wa,φα−τ(wf)).

An immediate corollary is

Corollary 46. Under the same hypothesis of Theorem 45 the following C∞
loc
−convergence results hold.

1. The maps v−n −RnSn converge in C∞
loc

to v−, where v− is asymptotic to (wa,φατ (wf)) as s→ −1/2. The
harmonic 1−forms [(θ−n)

−1]∗γ−n with respect to the complex structure [(θ−n)
−1]∗i converge in C∞

loc
to a

harmonic 1−form [(θ−)−1]∗dΓ− with respect to the complex structure [(θ−)−1]∗i which is asymptotic to

some constant as s→ −1/2.

2. The maps v+n + RnSn converge in C∞
loc

to v+, where v+ is asymptotic to (wa,φα−τ(wf)) as s→ 1/2. The
harmonic 1−forms [(θ+n)

−1]∗γ−n with respect to the complex structure [(θ+n)
−1]∗i converge in C∞

loc
to a

harmonic 1−form [(θ+)−1]∗dΓ+ with respect to the complex structure [(θ+)−1]∗i which is asymptotic to

some constant as s→ 1/2.

Next we formulate the convergence in the case when there is no subsequence of un with a vanishing center action.
This result follows from Theorem 65 of Appendix B.1.

Theorem 47. Let un be a sequence of H−holomorphic cylinders with harmonic perturbations γn satisfying

C1-C9 and possessing no subsequence with vanishing center action. Then there exist a subsequence of un,

still denoted by un, H−holomorphic half cylinders u± de�ned on (−∞, 0]×S1 and [0,∞)×S1, respectively, a
periodic orbit x of period |T |, where T ∈ R\{0}, and sequences r±n ∈ R with |r+n − rnn|→∞ as n→∞ such that

for every sequence hn ∈ R+ and every sequence of di�eomorphisms θn : [−Rn,Rn] → [−1, 1] as in Remark

44, the following convergence results hold (after a suitable shift of un in the R−coordinate).
C∞

loc
−convergence:
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1. For any sequence sn ∈ [−Rn + hn,Rn − hn] there exists a constant τ{sn} ∈ [−τ, τ] (depending on the

sequence {sn}) such that after passing to a subsequence, the shifted maps un(s + sn, t) − snT − Snsn,

de�ned on [−Rn+hn− sn,Rn−hn− sn]×S1, converge in C∞loc to (Ts+a0,φα−τ{sn}
(x(Tt)) = x(Tt+τ{sn})).

The shifted harmonic perturbation 1−forms γn(s+ sn, t) possess a subsequence converging in C∞
loc

to 0.

2. The left shifts u−
n(s, t) − RnSn, de�ned on [0,hn) × S1, possess a subsequence that converges in C∞

loc
to

a H−holomorphic half cylinder u− = (a−, f−), de�ned on [0,+∞)× S1. The curve u− is asymptotic to

(Ts+a0,φατ (x(Tt)) = x(Tt+ τ)). The left shifted harmonic perturbation 1−forms γ−n converge in C∞
loc

to

an exact harmonic 1−form dΓ−, de�ned on [0,+∞)× S1. Their asymptotics are 0.

3. The right shifts u+
n(s, t) + RnSn, de�ned on (−hn, 0] × S1 possess a subsequence that converges in C∞

loc

to a H−holomorphic half cylinder u+ = (a+, f+), de�ned on (−∞, 0]× S1. The curve u+ is asymptotic

to (Ts + a0,φα−τ(x(Tt)) = x(Tt − τ)). The right shifted harmonic perturbation 1−forms γ+n converge in

C∞
loc

to an exact harmonic 1−form dΓ+, de�ned on (−∞, 0]× S1. Their asymptotics are 0.

C0−convergence:

1. The maps fn ◦ θ−1
n : [−1/2, 1/2]× S1 →M converge in C0 to φα−2τs(x(Tt)) = x(Tt− 2τs).

2. The maps f−n ◦ (θ−n)−1 : [−1,−1/2]× S1 →M converge in C0 to a map f− ◦ (θ−)−1 : [−1,−1/2]× S1 →M

such that f−((θ−)−1(−1/2), t) = φατ (x(Tt)) = x(Tt+ τ).

3. The maps f+n ◦ (θ+n)−1 : [1/2, 1] × S1 →M converge in C0 to a map f+ ◦ (θ+)−1 : [1/2, 1] × S1 →M such

that f+((θ+)−1(1/2), t) = φα−τ(x(Tt)) = x(Tt− τ).

4. There exist C > 0, ρ > 0 and N ∈ N such that for any R > 0, an ◦ θ−1
n (s, t) ∈ [r−n + R−C, r+n − R+C] for

all n > N and all (s, t) ∈ [−ρ, ρ]× S1.

An immediate corollary is

Corollary 48. Under the same hypothesis of Theorem 47 and the notations from Theorem 44 we have the

following C∞
loc
−convergence results.

1. The maps v−n − RnSn converge in C∞
loc

to v− where f−((θ−)−1(−1/2), t) = x(Tt + τ). The harmonic

1−forms [(θ−n)
−1]∗γ−n with respect to the complex structure [(θ−n)

−1]∗i converge in C∞
loc

to a harmonic

1−form [(θ−)−1]∗dΓ− with respect to the complex structure [(θ−)−1]∗i which is asymptotic to some

constant as s→ −1/2.

2. The maps v+n+RnSn converge in C∞
loc

to v+ where f+((θ+)−1(1/2), t) = x(Tt−τ). The harmonic 1−forms

[(θ+n)
−1]∗γ−n with respect to the complex structure [(θ+n)

−1]∗i converge in C∞
loc

to a harmonic 1−form
[(θ+)−1]∗dΓ+ with respect to the complex structure [(θ+)−1]∗i which is asymptotic to some constant as

s→ 1/2.

Since θ− : [0,∞)× S1 → [−1,−1/2)× S1 is a biholomorphism with respect to the standard complex structure i on
the domain and the pull-back structure �i := [(θ−)−1]∗i, we can identify [−1,−1/2) × S1 with the punctured disk
equipped with the standard complex structure, that extends over the puncture.
We use now Theorems 45 and 47 to describe the limit object.
In Case 1, the �limit surface� in the symplectization consists of two disks which are connected by a straight line at
the origin. The limit map u = (a, f) : [−1, 1]×S1 → R×M with the limit perturbation 1−form γ can be described
as follows (see Figure 3.2.7).
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−1 − 1
2

1
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Figure 3.2.7: The limit surface consists of two cones connected by a straight line.

D1 On [−1,−1/2)×S1, u is a H−holomorphic curve with harmonic perturbation γ such that at the puncture
it is asymptotic to (σ+wa,φατ (wf)), while the harmonic perturbation is asymptotic to a constant.

D2 On (1/2, 1]× S1, u is a H−holomorphic curve with harmonic perturbation γ such that at the puncture
it is asymptotic to (−σ+wa,φα−τ(wf)), while the harmonic perturbation is asymptotic to a constant.

D3 On the middle part [−1/2, 1/2] × S1, u is given by u(s, t) = (−2σs +wa,φα−2τs(wf)). On this part the
1−form γ is not de�ned.

In Case 2, the limit surface is the disjoint union of the cylinders [−1,−1/2)×S1 and (1/2, 1]×S1. TheH−holomorphic
curve u = (a, f) : ([−1,−1/2)

∐
(1/2, 1])× S1 → R×M with harmonic perturbation γ can be described as follows.

D1' u is asymptotic on [−1,−1/2)× S1 and (1/2, 1]× S1 to a trivial cylinder over the Reeb orbit x(Tt + τ)
or x(Tt− τ), respectively, while the harmonic perturbation is asymptotic to a constant.

D2' On the middle part [−1/2, 1/2]× S1, the M−component f is given by f(s, t) = x(Tt− 2τs).

3.2.3 Cylinders of type b1

We analyze the convergence on cylinders of type b1 by using the results of Appendix A. Let m ∈ {1, ...,N} be such
that the cylinders [h

(m−1)
n − 3h,h(m)

n + 3h] × S1 are of type b1. By the construction described in the previous
section and Lemma 42 and Step 1 from Section 3.2.1, the H−holomorphic curves have uniform gradient bounds on
the two boundary cylinders [h(m−1)

n − 3h,h(m−1)
n ]× S1 and [h

(m)
n ,h(m)

n + 3h]× S1.
The convergence analysis is organized as follows. As in Section 3.1 we apply bubbling-o� analysis on the cylinder
[h

(m−1)
n ,h(m)

n ] × S1 to show that on any compact set in the complement of a �nite number of points Z(m) in
[h

(m−1)
n − 3h,h(m)

n + 3h]× S1, the gradient of un is uniformly bounded. The points on which the gradient might
blow up are located in (h

(m−1)
n − h,h(m)

n + h)× S1. Each resulting puncture from Z(m) lies in a disk Dr of radius
r smaller than h/2. For a smaller radius r, we assume that all disks Dr are pairwise disjoint and that their union
lies in (h

(m−1)
n − h,h(m)

n + h)× S1 (see Figure 3.2.8).

Under these assumptions, the H−holomorphic curves converge in C∞ on the complement of the union of these
disks (centered at the punctures) to a H−holomorphic curve. What is left to prove is the convergence in each Dr;
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Dr(z4)
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Figure 3.2.8: The gradient might blow up on the discs Dr(zi) contained in (h
(m−1)
n − h,h(m)

n + h)× S1.

for this we use the results of Appendix A. In the �nal step, we glue the convergence results on the disks to the rest
of the cylinder, and obtain the desired description on the entire cylinder of type b1.
Under the biholomorphic map [h

(m−1)
n − 3h,h(m)

n + 3h]× S1 → [0,H(m)
n ]× S1,(s, t) 7→ (s− h

(m−1)
n + 3h, t), where

H
(m)
n := h

(m)
n −h

(m−1)
n +6h, assume that the H−holomorphic curves un together with the harmonic perturbations

γn are de�ned on [0,H(m)
n ] × S1. By going over to a subsequence, we have H(m)

n → H(m) as n → ∞. Consider
the translated H−holomorphic curves un − an(0, 0) = (an, fn) − an(0, 0) : [0,H

(m)
n ]× S1 → R×M with harmonic

perturbations γn. In order to keep the notation simple, let the curve un − an(0, 0) be still denoted by un. The
analysis is performed in the following setting:

E1 The maps un = (an, fn) are H−holomorphic curves with harmonic perturbation γn on [0,H(m)
n ] × S1

with respect to the standard complex structure i on the domain and the almost complex structure J on ξ.

E2 The maps un have uniformly bounded energies, while the harmonic perturbations γn have uniformly
bounded L2−norms, i.e., with the constants E0,C0 > 0 we have E(un; [0,H

(m)
n ]×S1) 6 E0 and ‖γn‖2L2([0,H(m)

n ]×S1) 6
C0 for all n ∈ N.

E3 The maps un have uniformly bounded gradients on [0, 3h]× S1 and [H
(m)
n − 3h,H(m)

n ]× S1 with respect
to the Euclidean metric on the domain and the cylindrical metric on the target space R×M, i.e.

‖dun(z)‖ = sup
‖v‖eucl.=1

‖dun(z)v‖g < Ch

for all z ∈ ([0, 3h] ∪ [H
(m)
n − 3h,H(m)

n ])× S1 and n ∈ N.

The next lemma states the existence of a �nite set Z(m) of punctures on which the gradient of un blows up.

Lemma 49. There exists a �nite set of points Z(m) ⊂ [3h,H(m)
n − 3h]× S1 such that for any compact subset

K ⊂ ([0,H(m)
n ]× S1)\Z(m) there exists a constant CK > 0 such that

‖dun(z)‖ = sup
‖v‖

eucl.
=1

‖dun(z)v‖g < CK

for all z ∈ K and n ∈ N.

Proof. The proof relies on the same arguments of bubbling-o� analysis, which have been employed in Theorem 34
from Section 3.1 for the thick part.

Pick some r > 0 such that r < h/2, and let Dr(Z(m)) consists of |Z(m)| pairwise disjoint closed disks of radius
r > 0, centered at the punctures of Z(m). Obviously, Dr(Z(m)) ⊂ (2h,H(m)

n − 2h) × S1. Then by Lemma 49, un
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has a uniformly bounded gradient on ([0,H(m)
n ] × S1)\Dr(Z(m)). As ([0,H(m)

n ] × S1)\Dr(Z(m)) is connected, we
assume, after going over to some subsequence, that un|([0,H(m)

n ]×S1)\Dr(Z(m))
converge in C∞ to some smooth map

u|([0,H(m)]×S1)\Dr(Z(m)) = (a, f)|([0,H(m)]×S1)\Dr(Z(m)). Before treating the convergence of the H−holomorphic
curves in a neighborhood of the punctures of Z(m), we establish the convergence of the harmonic perturbations γn
on [0,H(m)

n ]× S1, so that at the end

� un|([0,H(m)
n ]×S1)\Dr(Z(m))

converge in C∞ to a H−holomorphic curve u|([0,H(m)]×S1)\Dr(Z(m)), and

� the harmonic perturbations γn have uniformly bounded Ck−norms on the disks Dr(Z(m)) for all k ∈ N0.

The latter result is needed to describe the convergence of the harmonic perturbations γn on the disks Dr(Z(m)). As
in the previous section, we set γn = fnds+gndt, where fn and gn are harmonic functions de�ned on [0,H(m)

n ]×S1
such that fn + ign are holomorphic. By the uniform L2−bound of γn it follows that

‖γn‖2L2([0,H(m)
n ]×S1) =

∫
[0,H

(m)
n ]×S1

(
f2n + g2n

)
dsdt 6 C0

for all n ∈ N, and so, that the L2−norms of the holomorphic functions fn + ign are uniformly bounded. Letting
Gn = fn + ign we state the following

Proposition 50. There exists a subsequence of Gn, also denoted by Gn, that converges in C∞ to some

holomorphic map G de�ned on [0,H(m)] × S1. Moreover, the harmonic perturbations γn converge in C∞ to

a harmonic map γ.

Proof. By Proposition 40, Gn has a uniformly bounded C1−norm, while by the standard regularity results from
the theory of pseudoholomorphic curves (see, for example, Section 2.2.3 of [2]), the Ck derivatives of Gn are also
uniformly bounded. Hence, in view of Arzelà-Ascoli theorem, we can extract a subsequence that converges to some
holomorphic function G.

Let us analyze the convergence of the H−holomorphic curves in a neighborhood of the punctures of Z(m), which
are given by Lemma 49. For r > 0 as above and z ∈ Z(m), consider the closed disks Dr(z) and the H−holomorphic
curves un = (an, fn) : Dr(z) → R ×M with harmonic perturbations γn that converge in C∞ to some harmonic
1−form γ. According to the biholomorphism D → Dr(z), p 7→ rp + z, where D is the standard closed unit disk,
regard the H−holomorphic curves un together with the harmonic perturbations as being de�ned on D instead of
Dr(z). The following setting is pertinent to our analysis:

F1 The maps un = (an, fn) : D→ R×M are H−holomorphic curves with harmonic perturbations γn with
respect to the standard complex structure i on D and the almost complex structure J on ξ.

F2 The maps un = (an, fn) and γn have uniformly bounded energies and L2−norms.

F3 For any constant 1 > τ > 0, un|A1,τ
= (an, fn)|A1,τ

converge in C∞ to a H−holomorphic map u with
harmonic perturbation γ, where A1,τ = {z ∈ D | τ 6 |z| 6 1}.

As the domain of de�nition D is simply connected, we infer that γn is exact, i.e. it can be written as γn = d�Γn,
where �Γn : D → R is a harmonic function. By Condition F2, �Γn has a uniformly bounded gradient ∇�Γn in the
L2−norm, and it is apparent that the existence of �Γn is unique up to addition by a constant. Let us make some
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remarks on the choice of �Γn and discuss some of its properties. By using the mean value theorem for harmonic
functions as in Proposition 40 we conclude (after eventually, shrinking D) that the gradient ∇�Γn are uniformly
bounded in C0. Denote by z = s+ it the coordinates on D, and let

Kn =
1
π

∫
D

�Γn(s, t)dsdt

be the mean value of �Γn, so that by the mean value theorem for harmonic functions, Kn = �Γn(0). Finally, de�ne
the map Γn(z) := �Γn(z) − �Γn(0) which obviously satis�es γn = dΓn.

Remark 51. From Poincaré inequality it follows that ‖Γn‖L2(D) 6 c
∥∥∇�Γn∥∥L2(D)

for some constant c > 0 and so,

that Γn is uniformly bounded in L2−norm. Again, by using the mean value theorem for harmonic functions, we
deduce (after maybe shrinking D) that Γn has a uniformly bounded C0−norm, and consequently, that Γn has a
uniformly bounded C1−norm. Because γn = dΓn is a harmonic 1−form, ∂sΓn + i∂tΓn is a holomorphic function.
In this context, by Proposition 40, Γn converge in C∞ to a harmonic function Γ : D→ R.

In the following we transform theH−holomorphic curves de�ned on the disk in a usual pseudoholomorphic curve by
encoding the harmonic perturbation γn = dΓn in the R−coordinate of the H−holomorphic curve un. Speci�cally,
we de�ne the maps un = (an, fn) = (an + Γn, fn) which are obviously pseudoholomorphic. The transformation is
usable if we ensure that the energy bounds are still satis�ed. For an ordinary pseudoholomorphic curve, the sum
of the α− and dα−energies, that are both positive, yield the Hofer energy EH(un;D). A uniform bound on the
Hofer energy, which ensures a uniform bound on the α− and dα−energies of un, is

EH(un;D) = sup
ϕ∈A

∫
D

u∗nd(ϕα) = sup
ϕ∈A

∫
∂D

ϕ(an)f
∗
nα 6

∫
∂D

|f
∗
nα| 6 Ch.

Here, the last inequality follows from Condition F3, according to which, un converge in C∞ in a �xed neighborhood
of ∂D. Note that the constant Ch is guaranteed by Lemma 49.
In a next step we use the results of Appendix A to establish the convergence of the maps un and to describe their
limit object. Then we undo the transformation in the R−coordinate (more precisely, the encoding of γn in the
R−coordinate of the curve un) and give a convergence result together with a description of the limit object for un.
Before proceeding we state the setting corresponding to the pseudoholomorphic curves un.

G1 The maps un = (an, fn) : D→ R×M solve the pseudoholomorphic curve equation

παdfn ◦ i = J(fn) ◦ παdfn,

f
∗
nα ◦ i = dan

on D.

G2 The maps un have uniformly bounded energies.

G3 For any τ > 0, un|A1,τ
= (an, fn)|A1,τ

converge in C∞ to a pseudoholomorphic map.

We consider two cases. In the �rst case, the R−components of un are uniformly bounded, while in the second case
they are not. Actually, the �rst case does not occur. We will prove this result in the next lemma by using standard
bubbling-o� analysis. Let zn ∈ D be the sequence choosen from the bubbling-o� argument of Lemma 49, i.e. for
which we have that

‖dun(zn)‖ = sup
z∈D
‖dun(z)‖ →∞ (3.2.3)

as n→∞.
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Lemma 52. The R−coordinates of the maps un are unbounded on D.

Proof. We prove by contradiction using bubbling-o� analysis. Assume that the R−coordinates of the maps un are
uniformly bounded. Employing the same arguments as in the proof of Lemma 42 for the sequence Rn := ‖dun(zn)‖,
we �nd that the maps vn : Dε′nR′n(0) → R ×M converge in C∞loc(C) to a non-constant �nite energy holomorphic
plane v. Note that the boundedness of Edα(v;C) follows from the fact that for an arbitrary R > 0 we have

Edα(v,DR(0)) = lim
n→∞Edα(vn;DR(0)) 6 lim

n→∞Edα(vn;Dε′nR′n(0)) 6 Ch,
yielding Edα(v;C) 6 Ch. As we have assumed that the R−coordinates of un are uniformly bounded it follows that
the R−coordiantes of vn, and so, of v, are also uniformly bounded. By singularity removal, v can be extended
to a pseudoholomorphic sphere. Thus the dα−energy vanishes and by the maximum principle, the function a is
constant. For this reason, v must be constant and we are lead to a contradiction.

We consider now the second case in which the R−coordinates of the maps un are unbounded, and make extensively
use of the results of Appendix A. By the maximum principle, the function an tends to −∞, while by Proposition
62, the maps un = (an, fn) : (D, i)→ R×M converge to a broken holomorphic curve u = (a, f) : (Z, j)→ R×M.
Here, Z is obtained as follows. Let Z be a surface di�eomorphic to D, and let ∆ = ∆n q ∆p ⊂ Z be a collection
of �nitely many disjoint loops away from ∂Z. Further on, let Z\∆p =

∐N+1
ν=0 Z

(ν) for some N ∈ N as described
in Appendix A. For a loop δ ∈ ∆p, there exists ν ∈ {0, ...,N} such that δ is adjacent to Z(ν) and Z(ν+1). Fix an
embedded annuli

Aδ,ν ∼= [−1, 1]× S1 ⊂ Z\∆n

such that {0} × S1 = δ, {−1} × S1 ⊂ Z(ν), and {1} × S1 ⊂ Z(ν+1). In this context, there exist a sequence of
di�eomorphism ϕn : D→ Z and a sequence of negative real numbers min(an) = r

(0)
n < r

(1)
n < ... < r(N+1)

n = −K−2,
where K ∈ R is the constant determined in Appendix A and r(ν+1)

n − r
(ν)
n →∞ as n→∞ such that the following

hold:

H1 in := (ϕn)∗i→ j in C∞loc on Z\∆.
H2 The sequence un ◦ ϕ−1

n |Z(ν) : Z(ν) → R × M converges in C∞loc on Z(ν)\∆n to a punctured nodal
pseudoholomorphic curve u(ν) : (Z(ν), j)→ R×M, and in C0

loc on Z
(ν).

H3 The sequence fn◦ϕ−1
n : Z→M converges in C0 to a map f : Z→M, whose restriction to ∆p parametrizes

the Reeb orbits and to ∆n parametrizes points.

H4 For any S > 0 , there exist ρ > 0 and �N ∈ N such that an ◦ϕ−1
n (s, t) ∈ [r

(ν)
n +S, r(ν+1)

n −S] for all n > �N
and all (s, t) ∈ Aδ,ν with |s| 6 ρ.

To establish a convergence result for the H−holomorphic curve un we undo the tranformation. The maps un are
given by un = un− Γn, where Γn : D→ R is the harmonic function de�ned in Remark 51. Observe that by Remark
51, the Γn converge in C∞(D) to some harmonic function and are uniformly bounded in C0(D). Via the above
di�eomorphisms ϕn : D→ Z, consider the functions Gn := Γn ◦ϕ−1

n : Z→ R. Since Γn are harmonic functions with
respect to i, Gn are harmonic functions on Z with respect to in. Moreover, their gradients and absolute values are
bounded in L2− and C0−norms, respectively, i.e.∫

Z

dGn ◦ in ∧ dGn 6 C0 (3.2.4)
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and
‖Gn‖C0(Z) 6 C1 (3.2.5)

for some constant C1 > 0 and for all n ∈ N, respectively.

Lemma 53. For any compact subset K ⊂ (Z\∆) there exists a subsequence of Gn, also denoted by Gn, such

that Gn → G in C∞(K) as n→∞, where G is a harmonic function de�ned on a neighborhood of K.

Proof. Let K ⊂ (Z\∆) be a compact subset. By Lemma 97 there exists a �nite covering of K by the charts
ψ

(l)
n : D→ U

(l)
n and ψ(l) : D→ U(l), where l ∈ {1, ...,N} and N ∈ N. For some r ∈ (0, 1), the following hold:

1. ψ(l)
n are i− in−biholomorphisms and ψ(l) is an i− j−biholomorphism;

2. ψ(l)
n → ψ(l) in C∞loc(D) as n→∞;

3. K ⊂
⋃N
l=1ψ

(l)
n (Dr(0)) for all n ∈ N, and K ⊂

⋃N
l=1ψ

(l)(Dr(0)).

Consider the function G
(l)
n := Gn ◦ψ(l)

n : D→ R for some l ∈ {1, ...,N}. Because ψ(l)
n are i− in−biholomorphisms,

G
(l)
n is a harmonic function with respect to i. From (3.2.4) and (3.2.5), G

(l)
n satis�es∫

D

dG (l)
n ◦ i∧ dG (l)

n 6 C0 and
∥∥∥G (l)
n

∥∥∥
C0(D)

6 C1.

Relying on the compactness result for harmonic functions we assume that G
(l)
n converges in C0(D3r/2(0)) to a

harmonic function G (l) de�ned on D3r/2(0). By the mean value theorem for harmonic functions, there exists a

constant c > 0 such that
∥∥∥∇G

(l)
n

∥∥∥
C0(D4r/3(0))

6 c for all n ∈ N. Hence G
(l)
n is uniformly bounded in C1(D4r/3(0)).

Because dG (l)
n de�nes a harmonic 1−form, ∂sG

(l)
n + i∂tG

(l)
n is a uniformly bounded holomorphic function de-

�ned on D4r/3(0), where s, t are the coordinates on D4r/3(0). By means of the Cauchy integral formula, all

derivatives of ∂sG
(l)
n + i∂tG

(l)
n are uniformly bounded on D5r/4(0). From this and the fact that G

(l)
n converges

uniformly to G (l) we deduce that there exists a further subsequence, also denoted by G
(l)
n , that converges in

C∞(D6r/5(0)) to a harmonic function G (l) : D6r/5(0) → R. For n su�ciently large, ψ(l)(Dr(0)) ⊂ ψ(l)(D6r/5(0))

and ψ(l)(Dr(0)) ⊂ ψ(l)
n (D6r/5(0)). Hence the harmonic function Gn = G

(l)
n ◦ (ψ(l)

n )−1 : ψ(l)(Dr(0))→ R converges

in C∞(ψ(l)(Dr(0))) to a harmonic function �G (l) := G (l) ◦ (ψ(l))−1 : ψ(l)(Dr(0))→ R. Obviously, if l, l ′ ∈ {1, ...,N}

are such that ψ(l)(Dr(0)) ∩ ψ(l′)(Dr(0)) 6= ∅, the uniqueness of the limit yields �G (l)|ψ(l)(Dr(0))∩ψ(l′)(Dr(0))
=

�G (l′)|ψ(l)(Dr(0))∩ψ(l′)(Dr(0))
. Hence all �G (l) glue together to a harmonic function de�ned in a neighborhood of K.

By Lemma 53 it is apparent that after going over to a diagonal subsequence, Gn converges in C∞loc(Z\∆) to a harmonic
function G : Z\∆→ R with respect to j. This shows that the H−holomorphic curve un ◦ϕ−1

n |Z(ν) : Z(ν) → R×M
with harmonic perturbation dGn converges in C∞loc on Z(ν)\∆n to a H−holomorphic curve u(ν) : (Z(ν), j)→ R×M
with harmonic perturbation dG , where u(ν) = u(ν) −G for all ν. What is left is the description of the convergence
of the H−holomorphic curves un ◦ϕ−1

n with harmonic perturbation dGn in a neighborhood of the loops from ∆n,
i.e. across the nodes from ∆n. Observe that, from (3.2.5), Gn is uniformly bounded on Z by the constant C1

and the L2−norm of dGn is uniformly bounded by the constant C0. A neighborhood Cn of a loop in ∆n can be
biholomorphically parametrized as [−rn, rn]×S1 by the biholomorphism ψn : [−rn, rn]×S1 → Cn, where rn →∞
as n→∞. From the C0 bound of Gn on Z, the maps un ◦ϕ−1

n are uniformly bounded in C0 on Cn (maybe after
some shift in the R−coordinate). Thus we consider the H−holomorphic cylinder un ◦ ϕ−1

n ◦ ψn with harmonic
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perturbation ψ∗ndGn de�ned on [−rn, rn]×S1. Note that the energy of un ◦ϕ−1
n ◦ψn is uniformly bounded by the

constant E0. As in Section 3.2 we divide the cylinder [−rn, rn] × S1 into cylinders of type ∞ with an energy less
than  h0/2 and cylinders of type b1. We apply the result of Section 3.2.2 to cylinders of type∞. Keep in mind that
according to Remark 43), conditions C1-C9 are satis�ed. For cylinders of type b1, the maps un ◦ϕ−1

n ◦ψn, after a
speci�c shift in the R−coordinate, are contained in a compact subset of R×M. By the usual bubbling-o� analysis
and the maximum principle, these maps together with the harmonic perturbation converge in C∞ on cylinders of
type b1.
We �glue� the convergence result for the∞-type subcylinders of [−rn, rn]×S1 introduced in Section 3.2.2 together
with the C∞−convergence result for the cylinders of type b1. This process is similar to that described in Section
3.2.4.

Remark 54. Around a puncture from Z(ν), the H−holomorphic curve un ◦ϕn is asymptotic to a trivial cylinder
over a Reeb orbit (see Section 2.2). This result is a consequence of the uniform C0−bound of the harmonic functions
Gn.

We are now in the position to formulate the convergence result for the H−holomorphic curves un with harmonic
perturbation γn de�ned on the disk D.
There exist the di�eomorphisms ϕn : D→ Z such that the following hold:

I1 in → j in C∞loc on Z\∆p qAnod.

I2 For every special cylinder Aij of Z there exists an annulus Aij ∼= [−1, 1] × S1 such that Aij ⊂ Aij and
(Aij, in) and (Aij, in) are conformally equivalent to ([−Rn,Rn] × S1, i) and ([−Rn + hn,Rn − hn] × S1, i),
respectively, where Rn−hn,hn →∞ as n→∞, i is the standard complex structure and the di�eomorphisms
are of the form (s, t) 7→ (κ(s), t).

I3 The sequence ofH−holomorphic curves (D, i,un,γn) with boundary converges to a strati�edH−holomorphic
building (Z, j,u,P,D,γ) in the sense of De�nition 31 from Section 2.3. Note that the periods and conformal
periods of γ vanish. Moreover, the curves converge in C∞ in a neighborhood of the boundary ∂D.

This convergence result can be applied to disks such as neighborhoods of all points of Z(m). To deal with the entire
cylinder of type b1, we glue the obtained convergence result on disks centered at points of Z(m) to the complement
of disk neighborhoods of Z(m). During the convergence description of the H−holomorphic curves un restricted to
disk neighborhoods of the points of Z(m), the di�eomorphism ϕn, describing the convergence, have the property
that in a neighborhood of ∂D they are independent of n (see Appendix A). Coming back to the puncture z ∈ Z(m)

we focus on the neighborhood Dr(z). Considering the translation and stretching di�eomorphism D → Dr(z),
p 7→ z+ rp, we see that ϕn : Dr(z)\Drτ(z) ↪→ Z is independent of n; hereafter, we drop the index n and denote it
by ϕ : Dr(z)\Drτ(z) ↪→ Z. This map is used to glue Z and ([0,H(m)]× S1)\Drτ(z) along the collar Dr(z)\Drτ(z).
Consider the surface

C(m) = (([0,H(m)]× S1)\Drτ(z))q Z
/

∼,

where x ∼ y if and only if x ∈ Dr(z)\Drτ(z), y ∈ ϕ(Dr(z)\Drτ(z)) and ϕ(x) = y. This gives rise to the
di�eomorphism ψ

(m)
n : [0,H(m)

n ]× S1 → C(m), de�ned by

ψ(m)
n (x) =

{
x, x ∈ C(m)\Dr(z)

ϕn(x), x ∈ Dr(z).

We are now able to describe the convergence on cylinders of type b1. Let ∆n, ∆p and Anod be the collection of
loops from C(m) obtained by the above convergence process for each point of Z(m). Take notice that the complex
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structure j(m) on C(m) is given by

j(m)(p) :=

{
i, p ∈ C(m)\Dr(Z

(m))

j, p ∈ Z

and that it is well-de�ned since ϕ is a biholomorphism. There exists a sequence of di�eomorphisms ψ(m)
n :

[0,H(m)
n ]× S1 → C(m) such that the following hold:

J1 (ψ
(m)
n )∗i→ j(m) in C∞loc on C(m)\∆p qAnod.

J2 For every special cylinder Aij of C(m) there exists an annulus Aij ∼= [−1, 1]× S1 such that Aij ⊂ Aij and
(Aij, in) and (Aij, in) are conformally equivalent to ([−Rn,Rn] × S1, i) and ([−Rn + hn,Rn − hn] × S1, i),
respectively, where Rn,Rn−hn →∞ as n→∞, i is the standard complex structure and the di�eomorphisms
are of the form (s, t) 7→ (κ(s), t).

J3 TheH−holomorphic curves ([0,H(m)
n ]×S1, i,un,γn) with boundary converges to a strati�edH−holomorphic

building (C(m), j,u,P,D,γ) with boundary in the sense of De�nition 31.

3.2.4 Gluing cylinders of type ∞ with cylinders of type b1

By a modi�ed version of the di�eomorphisms θn we identify the cylinders of type∞ with the cylinder [−1−2h, 1+
2h] × S1 where h > 0 is the constant from Lemma 42, so that after the gluing process, we end up with a bigger
cylinder of �nite length and a sequence of di�eomorphisms. Let us make this procedure more precise.
Let [h

(m−1)
n ,h(m)

n ] × S1 and [h
(m)
n − 2h,h(m+1)

n + 2h] × S1 be cylinders of types ∞ and b1, respectively. First
we consider the cylinders [h

(m−1)
n ,h(m)

n ] × S1 of type ∞. With the constant h > 0 de�ned in Section 3.2.1, let
[h

(m−1)
n + 3h,h(m)

n − 3h] × S1 be a subcylinder. By the uniform gradient bounds of un on cylinders of type∞, we conclude that the H−holomorphic curves un together with the harmonic perturbations γn converge in
C∞ on [h

(m)
n − 3h,h(m)

n ] × S1 to a H−holomorphic curve u with harmonic perturbation γ. For the subcylinders
[h

(m−1)
n + 3h,h(m)

n − 3h] × S1 we perform the same analysis as in Theorems 45 and 47. After going over to a
subsequence we obtain a sequence of di�eomorphisms

θn : [h(m−1)
n + 3h,h(m)

n − 3h]× S1 → [−1, 1]× S1,

so that Theorems 45 and 47 hold for the cylinders [h(m−1)
n +3h,h(m)

n −3h]×S1. Next we extend the di�eomorphisms
θn to [h

(m−1)
n + h,h(m)

n − h]× S1, such that

θn|([h(m−1)
n +h,h

(m−1)
n +2h]×S1)q([h(m)

n −2h,h
(m)
n −h]×S1) = id.

By this procedure, we have obtained a di�eomorphism θn : [h
(m−1)
n + h,h(m)

n − h] × S1 → [−1 − 2h, 1 + 2h] × S1
which is the identity near the boundary. We consider now the cylinders of type b1 and note that the di�omorphisms

ψn : [h(m)
n − 2h,h(m+1)

n + 2h]× S1 → C(m)

have the property that
ψn|([h(m)

n −2h,h
(m)
n −h]×S1)q([h(m+1)

n +h,h
(m+1)
n +2h]×S1) = id.
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In this regard we consider the surface (
([−1− 2h, 1+ 2h]× S1)q C(m)

)
/∼

where x ∼ y if and only if x ∈ [h, 2h]× S1 and y ∈ [h
(m)
n − 2h,h(m)

n − h]× S1 such that θn(y) = x.
By this procedure we glue all cylinders of types∞ and b1, and obtain a bigger cylinder Cn together with a sequence
of di�eomorphisms Φn : [−σn,σn]× S1 → Cn, where [−σn,σn]× S1 is the parametrization of the δ−thin part, i.e.
of Thinδ( 
SD,r,hn). Let ϕn : Cn → [−σn,σn]×S1 be the conformal parametrization of the cylindrical component of
Thinε( 
SD,r,hn). Since both ends of [−σn,σn]×S1 contain cylinders of type∞, we infer by the above construction,
that Φn is identity near the boundary. Speci�cally, with the constant h > 0 we have

Φn|([−σn,−σn+h]×S1)q([σn−h,σn]×S1) = id.

Then we consider the surface ((

SD,r\ϕ−1

n ([−σn + h,σn − h]× S1)
)
q Cn

)
/∼

where x ∼ y if and only if x ∈ 
SD,r\ϕ−1
n ([−σn + h,σn − h]× S1) and y ∈ Cn such that Φn ◦ϕn(x) = y.

In this way we handle all components of Thinδ( 
SD,r,hn) that are conformal equivalent to hyperbolic cylinders.

3.2.5 Punctures and elements of Z

We analyze the convergence of un on components of the thin part which are biholomorphic to cusps, as well as, in
a neighborhood of the points from Z. Recall that cusps correspond to neighborhoods of punctures. Let p ∈ SD,r

be a puncture or an element from Z. By Lemma 97 of Appendix D, there exist the open neighborhoods Un and U
of p, and the biholomorphisms ψn : D→ Un and ψ : D→ U such that ψn converge in C∞ to ψ. We consider the
sequence of H−holomorphic curves un with harmonic perturbations γn restricted to Un. By the convergence of
un on the thick part, for every open neighbourhoods U and V of p, such that V b U, the H−holomorphic curves
un together with the harmonic perturbations γn converge in C∞ on U\V to some H−holomorphic curve u with
harmonic perturbation γ. Via the biholomorphisms ψn and ψ, we consider the H−holomorphic curves un and the
harmonic perturbations γn as being de�ned on D\{0}. Actually, we consider the following setup: For the sequence
of H−holomorphic curves un = (an, fn) : D\{0} → R ×M with the harmonic perturbations γn de�ned on the
whole disk D, the following are satis�ed:

K1 The energy of un is uniformly bounded, i.e. with the constant E0 > 0 we have E(un;D\{0}) 6 E0 for all
n ∈ N.

K2 The L2−norms of γn are uniformly bounded, i.e. with the constant C0 > 0 we have ‖γn‖2L2(D\{0}) 6 C0

for all n ∈ N.

K3 For every open neighborhoods U and V of p such that V b U, the H−holomorphic curves un with
harmonic perturbations γn converge in C∞ on U\V to a H−holomorphic curve u with harmonic perturbation
γ.

We consider two cases. In the �rst case there exists a subsequence of un for which the singularity at 0 is removable,
i.e. the R−coordinate an is bounded in a neighborhood of 0, but not necessarily uniformly bounded. In particular,
this case is typically for neighborhoods of points from Z. Hence the sequence of H−holomorphic curves un can be
de�ned across the puncture 0 and we end up with a sequence of H−holomorphic disks with �xed boundary. To
describe the compactness we use the results of Section 3.2.3.
In the second case, there exists no subsequence of the un that has a bounded R−coordinate an near 0. Since D is
simply connected, there exists a harmonic function �Γn : D→ R such that γn = d�Γn. By the second condition from
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∞ b1 half open cylinder

Figure 3.2.9: Decomposition of a punctured neighbourhood into cylinders of type ∞, b1 and a half open cylinder.

above, the gradients ∇�Γn are uniformly bounded in L2−norm by the constant C0 > 0. Denote by

Kn =
1
π

∫
D

�Γn(x,y)dxdy

the mean value of �Γn on the disk D. Furthermore, de�ne Γn := �Γn − Kn; Γn is a harmonic function on the disk
with vanishing average and satisfying γn = dΓn, while the gradients ∇Γn have uniformly bounded L2−norms. By
Poincaré inequality, the L2−norm of Γn is uniformly bounded, i.e. with the constant C0 > 0 we have ‖Γn‖L2(D) 6 C0

for all n ∈ N. Pick τ ∈ (0, 1) and denote by Dτ the disk around 0 of radius τ. From the mean value inequality
for harmonic functions, Γn is uniformly bounded in C0(Dτ). Via the biholomorphism [0,∞) × S1 → D\{0},
(s, t) 7→ e−2π(s+it) we consider the H−holomorphic maps un together with the harmonic perturbations γn as
being de�ned on the half open cylinder [0,∞)× S1. Speci�cally we consider the following setup: For the sequence
un = (an, fn) : [0,∞)×S1 → R×M ofH−holomorphic half cylinders with harmonic perturbations γn the following
are satis�ed:

L1 The energy of un and the L2−norm of the harmonic perturbations γn are uniformly bounded, i.e. with
the constants E0,C0 > 0 we have E(un; [0,∞)× S1) 6 E0 and ‖γn‖2L2(D\{0}) 6 C0 for all n ∈ N.

L2 TheH−holomorphic curves un converge in C∞loc to aH−holomorphic curve u with harmonic perturbation
γ.

L3 The harmonic perturbations γn satisfy γn = dΓn, where Γn : [0,∞)×S1 → R is a harmonic function with
a uniformly bounded gradient ∇Γn in L2−norm. Furthermore, Γn is uniformly bounded in C0([0,∞)× S1).

By using the decomposition discussed in Section 3.2.1 we split the half cylinder into smaller cylinders with
dα−energies smaller than  h0/2. As described in Section 3.2.1 we end up with a sequence of �nitely many cylinder
of types ∞ and b1, and a half cylinder with a dα−energy less than  h0/2. The appearance of the cylinders of types
b1 and ∞ is alternating; the decomposition starts with a cylinder of type ∞ and ends with a cylinder of type b1
followed by the half cylinder (see Figure 3.2.9).
For the cylinders of types ∞ and b1 we formulate the convergence results as in Sections 3.2.3 and 3.2.2. Since
the harmonic 1−forms γn are de�ned over the puncture p, the period of the harmonic perturbation γn over each
cylinder (either of type ∞ or type b1) is 0. Hence, the converge properties of the cylinders of type ∞ are the same
as in the classical theory of Hofer (see [14]), and we are left with the half cylinder having a dα−energy smaller than
 h0/2. We have the following setup:

M1 un = (an, fn) : [0,∞)× S1 → R×M is a H−holomorphic curve with harmonic perturbation γn.

M2 The energy of un and the L2−norm of γn are uniformly bounded by the constants E0 and C0, respectively,
while the dα−energy of un is smaller than  h0/2.
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M3 The harmonic perturbations γn satisfy γn = dΓn, where Γn : [0,∞)×S1 → R is a harmonic function with
a uniformly bounded gradient ∇Γn in L2−norm. Furthermore, Γn is uniformly bounded in C0([0,∞)× S1).

M4 The gradients of un are uniformly bounded, i.e. with the constant Ch > 0 from Lemma 42 we have

‖dun(z)‖ = sup
‖v‖eucl.=1

‖dun(z)(v)‖g 6 Ch (3.2.6)

for all z ∈ [0,∞)× S1 and all n ∈ N.

By bubbling-o� analysis and in view of the uniformly small dα−energy, Assumption (3.2.6) is also valid. Moreover,
by the mean value thorem for harmonic functions and the uniformly boundedness of the L2−norms of ∇Γn, the
harmonic perturbation γn is uniformly bounded in C0 on [0,∞)×S1 with respect to the standard Euclidean metric.
We turn the H−holomorphic curve un with harmonic perturbation γn into a usual pseudoholomorphic curve un
by setting un = (an, fn) = (an + Γn, fn) as in Section 3.2.3. In the following we show that the α− and dα−
energies of un are uniformly bounded. As fn = fn we have

Edα(un; [0,∞)× S1) = Edα(un; [0,∞)× S1) 6
 h0
2

and therefore the dα−energy is uniformly small. By de�nition and accounting on the uniform bound on the
gradients (3.2.6) and the uniform C0−bound of the harmonic 1−forms γn, we obtain

Eα(un; [0,+∞)× S1) = sup
ϕ∈A

∫
[0,+∞)×S1

ϕ ′(an)dan ◦ i∧ dan

= − sup
ϕ∈A

∫
[0,+∞)×S1

d(ϕ(an)dan ◦ i) −ϕ(an)d(dan ◦ i)

= − sup
ϕ∈A

∫
[0,+∞)×S1

d(ϕ(an)dan ◦ i) +ϕ(an)f∗ndα

= − sup
ϕ∈A

[∫
[0,+∞)×S1

d(ϕ(an)dan ◦ i) +
∫
[0,+∞)×S1

ϕ(an)f
∗
ndα

]
6 − sup

ϕ∈A

∫
[0,+∞)×S1

d(ϕ(an)dan ◦ i) + Edα(un)

= − sup
ϕ∈A

[
lim
r→∞

∫
{r}×S1

ϕ(an)dan ◦ i−
∫
{0}×S1

ϕ(an)dan ◦ i
]
+ Edα(un)

6 lim
r→∞

∫
{r}×S1

|dan ◦ i|+
∫
{0}×S1

|dan ◦ i|+ Edα(un)

6 2Ch +
 h0
2
.

Thus the α−energy is uniformly bounded. From the de�nition of �E0 (see Section 3.2.1) we have E(un; [0,∞)×S1) 6
�E0 for all n ∈ N. In this regard, we consider the following setup:

N1 un = (an, fn) : [0,∞)× S1 → R×M is a pseudoholomorphic curve.

N2 The energy of un is uniformly bounded by �E0, while the dα−energy of un is uniformly smaller than
 h0/2.

Using the di�eomorphism θ de�ned above together with the notation (C.0.2), and employing Theorem 96 of
Appendix C we have the following
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Theorem 55. There exists a subsequence of un, still denoted by un such that the following is satis�ed.

1. un is asymptotic to the same Reeb orbit, i.e. there exists a Reeb orbit x of period |T | 6= 0 with |T | 6 �E0
and a sequence cn ∈ S1 such that

lim
s→∞ fn(s, t) = x(T(t+ cn)) and lim

s→∞ an(s, t)s
= T

for all n ∈ N.

2. un converge in C∞
loc

to a pseudoholomorphic half cylinder u : [0,∞) × S1 → R ×M having a bounded

energy and a dα−energy smaller than  h0/2. Moreover, there exists c∗ ∈ S1 such that

lim
s→∞ f(s, t) = x(T(t+ c∗)) and lim

s→∞ a(s, t)s
= T .

3. The maps gn = fn ◦ θ−1 : [0, 1] × S1 → M, where gn(1, t) = x(T(t + cn)) converge in C0 to a map

g : [0, 1]× S1 →M, that satisfy g(1, t) = x(T(t+ c∗)), where x is the same Reeb orbit of period |T | 6= 0 as

in Part 1 of the theorem.

With this result we are in the position to formulate the convergence of the sequence ofH−holomorphic half cylinders
un with harmonic perturbations γn.

Theorem 56. There exists a subsequence un still denoted by un such that the following is satis�ed.

1. un is asymptotic to the same Reeb orbit, i.e. there exists a Reeb orbit x of period |T | 6= 0 with |T | 6 �E0
and a sequence cn ∈ S1 such that

lim
s→∞ fn(s, t) = x(T(t+ cn)) and lim

s→∞ an(s, t)s
= T

for all n ∈ N.

2. un converge in C∞
loc

to a H−holomorphic half cylinder u : [0,∞)×S1 → R×M with harmonic perturbation

γ having a bounded energy and a dα−energy smaller than  h0/2. Moreover, there exists c∗ ∈ S1 such

that

lim
s→∞ f(s, t) = x(T(t+ c∗)) and lim

s→∞ a(s, t)s
= T .

3. The maps gn = fn ◦ θ−1 : [0, 1] × S1 → M, where gn(1, t) = x(T(t + cn)) converge in C0 to a map

g : [0, 1]× S1 →M, and satisfy g(1, t) = x(T(t+ c∗)), where x is the same Reeb orbit of period |T | 6= 0 as

in Part 1 of the theorem.

Proof. Since the Γn are uniformly bounded in C0−norm, the �rst assertion is obvious. Employing the same
arguments as in Appendix E, i.e. the mean value theorem for harmonic functions and Cauchy integral formula, we
deduce that Γn have uniformly bounded derivatives, and so, converge in C∞loc on [0,∞)×S1 to a harmonic function
Γ : [0,∞) × S1 → R with a gradient bounded in L2−norm. Let us show that Γ : [0,∞) × S1 → R is bounded
in C0. Via the conformal di�omorphism [0,∞) × S1 → D\{0}, (s, t) 7→ e−2π(s+it) we assume that the harmonic
functions Γn and Γ are de�ned on the disk D. Then, since the Γn are uniformly bounded in C0 and have gradients
with uniformly bounded L2−norms, it follows that Γn → Γ in C∞(Dρ(0)) for some 0 < ρ < 1. This shows that
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Γ is uniformly bounded on D and hence, via the conformal map [0,∞) × S1 → D\{0} it is uniformly bounded on
[0,∞)× S1. Thus, the second assertion is proved, and by means of fn = fn, the third assertion is evident.

By cutting a small piece of �nite length from the in�nite half cylinder, we can make the cylinder preceding the
in�nite half cylinder to be of type b1. Assuming that the in�nite half cylinder is of type ∞, we glue all cylinders of
types∞ and b1 together (as described in the previous section). Via the map [0, 1)×S1 → D\{0}, (s, t) 7→ (1−s)e2πit,
we identify the cylinder [0, 1)×S1, which is di�eomorphic with the in�nite half open cylinder, with a punctured disk
D\{0}. In this way the upper half open cylinder [0, 1)× S1 can be identi�ed with a neighbourhood of a puncture.



Chapter 4

Discussion on conformal period

In this section we analyze Condition C8 of Section 3.2.2 dealing with the boundedness of the sequence RnPn,
and which can be regarded as a connection between the conformal data of the Riemann surface and the harmonic
1−forms γn. Without this additional condition the convergence result from Appendix B cannot be established. The
reason is that the almost complex structure constructed on the contact manifold M might not vary in a compact
interval. We show that this condition is not automatically satis�ed by giving a counterexample. It should be
pointed out that this example contradicts Lemma A.2 of [5]. Essentially, we will construct a sequence of harmonic
1−forms γn on a sequence of stable Riemann surfaces that degenerate along a single circle, have uniformly bounded
L2−norms but unbounded Pn/`n, where Pn denotes the period of γn along the degenerating circle and `n its length
with respect to the hyperbolic metric. Observe that the quantity 1/`n is similar to Rn .
Let (Sn, jn,Mn) be a sequence of stable Riemann surfaces of genus g, where Mn ⊂ Sn are �nite sets of marked
points with the same cardinality. Choose a basis c1, ..., c2g ∈ H1(Sn;Z) which is independent of n. This choice is
possible because all Sn have genus g and are closed (they are topologically the same). By the Deligne-Mumford
convergence,

(Sn, jn,Mn)→ (S, j,M,D, r),

where (S, j,M,D, r) is a decorated nodal Riemann surface. Again, according to the de�nition of the Deligne-
Mumford convergence, there exist di�eomorphisms ϕn : SD,r → Sn such that jn → j on SD,r\

∐l
j=1 Γj or equiv-

alently, hn → h on 
SD,r\
∐l
j=1 Γj where Γj are special circles, and hn and jn are the pull-back of the complex

structure and the hyperbolic metric from Sn and 
Sn via the di�eomorphism ϕn. Assume that l = 1, i.e. that there
exists only one degenerating geodesic in the Deligne-Mumford convergence. Denote this geodesic by Γ . Furthermore,
assume that Γ = c1 (Γ lies in the homology class of c1). The main result of this section is the following

Proposition 57. There exists a sequence of harmonic 1−forms γn ∈ H1
jn
(Sn) with uniformly bounded

L2−norms, periods, and co-periods, but unbounded conformal periods.

Proof. Choose a sequence of harmonic 1−forms γn ∈ H1
jn
(SD,r) with vanishing periods except on Γ (on all of

ci with i 6= 1 except on c1 = Γ). By normalization, assume that ‖γn‖L2(SD,r) = 1. The uniform bounds on the
L2−norms imply that the periods Pn of γn over Γ converge to 0 (Lemma 98). Thus, by the second part of the proof
of Theorem 34, γn converge in C∞loc to γ on SD,r\Γ which can be seen as a harmonic 1−form on a closed, smooth
Riemann surface S of genus one less, with vanishing periods. By Hodge theory, we have γ = 0. For n su�ciently
large, the L2−norms of γn concentrate in the collar neighborhood around Γ . Indeed, from

1 = ‖γn‖2L2(SD,r) = ‖γn‖
2
L2(Cn)

+ ‖γn‖2L2(SD,r\Cn)
,

where Cn is the cylindrical component of the δ−thin part for some su�ciently small but �xed δ > 0, it follows
that SD,r\Cn is contained in a compact subset of SD,r\Γ , and so, that ‖γn‖2L2(SD,r\Cn)

converge to 0, and for n

65



CHAPTER 4. DISCUSSION ON CONFORMAL PERIOD 66

su�ciently large we have ‖γn‖L2(Cn) 6 1 and ‖γn‖L2(Cn) → 1 as n→∞. If Fn is the unique holomorphic 1−form
with Re(Fn) = γn,

‖Fn‖2L2(SD,r) =
i

2

∫
SD,r

Fn ∧ Fn.

The collar Cn is conformaly equivalent to [−Rn,Rn] × S1, where Rn ∼ 1/`n and `n is the length of Γ with respect
to hn. On Cn we write γn = fnds+ gndt, where fn and gn are harmonic functions on the cylinder [−Rn,Rn]× S1
(s is the coordinate in [−Rn,Rn] and t is the coordinate on S1), express the holomorphic 1−form Fn as Fn =

(fn− ign)dz = (fn− ign)(ds+ idt), and note that ‖Fn‖L2(Cn) = ‖γn‖L2(Cn). Consider the quantity | ‖Fn‖L2(Cn) −
|b0| ‖dz‖L2(Cn) |, where b0 = −�Sn − iPn and �Sn is the co-period de�ned by

�Sn =

∫
Γ

γn ◦ jn = −

∫
{0}×S1

fn(0, t)dt.

Recalling that

Pn =

∫
Γ

γn =

∫
{0}×S1

g(0, t)dt,

we obtain ∣∣∣‖Fn‖L2(Cn) − |b0| ‖dz‖L2(Cn)
∣∣∣ = ∥∥[(fn + �Sn) − i(gn − Pn)

]
dz
∥∥
L2(Cn)

6
∥∥(fn + �Sn)dz

∥∥
L2(Cn)

+ ‖(gn − Pn)dz‖L2(Cn) .

Further calculation gives ‖dz‖L2(Cn) =
√
2Rn,

∥∥(fn + �Sn)dz
∥∥
L2(Cn)

=
∥∥fn + �Sn

∥∥
L2([−Rn,Rn]×S1)

and similarly

‖(gn − Pn)dz‖L2(Cn) = ‖gn − Pn‖L2([−Rn,Rn]×S1) with respect to the standard Euclidean metric on the cylinder
[−Rn,Rn]× S1. Application of Lemma 58 yields

∥∥fn + �Sn
∥∥2
L2([−Rn,Rn]×S1)

=

∫Rn
−Rn

∥∥fn(s) + �Sn
∥∥2
L2(S1)

ds

6

(
36
∫Rn
−Rn

ρ2(s)ds

)
max

{∥∥fn(−Rn) + �Sn
∥∥2
L2(S1)

,
∥∥fn(+Rn) + �Sn

∥∥2
L2(S1)

}
and

‖gn − Pn‖2L2([−Rn,Rn]×S1) 6
(
36
∫Rn
−Rn

ρ2(s)ds

)
max

{
‖gn(−Rn) − Pn‖2L2(S1) , ‖gn(+Rn) − Pn‖

2
L2(S1)

}
,

where ρ is the function from Lemma 58. Using∫Rn
−Rn

ρ2(s)ds = 4(1− e−4Rn) 6 4,

we obtain ∥∥fn + �Sn
∥∥2
L2([−Rn,Rn]×S1)

6 144max
{∥∥fn(−Rn) + �Sn

∥∥2
L2(S1)

,
∥∥fn(+Rn) + �Sn

∥∥2
L2(S1)

}
,

‖gn − Pn‖2L2([−Rn,Rn]×S1) 6 144max
{
‖gn(−Rn) − Pn‖2L2(S1) , ‖gn(+Rn) − Pn‖

2
L2(S1)

}
.

Because the harmonic 1−forms γn converge to 0 in C∞loc(SD,r\Γ), fn(±Rn) , gn(±Rn), �Sn, and Pn converge to zero.
Hence ∣∣∣‖Fn‖L2(Cn) −√2|b0|√Rn∣∣∣→ 0
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as n→∞. As ‖Fn‖L2(Cn) is almost 1, there exists the constants C0,C1 > 0 such that

C0

1√
2Rn

6 |b0| 6 C1

1√
2Rn

giving

C0

1√
2Rn

6
√
P2n + �S2n 6 C1

1√
2Rn

,

or equivalently,

C0

√
Rn

2
6
√
(PnRn)2 + (�SnRn)2 6 C1

√
Rn

2
.

These inequalities show that either PnRn or �SnRn tend to ∞, although Pn and �Sn stay uniformly bounded (γn
have uniformly bounded L2−norms). If PnRn remains uniformly bounded then we replace γn by γn ◦ jn.

Lemma 58. For any harmonic functions f and g on the cylinder [−R,R] × S1 such that η = fds + gdt is a

harmonic 1−form on [−R,R]× S1 we have∥∥f(s) + �S
∥∥
L2(S1)

6 6ρ(s)max
{∥∥f(−R) + �S

∥∥
L2(S1)

,
∥∥f(+R) + �S

∥∥
L2(S1)

}
‖g(s) − P‖L2(S1) 6 6ρ(s)max

{
‖g(−R) − P‖L2(S1) , ‖g(+R) − P‖L2(S1)

}
for all s ∈ [−R,R]. Here �S and P are the co-period and the period of η, respectively, and

ρ(s)2 = 8e−2R cosh(2s).

Proof. Any harmonic 1−form η de�ned on the cylinder [−R,R]×S1 can be written as η = (−�Sds+Pdt)+ �f(s, t)ds+
�g(s, t)dt where �f and �g are harmonic functions on [−R,R] × S1 with vanishing average. Note that the average of
f corresponds to the co-period �S and the average of g corresponds to −P. To show this, write η in the form
η = f(s, t)ds+ g(s, t)dt and compute the averages of f and g as

1
2R

∫
[−R,R]×S1

f(s, t)ds∧ dt =
1
2R

∫
[−R,R]×S1

η∧ dt =

∫
{0}×S1

η ◦ j = −�S

and
1
2R

∫
[−R,R]×S1

g(s, t)ds∧ dt =
1
2R

∫
[−R,R]×S1

ds∧ η = −
1
2R

∫R
−R

(∫
{s}×S1

η

)
ds = P,

respectively. Hence the 1−form η− (−�Sds+ Pdt) = �f(s, t)ds+ �g(s, t)dt has vanishing average twist and vanishing
periods. The Fourier series of �f and �g in the t variable are

�f(s, t) =
a0(s)

2
+

∞∑
k=1

ak(s) cos(kt) + bk(s) sin(kt),

�g(s, t) =
α0(s)

2
+

∞∑
k=1

αk(s) cos(kt) + βk(s) sin(kt).

Since �f and �g are harmonic, the Fourier expansion coe�cients solve a ′′k = k2ak, b ′′k = k2bk, α ′′k = k2αk and
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β ′′k = k2βk for k ∈ N0. The solutions to these ordinary di�erential equations are of the form

a0(s) = c0 + sd0,

ak(s) = ck cosh(ks) + dk sinh(ks),

bk(s) = ek cosh(ks) + fk sinh(ks),

α0(s) = δ0 + ε0s,

αk(s) = δk cosh(ks) + εk sinh(ks),

βk(s) = ηk cosh(ks) + θk sinh(ks).

Since dη = d(η ◦ j) = 0 we obtain ∂t�f = ∂s�g and ∂s�f = −∂t�g, giving a0(s) = c0 and α0(s) = δ0. As �fds + �gdt
has vanishing co-period and vanishing period, we �nd a0(s) = α0(s) = 0, and the following relations relating the
coe�cients ak, bk, αk, and βk for k ∈ N: δk = fk, εk = ek, ηk = −dk and θk = −ck. Consequently, ak, bk, αk,
and βk can be written as

ak(s) = ck cosh(ks) + dk sinh(ks),

bk(s) = ek cosh(ks) + fk sinh(ks),

αk(s) = fk cosh(ks) + ek sinh(ks),

βk(s) = −dk cosh(ks) − ck sinh(ks).

Let us express �f and �g as

�f(s, t) =
∞∑
k=1

ak(s) cos(kt) + bk(s) sin(kt) =
∑

k∈Z\{0}

Fk(s)e
2πikt,

�g(s, t) =
∞∑
k=1

αk(s) cos(kt) + βk(s) sin(kt) =
∑

k∈Z\{0}

Γk(s)e
2πikt,

where Fk = 1
2
(ak − ibk), F−k = 1

2
(ak + ibk), Γk = 1

2
(αk − iβk) , and Γ−k = 1

2
(αk + iβk) for k > 1. From

cosh(ks)
cosh(kR)

6 3e−R cosh(s) 6 3ρ(s) and
| sinh(ks)|
| sinh(Rs)|

6 3e−R cosh(s) 6 3ρ(s),

where ρ(s)2 = 8e−2R cosh(2s), it follows that

cosh(ks) 6 3ρ(s) cosh(kR) and | sinh(ks)| 6 3ρ(s) sinh(Rs).

De�ne the functions

K(k) =

{
+1, ck and dk have the same parity

−1, otherwise

and

G(k) =

{
+1, ek and fk have the same parity

−1, otherwise.

For s ∈ [0,R]× S1 we then have ∥∥�f(s)∥∥2
L2(S1)

=
∑

k∈Z\{0}

|Fk(s)|
2
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=
1
2

∞∑
k=1

(ck cosh(ks) + dk sinh(ks))
2 +

1
2

∞∑
k=1

(ek cosh(ks) + fk sinh(ks))
2

=
1
2

∞∑
k=1,K(k)=1

(ck cosh(ks) + dk sinh(ks))
2 +

1
2

∞∑
k=1,K(k)=−1

(ck cosh(ks) + dk sinh(ks))
2

+
1
2

∞∑
k=1,G(k)=1

(ek cosh(ks) + fk sinh(ks))
2 +

1
2

∞∑
k=1,G(k)=−1

(ek cosh(ks) + fk sinh(ks))
2

=
1
2

∞∑
k=1,K(k)=1

c2k cosh
2(ks) + d2k sinh

2(ks) + 2ckdk cosh(ks) sinh(ks)

+
1
2

∞∑
k=1,K(k)=−1

c2k cosh
2(ks) + d2k sinh

2(ks) − (−2ckdk) cosh(ks) sinh(ks)

+
1
2

∞∑
k=1,G(k)=1

e2k cosh
2(ks) + f2k sinh

2(ks) + 2ekfk cosh(ks) sinh(ks)

+
1
2

∞∑
k=1,G(k)=−1

e2k cosh
2(ks) + f2k sinh

2(ks) − (−2ekfk) cosh(ks) sinh(ks)

6
1
2
9ρ(s)2

∞∑
k=1,K(k)=1

c2k cosh
2(kR) + d2k sinh

2(kR) + 2ckdk cosh(kR) sinh(kR)

+
1
2
9ρ(s)2

∞∑
k=1,K(k)=−1

c2k cosh
2(kR) + d2k sinh

2(kR) + 2ckdk cosh(kR) sinh(−kR)

+
1
2
9ρ(s)2

∞∑
k=1,G(k)=1

e2k cosh
2(kR) + f2k sinh

2(kR) + 2ekfk cosh(kR) sinh(kR)

+
1
2
9ρ(s)2

∞∑
k=1,G(k)=−1

e2k cosh
2(Rk) + f2k sinh

2(Rk) + 2ekfk cosh(Rk) sinh(−kR)

=
9
2
ρ(s)2

∞∑
k=1,K(k)=1

(ck cosh(kR) + dk sinh(kR))
2 +

9
2
ρ(s)2

∞∑
k=1,K(k)=−1

(ck cosh(−kR) + dk sinh(−kR))
2

+
9
2
ρ(s)2

∞∑
k=1,G(k)=1

(ek cosh(kR) + fk sinh(kR))
2 +

9
2
ρ(s)2

∞∑
k=1,G(k)=−1

(ek cosh(−kR) + fk sinh(−kR))
2

6
9
2
ρ(s)2

∞∑
k=1

(ck cosh(kR) + dk sinh(kR))
2 +

9
2
ρ(s)2

∞∑
k=1

(ck cosh(−kR) + dk sinh(−kR))
2

+
9
2
ρ(s)2

∞∑
k=1

(ek cosh(kR) + fk sinh(kR))
2 +

9
2
ρ(s)2

∞∑
k=1

(ek cosh(−kR) + fk sinh(−kR))
2

=
9
2
ρ(s)2

∞∑
k=1

ak(R)
2 +

9
2
ρ(s)2

∞∑
k=1

ak(−R)
2 +

9
2
ρ(s)2

∞∑
k=1

bk(R)
2 +

9
2
ρ(s)2

∞∑
k=1

bk(−R)
2

= 9ρ(s)2
(∥∥�f(R)∥∥2

L2(S1)
+
∥∥�f(−R)∥∥2

L2(S1)

)
.
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The same inequality holds for negative s, and a similar estimate can be derived for the harmonic function �g. Thus∥∥�f(s)∥∥2
L2(S1)

6 9ρ(s)2
(∥∥�f(R)∥∥2

L2(S1)
+
∥∥�f(−R)∥∥2

L2(S1)

)
,

‖�g(s)‖2L2(S1) 6 9ρ(s)2
(
‖�g(R)‖2L2(S1) + ‖�g(−R)‖

2
L2(S1)

)
,

and from �f(s, t) := f(s, t) + �S and �g(s, t) := g(s, t) − P, we end up with∥∥f(s) + �S
∥∥2
L2(S1)

6 9ρ(s)2
(∥∥f(R) + �S

∥∥2
L2(S1)

+
∥∥f(−R) + �S

∥∥2
L2(S1)

)
6 18ρ(s)2max

{∥∥f(R) + �S
∥∥2
L2(S1)

,
∥∥f(−R) + �S

∥∥2
L2(S1)

}
,

‖g(s) − P‖2L2(S1) 6 9ρ(s)2
(
‖g(R) − P‖2L2(S1) + ‖g(−R) − P‖

2
L2(S1)

)
6 18ρ(s)2max

{
‖g(R) − P‖2L2(S1) , ‖g(−R) − P‖

2
L2(S1)

}
.

Remark 59. In [5], a notion of convergence for H−holomorphic curves is derived by using a result (Lemma A.2)
which states that the conformal co-period of a harmonic 1−form on a Riemann surface can be universally controlled
by its periods. Proposition 57 gives a counterexample to this statement.
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Appendix A

Holomorphic disks with �xed boundary

This appendix is devoted to the description of the convergence of pseudoholomorphic disks with �xed boundaries
in a symplectization, as well as, of their limit object. The results are used for proving the convergence of a cylinder
of ��nite length�, i.e. of type b1 as discussed in Section 3.2.3.
Let un = (an, fn) : D → R ×M be a sequence of pseudoholomorphic curves in the symplectization R ×M of the
contact manifold (M,α), and being de�ned on the open unit disk D with respect to the standard complex structure
i and the cylindrical almost complex structure J on R×M. Fix some τ > 0 (to be de�ned later) and assume that
there exists a subsequence of un, also denoted by un, such that

un → u (A.0.1)

as n→∞ in C∞(D\Dτ(0)). Furthermore, we assume that the Hofer energy EH(un;D) of un is uniformly bounded.
In the following we analyze the convergence of un.
The functions an can be supposed to be not uniformly bounded. If this is not the case, we may deduce using
standard bubbling-o� analysis that the gradients of un are uniformly bounded on all of D, which in turn, implies
that un converge in C∞(D) to a pseudoholomorphic disk with �nite Hofer energy.
To describe the convergence and the limit object we use the results from [7] and [9]. However, since the arguments
in [7] and [9] can be almost carried out line by line, we drop the details and explain only the strategy, point out the
di�erences and mention the convergence result. As we have assumed that the R−coordinates of un are unbounded,
the maximum principle for subharmonic functions gives an → −∞. By (A.0.1) we have the C∞−convergence
of un on an arbitrary neighborhood of ∂D, and by a speci�c choice of this neighborhood, we assume that the
R−components of un, when restricted to this neighborhood, do not leave a �xed interval [−K,K] for some K ∈ R
with K > 0. Thus from level −K − 2 we start with the decomposition of a−1

n ((−∞,−K − 2]) into cylindrical,
essential and one �bottom� boundary components. This decomposition which is identical to the decomposition
done in [7] and [9] is illustrated in Figure A.0.1. From [7] and [9] we know that there are at most N0 ∈ N cylindrical
components.

In addition to the above decomposition, we add one more boundary components, namely the �upper� boundary
component. In the following we investigate the convergence of the upper boundary component. This component is
given by

Bn := a−1
n ([−K− 2− R0,∞))

where R0 > 0 is the constant from Section 5.4 of [10]. By the above considerations, Bn is contained in a compact
region X = [−R,R] ×M ⊂ R ×M for all n ∈ N and a su�ciently large R > 0. This surface has two types of
boundaries. The �rst one is the boundary ∂D which lies in a speci�c neighborhood such that its image under un
belongs to [−K,K]×M. The second one is the boundary which connects certain cylindrical components from the
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K

−K
−K− 2

upper
boundary

decomposition into
essential and
cylinderical regions





bottom
boundary


Figure A.0.1: Decomposition of a−1

n ((−∞,−K− 2])

decomposition of a−1
n ((−∞,−K − 2]). For the cylindrical, essential and bottom boundary components we use the

results established in [7] and [9] to describe the convergence and the limit object. The arguments by be applied line
by line. For the �upper� boundary component we use Theorem 3.2 of [7], also known as the Gromov compactness
with free-boundary theorem (hereafter simply called Gromov compactness theorem).
Before stating the Gromov compactness theorem we explain the notion of convergence by considering a general
setting as in [7]. Let Σ be a compact surface of genus g with m smooth boundary components and q distinct
marked points M = {z1, ..., zq} ⊂ int(Σ) in the interior of Σ. Here g is by de�nition, the genus of the surface
obtained by �lling in a disk at each boundary component. Consider a �nite collection ∆ of disjoint simple loops
in int(Σ). Denote by Σ the nodal surface obtained by collapsing the loops in ∆. Thus, Σ is a �nite disjoint union
of smooth surfaces with �nitely many pairs of points identi�ed. Denote by ∆ the image of ∆ under the projection
π : Σ → Σ. A conformal structure j on Σ is a conformal structure on each component of Σ. We call the pair (Σ, j)
a nodal Riemann surface. A continous map u : (Σ, j)→ (X, J) is called a nodal holomorphic curve if its restriction
to each component of Σ is holomorphic. Moreover, we require that there is no sphere with less than three nodal
or marked points on which u is constant. We will refer to this property as stability. Denote by u : Σ→ X its left,
which is constant on each component of ∆.

De�nition 60. We say that a sequence of pseudoholomorphic curves with q marked points un : (Σn, jn,Mn) →
(X, J) converges to a nodal holomorohic curve u : (Σ, j,M) → (X, J) if there exists a sequence of di�eomorphisms
φn : Σn → Σ such that

1. (φn)∗jn → π∗j in C∞loc on Σ\∆ and φn(zln) = z
l for all l = 1, ...,q,

2. un ◦ φ−1
n → u in C∞loc on Σ\(∆ ∪ ∂Σ),
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3. un ◦ φ−1
n → u in C0

loc on Σ\∂Σ,

4. areag(un)→ areag(u),

where areag of a pseudoholomorphic curve is de�ned as in Section 2.2 of [15].

The Gromov compactness theorem will be formulated for pseudoholomorphic curves u : (Σ, j) → (X, J) satisfying
the following conditions.

O1 (Σ, j) is a compact Riemann surface of genus g with m boundary components and q distinct marked
points M in the interior.

O2 The area of u with respect to g is bounded by the constant C > 0.

O3 The image of u is contained in a compact subset K ⊂ X.

O4 At the boundary components Γ of (Σ, j) there exists mutually disjoint conformal embeddings

βΓ : [0, 5L]× S1 ↪→ Σ\M

mapping {0}× S1 onto Γ for some L > L0(g,m,q,C,K) > 1.

O5 For each boundary component Γ , the di�erential of u ◦ βΓ satis�es

1
D
6
∥∥d(u ◦ βΓ )(z)∥∥ 6 D

for all z ∈ [0, 5L]× S1 with respect to the Euclidean metric on [0, 5L]× S1 and the cylinderical metric g on X,
for some constant D > 0.

Theorem 61. (Gromov compactness with free boundary) Let un : (Σn, jn,Mn) → (X, J) be a sequence of

pseudoholomorphic curves with q marked points satisfying (O1)-(O5) with g, m, q, C, K, L, D independent

of n. Then, a subsequence of un converges to a nodal pseudoholomorphic curve u : (Σ, j,M)→ (X, J).
Moreover, we can choose the maps φn such that the restricted maps

φn ◦ βΓn : [0,L]× S1 → Σ\∆

are independent of n and Γ .

For a proof we refer to [10]. The Gromov convergence result will be applied to the maps

un|Bn = (an, fn)|Bn : Bn → (X, J),

where the choice of the neighborhood of ∂D, on which the R−components of un lie in [−K,K], plays an essential role.
The existence of a special parametrization of a neighborhood of ∂D will enable us to apply �Gromov compactness
with free boundary� in the analysis of the convergence property of the upper boundary component. Essentially,
the application of �Gromov compactness with free boundary�, requires that the properties (O4) and (O5) under
De�nition 3.1 of [7] are satis�ed. The following considerations ensure these conditions: Choose L ′0 > 1 as in
Remark 3.3 after Theorem 3.2 of [7]. More precisely, L ′0 depends only on the genus g of the surface, the number
of boundary components m, the number of marked points q, the uniform bound C on the area of the considered
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pseudoholomorphic curves, the constant ε0 from Remark II.4.3 of [15], and the constant CML from Lemma 3.17 of
[7] (the classical monotonicity lemma). For this L ′0 we write L ′0(g,m,q,C, ε0,CML). Further on, choose L0 as

L0 := max {L ′0(0, 1, 2,C, ε0,CML),L
′
0(0, 2, 1,C, ε0,CML),

L ′0(0, 3, 0,C, ε0,CML), ...,L
′
0(0, 2N0, 0,C, ε0,CML)} .

Note that when determining the constant L ′0 in the �rst two cases, we introduce one and two arti�cial punctures, i.e.
q = 2 or q = 1, in order to make our surface stable. Set τ0 = e−10πL0 and choose τ < τ0. In view of (A.0.1), assume
that there exists a constant K > 0 such that un(D\Dτ(0)) ⊂ [−K,K] ×M for all n ∈ N. Hence the boundary
is �xed in the symplectization. The boundary region can be conformaly parametrized as follows. Consider the
map β∂D,0 : [0, 5L0] × S1 → D\Dτ0(0), (s, t) 7→ e−2π(s+it). This map is obviously a conformal parametrization of
the boundary region. Let now L = − ln(τ)/10π. Obviously, L > L0 and the map β∂D : [0, 5L] × S1 → D\Dτ(0),
(s, t) 7→ e−2π(s+it) is a conformal parametrization of a neighborhood of the boundary circle ∂D. Fix this boundary.
This conformal parametrization is obviously independent of n and will be used in conjunction with �Gromov
compactness with free boundary�. Finally, glue the upper boundary component to the rest of the surface, and
obtain the resulting limit surface together with the convergence description.
To formulate the convergence result we introduce some notations. Let Z be an oriented surface di�eomorphic to
the standard unit disk D and ∆ = ∆n q∆p ⊂ Z a collection of �nitely many disjoint simple loops divided into two
disjoint sets. Denote by Z∆n the surface obtained by collapsing the curves in ∆n to points. Write

Z∗ := Z∆n\∆p =: Z(0) q
N∐
ν=1

Z(ν) q Z(N+1)

as a disjoint union of components Z(ν). Here Z(0) is the bottom boundary component which is the disjoint union
of �nitely many disks, while Z(N+1) is the upper boundary component whose boundary is of two types. One
type is the boundary of the disk D and the other boundary components are certain loops from ∆p. Let j be a
conformal structure on Z\∆ such that (Z\∆, j) is a punctured Riemann surface together with an identi�cation of
distinct pairs of punctures given by the elements of ∆. This shows that Z∗ has the structure of a nodal punctured
Riemann surface with a remaining identi�cation of punctures given by the loops {δi}i∈I = ∆p, for some index set
I. A broken pseudoholomorphic curve (with N + 2 levels) is a map F = (F(0), F(1), ..., F(N+1)) : (Z∗, j) → X, where
X =
∐N+1
ν=0 (R×M) such that F(ν) : (Z(ν), j)→ R×M is a punctured pseudoholomorphic curve with the additional

property that F extends to a continous map F : Z → X. Here X is obtained as follows. The negative end of the
compacti�cation of R×M of the ν−th copy is glued to the positive end of the compacti�cation of R×M of the copy
ν+ 1. This procedure is done for ν = 0, ...,N. For a loop δ ∈ ∆p, there exists ν ∈ {0, ...,N} such that δ is adjacent
to Z(ν) and Z(ν+1). Fix an embedded annuli Aδ,ν ∼= [−1, 1]× S1 ⊂ Z\∆n such that {0}× S1 = δ, {−1}× S1 ⊂ Z(ν)

and {1}× S1 ⊂ Z(ν+1).
In this context, we state a convergence result which has been established in [7] and [9].

Proposition 62. The sequence of pseudoholomorphic disks un = (an, fn) : (D, i)→ R×M satisfying (A.0.1)

and having a uniformly bounded Hofer energy has a subsequence that converges to a broken pseudoholomor-

phic curve u = (a, f) : (Z, j)→ R×M with N+2 levels in the following sense: There exists a sequence of di�o-

morphisms ϕn : D→ Z and a sequence of negative real numbers min(an) = r
(0)
n < r

(1)
n < ... < r(N+1)

n = −K− 2
with K ∈ R and r

(ν+1)
n − r

(ν)
n →∞ as n→∞ such that the following hold:

1. Z with the circles ∆ collapsed to points is a nodal Riemann surface (in the sense of the above discussion,

but with boundary). in := (ϕn)∗i → j in C∞
loc

on Z\∆. For every i ∈ I, the annulus (Ai, (ϕn)∗i) is

conformally equivalent to a standard annulus [−Rn,Rn] × S1 by a di�eomorphism of the form (s, t) 7→
(κ(s), t) with Rn →∞ as n→∞.
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2. The sequence un ◦ϕ−1
n |Z(ν) : Z(ν) → R×M converges in C∞

loc
on Z(ν)\∆n to a punctured nodal pseudo-

holomorphic curve u(ν) : (Z(ν), j)→ R×M, and in C0
loc

on Z(ν).

3. The sequence fn◦ϕ−1
n : Z→M converges in C0 to a map f : Z→M, whose restriction to ∆p parametrizes

the Reeb orbits and to ∆n parametrizes points.

4. For any S > 0 , there exist ρ > 0 and K ∈ N such that an ◦ϕ−1
n (s, t) ∈ [r

(ν)
n + S, r(ν+1)

n − S] for all n > K
and all (s, t) ∈ Aδ,ν with |s| 6 ρ.

5. The di�eomorphisms ϕn ◦ β∂D : [0, 5L]× S1 ↪→ Z are independent of n.



Appendix B

H−holomorphic cylinders of small area

In this appendix we describe the convergence of a sequence of H−holomorhic cylinders un = (an, fn) : [−Rn,Rn]×
S1 → R×M with harmonic perturbations γn. As before, we denote by Pα ⊂ R the set de�ned by

Pα = {0} ∪ {T > 0 | there exists a T − priodic orbit of Xα}.

We assume that all periodic orbits of the Reeb vector �eld Xα are non-degenerate, in the sense that the linearized
�ow along any periodic orbit restricted to the contact structure has no eigenvalues equal to 1. We will refer to
this case as the Morse case. As shown in [2], a non-degenerate T−periodic orbit is isolated among periodic orbits
having periods close to T . Thus we de�ne the constant  h0 > 0, introduced in Section 3.1, by

 h0 = min{|T1 − T2| | T1, T2 ∈ P with T1, T2 6 �E0 and T1 6= T2}

where �E0 = 2(C1 + E0) is de�ned in Section 3.2.5 Step 3. Note that E0 6 �E0. For a sequence of H−holomorphic
cylinders un = (an, fn) : [−Rn,Rn] × S1 → R ×M with harmonic perturbations γn the analysis is performed in
the following setting.

P1 Rn →∞ as n→∞.

P2 There exist constants δ0 > 0 and C1 > 0 such that ‖dfn(z)‖ := sup‖v‖eucl.=1 ‖dfn(z)v‖g < C1 for all
z ∈ ([−R,−R+ δ0]q [R− δ0,R])× S1.

P3 The energy of un, as well as the L2−norm of γn are uniformly bounded by the constants E0 > 0 and
C0 > 0, respectively.

P4 For �E0, the dα−energy of un is uniformly bounded by  h0/2.

P5 There exists a constant C > 0 such that for all n ∈ N, we have |τn|, |σn| < C, where τn is the conformal
period of γn on [−Rn,Rn]× S1, i.e. τn = RnPn, and σn is the conformal co-period of γn on [−Rn,Rn]× S1,
i.e. σn = RnSn. Here, Pn and Sn are the period and co-period of γn on the cylinder [−Rn,Rn] × S1. After
going over to a subsequence, we assume that τn → τ and σn → σ as n→∞ for some τ,σ ∈ R and τ,σ > 0.

The task is to describe the asymptotic behavior of such cylinders. More precisely, we will derive the following
results. For a �nite energy H−holomorphic cylinder u = (a, f) : [−R,R]× S1 → R×M with harmonic perturbation
γ we introduce the notion of center action (De�nition 74) as in [14] which may be de�ned as the unique element
A(u) ∈ Pα which is su�ciently close to ∫

S1
u(0)∗α.

77
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For more details the reader might consult Section B.1. By Theorem 72 it follows that A(u) is either 0 or strictly
greater than some positive constant which will be determined in Section B.1.2. We distinguish between two cases;
the �rst case is when there exists a subsequence of un with a vanishing center action and the second case is when
there is no subsequence of un with this property. In this regard, Theorem 63 deals with the asymptotic behavior
in the case of vanishing center action, while Theorem 65 deals with the asymptotic behavior in the case of positive
center action.
Before stating the main result we recall the construction of a sequence of di�eomorphisms θn : [−Rn,Rn]→ [−1, 1]
introduced in De�nition 44. The construction is similar to that given in [7] and will enable us to describe the
C0−convergence.

Theorem 63. Let un be a sequence of H−holomorphic cylinders with harmonic perturbations γn that satisfy

P1-P5 and possessing a subsequence having vanishing center action. Then there exists a subsequence of un,

still denoted by un, the H−holomorphic cylinders u± de�ned on (−∞, 0]×S1 and [0,∞)×S1, respectively, and
a point w = (wa,wf) ∈ R×M such that for every sequence hn ∈ R+ and every sequence of di�eomorphisms

θn : [−Rn,Rn] → [−1, 1] constructed as in Remark 44 the following C∞
loc
− and C0−convergence results hold

(after a suitable shift of un in the R−coordinate)
C∞

loc
−convergence:

1. For any sequence sn ∈ [−Rn + hn,Rn − hn] there exists a constant τ{sn} ∈ [−τ, τ] (depending on the

sequence {sn}) such that after passing to a subsequence, the shifted maps un(s + sn, t) + Snsn, de�ned
on [−Rn + hn − sn,Rn − hn − sn] × S1, converge in C∞

loc
to (wa,φα−τ{sn}

(wf)). The shifted harmonic

perturbation 1−forms γn(s+ sn, t) possess a subsequence converging in C∞
loc

to 0.

2. The left shifts u−
n(s, t) − RnSn := un(s − Rn, t) − RnSn, de�ned on [0,hn) × S1, possess a subsequence

that converge in C∞
loc

to a pseudoholomorphic half cylinder u− = (a−, f−), de�ned on [0,+∞)× S1. The
curve u− is asymptotic to (wa,φατ (wf)). The left shifted harmonic perturbation 1−forms γ−n converge

in C∞
loc

to an exact harmonic 1−form dΓ−, de�ned on [0,+∞)× S1. Their asymptotics are 0.

3. The right shifts u+
n(s, t) + RnSn := un(s+ Rn, t) + RnSn, de�ned on (−hn, 0]× S1, possess a subsequence

that converge in C∞
loc

to a pseudoholomorphic half cylinder u+ = (a+, f+), de�ned on (−∞, 0] × S1.
The curve u+ is asymptotic to (wa,φα−τ(wf)). The right shifted harmonic perturbation 1−forms γ+n
converge in C∞

loc
to an exact harmonic 1−form dΓ+, de�ned on (−∞, 0]× S1. Their asymptotics are 0.

C0−convergence:

1. The maps vn : [−1/2, 1/2] × S1 → R ×M de�ned by vn(s, t) = un(θ
−1
n (s), t), converge in C0 to (−2σs +

wa,φα−2τs(wf)).

2. The maps v−n−RnSn : [−1,−1/2]×S1 → R×M de�ned by v−n(s, t) = un((θ
−
n)

−1(s), t), converge in C0 to a

map v− : [−1,−1/2]× S1 → R×M such that v−(s, t) = u−((θ−)−1(s), t) and v−(−1/2, t) = (wa,φατ (wf)).

3. The maps v+n + RnSn : [1/2, 1]× S1 → R×M de�ned by v+n(s, t) = un((θ
+
n)

−1(s), t), converge in C0 to a

map v+ : [1/2, 1]× S1 → R×M such that v+(s, t) = u+((θ+)−1(s), t) and v+(1/2, t) = (wa,φα−τ(wf)).

An immediate corollary is

Corollary 64. Under the same hypothesis of Theorem 63 the following C∞
loc
−convergence results hold.
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1. The maps v−n −RnSn converge in C∞
loc

to v−, where v− is asymptotic to (wa,φατ (wf)) as s→ −1/2. The
harmonic 1−forms [(θ−n)

−1]∗γ−n with respect to the complex structure [(θ−n)
−1]∗i converge in C∞

loc
to a

harmonic 1−form [(θ−)−1]∗dΓ− with respect to the complex structure [(θ−)−1]∗i which is asymptotic to

some constant as s→ −1/2.

2. The maps v+n + RnSn converge in C∞
loc

to v+, where v+ is asymptotic to (wa,φα−τ(wf)) as s→ 1/2. The
harmonic 1−forms [(θ+n)

−1]∗γ−n with respect to the complex structure [(θ+n)
−1]∗i converge in C∞

loc
to a

harmonic 1−form [(θ+)−1]∗dΓ+ with respect to the complex structure [(θ+)−1]∗i which is asymptotic to

some constant as s→ 1/2.

Proof. To show that v−n converge in C∞loc to v− we recall that

v−n(s, t) − SnRn = (a−n((θ
−
n)

−1(s), t) − Γ−n ((θ
−
n)

−1(s), t)

− SnRn,φ
α
−Pn(θ

−
n )−1(s)+PnRn

(f
−
n((θ

−
n)

−1(s), t)))

and that θ−n → θ− in C∞loc. The convergence of the harmonic perturbations γn follows from Corollary 107, while
the convergence of v+n is proved in an analogous manner.

In the case of positive center action we have the following.

Theorem 65. Let un be a sequence of H−holomorphic cylinders with harmonic perturbations γn satisfy

P1-P5 and possessing no subsequence with vanishing center action. Then there exist a subsequence of un,

still denoted by un, H−holomorphic half cylinders u± de�ned on (−∞, 0]× S1 and [0,∞)× S1, respectively,
a periodic orbit x of period T ∈ R\{0}, and sequences r±n ∈ R with |r+n − rnn| → ∞ as n → ∞ such that for

every sequence hn ∈ R+ and every sequence of di�eomorphisms θn : [−Rn,Rn] → [−1, 1] as in Remark 44,

the following convergence results hold (after a suitable shift of un in the R−coordinate).
C∞

loc
−convergence:

1. For any sequence sn ∈ [−Rn + hn,Rn − hn] there exists a constant τ{sn} ∈ [−τ, τ] (depending on the

sequence {sn}) such that after passing to a subsequence, the shifted maps un(s + sn, t) − snT − Snsn,

de�ned on [−Rn+hn− sn,Rn−hn− sn]×S1, converge in C∞loc to (Ts+a0,φα−τ{sn}
(x(Tt)) = x(Tt+τ{sn})).

The shifted harmonic perturbation 1−forms γn(s+ sn, t) possess a subsequence converging in C∞
loc

to 0.

2. The left shifts u−
n(s, t) − RnSn, de�ned on [0,hn) × S1, possess a subsequence that converges in C∞

loc
to

a H−holomorphic half cylinder u− = (a−, f−), de�ned on [0,+∞)× S1. The curve u− is asymptotic to

(Ts+a0,φατ (x(Tt)) = x(Tt+ τ)). The left shifted harmonic perturbation 1−forms γ−n converge in C∞
loc

to

an exact harmonic 1−form dΓ−, de�ned on [0,+∞)× S1. Their asymptotics are 0.

3. The right shifts u+
n(s, t) + RnSn, de�ned on (−hn, 0] × S1 possess a subsequence that converges in C∞

loc

to a H−holomorphic half cylinder u+ = (a+, f+), de�ned on (−∞, 0]× S1. The curve u+ is asymptotic

to (Ts + a0,φα−τ(x(Tt)) = x(Tt − τ)). The right shifted harmonic perturbation 1−forms γ+n converge in

C∞
loc

to an exact harmonic 1−form dΓ+, de�ned on (−∞, 0]× S1. Their asymptotics are 0.

C0−convergence:

1. The maps fn ◦ θ−1
n : [−1/2, 1/2]× S1 →M converge in C0 to φα−2τs(x(Tt)) = x(Tt− 2τs).
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2. The maps f−n ◦ (θ−n)−1 : [−1,−1/2]× S1 →M converge in C0 to a map f− ◦ (θ−)−1 : [−1,−1/2]× S1 →M

such that f−((θ−)−1(−1/2), t) = φατ (x(Tt)) = x(Tt+ τ).

3. The maps f+n ◦ (θ+n)−1 : [1/2, 1] × S1 →M converge in C0 to a map f+ ◦ (θ+)−1 : [1/2, 1] × S1 →M such

that f+((θ+)−1(1/2), t) = φα−τ(x(Tt)) = x(Tt− τ).

4. There exist C > 0, ρ > 0 and N ∈ N such that for any R > 0, an ◦ θ−1
n (s, t) ∈ [r−n + R−C, r+n − R+C] for

all n > N and all (s, t) ∈ [−ρ, ρ]× S1.

An immediate corollary is

Corollary 66. Under the same hypothesis of Theorem 65 and the notations from Theorem 63 we have the

following C∞
loc
−convergence results.

1. The maps v−n − RnSn converge in C∞
loc

to v− where f−((θ−)−1(−1/2), t) = x(Tt + τ). The harmonic

1−forms [(θ−n)
−1]∗γ−n with respect to the complex structure [(θ−n)

−1]∗i converge in C∞
loc

to a harmonic

1−form [(θ−)−1]∗dΓ− with respect to the complex structure [(θ−)−1]∗i which is asymptotic to some

constant as s→ −1/2.

2. The maps v+n+RnSn converge in C∞
loc

to v+ where f+((θ+)−1(1/2), t) = x(Tt−τ). The harmonic 1−forms

[(θ+n)
−1]∗γ−n with respect to the complex structure [(θ+n)

−1]∗i converge in C∞
loc

to a harmonic 1−form
[(θ+)−1]∗dΓ+ with respect to the complex structure [(θ+)−1]∗i which is asymptotic to some constant as

s→ 1/2.

In order to establish this, we need to make use of a modi�ed version of the results from [14].

Remark 67. If the sequence of H−holomorphic curves un together with the harmonic perturbations γn satisfy
conditions P1-P4 we can conclude that the left and right shifts u±n together with the harmonic perturbations γ±n
de�ned on [0,hn]× S1 and [−hn, 0]× S1, respectively, converge after a suitable shift in the R−coordinate in C∞loc,
to H−holomorphic half cylinders u± with harmonic perturbations dΓ± de�ned on [0,∞) × S1 and (−∞, 0] × S1,
respectively. The H−holomorphic curves u± are asymptotic to points w± = (w±a ,w

±
f ) ∈ R×M or trivial cylinders

over Reeb orbits (x±, T). Without the assumption P5, the asymptotic data of u− and u+ cannot be described as
in Theorems 63 and 65. In fact, dropping assumption P5 it is not possible to connect the asymptotic data w−

or x−(T ·) of the left shifted H−holomorphic curve u− to the asymptotic data w+ of x+(T ·) of the right shifted
H−holomorphic curve u+ by a compact cylinder as in Theorems 63 and 65. In the proof of these theorems it will
become apparent that P5 is a necessary condition for the C0−convergence result.

We begin this Appendix by considering a general H−holomorphic cylinder u = (a, f) : [−R,R]× S1 → R×M with
harmonic perturbation γ and having the following properties:

Q1 E(u; [−R,R]× S1) 6 E0 and ‖γ‖2L2([−R,R]×S1) 6 C0.

Q2 Edα(u; [−R,R]× S1) 6  h0/2.

Q3 The conformal period τ = PR, where P is the period of γ over the cylinder [−R,R] × S1 is bounded, i.e.
for the constant C > 0 from Assumption A5, we have |τ| 6 C.

Q4 There exist constants δ0 > 0 and C1 > 0 such that ‖df(z)‖ < C1 for all z ∈ ([−R,−R+δ0]q[R−δ0,R])×S1.
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In Section B.1, thisH−holomorphic curve is transformed, as in [20], by the �ow φα : R×M→M of the Reeb vector
�eld Xα into a usual pseudoholomorphic curve with respect to a domain dependent almost complex structure that
varies in a compact set. Here, condition Q3 is essential. The transformed curve is a JPs−holomorphic curve. The
lower index Ps, where P is the period of the harmonic perturbation and s the coordinate in [−R,R], describes the
variation of the complex structure JPs; we have |Ps| 6 C for all s ∈ [−R,R]. The conditions imposed on the energy
are transferred to the JPs−holomorphic curves. We then derive a notion of center action for the JPs−holomorphic
curves by employing the same arguments as in Theorem 1.1 of [14]; here, we distinguish the cases when the center
action vanishes and is greater than  h0.
In Section B.2 we consider the case of vanishing center action. First, we derive a result for JPs−holomorphic
curves, which is similar to that established in Theorem 1.2 of [14], and which basically states that a �nite energy
JPs−holomorphic curve with uniformly small dα−energy and having vanishing center action, is close to a point in
R×M. This is done by using a version of monotonicity lemma for JPs−holomorphic curves given in Appendix F.
Then we describe the asymptotic behavior of JPs−holomorphic curves, and �nally, by using the inverse transforma-
tion with the �ow of the Reeb vector �eld, we translate these results in the language of H−holomorphic cylinders
and prove Theorem 63.
In Section B.3 we formulate the above �ndings in the case of positive center action. We prove a result which is
similar to that stated by Theorem 1.3 of [14] for JPs−holomorphic curves, and then Theorem 65.
In order to prove Theorems 63 and 65 we use a compactness result for a sequence of harmonic functions de�ned on
cylinders and possessing certain properties; this is established in Appendix E.

B.1 JPs−holomorphic curves and center action

In this section we transform a H−holomorphic curve into a pseudoholomorphic curve with domain-dependent
almost complex structure on the target space R×M, and introduce a notion of center action for this curve.

B.1.1 JPs−holomorphic curves

We consider a H−holomorphic curve u = (a, f) : [−R,R] × S1 → R ×M with harmonic perturbation γ satisfying
Assumptions Q1-Q4, and construct a new map u = (a, f) : [−R,R]× S1 → R×M as follows. Let φαt :M→M be
the Reeb �ow on M. De�ning

f(s, t) := φαPs(f(s, t)) (B.1.1)

we �nd by straightforward calculation that

παdf = dφ
α
Psπαdf and f

∗
α = Pds+ f∗α

giving

f
∗
α ◦ i = −Pdt+ f∗α ◦ i = −Pdt+ da+ γ. (B.1.2)

Remark 68. Obviously, as γ is a harmonic 1−form, the 1−form −Pdt+ γ is harmonic with vanishing period over
[−R,R]× S1. Thus −Pdt + γ is globally exact, i.e. there exists a harmonic function Γ : [−R,R]× S1 → R which is
unique up to addition of a constant such that −Pdt + γ = dΓ . By technical reasons, which will become apparent
later on, we choose Γ such that it has vanishing mean value over [−R,R]× S1, i.e.

1
2R

∫
[−R,R]×S1

Γ(s, t)ds∧ dt = 0.



APPENDIX B. H−HOLOMORPHIC CYLINDERS OF SMALL AREA 82

Set
a := a+ Γ (B.1.3)

where Γ was chosen as in Remark 68.
De�ne the domain-dependent almost complex structure J : [−C,C]×M→ End(ξ) by

Jρ(p) = dφ
α
ρ (φ

α
−ρ(p)) ◦ Jξ(φα−ρ(p)) ◦ dφα−ρ(p) (B.1.4)

for all ρ ∈ [−C,C] and all p ∈M, where C > 0 is the constant from Assumption Q3. Note that for aH−holomorphic
curve u : [−R,R]× S1 → R×M satisfying Assumptions Q1-Q4, Ps ∈ [−C,C] for all s ∈ [−R,R].

Proposition 69. The curve u = (a, f) : [−R,R]×S1 → R×M, where a and f are the maps de�ned by (B.1.3) and

(B.1.1), respectively, is pseudoholomorphic with respect to the domain-dependent almost complex structure

J varying in a compact space of almost complex structures, i.e.

παdf(s, t) ◦ i = JPs(f(s, t)) ◦ παdf(s, t), (B.1.5)

(f
∗
α) ◦ i = da (B.1.6)

for all (s, t) ∈ [−R,R]× S1. Moreover, for the α− and dα−energies we have

Edα(u; [−R,R]× S1) = Edα(u; [−R,R]× S1),

Eα(u; [−R,R]× S1) 6
∫
{R}×S1

|f∗α|+

∫
{−R}×S1

|f∗α|+ Edα(u; [−R,R]× S1).

Proof. By Remark 68 it is obvious that Equation (B.1.6) holds. Let us consider Equation (B.1.5). The left-hand
side of this equation goes over in

παdf(s, t) ◦ i = dφαPsπαdf ◦ i,

while the right-hand side goes over in

JPs(f(s, t)) ◦ παdf(s, t)
= JPs(φ

α
Ps(f(s, t))) ◦ dφαPs(f(s, t))παdf(s, t)

= dφαPs(φ
α
−Ps(φ

α
Ps(f(s, t)))) ◦ J(φα−Ps(φαPs(f(s, t))))

◦ dφα−Ps(φαPs(f(s, t))) ◦ dφαPs(f(s, t))παdf(s, t)
= dφαPs(f(s, t)) ◦ J(f(s, t)) ◦ παdf(s, t).

Hence

παdf(s, t) ◦ i− JPs(f(s, t)) ◦ παdf(s, t)
= dφαPsπαdf ◦ i− dφαPs(f(s, t)) ◦ J(f(s, t)) ◦ παdf(s, t)
= dφαPs [παdf ◦ i− J(f(s, t)) ◦ παdf(s, t)]
= 0.

Thus u = (a, f) : [−R,R] × S1 → R ×M is an i − J−holomorphic curve, where J is a domain-dependent almost
complex structure. The energies transform as follows. The dα−energy remains unchanged. Indeed, by de�nition
we have

Edα(u; [−R,R]× S1) =

∫
[−R,R]×S1

f
∗
dα,
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and by noticing that

f
∗
dα = dα(dφαPsπαdf·,dφαPsπαdf·) = f∗dα,

we obtain

Edα(u; [−R,R]× S1) =
∫
[−R,R]×S1

f
∗
dα =

∫
[−R,R]×S1

f∗dα = Edα(u; [−R,R]× S1).

For the α−energy we start from the de�nition and obtain

Eα(u; [−R,R]× S1) = sup
ϕ∈A

∫
[−R,R]×S1

ϕ ′(a)da ◦ i∧ da

= sup
ϕ∈A

[
−

∫
[−R,R]×S1

d(ϕ(a)da ◦ i) −ϕ(a)d(da ◦ i)
]

= sup
ϕ∈A

[
−

∫
[−R,R]×S1

d(ϕ(a)da ◦ i) +
∫
[−R,R]×S1

ϕ(a)d(da ◦ i)
]

= sup
ϕ∈A

[
−

∫
∂([−R,R]×S1)

ϕ(a)da ◦ i−
∫
[−R,R]×S1

ϕ(a)f∗dα

]
6 sup
ϕ∈A

[∣∣∣∣∫
∂([−R,R]×S1)

ϕ(a)da ◦ i
∣∣∣∣+ ∫

[−R,R]×S1
ϕ(a)f∗dα

]
6 sup
ϕ∈A

[∣∣∣∣∫
{R}×S1

ϕ(a)da ◦ i
∣∣∣∣+ ∣∣∣∣∫

{−R}×S1
ϕ(a)da ◦ i

∣∣∣∣+ Edα(u; [−Rn,Rn]× S1)]
6 sup
ϕ∈A

[∫
{R}×S1

ϕ(a)|da ◦ i|+
∫
{−R}×S1

ϕ(a)|da ◦ i|+ Edα(u; [−Rn,Rn]× S1)
]

6

[∫
{R}×S1

|f∗α|+

∫
{−R}×S1

|f∗α|+ Edα(u; [−R,R]× S1)
]
.

Remark 70. The α−energy of un, that was constructed from un (satisfying Assumptions A1-A5), is uniformly
bounded. To show this we argue as follows. Due to Assumption P2, the quantities∫

{Rn}×S1
|f∗nα| and

∫
{−Rn}×S1

|f∗nα|

are uniformly bounded by the constant C1 > 0. Hence, according to the de�nition of �E0 we obtain

E(un; [−Rn,Rn]× S1) = Eα(un; [−Rn,Rn]× S1) + Edα(un; [−Rn,Rn]× S1) 6 �E0.

For this reason it makes sense to assume, by Proposition 69, that the energy of un is uniformly bounded.

To analyze the properties of the transformed pseudoholomorphic curve u, we consider the following additional
structure on M: On the contact structure ξ = ker(α), let J : [−C,C] ×M → End(ξ) be the parameter-dependent
almost complex structure de�ned by (B.1.4) having the property Jρ(p)2 = −1 for all ρ ∈ [−C,C] and all p ∈ M.
On R×M we use the following family of Riemannian metrics:

gρ,p(v,w) = dr⊗ dr(v,w) + α⊗ α(v,w) + dα(v, Jρ(p)w) (B.1.7)

for all ρ ∈ [−C,C] and all p ∈M, where r is the coordinate on the R−component of R×M.

De�nition 71. A triple (u,R,P) is called a JPs−holomorphic curve if P,R ∈ R with R > 0, and u = (a, f) :
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[−R,R]× S1 → R×M satisfy the following assumptions:

1. For the constant C > 0 from Assumption Q3 we have |PR| 6 C.

2. u solves the i− JPs−holomorphic curve equation

παdf(s, t) ◦ i = JPs(f(s, t)) ◦ παdf(s, t),

f
∗
α ◦ i = da.

3. The energy E(u; [−R,R]× S1) of u is bounded by the constant �E0.

4. The dα−energy of u is smaller than  h0/2.

5. For the constant δ0 > 0 from Assumption Q4 we have
∥∥df(z)∥∥ < �C1 for all z ∈ ([−R,−R+δ0]q[R−δ0,R])×S1,

for some constant �C1 > C1.

B.1.2 Center action

In the following we apply the results established in [14] to this new curve, and introduce the notion of the center
action for the JPs−holomorphic curve (u,R,P).
The next result is similar to Theorem 1.1 of [14].

Theorem 72. For all ψ such that 0 < ψ <  h0/2, there exists h0 > 0 such that for any R > h0 and any

JPs−holomorphic curve (u,R,P) there exists a unique element T ∈ P such that T 6 �E0 and∣∣∣∣∫
S1
u(0)∗α− T

∣∣∣∣ < ψ

2
.

To prove the theorem we need the following lemma.

Lemma 73. For any δ > 0 there exists a constant C ′1 > 0 such that the gradients of all JPs−holomorphic

curves (u,R,P) with R > δ, are uniformly bounded on [−R+ δ,R− δ]× S1 by the constant C ′1, i.e.

sup
(s,t)∈[−R+δ,R−δ]×S1

‖du(s, t)‖geucl.,gPs
6 C ′1.

Proof. We prove this lemma by using bubbling-o� analysis. Let us assume that the assertion is not true. Then we
�nd δ0 > 0 such that for any C1,n = n there exist the JPns−holomorphic curves (un,Rn,Pn) with Rn > δ0 such
that

sup
(s,t)∈[−Rn+δ0,Rn−δ0]×S1

‖dun(s, t)‖geucl.,gPns > C1,n = n.

Consequently, there exists the points (sn, tn) ∈ [−Rn + δ0,Rn + δ0]× S1 for which

‖dun(sn, tn)‖geucl.,gPnsn = sup
(s,t)∈[−Rn+δ0,Rn−δ0]×S1

‖dun(s, t)‖geucl.,gPns > n.

Set Rn := ‖dun(sn, tn)‖geucl.,gPnsn and note that Rn → ∞. Choose a sequence εn such that εn > 0, εn → 0 and
εnRn → +∞. Now, apply Hofer's topological lemma [1] to the continous sequence of functions ‖dun(s, t)‖geucl.,gPns
de�ned on [−Rn,Rn]×S1. For each (sn, tn) and εn, there exist (s ′n, t

′
n) ∈ [−Rn+δ0,Rn−δ0]×S1 and ε ′n ∈ (0, εn]

with the properties:



APPENDIX B. H−HOLOMORPHIC CYLINDERS OF SMALL AREA 85

1. ε ′n ‖dun(s ′n, t ′n)‖geucl.,gPns′n > εn ‖dun(sn, tn)‖geucl.,gPnsn ;

2. |(sn, tn) − (s ′n, t
′
n)|geucl. 6 2εn;

3. ‖dun(s, t)‖geucl.,gPns 6 2 ‖dun(s ′n, t ′n)‖geucl.,gPns′n for all (s, t) such that |(s, t) − (s ′n, t
′
n)| 6 ε

′
n.

Thus we have found the points (s ′n, t
′
n) and a sequence ε ′n such that:

1. ε ′n > 0, ε ′n → 0, R ′n := ‖dun(s ′n, t ′n)‖geucl.,gPns′n →∞ and ε ′nR
′
n →∞;

2. ‖dun(s, t)‖geucl.,gPns 6 2R ′n for all (s, t) such that |(s, t) − (s ′n, t
′
n)| 6 ε

′
n.

We do now rescaling. Setting z ′n = (s ′n, t
′
n) and de�ning the maps

�un(s, t) :=

(
an

(
z ′n +

z

R ′n

)
− an(z

′
n), fn

(
z ′n +

z

R ′n

))
= (�a(z), �f(z))

for z = (s, t) ∈ Bε′nR′n(0), we obtain

d�un(z) =
1
R ′n
dun

(
z ′n +

z

R ′n

)
and

‖d�un(z)‖geucl.,g
Pn

(
s′n+ s

R′n

) =
1
R ′n

∥∥∥∥dun(z ′n +
z

R ′n

)∥∥∥∥
geucl.,g

Pn

(
s′n+ s

R′n

) .

Thus, for all z = (s, t) ∈ Bε′nR′n(0) we have that

‖d�un(z)‖geucl.,g
Pn

(
s′n+ s

R′n

) 6 2 (B.1.8)

and ‖d�un(0)‖geucl.,gPns′n = 1, and moreover, that �u = (�a, �f) solves

παd�fn(z) ◦ i = JPn
(
s′n+

s
R′n

)(�fn(z)) ◦ παd�fn(z),
�f∗nα ◦ i = d�an.

As Pns ′n is bounded by C, we go over to some convergent subsequence, i.e., Pns ′n → ρ as n → ∞. From
the uniform gradient bound (B.1.8) it follows that there exists a subsequence converging in C∞loc to some curve
�u = (�a, �f) : C→ R×M such that:

1. �u solves
παd�f(z) ◦ i = Jρ(�f(z)) ◦ παd�f(z) and �f∗α ◦ i = d�a;

2. the gradient bounds go over in ‖d�u(z)‖geucl.,gPs′ 6 2 and ‖d�u(0)‖geucl.,gPs′ = 1.

From the last two results, �u is a usual non-constant pseudoholomorphic plane with bounded energy by the constant
�E0 (�nite energy plane). As the dα−energy is smaller than  h0 we arrive at a contradiction (see [13]).
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Proof. (of Theorem 72) We prove Theorem 72 by contradiction. Assume that we �nd 0 < �ψ <  h0/2 such that for
any constant h0,n = n, there exist Rn > h0,n = n and the JPs−holomorphic curves (un,Rn,Pn) satisfying∣∣∣∣∫

S1
un(0)

∗α− T

∣∣∣∣ > �ψ
2

for any T ∈ P with T 6 �E0. By Lemma 73, we have for δ = 1,

sup
(s,t)∈[−Rn+1,Rn−1]×S1

‖dun(s, t)‖geucl.,gPns 6
�C1.

As |PnRn| 6 C and Rn → ∞ it follows that Pn → 0 as n → ∞. Furthermore, by the boundedness of PnRn, the
metrics gPns are equivalent for all s ∈ [−Rn,Rn] and all n (the almost complex structures Jτ varies in a compact
set). Hence there exists a constant C2 > 0 such that

1
C2

‖·‖0 6 ‖·‖Pns 6 C2 ‖·‖0

for all n and all s ∈ [−Rn,Rn]. By making the constant C ′1 larger (eventually by multiplying it with C2) we obtain

sup
(s,t)∈[−Rn+1,Rn−1]×S1

‖dun(s, t)‖geucl.,g0 6 C
′
1.

Thus the maps un converge in C∞loc to some usual J0−holomorphic curve u = (a, f) : R × S1 → R ×M, for which
we have:

1. u solves
παdf(z) ◦ i = J0(f(z)) ◦ παdf(z) and f

∗
α ◦ i = da;

2. E(u;R× S1) 6 �E0, Edα(u;R× S1) 6  h0/2 and∣∣∣∣∫
S1
u(0)∗α− T

∣∣∣∣ > �ψ
2

for all T ∈ P with T 6 �E0.

The rest of the proof proceeds as in the proof of Theorem 1.1 from [14]. For the sake of completeness we present
this proof in detail. The map u can be regarded as a �nite energy map de�ned on a 2−punctured Riemannian
sphere. A puncture is removable or has a periodic orbit on the Reeb vector �eld as asymptotic limit. In both cases,
the limits

lim
s→±∞

∫
S1
u(s)∗α ∈ R

exist. The limit is equal to 0 if the puncture is removable, and equal to the period of the asymptotic limit if this
is not the case. As a result and by means of Stoke's theorem, the dα−energy of u can be written as∫

R×S1
u∗dα = T2 − T1,

with T2 > T1, where T1, T2 ∈ P and T1, T2 6 �E0. By the energy estimates, Edα(u; ·) 6  h0/2, and from the de�nition
of the constant  h0 we conclude that that T1 = T2. Set T := T1 = T2. If T = 0, both punctures are removable, u has
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an extension to a J0−holomorphic �nite energy sphere S2 → R×M, and so, the map u must be constant; hence∫
S1
u(0)∗α = 0 = T ,

which contradicts the assumption on the center action. If T > 0, the �nite energy cylinder u is non-constant, has a
vanishing dα−energy., and so, u must be a cylinder over a periodic orbit x(t) of the form u(s, t) = (Ts+c, x(Tt+d))
for some constants c and d, and with a period T 6 �E0; hence∫

S1
u(0)∗α− T = 0 <

�ψ
2
,

which again contradicts the assumption on the center action. Thus, there exists a constant h0 > 0 such that for
any JPs−holomorphic curve (u,R,P) with R > h0 satisfying the energy estimates, the center loop u(0, ·) has an
action close to an element T ∈ P with T 6 �E0, i.e.∣∣∣∣∫

S1
u(0)∗α− T

∣∣∣∣ < ψ

2
. (B.1.9)

To deal with the uniqueness issue, we consider two elements T1, T2 ∈ P with T1, T2 6 �E0 satisfying the above
estimate. Then we have

|T1 − T2| <
ψ

2
+
ψ

2
= ψ.

By assumption, ψ <  h0/2, and from the de�nition of  h0 it follows that T1 = T2. Therefore the element T ∈ P

satisfying T 6 �E0 and the estimate (B.1.9) is unique.

De�nition 74. The unique element T ∈ Pα associated with the JPs−holomorphic curve (u,R,P) satisfying the
assumptions of Theorem 72 is called the center action of u and is denoted by

A(u) = T .

If the curve u = (a, f) : [−R,R] × S1 → R ×M ful�lls the assumptions of Theorem 72, the actions of all loops are
estimated by ∣∣∣∣∫

S1
u(s)∗α− T

∣∣∣∣ < ψ

2
+

 h0
2
<  h0

for all s ∈ [−R,R].

Remark 75. From the de�nition of the constant  h0, the center action A(u) of a curve u ful�lling the assumptions
of Theorem 72 satis�es A(u) = 0 or A(u) >  h0.

Before going any further we make a remark about the metrics involved.

Remark 76. For any ρ, the norms induced by the parameter-dependent metrics gρ on R×M that are de�ned by
(B.1.7) are equivalent, i.e. there exists a positive constant C1 > 0 such that

1

C1

‖·‖gρ 6 ‖·‖g0 6 C1 ‖·‖gρ . (B.1.10)

This follows from the fact that the parameter-dependent almost complex structure Jρ varies in a compact set.
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B.2 Vanishing center action

In view of Remark 75 and Theorem 72 we consider the case in which there exists a subsequnce of un with vanishing
center action. We use a version of the monotonicity lemma (Corollary 118) to characterize the behavior of a
JPs−holomorphic curve (u,P,R) (Theorem 78). Using these results we describe the convergence of a sequence of
JPs−holomorphic cylinders (Theorem 80) and then prove Theorem 63.

Lemma 77. Choose 0 < ψ <  h0/2, and let h0 > 0 be the corresponding constant from Theorem 72. For

all δ > 0 there exists h > h0 such that for any R > h and any JPs−holomorphic curve (u,R,P) ful�lling the

assumptions of Theorem 72 and having vanishing center action, the loops u(s) satisfy

diamg0(u(s)) 6 δ and |α(∂tu(s))| 6 δ (B.2.1)

for all s ∈ [−R+ h,R− h].

Proof. The proof is similar to that given in [14]. Nevertheless, for the sake of completeness it is sketched here. We
consider (B.2.1). Arguing indirectly we �nd a constant δ0 > 0, a sequence Rn > hn := n + h0, and a sequence of
JPs−holomorphic curves (un,Rn,Pn) such that

E(un; [−Rn,Rn]× S1) 6 �E0,

Edα(un; [−Rn,Rn]× S1) 6
 h0
2
,∣∣∣∣∫

S1
un(0)

∗α

∣∣∣∣ 6 ψ2 ,
diamg0(un(sn)) > δ0

for a sequence sn ∈ [−Rn + n+ h0,Rn − n− h0]. By Stoke's theorem, we have∣∣∣∣∫
S1
un(sn)

∗α

∣∣∣∣ <  h0.

De�ne now the maps �un = (�an, �fn) : [−Rn − sn,Rn + sn]× S1 → R×M by

�un(s, t) := (an(s+ sn, t), fn(s+ sn, t)),

for which, the above assumptions go over in

E(�un; [−Rn,Rn]× S1) 6 �E0,

Edα(�un; [−Rn,Rn]× S1) 6
 h0
2
,∣∣∣∣∫

S1
�un(0)

∗α

∣∣∣∣ <  h0,

diamg0(�un(0)) > δ0.

As sn ∈ [−Rn + n + h0,Rn − n − h0], we see that |Rn + sn| → ∞ and |Rn − sn| → ∞ as n → ∞. Moreover, �un
satis�es the pseudoholomorphic curve equation

παd�fn(s, t) ◦ i = J−Pn(s+sn)(�fn(s, t)) ◦ παd�fn(s, t),
�f∗nα ◦ i = d�an.
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For the new sequence
�vn(s, t) = (�bn(s, t), �vn(s, t)) = (�an(s, t) − �an(0, 0), �fn(s, t)),

the R−invariance of Jτ and of g0, yields

E(�vn; [−Rn − sn,Rn − sn]× S1) 6 �E0,

Edα(�vn; [−Rn − sn,Rn − sn]× S1) 6
 h0
2
,∣∣∣∣∫

S1
�vn(0)

∗α

∣∣∣∣ <  h0,

diamg0(�vn(0)) > δ0

and

παd�vn(s, t) ◦ i = J−Pn(s+sn)(�vn(s, t)) ◦ παd�vn(s, t),
�v∗nα ◦ i = d�bn.

By the same bubbling-o� argument as in the proof of Theorem 72, a subsequence of �vn converges in C∞loc to a usual
Jτ−holomorphic cylinder �v = (b, v) : R × S1 → R ×M for some �xed τ ∈ [−C,C] (after going to a subsequence,
this the limit of Pnsn) characterized by

Eα(�v;R× S1) + Edα(�v;R× S1) 6 �E0,

Edα(�v;R× S1) = 0,∣∣∣∣∫
S1

�v(0)∗α

∣∣∣∣ <  h0,

diamg0(�v(0)) > δ0.

In particular, �v is a non-constant �nite energy cylinder having a vanishing dα−energy. Hence �v is a cylinder over
a periodic orbit of period 0 < T 6 �E0.Consequently, we obtain∫

S1
v(0)∗α = T >  h0,

meaning that v is constant. This contradicts our assumptions, and therefore, diamg0(u(s)) 6 δ for all s ∈ [−R +

h,R− h]. For |α(∂tu(s))| 6 δ we proceed analogously, and the proof is �nished.

The next theorem characterizes the behavior of a JPs−holomorphic curve (u,R,P) with vanishing center action.

Theorem 78. Let ψ be as in Theorem 72 and let h0 > 0 be the constant from Theorem 72. For any ε > 0
there exists h1 > h0 such that for any R > h1 and any JPs−holomorphic curve (u,R,P) satisfying A(u) = 0
we have u([−R+ h1,R− h1]× S1) ⊂ Bg0ε (u(0, 0)).

Proof. In the �rst part of the proof we employ exactly the same arguments as in the proof of Theorem 1.2 from
[14]. With ε > 0 as in the statement of the theorem, we choose δ > 0 and 0 < r 6 ε su�ciently small such that

6δ < C8r
2 and 4δ+ r 6

ε

2
. (B.2.2)

For the JPs−holomorphic curve (u,R,P) with R > h and h as in the Lemma 77, and satisfying the assumptions of
Theorem 78, we have diamg0(u(s)) 6 δ and |α(∂tf(s))| 6 δ for all s ∈ [−R+ h,R− h]. The de�nition of the energy
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and Stoke's theorem give
E(u|[−R+h,R−h]×S1 ; [−R+ h,R− h]× S1) 6 6δ. (B.2.3)

If the conclusion of Theorem 78 is not true for this h, we �nd a point (s0, t0) ∈ [−R+ h,R− h]× S1 for which

distg0(u(s0, t0),u(0, 0)) > ε.

From diamg0(u(s)) 6 δ we obtain
distg0(u(s0, t),u(0, t

′)) > ε− 2δ

for all t, t ′ ∈ S1. Choosing a point s1 between 0 and s0 such that

distg0(u(s1, t),u(s0, t
′)) >

ε

2
− 4δ and distg0(u(s1, t),u(0, t

′)) >
ε

2
− 4δ

for all t, t ′ ∈ S1, using r 6 ε/2 − 4δ, and applying the monotonicity Lemma 118 to the open ball Bg0r (u(s1, t1)),
we conclude that E(u|[−R+h,R−h]×S1 ; [−R+ h,R− h]× S1) > C8r

2. In view of (B.2.3), this implies that C8r
2 6 2δ,

which is in contradiction to the choice in (B.2.2). Hence u(s, t) ∈ Bg0ε (u(0, 0)) for all (s, t) ∈ [−R + h,R − h] × S1
as claimed by Theorem 78.

B.2.1 Proof of Theorem 63

We are now well prepared to describe the convergence and the limit object of the H−holomorphic cylinders un
with harmonic perturbations γn. Consider a sequence of H−holomorphic cylinders un = (an, fn) : [−Rn,Rn] ×
S1 → R × M with harmonic perturbation 1−forms γn satisfying Assumptions P1-P5. As in Section B.1 we
transform the map un into a JPs−holomorphic curve un with respect to the domain-dependent almost complex
structure Jρ. We consider the new sequence of maps fn de�ned by fn(s, t) := φαPns(fn(s, t)) for all n ∈ N.
Thus un = (an, fn) : [−Rn,Rn] × S1 → R × M is a JPns−holomorphic curve. Due to Remark 70 the triple
(un,Rn,Pn) is a JPns−holomorphc curve as in De�nition 71. After shifting un by −an(0, 0) in the R−coordinate,
we assume by Proposition 102 that an(0, 0) is bounded. Hence, after going over to a subsequence, we assume that
un(0, 0)→ w = (wa,wf) ∈ R×M as n→∞.
By Theorem 78 applied to the sequence of JPns−holomorphic curves (un,Rn,Pn) we have the following

Corollary 79. For every sequence hn ∈ R+ satisfying hn < Rn and hn,Rn/hn → ∞ and every ε > 0 there

exists N ∈ N such that

un([−Rn + hn,Rn − hn]× S1) ⊂ Bg0ε (w)

for all n > N. Moreover, for the period Pn and co-period Sn we have that hnPn,hnSn → 0 as n→∞.

Proof. Consider a sequence hn ∈ R+ such that hn < Rn and hn,Rn/hn → ∞ as n → ∞ and let ε > 0
be given. From Theorem 78 there exists hε > 0 and Nε ∈ N such that for all n > Nε, we have Rn > hε and
un([−Rn+hε,Rn−hε]×S1) ⊂ Bg0ε (w). By making Nε su�ciently large and accounting of hn →∞, we may assume
that for all n > Nε, we have that Rn > hn > hε, which in turns, gives un([−Rn + hn,Rn − hn] × S1) ⊂ Bg0ε (w).
The second statement follows from the fact that RnPn → τ, RnSn → σ and hnRn →∞ as n→∞.

To describe the C0−convergence of the maps un we de�ne a sequence of di�eomorphisms, which is similar to that
constructed in Section 4.4 of [7]. For a sequence hn ∈ R+ with hn < Rn and hn,Rn/hn → ∞ as n → ∞, let
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θn : [−Rn,Rn]→ [−1, 1] be a sequence of di�eomorphisms de�ned as in Remark 44. We de�ne the maps

vn(s, t) = un(θ
−1
n (s), t), s ∈ [−1, 1],

v−n(s, t) = u−
n((θ

−
n)

−1(s), t), s ∈ [−1, 1/2],
v+n(s, t) = u+

n((θ
+
n)

−1(s), t), s ∈ [1/2, 1],
v−(s, t) = u−((θ−)−1(s), t), s ∈ [−1,−1/2),
v+(s, t) = u+((θ+)−1(s), t), s ∈ (1/2, 1],

(B.2.4)

and

vn(s, t) = un(θ
−1
n (s), t), s ∈ [−1, 1],

v−n(s, t) = u−
n((θ

−
n)

−1(s), t), s ∈ [−1,−1/2],
v+n(s, t) = u+

n((θ
+
n)

−1(s), t), s ∈ [1/2, 1],
v−(s, t) = u−((θ−)−1(s), t), s ∈ [−1,−1/2),
v+(s, t) = u+((θ+)−1(s), t), s ∈ (1/2, 1],

(B.2.5)

where, u±n(s, t) = un(s ± Rn, t) and u±n(s, t) = un(s ± Rn, t) are the left and right shifts of the maps un and un,
respectively.
The next theorem states a C∞loc− and a C0−convergence result for the maps un.

Theorem 80. There exist a subsequence of the sequence of JPns−holomorphic curves (un,Rn,Pn), also

denoted by (un,Rn,Pn), and pseudoholomorphic half cylinders u± de�ned on (−∞, 0] × S1 and [0,∞) × S1,
respectively such that for every sequence hn ∈ R+ and every sequence of di�eomorphisms θn : [−Rn,Rn]×S1 →
[−1, 1]× S1 satisfying the assumptions of Remark 44, the following convergence results hold:

C∞
loc
−convergence:

1. For any sequence sn ∈ [−Rn + hn,Rn − hn] there exists a constant τ{sn} ∈ [−τ, τ] (depending on the

sequence {sn}) such that after passing to a subsequence, the shifted maps un(s + sn, t), de�ned on

[−Rn + hn − sn,Rn − hn − sn]× S1, converge in C∞
loc

to w.

2. The left shifts u−
n(s, t) := un(s−Rn, t), de�ned on [0,hn)×S1, possess a subsequence that converges in C∞loc

to a pseudoholomorphic half cylinder u− = (a−, f
−
), de�ned on [0,+∞)×S1. The curve u− is asymptotic

to w = (wa,wf). The maps v−n : [−1,−1/2]×S1 → R×M converge in C∞
loc

to v− : [−1,−1/2)×S1 → R×M
such that v− is asymptotic to w as s→ −1/2.

3. The right shifts u+
n(s, t) := un(s+ Rn, t), de�ned on (−hn, 0]× S1, possess a subsequence that converges

in C∞
loc

to a pseudoholomorphic half cylinder u+ = (a+, f
+
) , de�ned on (−∞, 0]× S1. The curve u+ is

asymptotic to w = (wa,wf). The maps v+n : [1/2, 1]× S1 → R×M converge in C∞
loc

to v : (1/2, 1]× S1 →
R×M such that v+ is asymptotic to w as s→ 1/2.

C0−convergence:

1. The maps vn : [−1/2, 1/2]× S1 → R×M converge in C0 to w.

2. The maps v−n : [−1,−1/2]× S1 → R×M converge in C0 to a map v− : [−1,−1/2]× S1 → R×M such that

v−(−1/2, t) = w.

3. The maps v+n : [1/2, 1] × S1 → R ×M converge in C0 to a map v+ : [1/2, 1] × S1 → R ×M such that

v(1/2, t) = w.
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Proof. We prove only the �rst and second statements of the C∞loc- and C0- convergences because the proofs of the
third statements are exactly the same with those of the second statements. For the sequence hn ∈ R+ with the
property hn,Rn/hn → ∞ as n → ∞, consider the sequence of di�eomorphisms θn : [−Rn,Rn] → [−1, 1] ful�lling
the assumptions of Remark 44. For any sequence sn ∈ [−Rn +hn,Rn −hn], the shifted maps un(·+ sn, ·), de�ned
on [−Rn + hn − sn,Rn − hn − sn]× S1, converge, due to Corollary 79 and Lemma 73, in C∞loc to w. To prove the
second statement of the C∞loc−convergence we consider the shifted maps u−

n : [0,hn] × S1 → R ×M, de�ned by
u−
n(s, t) = un(s − Rn, t). By Lemma 73, these maps have bounded gradients, and hence, after going over to some

subsequence, they converge in C∞loc([0,∞) × S1) to a usual pseudoholomorphic curve u− : [0,+∞) × S1 → R ×M
with respect to the standard complex structure i on [0,+∞) × S1 and the almost complex structure J−τ on the
domain; here, τ is the limit of PnRn as n→∞. Let us show that u− is asymptotic to w ∈ R×M, i.e. let us show
that limr→∞ u−(r, t) = w. We prove by contradiction. Assume that there exists a sequence (sk, tk) ∈ [0,∞) × S1
with sk →∞ as k→∞ such that limk→∞ u−(sk, tk) = w ′ ∈ R×M with w ′ 6= w. Let ε := distg0(w,w

′) > 0. For
any k ∈ N there exists Nk ∈ N such that for any n > Nk, (sk, tk) ∈ [0,hn]. Thus for arbitrary k and n such that
n > Nk we have

distg0(w,w
′) 6 distg0(w,u

−
n(sk, tk)) + distg0(u

−
n(sk, tk),u

−(sk, tk))

+ distg0(u
−(sk, tk),w

′).

By Theorem 78, there exists h > 0 such that distg0(u
−
n(s, t),w) < ε/10 for all (s, t) ∈ [h,hn] × S1. Choose

now k and n > Nk su�ciently large such that (sk, tk) ∈ [h,hn] × S1. Hence, distg0(u
−
n(sk, tk),w) < ε/10.

Making k and n > Nk larger we may also assume that distg0(u
−(sk, tk),w ′) < ε/10. After �xing k and making

n > Nk su�ciently large we get distg0(u
−
n(sk, tk),u

−(sk, tk)) < ε/10. As a result, we �nd distg0(w,w
′) 6 3ε/10,

which is a contradiction to distg0(w,w
′) = ε. The maps v−n(s, t) = u−

n((θ
−
n)

−1(s), t) converge in C∞loc to the map
v−(s, t) = u−((θ−)−1(s), t). This follows from the fact that (θ−n)

−1 : [−1,−1/2] → [0,hn] converge in C∞loc to the
di�eomorphism (θ−)−1 : [−1,−1/2)→ [0,+∞). By the asymptotics of u−, v− can be continously extended to the
whole interval [−1,−1/2] by setting v−(−1/2, t) = w. This �nishes the proof of the second statement, and so, of
the C∞loc−convergence.
We consider now the �rst statement of the C0−convergence. From Corollary 79 it follows that distg0(vn(s, t),w)→ 0
as n→∞ for all (s, t) ∈ [−1/2, 1/2]× S1, and the proof of the �rst statement is complete. The proof of the second
statement of the C0−convergence is exactly the same as the proof of Lemma 4.16 in [7] and is omitted here.

We are now in the position to prove Theorem 63.

Proof. (of Theorem 63) As before, we focus only on the proofs of the �rst and second statements of the C∞loc−
and C0−convergences, because the proofs of the third statements are similar to those of the second statements. For
the sequence hn ∈ R+ with the property hn,Rn/hn → ∞ as n → ∞, consider the sequence of di�eomorphisms
θn : [−Rn,Rn]→ [−1, 1] ful�lling the assumptions of Remark 44. By the construction described in Section B.1, we
have

fn(s, t) = φ
α
Pns

(fn(s, t)) and dan = dΓn + dan,

where (s, t) ∈ [−Rn +hn,Rn −hn]× S1 and Γn : [−Rn,Rn]× S1 → R is a sequence of harmonic functions such that
dΓn has a uniformly bounded L2−norm. Then we obtain

fn(s, t) = φ
α
−Pns

(fn(s, t)) and an(s, t) = an(s, t) − Γn(s, t). (B.2.6)

For the sequence of harmonic functions Γn(s, t), the L2−norms of dΓn are uniformly bounded, while by Remark
68, the functions Γn can be chosen to have vanishing average. By Theorems 78 and 105, un(0, ·),un(0, ·) → w =

(wa,wf) ∈ R×M as n → ∞. Hence an(0, ·),an(0, ·) → wa. Recall that PnRn → τ ∈ R+ ∪ {0}. By Theorems 80
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and 105, for any sequence sn ∈ [−Rn+hn,Rn−hn] there exists a subsequence of shifted maps un(·+ sn, ·)+Snsn,
de�ned on [−Rn + hn − sn,Rn − hn − sn] × S1, that converges in C∞loc to the constant (wa,φα−τ{sn}

(wf)), where

τ{sn} is the limit point of Pnsn. The shifted harmonic 1−form de�ned on [−Rn + hn − sn,Rn − hn − sn] × S1
takes the form γn(s+ sn, t) = dΓn(s+ sn, t) + Pndt. Thus by Theorem 105, we have γn(s+ sn, t)→ 0 in C∞loc as
n→∞, and this �nishes the proof of the �rst statement. To prove the second statement of the C∞loc−convergence
we transfer the convergence results for the shifted maps u−

n : [0,hn] × S1 → R ×M, u−
n(s, t) = un(s − Rn, t) of

Theorem 80 to the maps u−
n , and use the convergence results of the harmonic functions established in Theorem

105 of Appendix E. The shifted maps u−
n = (a−n , f

−
n) : [0,hn] × S1 → R ×M, de�ned by u−

n(s, t) = un(s − Rn, t),
together with the maps u−

n and the harmonic functions Γ−n satisfy

f
−
n(s, t) = φ

α
Pn(s−Rn)

(f−n(s, t)) and a
−
n(s, t) = a

−
n(s, t) + Γ

−
n (s, t), (B.2.7)

where Γ−n : [0,hn] × S1 → R is the left shifted harmonic function, de�ned by Γ−n (s, t) = Γn(s − Rn, t). Hence we
obtain

f−n(s, t) = φ
α
−Pn(s−Rn)

(f
−
n(s, t)) and a

−
n(s, t) = a

−
n(s, t) − Γ

−
n (s, t). (B.2.8)

Thus, by Theorems 80 and 105, u−
n − SnRn converge in C∞loc to a curve u−(s, t) = (a−(s, t), f−(s, t)) = (a−(s, t) −

�Γ−(s, t),φατ (f
−
(s, t))), de�ned on [0,∞)× S1. The map u− is asymptotic to (wa,φατ (wf)), and can be regarded as

a H−holomorphic map with harmonic perturbation dΓ−. This �nishes the proof of the second statement. For the
third statement, we proceed analogously; the only di�erence is that the asymptotic of the map u+ is (wa,φα−τ(wf)).
To prove the �rst statement of the C0−convergence, we consider the maps vn and recall that

fn(s, t) = φ
α
Pns

(fn(s, t)), an(s, t) = an(s, t) + Γn(s, t),

and

vn(s, t) =
(
an((θ

−1
n )(s), t) − Γn((θ

−1
n )(s), t),φα

−Pn(θ
−1
n )(s)

(fn((θ
−1
n )(s), t))

)
for s ∈ [−1/2, 1/2]. If SnRn → σ as n→∞ we have, using Theorem 106, that

|an((θn)
−1(s), t) − Γn((θn)

−1(s), t) −wa + 2σs|→ 0

for all s ∈ [−1/2, 1/2] as n→∞. Moreover, there exists a constant c > 0 such that for all (s, t) ∈ [−1/2, 1/2], there
holds

distg0(fn((θn)
−1(s), t),wf) > cdistg0(fn((θn)

−1(s), t),φα−Pn(θn)−1(s)(wf)).

Noting that
Pn(θn)

−1(s) = 2(PnRn − Pnhn)s (B.2.9)

for s ∈ [−1/2, 1/2], and that PnRn → τ and Pnhn → 0 as n → ∞, it follows that Pn(θn)−1(s) → 2τs in
C0([−1/2, 1/2]). Hence, for (s, t) ∈ [−1/2, 1/2]× S1 we have

c−1distg0(fn((θn)
−1(s), t),wf) + distg0(φ

α
−Pn(θn)−1(s)(wf),φ

α
−2τs(wf)) > distg0(fn((θn)

−1(s), t),φα−2τs(wf)),

and distg0(φ
α
−Pn(θn)−1(s)(wf),φ

α
−2τs(wf)), distg0(fn((θn)

−1(s), t),wf) → 0 as n → ∞. Thus vn converge in

C0([−1/2, 1/2]) to (wa− 2σs,φα−2τs(wf)) which is a segment of a Reeb trajectory. The proof of the �rst statement
is complete. To prove the second statement we consider the maps v−n , for which we have

v−n(s, t) = (a−n((θ
−
n)

−1(s), t) − Γ−n ((θ
−
n)

−1(s), t),φα−Pn(θ−
n )−1(s)+PnRn

(f
−
n((θ

−
n)

−1(s), t))).
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If SnRn → σ as n→ +∞, Theorem 106 shows that a−n((θ
−
n)

−1(s), t) − Γ−n ((θ
−
n)

−1(s), t) − SnRn converge in C0 to
a function a−((θ−)−1(s), t) − Γ−((θ−)−1(s), t) on [−1,−1/2]. From

Pn(θ
−
n)

−1(s) ∈ [0,Pnhn] (B.2.10)

for all (s, t) ∈ [−1,−1/2]× S1, and Pn(θ−n)−1(s)→ 0 in C0([−1,−1/2]), it follows that v−n(s, t) − cnRn converge in
C0([−1,−1/2]) to the map

(a−((θ−)−1(s), t) − Γ−((θ−)−1(s), t),φατ (f
−
((θ−)−1(s), t))).

This �nishes the proof of the second statement of the C0−convergence, and so, of Theorem 63.

B.3 Positive center action

In this section we consider the case when there is no subsequence of un with vanishing center action. Note that in this
case, due to Remark 75, the center action of un is bounded from below by the constant  h0 > 0 de�ned in Assumption
P4. As in the previous section we �rst characterize the asymptotic behavior of the JPs−holomorphic curves with
positive center action (Theorem 87). We then prove a convergence result for the transformed psudoholomorphic
curves un and induce a convergence result on the H−holomorphic curves un with harmonic perturbations γn by
undoing the transformation. Theorem 91 establishes the convergence of the transformed pseudoholomorphic curves
un.

B.3.1 Behavior of JPs−holomorphic curves with positive center action

Via the natural action of S1 on C∞(S1,M), de�ned by (e2πiϑ ? y)(t) := y(t + ϑ) for e2πiϑ ∈ S1, we choose an
S1−invariant neighborhood W in the loop space C∞(S1,M) of the �nitely many loops t 7→ x(Tt), 0 6 t 6 1, de�ned
by the periodic solutions x(t) of Xα with periods T 6 �E0. Moreover, as the contact form is assumed to be non-
degenerate, we choose the neighborhood W so small that it separates these distinguished loops from each other.
The following result, which is similar to Lemma 3.1 of [14], ensures that �long� JPs−holomorphic curves (u,R,P)
with small dα−energies and positive center action are close to some periodic orbit of the Reeb vector �eld.

Lemma 81. Given any S1−invariant neighborhood W ⊂ C∞(S1,M) in the loop space of the loops de�ned

by the periodic solutions of Xα with periods T 6 �E0, there exists h > h0 (the constant h0 is guaranteed by

Theorem 72) such that the following hold: For any R > h and any JPs−holomorphic curve (u,R,P) such that

A(u) > 0 the loops t 7→ f(s, t) satisfy f(s, ·) ∈W for all s ∈ [−R+h,R−h]. Moreover, with T = A(u) being the

center action, the loops f(s) will be in the S1−invariant neighborhood of a loop t 7→ x(Tt) corresponding to a

T−periodic orbit x(t) of the Reeb vector �eld.

According to [14], W separates the loops of the periodic orbits with periods T 6 �E0, and so, all these loops f(s, ·)
for s ∈ [−R+h,R−h] are in the neighborhood component of W containing precisely one of the distinguished loops
de�ned by a periodic orbit (x, T) with period T 6 �E0. From α(Xα) = 1 we �nd

T =

∫
S1
x(T ·)∗α,



APPENDIX B. H−HOLOMORPHIC CYLINDERS OF SMALL AREA 95

and so, given ε > 0 we can choose W so small that∣∣∣∣∫
S1
f(s, ·)∗α− T

∣∣∣∣ 6 ε (B.3.1)

for all s ∈ [−R+ h,R− h].

Proof. (of Lemma 81) The proof is almost the same as that of Lemma 3.1 from [14]. For completeness reasons
we outline the parts which are di�erent. Arguing indirectly, we �nd a constant 0 < ψ <  h0/2, a sequence Rn with
Rn > n+h0, and a sequence of JPns−holomorphic curves (un,Rn,Pn) having positive center actions and satisfying
fn(sn, ·) 6∈ W for some sequence sn ∈ [−Rn + n,Rn − n]. By assumption, the center actions are positive. Hence
A(un) = Tn >  h0, and by an earlier inequality, we �nd that∫

S1
fn(s)

∗α >
 h0
2

−ψ =: ε0 > 0

for all n and all s ∈ [−Rn,Rn].
We de�ne the new curves vn = (bn,gn) : [−Rn − sn,Rn − sn]× S1 → R×M by

vn(s, t) = (bn(s, t),gn(s, t)) = (an(s+ sn, t), fn(s+ sn, t)).

These curves have bounded total energies, small dα−energies, and satisfy

παdgn(s, t) ◦ i = JPn(sn+s)(gn(s, t)) ◦ παdgn(s, t),
(g∗nα) ◦ i = dbn

and gn(0, ·) 6∈ W for all n. The left and right ends of the interval [−Rn − sn,Rn − sn] converge to −∞ and +∞,
respectively. De�ne now the sequence of maps �vn = (bn, vn) : [−Rn − sn,Rn − sn] × S1 → R ×M by setting
�vn(s, t) = (bn(s, t) − bn(0, 0),gn(s, t)). The maps �vn solve

παdvn(s, t) ◦ i = JPn(sn+s)(vn(s, t)) ◦ παdvn(s, t),
(v∗nα) ◦ i = dbn.

As in the proof of Theorem 72, the gradients of �vn are uniformly bounded. Hence, by Arzelà-Ascoli's theorem, a
subsequence of �vn converges in C∞loc, i.e.

�vn → �v in C∞loc(R× S1,R×M),

where �v = (b, v) : R× S1 → R×M is an usual Jτ−holomorhic curve for some τ ∈ [−C,C] satisfying

Eα(�v;R× S1) + Edα(�v;R× S1) 6 �E0,

Edα(�v;R× S1) 6
 h0
2
,∫

S1
v(s, ·)∗α > ε0, for all s ∈ R.

The rest of the proof follows as in Lemma 3.1 of [14].

In view of Lemma 81 we �x a non-degenerate periodic solution x(t) of period T 6 �E0 and analyze the curves
(u = (a, f),R,P) with f([−R,R]× S1) ⊂ U, where U is a small tubular neighborhood of x(R).
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To study long curves with positive center action we need some special coordinates. Denote by α0 the standard
contact form α0 = dϑ + xdy on S1 × R2 with coordinates (ϑ, x,y). The next lemma introduces the �standard
coordinates� near a periodic orbit of the Reeb vector �eld. For a proof we refer to [13].

Lemma 82. Let (M,α) be a 3−dimensional manifold equipped with a contact form, and let x(t) be the

T−periodic solution of the corresponding Reeb vector �eld 
x = Xα(x) on M. Let τ0 be the minimal period

such that T = kτ0 for some positive integer k. Then there exist an open neighborhood U ⊂ S1×R2 of S1× {0},
an open neighborhood V ⊂ M of P = x(R), and a di�eomorphism ϕ : U → V mapping S1 × {0} onto P such

that

ϕ∗α = f · α0

for a positive smooth function f : U→ R satisfying

f ≡ τ0 and df ≡ 0 (B.3.2)

on S1 × {0}.

The following description is borrowed from [14]. As S1 = R/Z we work in the covering space and denote by (ϑ, x,y)
the coordinates, where ϑ is mod 1. In these coordinates, the contact form α is α = f · α0 for a smooth function
f : R3 → (0,∞) de�ned near S1 × {0}, being periodic in ϑ, i.e. f(ϑ+ 1, x,y) = f(ϑ, x,y), and satisfying (B.3.2). The
Reeb orbit Xα = (X0,X1,X2) has the components

X0 =
1
f2
(f+ x∂xf), X1 =

1
f2
(∂yf− x∂ϑf), X2 = −

1
f2
∂xf.

The vector �eld Xα is periodic in ϑ of period 1 and constant along the periodic orbit x(R), i.e. Xα(ϑ, 0, 0) =

(τ−1
0 , 0, 0). The periodic solution is represented as x(Tt) = (kt, 0, 0), where T = kτ0 is the period, τ0 the minimal

period, and k the covering number of the periodic solution. The subsequent lemma is rather technical and describes
the behavior of a long JPs−holomorphic curve (u,R,P) in the coordinates introduced by Lemma 82.

Lemma 83. For any N ∈ N, δ > 0, there exists h > 0 such that for any R > h and any JPs−holomorphic

curve (u,R,P) as in Lemma 81, the representation

u(s, t) = (a(s, t), ϑ(s, t), z(s, t) = (x(s, t),y(s, t)))

of the cylinder in the above local coordinates satis�es the following: For all (s, t) ∈ [−R + h,R − h] × S1 we

have

|∂α(a(s, t) − Ts)| 6 δ and |∂α(ϑ(s, t) − kt)| 6 δ

for 1 6 |α| 6 N, and
|∂αz(s, t)| 6 δ

for all 0 6 |α| 6 N. Here, T is the period and k the covering number of the distinguished periodic solution

lying in the center of the tubular neighborhood.

Proof. The proof is more or less the same as that of Lemma 3.3 in [14]. We argue by contradiction. There exist
N ∈ N, δ0 > 0 such that for any hn = 2n we �nd Rn > 2n and the JPns−holomorphic curve (un,Rn,Pn) satisfying
the following. Representing the maps un in local coordinates by

un(s, t) = (an(s, t), ϑn(s, t).zn(s, t)),

we assume the existence of a sequence (sn, tn) ∈ [−Rn −n,Rn −n]× S1 and a multiindex α with 1 6 |α| 6 N such
that

|∂α [(an − Ts, ϑn − kt)] (sn, tn)| > δ0. (B.3.3)
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We de�ne the translated sequence �vn : [−n,n]× S1 → R×M by

�vn(s, t) = (bn(s, t), vn(s, t)) = (an(s+ sn, t) − an(sn, tn), fn(s+ sn, t)).

By the R−invariance of Jτ for all τ, these maps satisfy the same assumptions on the energy as the un, and solves

παdvn(s, t) ◦ i = J�Sn(s+sn) ◦ παdvn(s, t),

(v∗nα) ◦ i = dbn.

The rest of the proof is exactly as in [14]. We conclude as in Lemma 81 that the sequence �vn has uniformly bounded
gradients on [−n+ 1,n− 1]× S1, and so, it possesses a C∞loc converging subsequence. Its limit �v = (b, v) : R× S1 →
R×M is a Jτ−holomorphic cylinder for some τ ∈ [−C,C] with the energy bounds

Edα(�v;R× S1) + Eα(�v;R× S1) 6 �E0,

Edα(�v;R× S1) 6
 h0
2
.

In addition, due to (B.3.3), the map �v is non-constant. Therefore �v is a pseudoholomorphic cylinder over a periodic
orbit z(t) of period T ′ 6 �E0, and so, of the form �v(s, t) = (T ′s + a0, z(T ′t)). By (B.3.1), the period T ′ is close
to the period T of the distinguished periodic orbit x(t). As this periodic orbit is non-degenerate, there exists a
tubular neighborhood U of x(R) which does not contain any other periodic orbit with a period close to T . Hence,
choosing the tubular neighborhood su�ciently small, we conclude that T ′ = T and z(Tt) = x(Tt), so that in local
coordinates we have �v(s, t) = (Ts + a0,kt + ϑ0, 0) for two constants a0 and ϑ0. Using �vn → �v in C∞loc and setting
s = 0, it follows that

|∂α [(an − Ts, ϑn − kt)] (sn, tn)|→ (0, 0)

for |α| > 1. This gives a contradiction. Similarly, the last estimate in Lemma 83 is proved by assuming that
|∂αzn(sn, tn)| > δ0 for some α with 0 6 |α| 6 N and some δ0 > 0. As the limit map �v has its z−component equal
to zero, we employ the same arguments to obtain |∂αzn(sn, tn)| → 0. This gives again a contradiction and the
proof is now complete.

As in [14], an immediate consequence is the next corollary showing that the quantity∫
S1
f
∗
(s)α

gets arbitrary close to the center action A(u) = T .

Corollary 84. If the JPs−holomorphic curve (u,R,P) satis�es the assumption of Lemma 83, then∫
S1
f(s)∗α = T + O(δ)

for all s ∈ [−R+ h,R− h].

For a proof we refer to Corollary 3.4 of [14].
We compute the Cauchy-Riemann equations for the representation

u(s, t) = (a(s, t), f(s, t)) = (a(s, t), ϑ(s, t), z(s, t))

= (a(s, t), ϑ(s, t), x(s, t),y(s, t))
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of a JPs−holomorphic curve (u,R,P) in the local coordinates R×R3 of the tubular neighborhood given in Lemma
82. In the following, we adopt the same constructions as in [14]. On R3 we have the contact form α = fα0. At
point m = (t, x,y) ∈ R3, the contact structure ξm = ker(αm) is spanned by the vectors

E1 =

 0
1
0

 and E2 =

 −x

0
1

 .

We denote by Jρ(m) the 2 × 2 matrix representing the compatible almost complex structure on the plane ξm in
the basis {E1,E2} for all ρ ∈ [−C,C]. In the basis {E1,E2}, the symplectic structure dα|ξm is given by the skew
symmetric matrix function f(m)J0, where

J0 =

(
0 −1
1 0

)
.

Therefore, in view of the compatibility requirement, the complex multiplication Jρ(m) has the properties Jρ(m)2 =

−id, Jρ(m)T J0Jρ(m) = J0 and −J0Jρ(m) > 0. In particular, J0Jρ(m) is a symmetric matrix for all ρ ∈ [−C,C], and
it follows that

〈x,y〉ρ :=
〈
x,−J0Jρ(m)y

〉
is an inner product on R2 which is left invariant under Jρ(m), i.e.

〈
Jρ(m)x, Jρ(m)y

〉
ρ
= 〈x,y〉ρ for all ρ ∈ [−C,C].

The Reeb vector �eld Xα can be written as Xα = (X0,X1,X2) ∈ R × R2. Setting z = (x,y) ∈ R2 we de�ne
Y(t, z) = (X1(t, z),X2(t, z)) ∈ R2. Since X(t, 0) = (1/τ0, 0) we have Y(t, z) = D(t, z)z, where

D(t, z) =
∫1
0

dY(t, ρz)dρ,

and d is the derivative with respect to the z−variable. In particular, if z = 0 we obtain

D(t, 0) = dY(t, 0) =
1
τ20

(
∂xyf ∂yyf

−∂xxf −∂xyf

)
.

We introduce the 2× 2 matrices depending on u(s, t) and Ps by

J(s, t) = JPs(f(s, t)) = JPs(ϑ(s, t).z(s, t)),

S(s, t) = [∂ta− ∂sa · J(s, t)]D(f(s, t)).

In the basis {E1,E2} of the contact plane ξm atm = f(s, t) and for the representation u(s, t) = (a(s, t), ϑ(s, t), z(s, t)) ∈
R× R× R2, we write

πα∂sf(s, t) + JPs(f(s, t))πα∂tf(s, t) = 0.

We �nd
zs + J(s, t)zt + S(s, t)z = 0

and further on, with z(s, t) = (x(s, t),y(s, t)),

as = (ϑt + xyt)f(f) and at = −(ϑs + xys)f(f).

It is convenient to decompose the matrix S(s, t) into its symmetric and anti-symmetric parts with respect to the
inner product 〈·,−J0J(s, t)·〉 =

〈
·,−J0JPs(f(s, t))·

〉
on R2 by introducing

B(s, t) =
1
2
[S(s, t) + S∗(s, t)] and C(s, t) =

1
2
[S(s, t) − S∗(s, t)] ,
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where S∗ is the transpose of S with respect to the inner product 〈·,−J0J(s, t)·〉. Explicitly we have S∗ = JJ0ST J0J,
where ST is the transpose matrix of S with respect to the Euclidean inner product 〈·, ·〉 in R2. In terms of B and
C, the above equation becomes

zs + J(s, t)zt + B(s, t)z+ C(s, t)z = 0.

The operator A(s) :W1,2(S1,R2) ⊂ L2(S1,R2)→ L2(S1,R2), given by

A(s) = −J(s, t)
d

dt
− B(s, t),

is self-adjoint with respect to the inner product 〈·, ·〉s in L2, de�ned for x,y ∈ L2(S1,R2) by

〈x,y〉s :=
∫1
0

〈x(t),−J0J(s, t)y(t)〉dt.

The norms ‖x‖2s := 〈x, x〉s are equivalent to the standard L2(S1,R2)−norms (denoted by ‖·‖) in the following sense:

Lemma 85. There exist the constants h, c > 0 such that for all R > h and all JPs−holomorphic curves

(u,R,P) satisfying the assumptions of Lemma 83, all x ∈ L2(S1,R2), and all s ∈ [−R,R], we have

1
c
‖x‖s 6 ‖x‖ 6 c ‖x‖s .

Proof. The �rst inequality follows from the result according to which for ρ ∈ [−C,C] and p ∈ M, the domain-
dependent complex structure Jρ(p) varies continously in a compact subset of the set of complex structures. For
the second inequality, we additionally use the fact that −J0J(s, t) is uniformly positive de�nite.

Lemma 86. There exists a constant h > 0 such that for every R > h and every JPs−holomorphic curve (u,R,P)
satisfying the assumptions of Lemma 83, the following holds true. If u = (a, f) is the reparametrization in

local coordinates and A(s) the associated operator, then there exists a constant η > 0 such that

‖A(s)ξ‖s > η ‖ξ‖s

for all s ∈ [−R+ h,R− h] and all ξ ∈W1,2(S1,R2).

Proof. We prove by contradiction by adapting the proof given in [14] to our setting. Assume that the inequality
does not hold. Then for any hn = 2n there exist Rn ∈ R+ with Rn > 2n and a sequence of JPns−holomorphic
curves (un,Rn,Pn) satisfying the assumptions of Lemma 83 and∫

S1
f
∗
nα > ε0

for all s ∈ [−Rn,Rn]. Here ε0 > 0 is the constant de�ned by Theorem 72. Representing un in local coordinates as
un(s, t) = (an(s, t), ϑn(s, t), zn(s, t)), consider the associated operator

An(s) = −Jn(s, t)
d

dt
− Bn(s, t),

where Sn(s, t) and Bn(s, t) are de�ned as above, and Jn(s, t) = JPns(fn(s, t)). Further on, assume that there exist
the sequences sn ∈ [−Rn − n,Rn + n] and ξn ∈W1,2(S1,R2) such that

‖ξn‖sn = 1 and ‖An(sn)ξn‖sn → 0, (B.3.4)
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and consider the translated maps

�vn(s, t) = (bn(s, t), vn(s, t)) = (an(s+ ss, t) − an(sn, 0), fn(s+ sn, t))

for all n and (s, t) ∈ [−n,n]× S1. Arguing as before we �nd �vn → �v in C∞loc(R× S1,R×M), where �v is a cylinder
over a distinguished periodic orbit x(t) lying in the center of the tubular neighborhood. Hence, in local coordinates,
we can write �v(s, t) = (Ts+ a0,kt+ ϑ0, 0) with two constants a0 and ϑ0. Setting s = 0, we obtain

∂

∂t
an(sn, t)→ 0,

∂

∂s
an(sn, t)→ T ,

ϑn(sn, t)→ kt+ ϑ0,

zn(sn, t)→ 0

as n→∞, uniformly in t. Consequently,

Bn(sn, t)→ TJτ{sn}
(kt+ ϑ0, 0) · dY(kt+ ϑ0, 0), (B.3.5)

Jn(sn, t)→ Jτ{sn}
(kt+ ϑ0, 0) (B.3.6)

as n → ∞, uniformly in t and for some τ{sn} given by Pnsn → τ{sn}. In using ‖Jn(s, ·)ξ‖s = ‖ξ‖s for every
ξ ∈ L2(S1,R2) and Lemma 85, we �nd that there exists a constant c > 0 such that for all n ∈ N and ξ ∈W1,2(S1,R2),∥∥∥ 
ξ∥∥∥ 6 c (‖An(sn)ξ‖+ ‖Bn(sn, ·)ξ‖) . (B.3.7)

Consequently, the sequence ξn given by (B.3.4) is bounded in W1,2. Since W1,2 is compactly embedded in L2,
a subsequence of ξn converges in L2. Therefore, by assumption (B.3.4), the limits (B.3.5) and (B.3.6), and the
estimate (B.3.7) we have that after going over to a subsequence, ξn is a Cauchy sequence in W1,2(S1,R2); thus,

ξn → ξ in W1,2(S1,R2).

From
An(sn)ξn = −Jn(sn, t) 
ξn − Bn(sn, t)ξn → 0 in L2(S1,R2)

together with (B.3.5) and (B.3.6) we conclude that ξ solves the equation

d

dt
ξ(t) = TdY(kt+ ϑ0, 0)ξ(t).

This is a contradiction to the fact that the periodic orbits x(t) = (kt+ ϑ0, 0) was assumed to be non-degenerate.

The next theorem is similar to Theorem 1.3 of [14]; the only di�erence is that it is formulated for pseudoholomorphic
curves with respect to a domain-dependent almost complex structure on the target space R×M.

Theorem 87. Let h0 > 0 be the constant appearing in Theorem 72 and being associated with 0 < ψ <  h0/2.
Then there exist the positive constants δ0, µ, and ν < min{4π, 2µ} such that the following hold: Given

0 < δ 6 δ0, there exists h > h0 such that for any R > h and any JPs−holomorphic curve (u,R,P) such that

A(u) > 0, there exists a unique (up to a phase shift) periodic orbit x(t) of the Reeb vector �eld Xα with period
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T = A(u) 6 �E0 satisfying∣∣∣∣∫
S1
f(0)∗α− T

∣∣∣∣ < ψ

2
and

∣∣∣∣∫
S1
f(s)∗α− T

∣∣∣∣ <  h0, for all s ∈ [−R,R].

In addition, there exists a tubular neighborhood U ∼= S1 × R2n around the periodic orbit x(R) ∼= S1 × {0} such
that f(s, t) ∈ U for all (s, t) ∈ [−R+h,R−h]×S1. Using the covering R of S1 = R/Z, the map u is represented

in local coordinates R×U as

u(s, t) = (a(s, t), ϑ(s, t), z(s, t))

= (Ts+ a0 + �a(s, t),kt+ ϑ0 + �ϑ(s, t), z(s, t)),

where (a0, ϑ0) ∈ R2 are constants. The functions �a, �ϑ, and z are 1−periodic in t, and the positive integer k

is the covering number of the T−periodic orbit represented by x(Tt) = (kt, 0, 0). For all multiindices α there

exists a constant Cα such that for all (s, t) ∈ [−R+ h,R− h]× S1 the following estimates hold:

|∂αz(s, t)|2 6 Cαδ
2 cosh(µs)
cosh(µ(R− h))

and

|∂α�a(s, t)|2, |∂α�ϑ(s, t)|2 6 Cαδ
2 cosh(νs)
cosh(ν(R− h))

.

For the proof of the theorem we need the following

Remark 88. By Lemma 83, which is similar to Lemma 3.3 from [14], we have |∂αs f(s, t)| 6 δ for all α > 1 and
all (s, t) ∈ [−R + h,R − h] × S1. As a result, the derivatives with respect to the s coordinate of J(s, t) and B(s, t)
contain factors estimated by δ. This can be seen as follows. Recalling that J(s, t) = JPs(ϑ(s, t), z(s, t)) we �nd

∂sJ(s, t) = P∂ρJPs(f(s, t)) + ∂ϑJPs(f(s, t))∂sϑ+ ∂zJPs(f(s, t))∂sz.

For R su�ciently large, the assumption on the universal bound of the conformal co-period gives |P| 6 δ; consequently,
|∂sJ(s, t)| ∈ O(δ). In a similar way it can be shown that |∂2sJ(s, t)|, |∂sB(s, t)| ∈ O(δ).

The proof of Theorem 87 which is omitted here, proceeds as in [14] by using Lemma 86 and Remark 88.

B.3.2 Proof of Theorem 65

Applying Theorem 87 to the sequence of JPns−holomorphic curves (un,Rn,Pn) we �nd the following.

Corollary 89. For every ε > 0 there exist h > 0 and Nε,h ∈ N such that for every n > Nε,h, we have

Rn > h and

d(fn(s, t), x(Tt)) < ε and |an(s, t) − Ts− a0| < ε (B.3.8)

for all (s, t) ∈ [−Rn + h,Rn − h]× S1 uniformly in t ∈ S1 and some a0 ∈ R.

For h > 0 su�ciently small and in regard of Condition P2 we continue to denote the cylinder [−Rn+h,Rn−h]×S1
by [−Rn,Rn]× S1. In view of (B.3.8) we assume that the quantities

r−n := inf
t∈S1

an(−Rn, t) and r
+
n := sup

t∈S1
an(Rn, t)

satisfy r+n − r−n →∞ as n→∞.
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Recalling that Pn,Sn and 1/Rn are zero sequences we reformulate the above �ndings as in Corollary 79.

Corollary 90. For every sequence hn ∈ R+ satisfying hn < Rn and hn,Rn/hn → ∞ and every ε > 0 there

exists N ∈ N such that

distg0(fn(s, t), x(Tt)) < ε and |an(s, t) − Ts− a0| < ε

for all n > N and some a0 ∈ R. Moreover, for the period Pn and co-period Sn we obtain that hnPn,hnSn → 0
as n→∞.

Proof. The proof of the �rst and second statement follows as in Corollary 79.

The next theorem which states a C∞loc− and a C0−convergence result for the maps un with positive center action
is the analog of Theorem 63.

Theorem 91. There exists a subsequence of the sequence of JPns−holomorphic curves (un,Rn,Pn), also

denoted by (un,Rn,Pn), and the pseudoholomorphic half cylinders u± de�ned on (−∞, 0]×S1 and [0,∞)×S1,
respectively such that for every sequence hn ∈ R+ and every sequence of di�eomorphisms θn : [−Rn,Rn]×S1 →
[−1, 1]× S1 satisfying the assumptions of Remark 44, the following convergence results hold:

C∞
loc
−convergence:

1. For any sequence sn ∈ [−Rn+hn,Rn−hn] there exists a subsequence of the shifted maps un(s+ sn, t)−
Tsn, de�ned on [−Rn + hn − sn,Rn − hn − sn]× S1, that converges in C∞loc to (Ts+ a0, x(Tt)).

2. The left shifts u−
n(s, t) := un(s − Rn, t) − r−n, de�ned on [0,hn) × S1, possess a subsequence that con-

verges in C∞
loc

to a pseudoholomorphic half cylinder u− = (a−, f
−
), de�ned on [0,+∞)× S1. The curve

u− is asymptotic to (Ts + a0, x(Tt)). The maps v−n converge in C∞
loc

on [−1,−1/2) × S1 to v−, where

f
−
((θ−)−1(−1/2), t) = x(Tt) for all t ∈ S1.

3. The right shifts u+
n(s, t) := un(s + Rn, t) − r+n, de�ned on (−hn, 0] × S1, possess a subsequence that

converges in C∞
loc

to a H−holomorphic half cylinder u+ = (a+, f
+
), de�ned on (−∞, 0]× S1. The curve

u+ is asymptotic to (Ts + a0, x(Tt)). The maps v+n converge in C∞
loc

on (1/2, 1] × S1 to v+, where

f
+
((θ+)−1(1/2), t) = x(Tt) for all t ∈ S1.

C0−convergence:

1. The maps fn ◦ θ−1
n : [−1/2, 1/2]× S1 →M converge in C0 to x(Tt).

2. The maps f
−
n ◦ (θ−n)−1 : [−1,−1/2]× S1 →M converge in C0 to a map f

− ◦ (θ−)−1 : [−1,−1/2]× S1 →M

such that f
−
((θ−)−1(−1/2), t) = x(Tt).

3. The maps f
+
n ◦ (θ+n)−1 : [1/2, 1] × S1 →M converge in C0 to a map f

+ ◦ (θ+)−1 : [1/2, 1] × S1 →M such

that f
+
((θ+)−1(1/2), t) = x(Tt).

4. For any R > 0, there exist ρ > 0 and N ∈ N such that an ◦ θ−1
n (s, t) ∈ [r−n + R, r+n − R] for all n > N and

all (s, t) ∈ [−ρ, ρ]× S1.
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Proof. As in Theorem 80 we prove only the �rst and second statements of the C∞loc−convergence. Let hn ∈ R+

be a sequence satisfying hn < Rn and hn,Rn/hn → ∞ as n → ∞ and let the sequence of di�eomorphisms θn :

[−Rn,Rn]→ [−1, 1] ful�ll the assumptions of Remark 44. To prove the �rst statement we consider the shifted maps
un(·+sn, ·), de�ned on [−Rn+hn−sn,Rn−hn−sn]×S1, for any sequence sn ∈ [−Rn+hn,Rn−hn]. By Corollary
90, there exists a subsequence of un(s+sn, t)−Tsn that converges in C∞loc to a trivial cylinder (Ts+a0, x(Tt)) over
the Reeb orbit x(Tt). To prove the second statement, we consider the shifted maps u−

n : [0,hn]×S1 → R×M, de�ned
by u−

n(s, t) = un(s− Rn, t) − r
−
n , where r

−
n := inft∈S1 an(−Rn, t). By Lemma 73, u−

n converge in C∞loc([0,∞)× S1)
to a usual pseudoholomorphic curve u− = (a−, f

−
) : [0,+∞)× S1 → R×M with respect to the standard complex

structure i on [0,+∞) × S1 and the almost complex structure J−τ on the domain, whereτ = limn→∞ PnRn. We
show that u− is asymptotic to a trivial cylinder over the Reeb orbit x, i.e. (Ts+ a0, x(Tt)). In fact, for proving

lim
r→∞

(
a−(r, t) − Tr− a0, f

−
(r, t)

)
= (0, x(Tt)) (B.3.9)

we argue by contradiction. Assume that there exists a sequence (sk, tk) ∈ [0,∞) × S1 with sk → ∞ as k → ∞,
and since S1 is compact, also assume that tk → t∗ as k → ∞ such that limk→∞ f−(sk, tk) = x ′(T ′t∗) ∈M, where
x ′ is some Reeb orbit with w ′ := x ′(T ′t∗) 6= w := x(Tt∗). Letting ε := distg0(w,w

′) > 0, using Corollary 90 and
employing the same arguments as in Theorem 80 we are led to the contradiction distg0(w,w

′) 6 3ε/10. Consider

now the R−coordinate an. To prove (B.3.9) for the R−coordinate it is su�cient to replace f
−

by the function
a−(r, t) − Tr − a0 and to repeat the above arguments. Because, (θ−n)

−1 : [−1,−1/2] → [0,hn] converge in C∞loc
to the di�eomorphism (θ−)−1 : [−1,−1/2) → [0,+∞), the maps u−

n((θ
−
n)

−1(s), t) converge in C∞loc to the map
u−((θ−)−1(s), t) on [−1,−1/2)× S1. This �nishes the proof of the C∞loc−convergence.
To prove the �rst statement of the C0−convergence, we use Corollary 79 which yields distg0(fn(θ

−1
n (s), t), x(Tt)) <

1/n for all (s, t) ∈ [−1/2, 1/2]×S1, so that, we conclude that fn converge in C0([−1/2, 1/2]×S1) to x(Tt) uniformly.
For the second statement we take into account that the maps f

−
n((θ

−
n)

−1(s), t) converge in C∞loc to f−((θ−)−1(s), t)

on [−1,−1/2)×S1, so that by the asymptotics of f
−
, f

−
can be continously extended to the whole interval [−1,−1/2]

by setting v−(−1/2, t) = x(Tt). Now, the proof of the convergence of f
−
n in C0([−1,−1/2]) to f

−
is exactly the

same as the proof of Lemma 4.16 in [7]. For the maps v+n we proceed analgously, while for the fourth statement we
apply Proposition 92. Thus the proof of the C0−convergence is complete.

Proposition 92. For any R > 0, there exist ρ > 0 and N ∈ N such that an ◦ θ−1
n (s, t) ∈ [r−n + R, r+n − R] for all

n > N and all (s, t) ∈ [−ρ, ρ]× S1.

Proof. The proof follows exactly the steps from Lemma 4.10, Lemma 4.13, and Lemma 4.17 of [7].

We give now the proof of Theorem 65, which closely follows the proof of Theorem 63.

Proof. (of Theorem 65) We start by proving the �rst statement of the C∞loc−convergence. Let hn ∈ R+ be
a sequence satisfying hn < Rn and hn,Rn/hn → ∞ as n → ∞ and let the sequence of di�eomorphisms θn :

[−Rn,Rn] → [−1, 1] ful�ll the assumptions of Remark 44. As in the proof of Theorem 63 we consider for (s, t) ∈
[−Rn + hn,Rn − hn]× S1 the maps (cf. (B.2.6))

fn(s, t) = φ
α
−Pns

(fn(s, t)) and an(s, t) = an(s, t) − Γn(s, t), (B.3.10)

and that by Remark 68, the functions Γn can be chosen to have vanishing average. By Theorem 78, un(0, ·),un(0, ·)→
(a0, x(Tt)) ∈ R ×M as n → ∞. Hence an(0, ·),an(0, ·) → a0. By Theorems 91 and 104, for any sequence
sn ∈ [−Rn+hn,Rn−hn] there exists a subsequence of shifted maps un(·+sn, ·)−Tsn+Snsn, de�ned on [−Rn+hn−
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sn,Rn−hn−sn]×S1, that converges in C∞loc to the twisted trivial cylinder (Ts+a0,φα−τ{sn}
(x(Tt)) = x(Tt−τ{sn}))

over the Reeb orbit x(Tt), where τ{sn} = limn→∞ Pnsn. To prove the second statement of the C∞loc−convergence, we
consider the shifted maps u−

n : [0,hn]×S1 → R×M which are de�ned by u−
n(s, t) = un(s−Rn, t)−r

−
n , where r

−
n :=

inft∈S1 an(−Rn, t). The shifted maps u−
n = (a−n , f

−
n) : [0,hn]×S1 → R×M, de�ned by u−

n(s, t) = un(s−Rn, t)−r
−
n ,

where r−n := inft∈S1 an(−Rn, t), together with the maps u−
n satisfy (B.2.7) giving (B.2.8); whence by Theorems 91

and 105, u−
n − SnRn converge in C∞loc to a curve u−(s, t) = (a−(s, t), f−(s, t)) = (a−(s, t) − Γ−(s, t),φατ (f

−
(s, t))),

de�ned on [0,∞) × S1. The map u− is the twisted trivial cylinder (Ts + a0,φατ (x(Tt)) = x(Tt + τ)), and can be
regarded as a H−holomorphic map with harmonic perturbation dΓ−. As in Theorem 63, the statement concern-
ing the harmonic perturbations γn follows from Corollary 107, while the proof of the third statement proceeds
analogously; the only di�erence is that the asymptotic of the map u+ is (Ts+ a0,φα−τ(x(Tt))).
To prove the �rst statement of the C0−convergence, we consider the maps fn satisfying fn(s, t) = φαPns(fn(s, t))
and

fn(s, t) = fn(θ
−1
n (s), t) = φα

−Pnθ
−1
n (s)

(fn((θ
−1
n (s), t))

for s ∈ [−1/2, 1/2]. There exists a constant c > 0 such that for all (s, t) ∈ [−1/2, 1/2] we have

distg0(fn(θ
−1
n (s), t), x(Tt)) > cdistg0(fn(θ

−1
n (s), t),φα

−Pnθ
−1
n (s)

(x(Tt)))

Accounting of (B.2.9) we deduce that for (s, t) ∈ [−1/2, 1/2]× S1 we have

c−1distg0(fn(θ
−1
n (s), t), x(Tt)) + distg0(φ

α
−Pnθ

−1
n (s)

(x(Tt)),φα−2τs(x(Tt))) > distg0(fn(θ
−1
n (s), t),φα−2τs(x(Tt)))

and distg0(fn(θ
−1
n (s), t), x(Tt)) ,distg0(φ

α
−Pnθ

−1
n (s)

(x(Tt)),φα−2τs(x(Tt))) → 0 as n → ∞. Thus fn converge in

C0([−1/2, 1/2]) to φα−2τs(x(Tt)) which is a segment of a Reeb trajectory. To prove the second statement we
consider the maps v−n satisfying

f−n((θ
−
n)

−1(s), t) = φα−Pn(θ−
n )−1(s)+PnRn

(f
−
n((θ

−
n)

−1(s), t)),

and use (B.2.10) to conclude that v−n(s, t) converge in C
0([−1,−1/2]) to the map φατ (f

−
((θ−n)

−1(s), t)). The third
statement is proved in a similar manner, while the last statement follows from Proposition 92 and the fact that the
harmonic functions Γn are uniformly bounded in C0. More precisely, with Γn as de�ned in Appendix E, we can
write

an(θ
−1
n (s), t) = an(θ

−1
n (s), t) − Snθ

−1
n (s) − Γn(s, t)

for (s, t) ∈ [−1, 1]× S1. Hence by Theorem 104 there exists a constant C0 > 0 such that Γn is uniformly bounded
in C0([−1, 1]× S1) by C0 > 0. Since we have assumed that the sequence Sn is positive we get

−SnRn − C0 6 Snθ
−1
n (s) + Γn(s, t) 6 SnRn + C0

for all s ∈ [−1, 1]. On the other hand, from Proposition 92 we have that for every R > 0 there exist ρ > 0 and
N ∈ N such that an(θ−1

n (s), t) ∈ [r−n + R, r+n − R] for all n > N and all (s, t) ∈ [−ρ, ρ]× S1. Thus we obtain

an(θ
−1
n (s), t) ∈ [r−n − SnRn − C0 + R, r

+
n + SnRn + C0 − R]

for all n > N and all (s, t) ∈ [−ρ, ρ]× S1. If we assume that SnRn → σ as n→∞ we �nd

an(θ
−1
n (s), t) ∈ [r−n − σ− 1− C0 + R, r

+
n + σ+ 1+ C0 − R]

for all n > N and all (s, t) ∈ [−ρ, ρ] × S1. For C := σ + 1 + C0 the last statement readily follows. The proof of
Theorem 65 is �nished.



Appendix C

Half cylinders with small energy

This appendix is devoted to the description of the convergence of a sequence of pseudoholomorphic half cylinders
un = (an, fn) : [0,∞) × S1 → R ×M with uniformly bounded α− and dα−energies. More precisely, we assume
that there exists a constant �E0 > 0 such that E(un; [0,∞)× S1) 6 �E0 and

Edα(un; [0,∞)× S1) 6
 h0
2
, (C.0.1)

where  h0 > 0 and �E0 is de�ned as in Section 3.2.1 Step 3. Since the dα−energy is smaller than  h0/2 it follows,
from the usual bubbling-o� analysis, that the gradients of un are uniformly bounded with respect to the standard
Euclidean metric on the cylinder [0,∞) × S1 and the induced cylindrical metric on R × M. To analyze the
convergence of such a sequence we use the results of Appendix A and Appendix B. As before we split the analysis
of the convergence in two parts, namely the C∞loc− and the C0−convergence. Before stating the convergence results
we need some auxiliary results similar to those from Appendix B. We begin with a remark on the asymptotic of a
pseudoholomorphic half cylinder.

Remark 93. Let u = (a, f) : [0,∞)×S1 → R×M be a pseudoholomorphic half cylinder with E(u; [0,∞)×S1) 6 �E0
and Edα(u; [0,∞) × S1) 6  h0/2. To describe the behavior of u as s → ∞, we �rst assume that u has a bounded
image in R ×M. Consider the conformal transformation h : [0,∞) × S1 → D\{0}, (s, t) 7→ e−2π(s+it). Then
u ◦ h−1 = (a ◦ h−1, f ◦ h−1) is a pseudoholomorphic punctured disk satisfying the same assumption as u does.
By the removal of singularity, u ◦ h−1 can be de�ned on the whole disk D. In this case we use the results from
Appendix A to describe the convergence. If u has an unbounded image in R×M, then due to Proposition 5.6 from
[6], there exists T 6= 0 and a periodic orbit x of Xα such that x is of period |T | and

lim
s→∞ f(s, t) = x(Tt) and lim

s→∞ a(s, t)s
= T in C∞(S1).

To analyze the convergence of the sequence of pseudoholomorphic half cylinders un = (an, fn) : [0,∞)×S1 → R×M
we distinguish two cases.
In the �rst case each element of a subsequence of un, still denoted by un, has a bounded image in the symplectization
R ×M. By Remark 93 we consider the sequence of pseudoholomorphic disks un ◦ h−1 : D → R ×M having
uniformly bounded energies and small dα−energies. After applying bubbling-o� analysis and accounting on the
uniform energy bounds as well as on the small dα−energies, we obtain a subsequence having uniform gradient
bounds with respect to the Euclidean metric on the domains and the induced metric on R ×M. After a speci�c
shift in the R−coordinate, un ◦ h−1 converge in C∞ to a pseudoholomorphic disk u : D→ R×M.
In the second case each element of a subsequence of un, still denoted by un, has an unbounded image in R ×M.
In the following we assume that after a speci�c shift in the R−coordinate, an(0, 0) = 0. Before describing the
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convergence of un, we prove an asymptotic result for punctures which is similar to that given in [6].

Proposition 94. After going over to a subsequence the pseudoholomorphic half cylinders un are asysmptotic

to the same Reeb orbit, i.e. there exists a Reeb orbit x of period |T | 6= 0 with |T | 6 C and a sequence cn ∈ S1
such that

lim
s→∞ fn(s, t) = x(T(t+cn)) and lim

s→∞ an(s, t)s
= T .

Moreover, un → u in C∞
loc
, where u is a pseudoholomorphic half cylinder u : [0,∞) × S1 → R ×M which is

asymptotic to the same Reeb orbit x(T(t+c∗)) of period T as above. Here, c∗ ∈ S1 and cn → c∗ as n→∞.

Proof. Let the sequence un be asymptotic to some Reeb orbit. More precisely, for all n ∈ N there exist Tn 6= 0
and a periodic orbit xn of period |Tn| such that

lim
s→∞ fn(s, t) = xn(Tnt) and lim

s→∞ an(s, t)s
= Tn

in C∞(S1). For simplicity, choose a subsequence of Tn, also denoted by Tn, which is always positive (positive
puncture). Since we are in the non-degenerate case and Tn 6 E0, assume, after going to some subsequence, that
Tn = T > 0 and xn(Tt) = x(T(t+cn)), where cn ∈ S1 for all n. Thus after going over to some subsequence we
may assume that cn → c∗ ∈ S1. From the uniform boundedness of the gradients of un, the elliptic regularity, and
Arzelà-Ascoli theorem, we have un → u : [0,∞)×S1 → R×M in C∞loc. Here u is a pseuhoholomorphic half cylinder
with bounded energy and a small dα−energy which is asymptotic to some periodic orbit with period T or a point;
both being denoted by x . Choose the sequences Nn,Nn

n→∞−→ ∞ and Nn < Nn such that after going over to a
subsequence we have

lim
n→∞ fn(Nn, t) = x(Tt) and lim

n→∞ fn(Nn, t) = x(T(t+c∗)) in C∞(S1),
and consider the maps

vn = un|[Nn,Nn]×S1 .

which have by construction dα−energy tending to 0. Performing the same analysis as in [6] we conclude that x = x
and T = T .

To describe the C0−convergence of un we use the results established in Appendix B. In view of Proposition 94,
choose a sequence Rn > 0 such that Rn → ∞ and an(Rn, t) − TRn → 0 as n → ∞. Consider the shifted maps
un(s, t) := un(s+ Rn, t) − TRn for (s, t) ∈ [−Rn,Rn]× S1. These are pseudoholomorphic cylinders with uniformly
bounded α− and dα−energies and a dα−energy smaller than  h/2. Recall that these pseudoholomorphic cylinders
are a special case of theH−holomorphic cylinders described in Appendix A. We distinguish two cases corresponding
to subsequences with vanishing and non-vanishing center actions. In latter case, the cater action is greater than
 h > 0. By Proposition 94, the �rst case does not appear and we are left with the case in which A(un) >  h. By
Corollary 90, for every ε > 0 there exists h > 0 such that for all n ∈ N and Rn > h, distg0(fn(s, t), x(T(t+cn))) < ε
and |an(s, t) − Ts−a0| < ε for all (s, t) ∈ [−Rn +h,Rn −h]× S1. On the other hand, we have the following result:
For every ε > 0 there exists h > 0 such that for all n ∈ N and Rn > h, distg0(fn(s, t), x(T(t + cn))) < ε and
|an(s, t)−Ts−a0| < ε for all (s, t) ∈ [h, 2Rn−h]×S1. As Rn can be chosen arbitrary large the following equivalent
statement readily follows:

Corollary 95. For every ε > 0 there exist h > 0 and N ∈ N such that for all n > N , distg0(fn(s, t), x(T(t +
cn))) < ε and |an(s, t) − Ts− a0| < ε for all (s, t) ∈ [h,∞)× S1.



APPENDIX C. HALF CYLINDERS WITH SMALL ENERGY 107

Consider the di�eomorphism θ : [0,∞)× S1 → R×M and the maps

gn := fn ◦ θ−1 : [0, 1)× S1 →M, (C.0.2)

which by Proposition 94 converge in C∞loc to a map g := f◦θ−1 : [0, 1)×S1 →M. By Corollary 95, the maps gn and
g can be continously extended to [0, 1] × S1 by gn(1, t) = g(1, t) = x(Tt+cn) for all n ∈ N and all t ∈ S1. Hence
due to Corollary 95, gn converge in C0 to g. As a consequence, we formulate the following compactness property
of the sequence of pseudoholomorphic half cylinders un : [0,∞) × S1 → R ×M with uniformly bounded energies
and dα−energies less than  h/2:

Theorem 96. Let un be a sequence of pseudoholomorphic curves having uniformly bounded energy by E0
and satisfying condition (C.0.1). Then there exists a subsequence of un, still denoted by un, such that the

following is satis�ed.

1. un is asysmptotic to the same Reeb orbit, i.e. there exists a Reeb orbit x of period |T | 6= 0 with |T | 6 C
and a sequence cn ∈ S1 such that

lim
s→∞ fn(s, t) = x(T(t+cn)) and lim

s→∞ an(s, t)s
= T .

for all n ∈ N.

2. un converge in C∞
loc

to a pseudoholomorphic half cylinder u : [0,∞) × S1 → R ×M having uniformly

bounded energy by the constant E0 and satisfying condition (C.0.1).

3. The maps gn : [0, 1]×S1 →M converge in C0 to a map g : [0, 1]×S1 →M and satisfy g(1, t) = x(T(t+c∗)),
where x is a Reeb orbit of period |T | 6= 0.



Appendix D

Special coordinates

Let S be a compact surface with boundary, and let jn and j be complex structures on S for all n ∈ N. Additionally,
let hn and h be the hyperbolic structures on S with respect to jn and j, respectively. Assume that jn → j and
hn → h in C∞(S). In this appendix we construct a sequence of biholomorphic coordinates around some point in S
with respect to the complex structure jn that converges in a certain sense to the biholomorphic coordinates with
respect to j. This result is used in Section 3 for proving the convergence on the thick part.

Lemma 97. For each z ∈ int(S) there exist open neighborhoods Un(z) = Un and U(z) = U of z and di�eo-

morphisms

ψn : D1(0) → Un,

ψ : D1(0) → U

such that

1. ψn are i− jn−biholomorphisms and ψ is a i− j−biholomorphism;

2. ψn → ψ in C∞
loc
(D1(0)) as n→∞ with respect to the Euclidean metric on D1(0) and h on S;

3. ψn(0) = z for every n and ψ(0) = z.

Proof. Around z ∈ int(S), choose the i − j−holomorphic coordinates c : D2(0) → U such that U ⊂ int(S) and
c(0) = z, and consider the complex structures j(n) := c∗jn. Since jn → j as n→∞ in C∞, j(n) → i in C∞loc(D2(0))
as n→∞. Let dCn be the operator de�ned by dCnf = df ◦ j(n) and let dC be the operator de�ned by dCf = df ◦ i.
Denote by px : R2 → R, (x,y) 7→ x the projection onto the �rst coordinate. Consider the problem of �nding a
smooth function f : D1(0)→ R such that

ddCnf = 0 on D1(0),
f = px on ∂D1(0)

(D.0.1)

for all n and
ddCf = 0 on D1(0),
f = px on ∂D1(0).

(D.0.2)

As the second problem translates into
∆f = 0 on D1(0),
f = px on ∂D1(0),

(D.0.3)
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where ∆ is the standard Laplace operator in R, the unique solution is f(x,y) = x for all (x,y) ∈ D1(0). To see the
uniqueness observe that the di�erence of f with any other solution of (D.0.3) solves ∆u = 0 with u|∂D1(0) = 0. Thus
from the maximum principle for harmonic functions we deduce that u ≡ 0, and so, that (D.0.3) has the unique
solution f. In coordinates representation, j(n) can be written as

j(n) =

(
j
(n)
11 j

(n)
12

j
(n)
21 j

(n)
22

)

and take notice that j(n) → i in C∞ on D1(0) as n→∞. The solutions of (D.0.1) are equivalent to the solutions of

ddCn�f = tn on D1(0),
�f = 0 on ∂D1(0),

(D.0.4)

where tn = −ddCnpx. Hence dd
C
n is an elliptic and coercive operator, and thus by Proposition 5.10 from [18], the

problem (D.0.4) has a uniquely weak solution �fn ∈ W1,2(D1(0)) for all n. From regularity theorem, the solutions
�fn are smooth for all n. Thus fn := �fn + px is the smooth unique solution of (D.0.1). Let us show that fn → f in
C∞loc(D1(0)) as n→∞. For un := fn − f we have

ddCnun = gn on D1(0),
un = 0 on ∂D1(0).

Here, gn ∈ C∞(D1(0)) is de�ned by gn := ddCnf, and because of j(n) → i in C∞(D1(0)) as n → ∞, gn converges
to 0 in C∞loc(D1(0)) as n → ∞. For every m ∈ N0 we consider the bounded operator ddCn : W2+m,2

∂ (D1(0),R) →
Wm,2(D1(0),R), where W2+m,2

∂ (D1(0),R) consists of maps from W2+m,2(D1(0),R) that vanish at the boundary.
By Proposition 5.10 together with Propositions 5.18 and 5.19 of [18] we deduce that the operator ddCn is bounded
invertible; hence un = (ddCn)

−1gn. Since ddCn → ∆ in operator norm, (ddCn)
−1 is a uniformly bounded family,

and so, ‖un‖Wm+2,2 → 0 as n→∞. Further on, as m ∈ N0 was arbitrary, the Sobolev embedding theorem yields
un → 0 in C∞loc(D1(0)) as n→∞. Thus we have constructed a unique sequence of solutions {fn : D1(0)→ R}n∈N
of (D.0.1), and a unique solution f : D1(0)→ R, (x,y) 7→ x of (D.0.2) satisfying fn → f in C∞loc(D1(0)) as n→∞.
According to Lemma 6.8.1 of [16], there exists a j(n)−i−holomorphic function Fn : D1(0)→ C and a i−i−holomorhic
function F : D1(0)→ C such that fn = <(Fn) and f = <(F). Let us investigate the unique extensions of the functions
Fn and F. For doing this we set Fn = fn + ib and F = f+ ib, where bn,b : D1(0)→ R are harmonic functions. As
Fn and F are j(n) − i−holomorphic and i− i−holomorphic, respectively, they solve the equations

dFn + i ◦ dFn ◦ j(n) = 0

and
dF+ i ◦ dF ◦ i = 0,

respectively, which in turn, are equivalent to

dbn = −dfn ◦ j(n)

and
db = −df ◦ i,

respectively. By the harmonicity of fn and f, and the application of Poincare lemma on D1(0), we �nd the solutions
bn and b which are unique up to addition with some constant. They can be make unique by requiring that bn(0) = 0
and b(0) = 0. In particular, we �nd F(x,y) = x+ iy. Then we get dbn → db in C∞loc(D1(0)) as n→∞, and from
bn(0) = 0 and b(0) = 0, we actually get bn → b in C∞loc(D1(0)) as n → ∞. Hence Fn → F = id in C∞loc(D1(0)) as
n→∞.
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For n large, Fn is bijective onto its image (maybe after shrinking the domain). This follows from the proof of the
inverse function theorem. With �Fn = Fn − fn(0), the maps ψn and ψ are de�ned by ψn = c ◦ �Fn : D1(0) → Un
and ψ = c ◦ F : D1(0)→ U for su�ciently large n, respectively.



Appendix E

Asymptotics of Harmonic Cylinders

In this section we describe the C∞loc- and C0- convergence of a sequence of harmonic functions Γn on cylinders
[−Rn,Rn]× S1. This result is used in the proof of Theorems 63 and 65. The analysis is performed in the following
setting:

R1 Rn →∞;

R2 Γn is a harmonic function on [−Rn,Rn] × S1 such that dΓn is a harmonic 1−form with respect to the
standard complex structure i on R×S1, i.e. if s, t are the coordinates on R×S1, ∂sΓn+i∂tΓn : [−Rn,Rn]×S1 →
C is holomorphic;

R3 Γn has vanishing average over the cylinder [−Rn,Rn]× S1, i.e. for all n ∈ N we have

1
2Rn

∫
[−Rn,Rn]×S1

Γn(s, t)dsdt = 0;

R4 the L2−norm of dΓn is uniformly bounded, i.e. there exists a constant C > 0 such that

‖dΓn‖2L2([−Rn,Rn]×S1) :=
∫
[−Rn,Rn]×S1

dΓn ◦ i∧ dΓn 6 C

for all n ∈ N.

The subsequent lemma gives a decomposition of Γn in a linear term and a harmonic function satisfying properties
R1-R4 and having a uniformly bounded L2−norm.

Lemma 98. There exists a sequence Sn ∈ R with |Sn| 6
√
C/2Rn such that the harmonic function Γn :

[−Rn,Rn]×S1 → R can be decomposed as Γn(s, t) = Sns+�Γn(s, t), where �Γn : [−Rn,Rn]×S1 → R is a harmonic

function satisfying properties R1-R4 and additionally∥∥�Γn∥∥2L2([−Rn,Rn]×S1) 6 ∥∥d�Γn∥∥2L2([−Rn,Rn]×S1) . (E.0.1)

Proof. We consider the Fourier series of the harmonic function Γn, i.e.

Γn(s, t) =
∑
k∈Z

cnk (s)e
2πikt = cn0 (s) +

∑
k∈Z\{0}

cnk (s)e
2πikt.

Because Γn has vanishing mean value, we have
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0 =

∫
[−Rn,Rn]×S1

Γn(s, t)dsdt =
∫Rn
−Rn

∫1
0

Γn(s, t)dtds =
∫Rn
−Rn

cn0 (s)ds. (E.0.2)

As Γn is a harmonic function, the coe�cients cnk can be readily computed; we �nd

cnk (s) =

{
Ank sinh(2πks) + B

n
k cosh(2πks), k ∈ Z\{0}

Sns+ dn, k = 0
,

where Ank ,B
n
k ,Sn,dn ∈ C. By (E.0.2), dn = 0, and the Fourier expansion of Γn takes the form

Γn(s, t) = Sns+
∑

k∈Z\{0}

cnk (s)e
2πikt = Sns+ �Γn(s, t),

where
�Γn(s, t) = Γn(s, t) − Sns =

∑
k∈Z\{0}

cnk (s)e
2πikt. (E.0.3)

For every s ∈ [−Rn,Rn] we have

Sn =

∫
{s}×S1

∂sΓn(s, t)dt ∈ R

and so, �Γn is a real valued harmonic function. On the other hand by Hölder's inequality we �nd the estimate

|Sn| 6
1

2Rn

∫
[−Rn,Rn]×S1

|∂sΓn(s, t)|dsdt 6

√
C

2Rn
.

We show now that d�Γn has a uniform L2−bound. By (E.0.3) and Hölder's inequality we get∥∥d�Γn∥∥2L2([−Rn,Rn]×S1) = ‖dΓn‖2L2([−Rn,Rn]×S1) − 2Sn

∫
[−Rn,Rn]×S1

dΓn ◦ i∧ ds

+ 2S2nRn

6 4C.

Thus �Γn satis�es the property R4 from above, and obviously, properties R1-R3. Next we prove estimate (E.0.1).
By (E.0.3), the L2−norm of �Γn computes as follows∥∥�Γn∥∥2L2([−Rn,Rn]×S1) = ∑

k∈Z\{0}

‖cnk‖
2
L2([−Rn,Rn])

.

On the other hand we have
∂t�Γn(s, t) =

∑
k∈Z\{0}

2πikcnk (s)e
2πikt

and ∥∥∂t�Γn∥∥2L2([−Rn,Rn]×S1) = ∑
k∈Z\{0}

4π2k2 ‖cnk‖
2
L2([−Rn,Rn])

>
∥∥�Γn∥∥2L2([−Rn,Rn]×S1) ,

while from ∥∥∂t�Γn∥∥2L2([−Rn,Rn]×S1) 6 ∥∥d�Γn∥∥2L2([−Rn,Rn]×S1)
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we end up with ∥∥�Γn∥∥2L2([−Rn,Rn]×S1) 6 ∥∥d�Γn∥∥2L2([−Rn,Rn]×S1) .
Remark 99. The quantity Sn can be interpreted as the co-period of the harmonic 1−form dΓn over the closed
curve {0}× S1 with respect to the standard complex structure i on R× S1.

In particular, we see that for all n we have ∥∥�Γn∥∥2L2([−Rn,Rn]×S1) 6 4C. (E.0.4)

The next lemma establishes uniform bounds on the derivatives of �Γn.

Lemma 100. For any δ > 0 and k ∈ N0 there exists a constant �C = �C(δ,k,C) > 0 such that∥∥�Γn∥∥Ck([−Rδn,Rδn]×S1) 6 �C

for all n ∈ N and Rδn := Rn − δ.

Proof. Set Fn := ∂s�Γn + i∂t�Γn : [−Rn,Rn] × S1 → C, and note that Fn is a holomorphic function with uniformly
bounded L2−norm, i.e. ∫

[−Rn,Rn]×S1
|Fk|

2dsdt 6 4C (E.0.5)

for all n ∈ N. As �Γn is harmonic it is obvious that

∆|Fn|
2 = 2|∇Fn|2 > 0.

Hence |Fn|2 is subharmonic. By using the mean value property for subharmonic functions we conclude that for any
δ > 0 and any z = (s, t) ∈ [−R

δ/2
n ,Rδ/2n ]× S1,

|Fn(z)|
2 6

32
πδ2

∫
B δ

4
(z)

|Fn(s, t)|
2dsdt 6

32
πδ2
‖Fn‖2

L2([−R
δ
2
n ,R

δ
2
n ]×S1)

.

Since these estimates hold for all z ∈ [−R
δ/2
n ,Rδ/2n ]× S1 we obtain

‖Fn‖2
C0([−R

δ
2
n ,R

δ
2
n ]×S1)

6
32
πδ2
‖Fn‖2

L2([−R
δ
2
n ,R

δ
2
n ]×S1)

.

In particular, by using (E.0.5), we �nd

‖Fn‖
C0([−R

δ
2
n ,R

δ
2
n ]×S1)

6
8
√
2C

δ
√
π

(E.0.6)

for all n ∈ N. By the Cauchy integral formula for holomorphic functions and (E.0.6) we deduce that the derivatives
of Fn are uniformly bounded on [−Rδn,R

δ
n]× S1. Indeed, for k ∈ N we have

|F(k)n (z)| =
k!
2π

∣∣∣∣∣∣
∫
∂B δ

2
(z)

Fn(ξ)

(ξ− z)k+1
dξ

∣∣∣∣∣∣ = k!
2π

∣∣∣∣∫2π
0

2ki
Fn(z+ δe

it)

δkeikt
dt

∣∣∣∣ 6 2k+3k!
√
2C

δk+1
√
π
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for all z ∈ [−Rδn,R
δ
n]× S1 and n ∈ N. Since z ∈ [−Rδn,R

δ
n]× S1 was arbitrary, we obtain∥∥∥F(k)n ∥∥∥

C0([−Rδn,R
δ
n]×S1)

6
2k+3k!

√
2C

δk+1
√
π

.

Using (E.0.4) and the mean value property and Hölder inequality for �Γn we �nd that for all z ∈ [−Rδn,R
δ
n]× S1,

|�Γn(z)| 6
4
πδ2

∫
B δ

2
(z)

|�Γn(s, t)|dsdt =
4
√
C

δ
√
π
.

Hence we get ∥∥�Γk∥∥C0([−Rδn,R
δ
n]×S1)

6
4
√
C

δ
√
π

for all n ∈ N.

Remark 101. We note the following.

1. From the proof of Lemma 100 the following result can be established: By the Arzelà-Ascoli theorem, for
any sequence sn ∈ [−Rδn,R

δ
n], the sequence of maps Fn(· + sn, ·) de�ned on [−Rδn − sn,Rδn − sn]× S1, where

Fn = ∂s�Γn + i∂t�Γn, contains a subsequence, also denoted by Fn(· + sn, ·), that converges in C∞loc to some
holomorphic map F; F depends on the sequence {sn}, has bounded L2- and C0- norms, and is de�ned either
on a half cylinder or on R× S1. In the later case, when Rδn − sn and Rδn + sn diverge, F has to be 0. Indeed,
by Liouville's theorem, F has to be constant, while from the boundedness of the L2−norm we conclude that
F is 0.

2. By Lemma 100, (E.0.4) and the Liouville theorem for harmonic functions, �Γn(0, ·) converges to 0. By Lemma
100 and Remark 101, the sequence of harmonic functions �Γn(· + sn, ·) with sn ∈ [Rδn,R

δ
n], contains a subse-

quence that converges in C∞loc to some harmonic function de�ned either on a half cylinder or on R × S1. In
the later case the limit harmonic function has to be 0 by the same arguments as above.

To simplify notation we drop the index δ. We de�ne the harmonic functions �Γ−n : [0, 2Rn] × S1 → R and �Γ+n :

[−2Rn, 0] × S1 → R by �Γ−n (s, t) := �Γk(s − Rn, t) and �Γ+n (s, t) := �Γn(s + Rn, t), respectively. By Lemma 100, there

exist harmonic functions �Γ− : [0,+∞)× S1 → R and �Γ+ : (−∞, 0]× S1 → R such that �Γ−n
C∞loc−→ �Γ− and �Γ+n

C∞loc−→ �Γ+.
The next proposition plays an important role in establishing a C∞loc- and C0- convergence of the harmonic functions
�Γn.

Proposition 102. For any ε > 0 there exists h > 0 such that for any Rn > h we have∥∥�Γn∥∥C0([−Rn+h,Rn−h]×S1)
< ε.

Proof. Assume that this is not the case. Then there exist ε0,C0 > 0 such that for any hk := k there exist Rnk > k
and a sequence (sk, tk) ∈ [−Rnk + k,Rnk − k]× S1 such that |�Γnk(sk, tk)| > ε0. From sk ∈ [−Rnk + k,Rnk − k] it
follows that |Rnk − sk| → ∞ as k → ∞. Consider the harmonic functions Hk : [−Rnk − sk,Rnk − sk] × S1 → R
de�ned by Hk(s, t) = �Γnk(s + sk, t). Obviously, we have Hk(0, tk) = �Γnk(sk, tk) and by Remark 101 we conclude
that the Hk converge in C∞loc to some harmonic function H : R× S1 → R with bounded L2 and C0−norms. By the
Liouville theorem for harmonic functions, H ≡ 0. This gives a contradiction to |Hk(0, tk)| = |�Γnk(sk, tk)| > ε0, and
the proof is �nished.
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Corollary 103. For every sequence hn ∈ R+ satisfying hn < Rn and hn,Rn/hn → ∞ and every ε > 0 there

exists N ∈ N such that ∥∥�Γn∥∥C0([−Rn+hn,Rn−hn]×S1)
< ε

for all n > N. Moreover, for the co-period Sn we obtain that hnSn → 0 as n→∞.

Proof. Consider a sequence hn ∈ R+ with hn < Rn and hn,Rn/hn → ∞ as n → ∞ and let ε > 0 be
given. By Proposition 102, there exist hε > 0 and Nε ∈ N such that for all n > Nε we have Rn > hε and∥∥�Γn∥∥C0([−Rn+hε,Rn−hε]×S1)

< ε. By taking Nε su�ciently large and since hn →∞ we assume that for all n > Nε,

we have Rn > hn > hε, giving
∥∥�Γn∥∥C0([−Rn+hn,Rn−hn]×S1)

< ε. It follows from RnSn → σ and Rn/hn → ∞ as
n→∞ that hnSn → 0 as n→∞.

In the following the subsequence �Γk will be denoted by �Γn. To describe the C0−convergence of the maps �Γn for a
sequence hn ∈ R+with hn < Rn and hn,Rn/hn →∞ as n→∞, we consider the sequence of di�eomorphisms θn
de�ned in Remark 44. Further on, let us introduce the maps

Γn(s, t) = �Γn(θ
−1
n (s), t), s ∈ [−1, 1],

Γ
−
n(s, t) = �Γ−n ((θ

−
n)

−1(s), t), s ∈ [−1,−1/2],

Γ
+
n(s, t) = �Γ+n ((θ

+
n)

−1(s), t), s ∈ [1/2, 1],

Γ
−
(s, t) = �Γ−((θ−)−1(s), t), s ∈ [−1,−1/2),

Γ
+
(s, t) = �Γ+((θ+)−1(s), t), s ∈ (1/2, 1].

We prove the following

Theorem 104. For every sequence hn ∈ R+ satisfying hn < Rn and hn,Rn/hn →∞ as n→∞, the following

convergence results hold for the maps �Γn and Γn and their left and right shifts �Γ±n and Γ
±
n , respectively.

C∞
loc
−convergence:

1. For any sequence sn ∈ [−Rn+hn,Rn−hn] there exists a subsequence of the sequence of shifted harmonic

functions �Γn(·+ sn, ·), also denoted by �Γn(·+ sn, ·), which is de�ned on [−Rn+hn− sn,Rn−hn− sn]×S1
and converges in C∞

loc
to 0.

2. The harmonic functions �Γ−n : [0,hn]×S1 → R converge in C∞
loc

to a harmonic function �Γ− : [0,+∞)×S1 →
R which is asymptotic to 0. Furthermore, Γ

−
n : [−1,−1/2]× S1 → R converge in C∞

loc
([−1,−1/2)× S1) to

the map Γ
−
: [−1,−1/2)× S1 → R that is asymptotic to 0 at {−1/2}× S1.

3. The harmonic functions �Γ+n : [−hn, 0]× S1 → R converge in C∞
loc

to a harmonic function �Γ+ : (−∞, 0]×
S1 → R which is asymptotic to 0. Furthermore, Γ

+
n : [1/2, 1] × S1 → R converge in C∞

loc
((1/2, 1] × S1) to

the map Γ
+
: (1/2, 1]× S1 → R that is asymptotic to 0 at {1/2}× S1.

C0−convergence:

1. The functions Γn converge in C0([−1/2, 1/2]× S1) to 0.
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2. The functions Γ
−
n converge in C0([−1,−1/2]×S1) to a function Γ− : [−1,−1/2]×S1 → R with Γ

−
(−1/2, t) =

0 for all t ∈ S1.

3. The functions Γ
+
n converge in C0([1/2, 1]×S1) to a function Γ

+
: [1/2, 1]×S1 → R with Γ

+
(1/2, t) = 0 for

all t ∈ S1.

Proof. First we prove the C∞loc−convergence of the harmonic functions Γn.

1. By Remark 101, for any sequence sn ∈ [−Rn+hn,Rn−hn] the sequence of shifted harmonic maps Γn(·+sn, ·)
contains a subsequence, also denoted by Γn(·+ sn, ·), which is de�ned on [−Rn +hn − sn,Rn −hn − sn]× S1
and converges in C∞loc to 0.

2. Consider the shifted maps Γ−n : [0,hn] × S1 → R ×M. By Lemma 100, these maps have uniformly bounded
derivatives, and hence after going over to some subsequence, they converge in C∞loc([0,∞)×S1) to the harmonic
function Γ− : [0,+∞) × S1 → R × M. In the following we show that Γ− is asymptotic to 0, i.e. that
lims→∞ Γ−(s, t) = 0. We prove by contradiction. Because the Γn are uniformly bounded in C0, we assume
that there exists a sequence (sk, tk) ∈ [0,∞) × S1 with sk → ∞ as k → ∞ such that limk→∞ Γ−(sk, tk) =

w ∈ R\{0}. Putting ε := |w| > 0, using Proposition 102, and arguing as in Theorem 63 we are led to the
contradiction ε = |w| 6 3ε/10. As (θ−n)

−1 : [−1,−1/2] → [0,hn] converge in C∞loc to the di�eomorphism
(θ−)−1 : [−1,−1/2)→ [0,+∞), the maps Γ−n ((θ

−
n)

−1(s), t) converge in C∞loc to the map Γ−((θ−)−1(s), t). By

the asymptotics of Γ−, Γ
−
is asymptotic to 0 at {−1/2}× S1.

3. The proof for the maps Γ+n proceeds as in Case 2.

To prove the C0−convergence of the harmonic functions Γn, we prove that the functions Γn, Γ
−
n and Γ

+
n converge

in C0.

1. From Corollary 103 it follows that
∥∥Γn∥∥C0([−1/2,1/2]×S1) → 0 as n→∞.

2. Consider now the maps Γ
−
n(s, t). The Γ

−
n converge in C∞loc to Γ− on [−1,−1/2) × S1. By the asymptotics of

Γ−, Γ
−
can be continously extended to the whole cylinder [−1,−1/2] × S1 by setting Γ

−
(−1/2, t) = 0. As a

matter of fact, the maps Γ
−
n converge in C0([−1,−1/2]) to Γ

−
. The proof of this statement is as in Lemma

4.16 of [7], and for completeness reasons, it is here described. Let δ > 0 be given. By the C∞loc−convergence
of the maps Γ

−
n to Γ

−
on [−1,−1/2) × S1 it su�ces to �nd σ > 0 and N ∈ N such that |Γ

−
n(s, t)| 6 δ for all

(s, t) ∈ [−(1/2) − σ,−1/2] × S1 and n > N. From Proposition 102 there exist N ∈ N and h > 0 such that
for all n > N and (s, t) ∈ [−Rn + h,Rn − h]× S1, we have |Γn(s, t)| 6 δ. Recall that (θ−)−1 maps [−1,−1/2)
di�eomorphically onto [0,∞). Thus we �nd σ > 0 such that (θ−)−1(−σ) > h+ 1. By the C∞loc−convergence,
we obtain θ−1

n (−σ) + Rn = (θ−n)
−1(−σ) > h for n su�ciently large; hence, θ−1

n (−σ) > −Rn + h. Therefore,
by the monotonicity of θn, we have θ−n([−(1/2) − σ,−1/2]) ⊂ [−Rn + h,Rn − h] and we end up with
|Γ

−
n(s, t)| = |Γ−n ((θ

−
n)

−1(s), t)| 6 δ.

3. For the maps Γ
+
n we proceed analogously.

See Figure E.0.1.

In the following, we establish a convergence result for the harmonic functions Γn. For this purpose, we de�ne
the harmonic functions Γ−n : [0, 2Rn] × S1 → R and Γ+n : [−2Rn, 0] × S1 → R by Γ−n (s, t) := Γn(s − Rn, t) =
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↓

− 1
2

1
2

limit n→∞

Γn − 1
2

1
2

Figure E.0.1: The sequence Γn and the limit object.

Sn(s − Rn) + �Γ−n (s, t) and Γ+n (s, t) := Γn(s + Rn, t) = Sn(s + Rn) + �Γ+n (s, t), respectively. Since �Γ−n → �Γ− and
�Γ+n → �Γ+ in C∞loc, Γ−n + SnRn → �Γ− converge in C∞loc on [0,+∞) × S1 and Γ+n − SnRn → �Γ+ converge in C∞loc on
(−∞, 0]× S1. Moreover, by means of the homeomorphism θn, we de�ne the maps

Γn(s, t) = Γn(θ
−1
n (s), t) = Snθ

−1
n (s) + Γn(s, t), s ∈ [−1, 1],

Γ−n(s, t) = Γ
−
n ((θ

−
n)

−1(s), t) = Sn((θ
−
n)

−1(s) − Rn) + Γ
−
n(s, t), s ∈ [−1,−1/2],

Γ+n(s, t) = Γ
+
n ((θ

+
n)

−1(s), t) = Sn((θ
+
n)

−1(s) + Rn) + Γ
+
n(s, t), s ∈ [1/2, 1].

We are now in the position to derive a convergence result for the sequence of harmonic functions Γn.

Theorem 105. For every sequence of harmonic functions Γn satisfying assumptions R1-R5 the following

holds. For every sequence hn ∈ R+ satisfying hn < Rn and hn,Rn/hn → ∞ as n → ∞, the following

C∞
loc
−convergence results hold for the maps Γn and Γn and their left and right shifts Γ±n and Γ±n , respectively:

1. For any sequence sn ∈ [−Rn+hn,Rn−hn] there exists a subsequence of the sequence of shifted harmonic

functions Γn(· + sn, ·), also denoted by Γn(· + sn, ·) and de�ned on [−Rn + hn − sn,Rn − hn − sn] × S1,
such that Γn(·+ sn, ·) − Snsn converges in C∞

loc
to 0.

2. The harmonic functions Γ−n + SnRn : [0,hn] × S1 → R converge in C∞
loc

to a harmonic function �Γ− :

[0,+∞)× S1 → R which is asymptotic to 0. Furthermore, Γ−n + SnRn : [−1,−1/2]× S1 → R converge in

C∞
loc
([−1,−1/2)× S1) to the map Γ

−
: [−1,−1/2)× S1 → R such that

lim
s→− 1

2

Γ
−
(s, t) = 0

in C∞(S1).
3. The harmonic functions Γ+n − SnRn : [−hn, 0] × S1 → R converge in C∞

loc
to a harmonic function �Γ+ :

(−∞, 0] × S1 → R which is asymptotic to 0. Furthermore, Γ+n − SnRn : [1/2, 1] × S1 → R converge in

C∞
loc
((1/2, 1]× S1) to the map Γ

+
: (1/2, 1]× S1 → R such that

lim
s→ 1

2

Γ
+
(s, t) = 0

in C∞(S1).
Proof. For (s, t) ∈ [−Rn + hn − sn,Rn − hn − sn] × S1, we have Γn(s + sn, t) − Snsn = Sns + �Γn(s + sn, t). By
Theorem 104, the �rst assertion readily follows. Putting Γ−n (s, t) − SnRn = Sns + �Γ−n (s, t), using the fact that
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Γ−n(s, t) + SnRn = Sn(θ
−
n)

−1(s) + Γ
−
n(s, t) converge in C

∞
loc to Γ

−
: [−1,−1/2)× S1 → R which is asymptotic to 0 as

s→ −1/2, and applying Theorem 104 �nishes the proof of the second assertion. The third assertion is proved in a
similar manner.

To derive a notion of C0 convergence we assume that the sequence SnRn converges, i.e. SnRn → σ as n → ∞.
Note that this assumption is the same as Assumption C9 of Section 3.2.2.

Theorem 106. For every sequence of harmonic functions Γn satisfying assumptions R1-R5 and additionally

Assumption C9 of Section 3.2.2 the following holds. For every sequence hn ∈ R+ satisfying hn < Rn and

hn,Rn/hn → ∞ as n → ∞, the following C0−convergence results hold for the maps Γn together with their

left and right shift Γ±n :

1. There exists a subsequence of Γn that converges in C0([−1/2, 1/2]× S1) to 2σs.

2. There exists a subsequence of Γ−n that converges in C0([−1,−1/2]× S1) to Γ− −σ, where Γ
−
(−1/2, t) = 0

for all t ∈ S1.

3. There exists a subsequence of Γ+n that converges in C0([1/2, 1]×S1) to Γ++σ, where Γ
+
(+1/2, t) = 0 for

all t ∈ S1.

Proof. We consider Γn(s, t) = Snθ
−1
n (s) + Γn(s, t) for (s, t) ∈ [−1/2, 1/2]× S1 with

Snθ
−1
n (s) = 2(SnRn − Snhn)s.

Corollary 103 implies that Snhns converges in C0([−1/2, 1/2] × S1) to 0, and similarly, that SnRns converges in
C0([−1/2, 1/2]× S1) to 2σs. By Theorem 105, Γn converges in C0([−1/2, 1/2]× S1) to 0, and so, the �rst assertion
is proved. Setting Γ−n(s, t) = Sn(θ

−
n)

−1(s) − SnRn + Γ
−
n(s, t) for (s, t) ∈ [−1,−1/2] × S1, taking into account that

Sn(θ
−
n)

−1(s) converges in C0([−1,−1/2] × S1) to 0, and applying Theorem 105 proves the second assertion. The
third assertion follows in an analogous manner.

See Figure E.0.2.

Finally, we establish a convergence result for the derivative of Γn. Due to Lemma 98, we have dΓ−n = Snds+d�Γ−n on
[0,hn]×S1 and dΓ+n = Snds+d�Γ+n on [−hn, 0]×S1 . For a sequence hn ∈ R+ satisfying hn < Rn and hn,Rn/hn →∞ as n → ∞, consider the sequence of di�eomorphisms θn : [−Rn,Rn] → [−1, 1] as in De�nition 44. In terms of
θn we obtain the equations dΓ−n = Sn[(θ

−
n)

−1] ′(s)ds+ dΓ
−
n on [−1,−1/2]× S1 and dΓ+n = Sn[(θ

+
n)

−1] ′(s)ds+ dΓ
+
n

on [1/2, 1]× S1. As a consequence of Theorem 105 we have the following

Corollary 107. After going over to a subsequence, the following C∞
loc
−convergence results for the maps dΓ−n ,

dΓ+n , Γ
−
n and Γ+n hold:

1. The harmonic 1−forms dΓ−n converge in C∞
loc
([0,+∞)× S1) to a harmonic 1−form d�Γ− on [0,+∞)× S1,

which is asymptotic to 0. The 1−forms dΓ−n converge in C∞
loc
([0, 1/2) × S1) to a 1−form dΓ

−
which is

asymptotic to a constant for s→ 1/2.
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limit n→∞

Γn
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2

Figure E.0.2: The sequence Γn and the limit object in the case SnRn → σ as n→∞. Between −1/2 and 1/2 the
limit object is a linear function of slope σ.

2. The harmonic 1−forms dΓ+n converge in C∞
loc
((−∞, 0]× S1) to a harmonic 1−form d�Γ+ on (−∞, 0]× S1,

which is asymptotic to 0. The 1−forms dΓ+n converge in C∞
loc
((−1/2, 0]× S1) to a 1−form dΓ

+
which is

asymptotic to a constant for s→ −1/2.



Appendix F

A version of the Monotonicity Lemma

In this appendix we introduce a notion of monotonicity for the transformed curves u as in De�nition 71. Before
proceeding we recall a version of the isoperimetric inequality. For an arbitrary a > 0 let us consider the manifold
W := [−a,a]×M together with de�ned structure from Section 2.2.

Theorem 108. Let p ∈ W\∂W. There exist constants C2, ε > 0 such that for any JPs−holomorphic curve

(u,R,P) and any compact subset K ⊂ [−R,R]× S1 with smooth boundary and u(K) ⊂ Bg0ε (p), we have

areag0(u|K) 6 C2`
2
g0
(u∂K).

Proof. By Theorem 2.5 from [21] there exists rp > 0 such that Bg0rp(p) ⊂ W\∂W and expp = expg0p : B
g0
rp(0) ⊂

TpW → B
g0
rp(p) de�nes normal coordinates around p. Consider the standard symplectic formω0 on (TpW, J0,p,g0,p)

given by ω0(v,w) := g0,p(J0,pv,w) for v,w ∈ TpW, where J0,p is the domain-dependent almost complex structure

JPs evaluated at p for s = 0. Pull back ω0 to Bg0rp(p) ⊂ W\∂W with (expg0p )−1 = exp−1
p and get an exact

symplectic form ω := (exp−1
p )∗ω0 on Bg0rp(p), i.e. there exists a 1−form λ such that ω = dλ. For any v ∈ TpW we

have ω(v, J0,pv) = ‖v‖2g0 > 0. We claim that there exist the constants c0, c1 > 0 such that for all v ∈ TpW and all
ρ ∈ [−C,C] the following inequalities hold:

c1 ‖v‖2g0 > ω(v, Jρ,pv) >
1
c0
‖v‖2g0 .

To prove this claim we consider the second inequality and assume that this is not true. Thus, for each constant
c0,n = n there exists vn ∈ TpW with ‖vn‖g0 = 1 and ρn ∈ [−C,C] such that ω(vn, Jρn,pvn) < 1/n. By passing to

a subsequence we assume that vn → v with ‖v‖g0 = 1 and ρn → ρ as n → ∞. Then we get ω(v, Jρ,pv) = 0 and
(we work in point p)

0 = ω(v, Jρ,pv) = ω0(v, Jρ,pv).

We arrive at gρ,p(v, v) = 0, which is a contradiction since the family of metrics gρ are equivalent. The �rst

inequality is proved in an analogous manner. Now we claim that there exist an open neighborhood Up ⊂ Bg0rp(p)
of p and the constants c0, c1 > 0 (making the old ones smaller) such that for all v ∈ TUp and all ρ ∈ [−C,C], the
following inequalities hold:

c1 ‖v‖2g0 > ω(v, Jρv) >
1
c0
‖v‖2g0 . (F.0.1)

The proof of this claim is similar to the previous one (by contradiction). Choose ε > 0 to be the largest number
such that Bg0ε (p) ⊂ Up. After eventually making the constants c0 and c1 smaller, assume that (F.0.1) holds for all

120
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v ∈ TBg0ε (p) and all ρ ∈ [−C,C].

c1 ‖v‖2g0 > ω(v, Jρv) >
1
c0
‖v‖2g0

Now, let (u,R,P) be a JPs−holomorphic curve and K ⊂ [−R,R] × S1 a compact subset with smooth boundary
such that u(K) ⊂ Bg0ε (p). Then for areag0(u|K) de�ned as in Section II.2 from [15], there exists a constant �c > 0
(independent of K and ε) for which

areag0(u|K) 6 �c
∫
K

‖du‖2g0 voleucl. 6 �cc0

∫
K

u∗ω = �cc0

∫
∂K

u∗λ.

By the results of Appendix 1 in [15], there exists a minimal surface g : K→ B
g0
ε (0) ⊂ TpW with g|∂K = exp−1

p ◦u|∂K
satisfying the inequality

areag0,p(g|K) 6
1
4π
`2g0,p(g|∂K)

in (TpW,g0,p). Thus ∫
∂K

u∗λ =

∫
∂K

(expp ◦ g)∗λ =

∫
K

(expp ◦ g)∗ω =

∫
K

g∗ω0.

Wirtinger's inequality for the vector space (TpW,g0,p, J0,p) of the 2−form ω0 states that for all v,w ∈ TpW ,
ω0(v,w) 6 ‖v∧w‖g0,p with respect to g0,p, where

‖v∧w‖2g0,p = det

(
g0,p(v, v) g0,p(v,w)
g0,p(v,w) g0,p(w,w)

)
.

From this we �nd ∫
K

g∗ω0 6 areag0,p(g|K),

and moreover,

areag0(u|K) 6 �cc0areag0,p(g|K) 6
�cc0
4π
`2g0,p(g|∂K).

Recall that expp : B
g0
ε (0)→ B

g0
ε (p) is a di�eomorphism with (dexpp)(0) = Id. Then there exists a constant K > 0

which may depend on p such that ∥∥(dqexp−1
p )(v)

∥∥
g0,p
6 K

1
4 ‖v‖g0

for all q ∈ Bg0ε (p) and all v ∈ TqW. Hence we get

`2g0,p(g|∂K) 6 K`
2
g0
(u|∂K),

while putting all these together we obtain

areag0(u|K) 6 �cc0
1
4π
K`2g0(u|∂K).

For the choice C2 := c0K/(4π), the assertion then readily follows.

Corollary 109. Let (W, J0) be as above, and let W−δ ⊂ W with δ > 0 consist of the points in W having

distance to ∂W (with respect to the metric g0) at least δ. Then there exist constants C3, ε0 > 0 such that for

any JPs−holomorphic curve (u,R,P) and any compact subset K ⊂ [−R,R]×S1 with smooth boundary satisfying
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u(K) ⊂W−δ and diamg0(u(K)) 6 ε0, we have

areag0(u|K) 6 C3`
2
g0
(u|∂K).

Proof. Cover W−δ by balls
⋃
p∈W\∂W B

g0
εp(p), where εp > 0 is chosen as in Theorem 108. Since W−δ is compact

there exists a �nite subcover Bg0εp1 (p1), ...,B
g0
εpN

(pN). For each B
g0
pi(pi) with i = 1, ...,N we obtain from Theorem

108 the constants εpi > 0 and Cpi > 0. Set ε := mini=1,...,N εpi and C3 := maxi=1,...,N Cpi . Let λ > 0 be the
Lebesque number of the covering Bg0εpi (pi), for i = 1, ...,N. By the choice ε0 := min {λ, ε} the proof is �nished.

Corollary 110. For the same setting (W, J0) and Hermitian metric g0 for J0 and δ > 0, there exist constants
C3, ε0 > 0 such that for any JPs−holomorphic curve (u,R,P) and any compact subset K ⊂ [−R,R] × S1 with

smooth boundary satisfying K ⊂ u−1(W−δ
g0

) and diamu∗g0(K) 6 ε0, we have

areau∗g0(K) 6 C3`
2
u∗g0

(∂K).

Remark 111. u∗g0 is a positive semi-de�nite Riemann metric, i.e. u∗g0 vanishes only when the derivative of u
vanishes. Due to the Carleman similarity principle [22] this occurs only in a �nite number of points.

Proof. Let C3 and ε0 be the constants from Corollary 109, (u,R,P) a JPs−holomorphic curve, and K ⊂ [−R,R]×S1
a compact set with smooth boundary such that K ⊂ u−1(W−δ) and diamu∗g0(K) 6 ε0. Noting the inequality

diamu∗g0(K) > diamg0(u(K)), (F.0.2)

we obtain diamg0(u(K)) 6 ε0, while by means of Corollary 109 we �nd

areag0(u|K) 6 C3`
2
g0
(u|∂K).

On the other hand, by de�nition we have

areag0(u|K) =
∫
K

volu∗g0 = areau∗g0(K),

where volu∗g0 is the 2−form de�ned by

volu∗g0(v,w) =
[
g0(du(v),du(v))g0(du(w),du(w)) − g0(du(v),du(w))

2
] 1
2

for v,w ∈ T([−R,R]× S1); by the same reason, we �nd

`g0(u|∂K) = `u∗g0(∂K),

and the proof of Corollary 110 is �nished.

For a JPs−holomorphic curve (u,R,P) we de�ne a positive semi-de�nite Riemannian metric on [−R,R]× S1 by

hu,(s,t) = gPs(u(s, t))(du(s, t)·,du(s, t)·).

Note that this metric is not exactly a pull-back metric since g is parameter dependent. By (B.1.10), there exists a
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constant C4 > 0 such that for all v ∈ T([−R,R]× S1),

1
C4

‖v‖u∗g0 6 ‖v‖h 6 C4 ‖v‖u∗g0 . (F.0.3)

From here we have the following

Corollary 112. For the same setting (W, J0) and Hermitian metric g0 for J0 and δ > 0 there exist constants

C5, ε1 > 0 such that for any JPs−holomorphic curve (u,R,P) and any compact subset K ⊂ [−R,R] × S1 with

smooth boundary satisfying K ⊂ u−1(W−δ
g0

) and diamhu(K) 6 ε1, we have

areahu(K) 6 C5`
2
hu

(∂K).

Proof. We choose the constants C3 and ε0 such that Corollary 110 holds. De�ne ε1 := ε0/C4, let (u,R,P) be a
JPs−holomorphic curve and K ⊂ [−R,R]×S1 a compact subset such that K ⊂ u−1(W−δ

g0
) and diamhu(K) 6 ε1. For

any compact K ⊂ [−R,R]× S1, there hold

1
C4

diamu∗g0(K) 6 diamhu(K) 6 C4diamu∗g0(K).

From (F.0.3) it follows (perhaps by enlarging the constant C4) that

1
C2
4

areahu(K) 6 areau∗g0(K)

and
`u∗g0(∂K) 6 C4`hu(∂K).

Thus diamu∗g0(K) 6 C4diamhu(K) 6 ε0. By Corollary 110,

1
C2
4

areahu(K) 6 areau∗g0(K) 6 C3`
2
u∗g0

(∂K) 6 C3C
2
4`

2
hu

(∂K),

and for the choice C5 = C4
4C3 the proof is �nished.

The next theorem is the key feature in the proof of the monotonicity lemma.

Theorem 113. Let S be a compact surface with non-empty boundary ∂S and let h be a positive semi-de�nite

Riemannian metric that vanishes only in a �nite number of points away from the boundary ∂S. Let d = dh
be the distance function with respect to h. Assume that there exist constants �C, �ε > 0 such that for all

compact subsurfaces S ′ ⊂ S\∂S with diamh(S
′) 6 �ε,

areah(S
′) 6 �C`2h(∂S

′).

Then, for all r ∈ (0, �ε/2) and all x ∈ S such that Br(x) ⊂ S\∂S, we have

areah(Br(x)) >
1

4 �C
r2.

Proof. Let P = {p1, ...,pN} ⊂ S be the points where the metric h vanishes. Let �h be an arbitrary Riemann metric
on S and consider for ρ > 0 the balls Bρ(pi) for all i = 1, ...,N. After making ρ su�ciently small assume that



APPENDIX F. A VERSION OF THE MONOTONICITY LEMMA 124

Bρ(pi) and ∂S are pairwise disjoint for all i = 1, ...,N, and for ρ < r that

Bhr (x)\

N∐
i=1

B
�h
ρ(pi)

is a manifold with boundary. Consider the distance function dx : S → R,y 7→ d(x,y). As this de�nes a metric on
S, dx is 1−Lipschitz continous, and by the co-area formula [8], we obtain

areah(B
h
r (x)) >

∫
d−1
x ([0,r])\

∐N
i=1B

�h
ρ(pi)

volh

>
∫
d−1
x ([0,r])\

∐N
i=1B

�h
ρ(pi)

‖∇dx‖h volh

>
∫r
0

`h

(
d−1
x (t)\

N∐
i=1

B
�h
ρ(pi)

)
dt.

Hence

areah(B
h
r (x)) >

∫r
0

`h

(
d−1
x (t)\

N∐
i=1

B
�h
ρ(pi)

)
dt,

while letting ρ→ 0 we obtain

areah(B
h
r (x)) > A(r) :=

∫r
0

`h
(
d−1
x (t)

)
dt.

From the isoperimetric inequality it follows that

d

dt

∣∣∣
r=r′

A(r) = `h(d
−1
x (r ′)) >

1√
�C

√
areah(Br′(x)) >

1√
�C

√
A(r ′).

Separating the variables and integrating with respect to r ′ over the full measure set of noncritical values of dx
yields

2
√
A(r) >

1√
�C
r.

Hence areah(Br(x)) > A(r) > r2/(4 �C).

The next corollaries follow from Theorem 113.

Corollary 114. Let (W, J0) be as above and δ > 0. Let g0 be a Hermitian metric for J0. Then there exist

constants C6, ε2 > 0, such that for all JPs−holomorphic curves (u,R,P), all r ∈ (0, ε2/2), and all x ∈ [−R,R]×S1
satisfying Bhur (x) ⊂ u−1(W−δ

g0
) ∩ ([−R,R]× S1\∂([−R,R]× S1)), we have

areahu(B
hu
r (x)) > C6r

2.

Proof. Let C5, ε1 > 0 be as in Corollary 112. Pick a JPs−holomorphic curve (u,R,P). For any compact subset
K ⊂ [−R,R]× S1 with K ⊂ u−1(W−δ

g0
) and diamhu(K) 6 ε1,

areahu(K) 6 C5`
2
hu

(∂K).

Pick r ∈ (0, ε1/2) and some x ∈ S such that Bhur (x) ⊂ u−1(W−δ
g0

)∩ ([−R,R]×S1\∂([−R,R]×S1)). By Theorem 113
it follows that areahu(B

hu
r (x)) > C6r

2 for some constant C6 = 1/(4C5) and ε2 = ε1.
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We apply this result to the whole symplectisation R×M. On R×M recall that J0 is a cylindrical almost complex
structure with the Hermitian metric g0, and that J0 and g0 are R−invariant.

Corollary 115. There exist constants C7, ε3 > 0, such that for all JPs−holomorphic curves (u,R,P), all

r ∈ (0, ε3/2) and all x ∈ ([−R,R]×S1\∂([−R,R]×S1)) satisfying Bhur (x) ⊂ ([−R,R]×S1\∂([−R,R]×S1)), we have

areahu(B
hu
r (x)) > C7r

2.

Proof. The translations in the R−coordinate are isometries of all metrics gρ. Consider W0 := [−2, 2] ×M and
W1 = [−1, 1] ×M. Let δ := distg0(∂W0,W1) > 0 yielding W1 ⊂ W−δ

0 . For the data W0,W−δ
0 , J0 and g0 apply

Corollary 114, and obtain the constants C6, ε2 > 0 such that for all JPs−holomorphic curves (u,R,P) satisfying
Bhur (x) ⊂ u−1(W−δ

0 )∩ ([−R,R]× S1\∂([−R,R]× S1)) for all r ∈ (0, ε2/2) and all x ∈ ([−R,R]× S1\∂([−R,R]× S1)),
areahu(B

hu
r (x)) > C6r

2. Set �ε2 := infτ∈[−C,C] diamgρ(W1) > 0 and ε3 := min{ε2
2
, �ε2

2
, �ε2
C6

}. Let (u,R,P) be a

JPs−holomorphic curve and pick r ∈ (0, ε3/2) and x ∈ ([−R,R]×S1\∂([−R,R]×S1)) such that Bhur (x) ⊂ ([−R,R]×
S1\∂([−R,R] × S1)). We get diamg0(u(B

hu
r (x))) 6 diamu∗g0(B

hu
r (x)) 6 C6diamhu(B

hu
r (x)) 6 2rC6 6 ε3C6 6 ε2.

Thus there exists a translation such that after composing it with u we obtain u(Bhur (x)) ⊂ W1 ⊂ W−δ
0 . By

Corollary 114, the proof is �nished.

The same results hold if we replace the parameter-dependent metric gρ de�ned by

gρ = dr⊗ dr+ α⊗ α+ dα(·, Jρ·)

by the parameter-dependent metric �gρ de�ned by

�gρ = ϕ ′(r) (dr⊗ dr+ α⊗ α) +ϕ(r)dα(·, Jρ·)

where ϕ : R→ [0, 1] satis�es ϕ(r) > 0 and ϕ ′(r) > 0 for all r ∈ R. By replacing gρ with �gρ in the de�nition of hu
and by straightforward computation we obtain

areahu(B
hu
r (x)) =

∫
B
hu
r (x)

volhu =

∫
B
hu
r (x)

u∗d(ϕα). (F.0.4)

Remark 116. Even though in Corollary 115 the metric �gρ is not R−invariant, the results established so far are
also valid for the family of metrics �gρ with some �xed function ϕ : R→ [0, 1] satisfying ϕ(r) > 0 and ϕ ′(r) > 0 for
all r ∈ R.

Using Corollary 115 we can prove the following

Corollary 117. There exist constants C7, ε3 > 0 such that for any JPs−holomorphic curve (u,R,P), any
r ∈ (0, ε3/2), and any x ∈ ([−R,R] × S1)\∂([−R,R] × S1) satisfying Bhur (x) ⊂ ([−R,R] × S1\∂([−R,R] × S1)), we
have

E(u|
B
hu
r (x)

;Bhur (x)) := sup
ϕ∈A

∫
B
hu
r (x)

u∗d(ϕα) > C7r
2.

Proof. Fix a function ϕ ∈ A such that ϕ ′(r) > 0 for all r ∈ R. By (F.0.4) and Corollary 115 there exists constants
C7, ε3 > 0 such that for any JPs−holomorphic curves (u,R,P) satisfying the hypothesis of Corollary 117 we have

E(u|
B
hu
r (x)

;Bhur (x)) >
∫
B
hu
r (x)

u∗d(ϕα) > C7r
2.
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The following version is also valid:

Corollary 118. There exist constants C8, ε4 > 0 such that for any JPs−holomorphic curve (u,R,P), any
r ∈ (0, ε4), and any x ∈ ([−R,R]× S1)\∂([−R,R]× S1) satisfying Bg0r (u(x)) ∩ u(∂([−R,R]× S1)) = ∅, we have

E(u|
u−1(B

g0
r (u(x)))

;u−1(Bg0r (u(x)))) > C8r
2.

Proof. First we prove that u(Bhur
C4

(x)) ⊂ Bg0r (u(x)), where C4 is the constant from (F.0.3). For y ∈ Bhur
C4

(x) we �nd

disthu(x,y) = inf
γ,γ(0)=x,γ(1)=y

∫1
0

‖ 
γ(t)‖hu dt 6
r

C4

.

and then

distg0(u(x),u(y)) = inf
η,η(0)=u(x),η(1)=u(y)

∫1
0

‖ 
η(t)‖g0 dt

6 inf
u◦γ,u◦γ(0)=u(x),u◦γ(1)=u(y)

∫1
0

∥∥∥ 
(u ◦ γ)(t)
∥∥∥
g0
dt

= inf
γ,γ(0)=x,γ(1)=y

∫1
0

‖ 
γ(t)‖u∗g0 dt

6 C4 inf
γ,γ(0)=x,γ(1)=y

∫1
0

‖ 
γ(t)‖hu dt

= C4disthu(x,y)

= r.

Hence, if Bg0r (u(x)) ∩ u(∂([−R,R]× S1)) = ∅, we obtain

u(Bhur
C4

(x)) ∩ u(∂([−R,R]× S1)) = ∅,

and further on,
Bhur
C4

(x) ⊂ ([−R,R]× S1)\∂([−R,R]× S1).

From Corollary 117 there exist the constants C7, ε3 > 0 such that for any JPs−holomorphic curve (u,R,P), any
r ∈ (0, ε3/2), and any x ∈ ([−R,R] × S1)\∂([−R,R] × S1) satisfying Bhur (x) ⊂ ([−R,R] × S1\∂([−R,R] × S1)),
E(u|

B
hu
r (x)

) > C7r
2. Set ε4 := C4ε3, and let (u,R,P) be a JPs−holomorphic curve, and r ∈ (0, ε4) and x ∈

([−R,R]× S1)\∂([−R,R]× S1) be such that Bg0r (u(x)) ∩ u(∂([−R,R]× S1)) = ∅. From the above considerations we
infer that Bhur

C4

(x) ⊂ ([−R,R]× S1)\∂([−R,R]× S1), and we end up with

E(u|
u−1(B

g0
r (u(x)))

;u−1(Bg0r (u(x)))) > E(u|
B
hu
r
C4

(x)
;Bhur

C4

(x)) > C7

r2

C2
4

.
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