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Abstract

In [12] it is suggested that due to topological reasons, a suitable modification of the holomorphic curve equation is
crucial for proving Weinstein conjecture in dimension three. In this regard, instead of the usual pseudoholomorphic
curves, the following H—holomorphic curves (here H stands for “harmonic”) are considered. For a closed contact
co-oriented 3—manifold (M, ), where o is the contact form, a closed Riemann surface (S, j) with complex structure
j, and a finite subset P C S, a smooth map u = (q, f) : S\? = R x M is called a H—holomorphic curve if

e df oj = J(f) o ydf,
f*aoj=da+vy,

holds, where 71, : TM — & is the projection along the Reeb vector field X, to the contact structure & = ker(«), |
is a dou—compatible almost complex structure on &, and y is a harmonic 1—form on S with respect to the complex
structure j, i.e. dy = d(y oj) =0. Moreover, it is assumed that the energy of u, defined by

E(u, S\P) := sup J @'(a)daocjAda-+ J ffdo
peAls $
is finite, where A ={¢@ : R — [0,1] | ¢’(r) > 0,Vr € R}. In [3], the proof of Weinstein conjecture in dimension three
is reduced to a compactness problem of certain moduli spaces for the H{—holomorphic curve equation. The aim of
the thesis is to analyze the compactness properties of the space of H{—holomorphic curves. As a matter of fact, we
give a positive answer the following question. Given a sequence of H—holomorphic curves (un, Sn,jin, Pn,yYn) With
the properties:

e the cardinality of the set of punctures P,, and the genus of S;, is constant;

e the [2—norm of v, defined by
||’YT1H?_2(S) = J Yn ©Jn AVn,

Sn

is uniformly bounded by a constant Cqy > 0;

e the energies E(up; S) are uniformly bounded by a constant Eq > 0;

is it possible to derive a notion of convergence and to describe the limit object? It should be pointed out that the
classical convergence results of Symplectic Field Theory (SFT) established in [6] and [7] cannot be applied here;
both versions rely on the monotonicity lemma, a result which is unknown for H{—holomorphic curves.
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Basic notions and main results



Chapter 1

Introduction

Let M be a closed, connected, 3—dimensional manifold and let « be a 1—form on M such that (M, «) is a contact
manifold. Denote by X, the Reeb vector field with respect to the contact form o« on M. There is a major interest
in describing the orbit structure of the dynamical system

X = Xa(x). (1.0.1)

In general, this is a very hard problem, and in particular, the question on the existence of periodic orbits is relevant.
A very influential conjecture on the existence of periodic orbits is due to A. Weinstein [22].

Conjecture 1. (Weinstein conjecture) Every Reeb vector field Xy on a closed connected 3—dimensional
contact manzifold (M, &) admits a periodic orbit.

Actually, the Weinstein conjecture which is formulated for contact manifolds of arbitrary odd dimension, was proven
by Taubes in dimension three [19]. There is however a strong version of the Weinstein conjecture [3], which is still
an open problem. To solve it, one is hoping to apply pseudoholomorphic curve techniques.

Conjecture 2. (Strong Weinstein conjecture) For every Reeb vector field X, on a closed connected 3—dimensional
contact manifold (M, ), there exists finitely many pertodic orbits xi : R/TiZ — M of period Ty > 0, for

i=1,..,n, so that
n

Z[Xi] - O)
i=1

where [xi] 1s the first homology class represented by the loop X.

An interesting feature of the Weinstein conjecture or the strong Weinstein conjecture is that it is closely related to
pseudoholomorphic curve theory for contact manifolds. Let us make this more precise. Denote by & = ker(«) the
contact structure and let 7ty : TM — & be the canonical projection along the Reeb vector field X,. Furthermore,
choose | : & — & as a du—compatible almost complex structure. Denote by | the extension of | to a R—invariant
almost complex structure on R x M by mapping 1 € TR to X, and X, to —1 € TR. Let (S,j) be a closed Riemann
surface and denote by P C S a finite subset whose elements are called “punctures”. The following definition is due
to Hofer in [12].

Definition 3. A proper map u = (qa,f) : S\P — R x M is called pseudoholomorphic if

J(u)odu=duojon S\? (1.0.2)
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and

J f*do < o0
S\P

is satisfied.

Remark 4. We have the following.

. By projecting onto the contact structure through 74, the pseudoholomorphic curve equation ((1.0.2)) can be

written as
medfoj =7J(u)omydf
f*faoj =da

From the second equation of ({1.0.3) it is apparent that f*« o j defines the trivial cohomology class.

(1.0.3)

. The quantity

J f*de
S\P

will be referred to as the dx—energy and denoted by Eg.(u;S\P). By local computation it can be shown
that the integrand f*d« is non-negative.

If P # () then the function a of a pseudoholomorphic curve u = (a,f) is unbounded in a neighborhood
of each puncture from p € P. To prove the unboundedness, assume that U is a closed neighborhood of
p in S\P such that a(U) c [—K,K] for some K > 0. Because uly is proper, (uly) *([-K,K] x M) = U
has to be compact which is a contradiction. In this case, the function a tends either to 400 or —oo in a
neighborhood of a puncture p € P. To show this, assume that this is not the case. Then there exists a point
p € P and two sequences {xn nen and {Ynlnen in S\P with the properties: lim, ,o xn = limp 0o Yyn = P,
lim, 0 a(xn) = 00, and lim,, o a(yn) = —oo. By continuity, there exists a sequence of points p,, € S\P
such that p,, — p and a(p,) = 0 for all n € N, while by properness, u ({0} x M) = a~1(0) is a compact
subset of S\P; this is a contradiction to the fact that p,, € a=1(0) and p,, — p € P. As a result, the set P
can be written as P = P I1 P, where P is the subset of punctures p € P at which the function a tends to +oco
in a neighborhood of p and P is the subset of punctures at which a tends to —oo.

. For a non-constant pseudoholomorphic curve u, the set of punctures P is not empty. Assume that P = (.

Then by Stokes theorem, the da—energy is zero, and so, the image of f lies in a Reeb trajectory. By the
maximum principle, the a coordinate is constant, and we have that f(p) = x(h(p)) for p € S . Here, x is a
Reeb trajectory, and h: S — S! if x is periodic and h: S — R if x is not periodic; in both cases, dh = 0. By
local computation it follows that h has to be constant. Hence u is constant and we are led to a contradiction.

. If u is a pseudoholomorphic curve and P # (), then u is non-constant.

. From the properness condition of Definition [3| the Hofer energy Ey of a pseudoholomorphic curve u, defined
by
Eg(u; S\P) = supJ u d(ea), (1.0.4)
peA JS\P

is finite, i.e.
Eu(u; S\P) < +o0.

Here, the set A consists of all smooth maps ¢ : R — [0, 1] with ¢’(r) > 0 for all r € R. To prove this assertion
we express the Hofer energy as

Ey(u; S\P) = sup J uw'd(pa) = sup U ¢@’(a)daocjA da-i—J
S\P S\P

(p(a)f*doc} , (1.0.5)
pEA peA S\P
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and note that ¢’(a)da oj A da is non-negative. Since the function ¢ is bounded by 1 and the dx—energy is
bounded, the term

J @(a)f*da
S\P

is bounded. What is left to show is that

supJ ¢'(a)daojAda
peAts\P

is bounded. To prove this result we employ the same arguments as in Lemma 5.15 from [6]. More precisely,
for a function ¢ € A we compute

J ¢'(a)daocjAda= Z lim J (p(a)f*oc—J @(a)f*de. (1.0.6)
S\ D4 (p) S\

n—o00
pe’P

The second term on the right hand side of is bounded since the dx—energy of u is bounded. To estimate
the first term on the right-hand side of we proceed as follows. We assume that the function ¢ has the
asymptotic @(r) — c4+ € [0,1] as T — Fo0. Let My, := a(Dy/n(p)) CR. Forp € P set Tnp = inf(My ),
for p € P set r,,p = sup(My,p), and define accordingly v := minpeﬁ(rn,p) and 17, = maxXpep(Tn,p).
Obviously, from the properness condition of Definition [3] 1f — 400 as n — co . Define now the following
sequence of functions
e(ry) ,r=r)
en(r) =< o) ,re(r,m)-

e(ry) ,r<Ty

At the points 1t we make this function smooth and still denote it by ¢,,. Since @’(r) > 0 for all r € R, we
have @, (1) < @(r) for all r € R. Furthermore, for every r € R,

lp(1) — @n (1) < €n,

where
en =max{lc” — ()], lc” — ()}

Obviously, €, — 0 as n — oo, and so,

/ . .
@ (a)daojAda= llmj
L\T " Z“HOO oD

pe?P 1) S\P
= Z lim J onl(a)ffo+ Z lim J onla)f o
p@”—"x’ oD 1 (p) pep T JoD 1 (p)
—J en(a)f*da
S\P
=o(r)) lim J o+ @(ry) lim J o
" Z*“_“’o dD 1 (p) " Zf”""o aD 1 (p)

pe?P

—J on(a)f*da.
S\P
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Moreover, by means of Stokes theorem,

J o
aD%(P)

for alln € N and all p € P. Hence,

<J' o+ J- fra
S\P oD (p)

J ¢l (a)daojAda< oo
S\

for all n € N. Since ¢/, is a monotone sequence converging pointwise to ¢’, and the quantity daoj /A da is
non-negative, the monotone convergence theorem gives

J (p]'i(a)daoj/\daﬁj ¢'(a)daojAda
S\P S\P

as n — oo.

The next result which is due to Hofer [1I] shows that the Weinstein conjecture is equivalent to the existence of a
non-constant pseudoholomorphic curve. For this reason, throughout this thesis, we assume that all periodic orbits
are non-degenerate. This means that for every periodic orbit x of period T, the linear map d$§(x(0)) : &x(0) = &x(T)
does not contain 1 in its spectrum.

Theorem 5. For the closed, 3—dimensional contact manifold (M, &), the associated Reeb vector field X, has
a pertodic orbit if and only if the nonlinear partial differential equation has a non-constant solution
of finite Hofer energy.

Having a solution u of with finite Hofer energy, a periodic orbit of the Reeb vector field X, can be obtained
by investigating the local behavior of u in a neighborhood of a puncture. In this regard, it has been shown that a
non-constant solution of with finite Hofer energy is asymptotic to a periodic orbit of the Reeb vector field
X« in a neighborhood of a puncture [I3]. To explain how periodic orbits of X, are related to pseudoholomorphic
curves, let u: S\P — R x M be a pseudoholomorphic curve in the sense of Deﬁnition and let p € P. A sufficiently
small neighborhood of p in S\ can be biholomorphically identified with [0, c0) x S! with respect to the standard
complex structure i. Then there exists a periodic orbit x of period |T| # 0 of X, such that

a(s,t)

lim f(s,t) =x(Tt), and lim =T in C*®(SY),

S—00 s—00 S

where (s,t) are the coordinates on [0,00) x S*. It should be pointed out that the assumption on a non-empty set
of punctures is essential for the existence of a non-constant solution of the nonlinear partial differential equation
and so of the existence of a periodic orbit of the Reeb vector field X,,.

There is one obvious question which should be addressed. Why does one replace the problem dealing with the
behavior of an ordinary differential equation (i.e. finding periodic orbits) by the apparently much more sophisticated
question about the existence of a certain solution for a nonlinear first order elliptic partial differential equation?
The reason is the following. Due to Darboux theorem in the contact setting, periodic orbits of the Reeb vector field
X are not completely contained in such a Darboux chart. Thus the reason for the existence of periodic orbits of
the Reeb vector field X, has to be global and linked with the topology of the manifold M and the Reeb condition
of the vector field X,. For the moment it is very promising to study the orbit structure of the dynamical system
as described in or more precisely the Weinstein conjecture in dimension three, with pseudoholomorphic
curve methods. The pseudoholomorphic curve problem exhibits an enormous amount of structure and helps to
view the Weinstein conjecture from a global point of view. So far, a proof of the Weinstein conjecture with
pseudoholomorphic curve techniques is unknown. In the following we will sketch a strategy suggested by Hofer [12]
and developed further by Abbas et al. [3].
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In [12] Hofer suggested an interesting modification of equation (|1.0.3)), which depends on the genus of the domain;
in the case of genus 0, the old equation is obtained. In this modified version, f*o o j does not represent the trivial
cohomology class, but rather some non-trivial cohomology class. Hence f*«oj in the second equation of (1.0.3]) can

be replaced by

d(f*ooj) =0.
It turns out that if we insist on keeping the specific behavior of the pseudoholomorphic curve near the punctures
(which is essential for the existence of a periodic orbit of X) we have to require that the cohomology class of f*xoj
is trivial on a punctured neighborhood of each puncture. Thus in a neighborhood of each puncture we can still
write f*aoj = da. As in [12] we will call (a,f) a local lift of f in a neighborhood of a puncture. This additional
cohomology condition can be formulated as

[f*aoj] € T"HY(S; R),

where T: S\P < S is the inclusion. Hence we have replaced the second equation f*xoj = da of (1.0.3) by the two
requirements d(f*ocoj) =0 and [f*acoj] € T*H!(S;R). We point out that these two conditions do not involve the
R—coordinate a from u = (a, f). Summing up, the modification of the partial differential equation (|1.0.3]) are

Definition 6. A smooth map f: S\P — M is called H—holomorphic if

the map f is non-constant; (1.0.7)
mxdf 0§ = J(u) o e df on S\P; (1.0.8)
d(f*ocoj) =0 on S\P; (1.0.9)
[f*aoj] € T"HY(S; R); (1.0.10)
near each puncture a local lift (a, f) is proper; (1.0.11)
J f*da < oc0. (1.0.12)
S\P

Note that if S is a Riemann sphere (of genus 0) we have H!(S;R) = 0, and so, these equations are equivalent to the
old ones and the local analysis of such a solution remains the same. Let us describe an equivalent definition of this
modified pseudoholomorphic curve equation which is much more usable and will be used throughout this thesis.
Conditions (1.0.9) and ([1.0.10)) imply that

[ffooj]l = "]
for a specific p] € HY(S;R). Here 1 is a closed 1—form on S, and due to the Hodge theorem, which states that
H(S;R) = fJ-le (S) where f]-fjl (S) is the vector space of harmonic 1—forms with respect to the complex structure j on
S, we can assume P to be a harmonic 1—form on S. Hence we obtain [f*« o j] = [t*{], where T*1 is a harmonic
1—form on S\P. Consequently, there exists a function a : S\P — R which is unique up to addition by a constant
such that
f*ooj=da+ T on S\P,

where T is a harmonic 1—form. In this regard, the following definition makes sense.

Definition 7. A smooth and proper map u = (q,f) : S\? — R x M with a bounded Hofer energy (Eg(u;S\P) <
+00) is called H—holomorphic if it satisfies the equations

medfoj =]J(u)omydf

oo —daty n S\P (1.0.13)

for a harmonic 1—form y € J{jl(S).
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Remark 8. From the above discussion it is apparent that equations — imply . Conversely,
every smooth map u = (q,f) : S\P — R x M satisfying f*« 0j = da + v for a harmonic 1—form y € J—le(S) also
satisfies the conditions d(f*«o0j) = 0 and [f*a 0 j] € TH!(S;R). Thus, conditions — are equivalent
to . It is also obvious that condition ((1.0.11)) is equivalent to the properness condition of Definition [7} The
boundedness of the energy in Definitions |§| and |7| are equivalent. In the case P = () this is evident. For P # () this
can be seen as follows. Assume that f: S\P — M is a H—holomorphic curve in the sense of Definition @ Applying
the above procedure we obtain a smooth, proper map u = (a,f) : S\ — R x M satisfying equations and
having a finite dx—energy. To prove that the Hofer energy of u is bounded, we argue as in Remark 4l A general
representation for the Hofer energy of H{—holomorphic curves is

Eu(u; S\P) = sup J ¢@'(a)daocjAda— limJ @(a)yoj —|—J e(a)f*do]| . (1.0.14)
S\P aD, (p) S\P

T—0
pea peP

Obviously, ((1.0.14]) is similar to (1.0.5) for usual pseudoholomorphic curves, excepting the term

limJ' @(a)yoj.
pey 0 JoD.(p)

However, even in the case of H{—holomorphic curves, this additional term vanishes; from

J o(a)y o]
0D, (0)

where d(r) is the circumference of 0D (p) with respect to some Riemannian metric on S, and the fact that d(r) — 0
as v — 0 (the Riemannian metric is defined over the set of punctures P), the conclusion readily follows. Hence, the
Hofer energy of H—holomorphic curves can also be computed by means of . As aresult, the energy condition
implies the boundedness of the Hofer energy from Definition |7} Conversely, the boundedness of the Hofer
energy trivially implies the boundedness of the dox—energy. In the case P # () we deduce using Definition [7| that f
is non-constant. Indeed, if f is constant, the Hofer energy vanishes, and from

<j ey o3l < dr) [y oillcogs) »
0D, (0)

OzsupJ ¢'(a)daocjAda
PeEA JS\P

we get da = 0; thus, a is constant. Consequently, u is constant, and so, the properness property is contradicted.
Hence for P # (), Definitions |§| and |7] are equivalent.

In our treatment, the H{—holomorphic curves are defined as in Deﬁnition Note that the second equation of
has the same form as the old pseudoholomorphic curve equation up to addition by an element from J{jl(S) = R?9,
where g is the genus of the Riemann surface (S,j). Therefore, such solutions are called H{—holomorphic curves (H
standing for harmonic).

The modified pseudoholomorphic curve equation plays an important role in [3] and in particular, in [I]. In [3]
the authors initiated a program of proving the general Weinstein conjecture in dimension three with methods
of symplectic geometry, or more precisely with pseudoholomorphic curve techniques. Essentially, they reduced
the proof of the general Weinstein conjecture to a compactness problem of the moduli space of solutions of the
H—holomorphic curve equation. One of the main tools in [3] is based on the so-called Abbas solutions, which have
been constructed in [I]. Here the use of the H{—holomorphic curve equation is essential. To understand the main
motivation for the use of the H{—holomorphic curve equation we explain briefly the main results of [I], and how
the Abbas’ solutions fit in the context of [3]. In this way the motivation of the H{—holomorphic curve equation will
become apparent. We begin with some relevant definitions of [I].
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Definition 9. (Open Book Decompositions) Assume K C M is a link in M and that T: M\K — S! is a fibration
so that the fibers Fy := 7 !(9) are interiors of compact embedded surfaces Fy with boundary 0Fy = K, where ¥ is
the coordinate along K. We also assume that K has a tubular neighborhood K x D, D C R? being the open unit
disk, such that T restricted to K x (D\{0}) is given by t(3,r,d) = ¢, where (v, ¢) are polar coordinates on D. Then
we call T an open book decomposition of M, the link K is called the binding of the open book decomposition, and
the surfaces Fy are called the pages of the open book decomposition.

It is known that every closed, 3—dimensional, orientable manifold admits an open book decomposition. In par-
ticular, the notion of an open book decomposition on a contact, 3—dimensional manifold can be connected to the
contact data.

Definition 10. (Supporting Open Book Decomposition) If (M, «) is a closed, 3—dimensional contact manifold
and T an open book decomposition with binding K we say that T supports the contact structure & = ker(«) if there
exists a contact form o’ representing the same contact structure as « so that da’ induces an area-form on each fiber
Fs with K consisting of closed orbits of the Reeb vector field X4, and «’ orients K as the boundary of (Fg, do’).

The above contact form o’ will be referred to as the Girouz contact form. Every co-oriented contact, 3—manifold
(M, «) is supported by some open book [I0]. Now we will state the main result of [I].

Theorem 11. Let (M, «) be a closed 3—dimensional contact manifold. Then there exists a contact form
' =fax on M, where f: M — R 1is a smooth positive function such that the following holds. There exists

a smooth family (S,j-,Pr,ur = (ar, 1), Yr)rest of solutions of for a suitable compatible complex
structure ] : ker(«') — ker(a') such that

1. all maps f; have the same asymptotic limit K at the punctures, where K s a finite union of pertodic
orbits of the Reeb vector field Xy ;

L fort £, £.(S) N (S) =0

MAK = [ Jrest f<(S);

. the projection P onto S! defined by p € f(S) — T is a fibration;

S S U

. the open book decomposition given by (P,K) supports the contact structure ker(a'), and o’ is a Girouz
contact form.

Practically, Abbas constructed a supporting open book decomposition whose pages are images of solutions of the
H—holomorphic curve equation. His construction is as follows. Starting with a supporting open book decomposition
for the closed 3—dimensional contact manifold (M, o), which is possible due to Giroux [I0], a Giroux contact form,
which has a certain normal form near the binding, is constructed. By an argument established first by Chris Wendl
in [2I] and [20], the Giroux leaves are transformed to pseudoholomorphic curves by taking into account that one
has a confoliation form (x A dx > 0) instead of a contact form. Picking one Giroux leaf as starting point, a result
which enables to perturb the Giroux leaf into a H{—holomorphic curve, while at the same time transforming the
confoliation form into a contact form, is established. At this step the harmonic perturbation 1—form in the equation
(1.0.13) plays an essential role. Actually, a 1—dimensional local family of solutions of the H{—holomorphic curve
equation (and not just one) is constructed. Let us describe this step in more detail. Starting with a Giroux leaf
which is a solution of the pseudoholomorphic curve equation, the problem of finding a local 1—dimensional family
of leaves, which are solutions of the H—holomorphic curve equation, is transformed into a transversality issue of a
certain elliptic perturbed Cauchy-Riemann type operator and whose perturbation is a compact operator determined
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by the harmonic perturbation 1—form. This transformation is achieved by using the flow of the Reeb vector field
in a similar way as we do in Appendix [Bl Having on honest transversality result, the index of the linearization of
this operator has to be positive. If S has a genus different from 0, the index of this operator without considering
the harmonic perturbation is 2 — 2g; hence if g > 1, the index is non-positive and a transversality result cannot
be established. By adding the harmonic perturbation, the index of the unperturbed linearized Cauchy-Riemann
type operator changes by adding dim(ﬂ{jl(S)) = 2g. Thus its index is 2, and by dividing out the R—action in
the first coordinate of R x M, the transversality theorem enables the construction of a 1—dimensional family of
H—holomorphic curves. At this stage, the H—holomorphic curve equation plays an essential role. As a final step, a
compactness result which extends the local 1—dimensional family of H{—holomorphic curves into a global S —family
is proved; this in turn will serve as the foliation of the open book. The S!—family of solutions is referred as Abbas
solutions [3].

We explain now the use of Abbas solutions for proving the general Weinstein conjecture in the program described
in [3]. Here, the generalized Weinstein conjecture is proved for a planar contact structure, i.e. when the pages
of the open book decomposition have genus 0, using the classical SF'T compactness result. The main idea of
proving the general Weinstein conjecture is the following. Starting with a closed contact 3—dimensional manifold
(M, o), a cobordism between « and the Giroux contact form «’ is introduced. For the Giroux contact form o/,
Abbas solutions can be constructed following the guidelines above. By the local behaviour near punctures, we
know that the H{—holomorphic curves are asymptotic to Reeb orbits; thus the generalized Weinstein conjecture
for o’ readily follows. In the next step, the cobordism and the classical SF'T compactness result is used to deform
the Abbas solutions into H{—holomorphic curves with respect to the initial contact form «. If a compactness
result for H—holomorphic curves is established, the program can be adapted to prove the generalized Weinstein
conjecture for genus different that 0. In this thesis we describe a compactification of the moduli space of finite
energy H—holomorphic curves. However, we are only able to do this under certain conditions.

In the case of vanishing harmonic perturbation 1—form, there exists a canonical SF'T compactness result which was
established in [6], and in parallel, in [7]. Even though these works describe almost the same result, the techniques
are different. In the following we sketch both techniques.

¢ In [6], the proof is based on the Deligne-Mumford convergence of stable Riemann surfaces, bubbling-off analy-
sis, and the results of Hofer et al. [14]. First, the concept of a pseudoholomorphic building, which serves as the
compactification of the moduli space of pseudoholomorphic curves in symplectizations, is introduced. Let us
sketch this concept, while for a detailed analysis, we refer to [6] and [2]. By the behavior of pseudoholomorphic
curves u = (qa,f) : S\P — Rx M in a neighborhood of the punctures P, i.e. its asymptotic, the set of punctures
P can be divided into two disjoint subsets. One subset P consists of positive punctures which correspond to
positive asymptotics of u, and the other subset P consists of negative punctures which correspond to negative
asymptotics of u. To the punctured surface S\P, a compact surface with boundary S” can be associated as
follows. The compact surface with boundary S” is obtained by blowing-up the punctures. Roughly speaking,
a circle is attached to the corresponding puncture. The boundary I" of S¥ consists of a finite disjoint union of
circles that can be divided into positive I' and negative I' boundary components corresponding to the charge
of the blow-up. By the asymptotic behavior of u near the punctures, f can be continously extended to S7.
This surface is referred to as the blow-up surface. Additionally, a finite number of pairs of points are chosen
on the punctured surface D = {d},d{,...,d;,d;} € S” and the pairs d/ ~ d{’ for i = 1,...,k are identified.
The set D is called the set of nodes and the identified pair d! ~ d{’ is called a node. The pseudoholomorphic
curve u is called a pseudoholomorphic building of height 1 if in addition, u(d{) =u(d{’) for alli=1,..., k.
Hence a pseudoholomorphic building of height N is a collection of N nodal pseudoholomorphic buildings
of height 1, such that the j—th pseudoholomorphic curve corresponds at the negative punctures to the same
Reeb orbits, while the (j — 1)—th pseudoholomorphic curve corresponds at the positive punctures. Note that
the extended M—components at the blow-up surface of each nodal pseudoholomorphic building of height 1
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glue togehter at the boundary circles according to their correspondence; hence a continous map is obtained.
The main result of [6] is the following. Starting with a sequence of pseudoholomorphic curves with uniformly
bounded Hofer energies, there exists a subsequence that converges in a certain way to a nodal pseudoholo-
morphic building of height N for some N € N. Here, the notion of convergence is defined on two subsets.
Essentially, on the thick part, due to the Thick-Thin decomposition [2], the sequence of pseudoholomorphic
curves is required to converge in C{>. , while on the thin part, the results of [14] are used to describe a C52,
as well as a C° convergence. The idea of the proof is now the following. Using bubbling-off analysis, uniform
gradient bounds are derived on the thick part of the surface, and so, elliptic regularity and application of
Arzela-Ascoli theorem yield a C{S.—convergence result on the thick part. The convergence on components
of the thin part, which by methods of hyperbolic geometry are conformaly equivalent to cusps or hyperbolic
cylinders, is performed using essentially the results of [14].

e While the analysis of the compactness in [6] is performed on the domain, the technique in [7] is different.
Although the definition of the pseudoholomorphic buildings and the notion of the convergence are the same,
the bubbling-off analysis is not performed on the domain; instead, the images 1, (S1,\P..) of the pseudoholo-
morphic curves in the symplectization R x M are considered. These are divided into the so-called essential
regions which can be regarded as compact manifolds with fixed boundaries, and cylindrical regions which
are like the components of the thin part and are conformaly equivalent to long hyperbolic cylinders. The
compactness on each of these components is then proved, and the results are “glued” together to obtain a
global convergence result. The convergence of the essential regions is established by the Gromov convergence
with free boundary, which essentially is the same as the Gromov convergence theorem for pseudoholomorphic
curves. For cylindrical components, the result of [14] is used to prove convergence.

In the following we briefly describe the strategy which is used to derive a notion of compactness in the H—holomorphic
curve setting. The integrand of the Hofer energy for a H{—holomorphic curve is not always non-negative. This is a
first difference to the classical SF'T compactness. In order to have an honest version of the energy we slightly change
the Hofer energy in order to make the integrands positive. For a H{—holomorphic curve u = (a, f) : S\P — R x M,
defined on a punctured closed Riemann surface S\P, where P C S is the set of punctures, we define the energy of
u as

E(u; S\P) = sup J (p’(a)daoj/\daJrJ f*do. (1.0.15)

peAJS\P S\P

In the analysis of compactness for H—holomorphic curves we will use as the notion of energy instead the
Hofer energy. Arguing as in Remark [8] it can be shown that

E(w; S\P) = Ex(w; S\P). (1.0.16)

However, if we restrict the domain of integration on subsets of S\ P, then in general, the Hofer energy is different from
the energy defined by . Also note that the integrand of the Hofer energy, when restricted to subsets of S\ P,
can be negative, wheras the integrand of the energy defined by is non-negative. The first term in ([1.0.15)) is
called the a—energy of u on S\P and will be denoted by E (u; S\P), while the second term is called the dox—energy
of u on S\P and will be denoted by E g, (u; S\P). Since u is H—holomorphic, by straightforward calculation it can
be shown that the integrands of the «— and da—energies are non-negative. It should be pointed out that in the
case of pseudoholomorphic curves, holds even on subsets of S\P. For the harmonic perturbation 1—form
v of a H—holomorphic curve defined on a Riemann surface (S,j), we define the [2—norm of y with respect to the
complex structure j by

IV IZ2s) ZLVOJ’/\Y- (1.0.17)

This quantity depends only on the complex structure j and the topology of the underlying surface S. In addition,
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for every isotopy class [c] which is represented by a smooth loop c the period and co-period of vy over [c] are

Py (lc]) :J Y (1.0.18)

C

and
S, ([c]) :J voj, (1.0.19)
C
respectively. Since y is a harmonic 1—form with respect to the complex structure j, the period and co-period do
not depend on the specific choice of the representative of the isotopy class. Let R;.; be the conformal modulus of
[c] as defined in [7]. The conformal period of 'y over c is defined by

Ty,le] = RperPy (le]), (1.0.20)
where the conformal co-period of vy over c is defined by

0y,lc] = Rpe1Sy (le]). (1.0.21)

These two quantities connect the topology of the surface, the harmonic 1—form vy and the conformal structure.
The significance of these two quantities will become apparent in Section when dealing with the convergence
issue. The main result of this thesis, which is stated in Theorem is the following. Starting with a sequence
of H—holomorphic curves (Sn,jn,Pn,Un = (an,fn),Yn) with uniformly bounded energies, uniformly bounded
L2 —norms of the harmonic perturbation 1—forms v, and uniformly bounded conformal periods and co-periods, we
will introduce a notion of convergence which is a generalization of the convergence of the classical SF'T compactness
theory. In this context, we will show that there exists a subsequence converging in the sense of Definition [31|to a
limit H—holomorphic curve which will be called stratified H—holomorphic building (see Definition .

In the following we give an outline of this thesis and a rough description of the techniques used in the proof of the
compactness result.

In Chapter 2| we review the basic concepts related to the compactness of H{—holomorphic curves. More precisely,
Chapter [2| is organized as follows. In Section [2.1| we present the Deligne-Mumford convergence theorem for stable
Riemann surfaces by following the analysis of [6] and [2]. We conclude this section by stating the Deligne-Mumford
convergence. In Section[2:2]we provide the necessary information on contact manifolds, as well as a precise definition
of H—holomorphic curves. By Proposition we recall a result similar to that established by Hofer et al. [13]
stating that the behavior of H{—holomorphic curves in a neighborhood of the punctures is similar to that of usual
pseudoholomorphic curves. This result will enable us to split the set of punctures into positive and negative
punctures, which in turn are used in Section to define a stratified H{—holomorphic building. This definition is
similar to that of pseudoholomorphic buildings given in [6], [2], and [7]; the difference is that we allow two points,
lying in the same level, to be connected by a finite length trajectory of the Reeb vector field. After defining this
object, we formulate Theorem which states that a sequence of H—holomorphic curves with uniformly bounded
energies, uniformly bounded [?—norms of the harmonic perturbations, uniformly bounded conformal period and
co-period posseses a subsequence that converges to a stratified H{—holomorphic building, in a C°_ and a C° sense.

loc

Essentially, the J{—holomorphic curves converge in Cfo. away from the punctures and certain loops that degenerate
to nodes, while the projections of the H{—holomorphic curves to M converge in C°. In addition we derive a notion
of level structure, which is similar to that from [6] and [7], and serves as a notion of C°—convergence for the
R—coordinates.

The proof of the main compactness result on the thick part with certain points removed, and on the thin part
and in a neighborhood of the removed points, are carried out in Sections [3.1] and of Chapter |3 respectively.
For the thick part, we use the Deligne-Mumford convergence and the thick-thin decomposition to show that the
domains converge in the Deligne-Mumford sense to a punctured nodal Riemann surface. By using bubbling-off

analysis and the results of Appendix @ (to generate a sequence of holomorphic coordinates that behaves well
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under Deligne-Mumford limit process) we prove, after introducing additional punctures, that the H—holomorphic
curves have uniformly bounded gradients in the complement of the special circles and certain marked points. By
using the elliptic regularity theorem for pseudoholomorphic curves and Arzela-Ascoli theorem we show that the
on the thick part with certain
points removed to a H—holomorphic curve with harmonic perturbation. This set of points is denoted by Z. This
result is similar to the bubbling-off analysis performed in [6]. However, in contrast to Lemma 10.7 of [6], we do not
change the hyperbolic structure each time after adding the additional marked point generated by the bubbling-off
analysis. The thin part is decomposed into cusps corresponding to neighborhoods of punctures and hyperbolic

o0

H—holomorphic curves together with the harmonic perturbations converge in C9,

cylinders corresponding to nodes in the limit. As the perturbation harmonic 1—forms are exact in a neighborhood
of the punctures or the points that were removed in the first part, by means of a change of the R—coordinate,
the H—holomorphic curves are turned into usual pseudoholomorphic curves on which the classical theory [6] or [7]
is applicable. The case of hyperbolic cylinders is more interesting because the difference from the classical SFT
compactness result is evident. Due to a lack of the monotonicity lemma, we cannot expect the H—holomorphic
curves to have uniformly bounded gradients, and so, to apply the classical SF'T convergence theory. To deal with
this problem we decompose the hyperbolic cylinder into a finite uniform number of smaller cylinders of two types:

e type oco: cylinders having conformal modulus tending to infinity but dox—energies strictly smaller than h;

e type b;: cylinders having bounded modulus but da—energies possibly larger than h.

The cylinders of type co and b; appear alternately, while here the constant h > 0 is defined by
h:= min{|P; — Pa| | P1, P2 € Py, P1 # P2, P1, Py < Eo}, (1.0.22)

where P is the action spectrum of « as defined in [14] and Eq > 0 is the uniform bound on the energy. Convergence
results are derived for each cylinder type, and then glued together to obtain a convergence result on the whole
hyperbolic cylinder. As cylinders of type co have small dx—energies, we prove by the classical bubbling-off analysis,
that the H{—holomorphic curves have uniformly bounded gradients. To turn these maps into pseudoholomorphic
curves, we perform a transformation by pushing them along the Reeb flow up to some specific time characterized
by the uniformly bounded conformal period. These transformed curves are now pseudoholomorphic with respect
to a domain-dependent almost complex structure on M, which due to the uniform boundedness of the conformal
period varies in a compact set. In a final step, we use the results established in Appendices [B] and [E] to prove a
convergence result (C°. and C°) for cylinders of type co. In the case of cylinders of type b; we proceed as follows.
Relying on a bubbling-off argument, as we did in the case of the thick part, we prove that the gradient blows
up only in a finite uniform number of points and remains uniformly bounded on a compact complement of them.
In this compact region we use Arzela-Ascoli theorem to show that the H{—holomorphic curves together with the
harmonic perturbations converge in C* to some H—holomorphic curve. What is then left is the convergence in
a neighborhood of the finitely many punctures where the gradient blows up. Here, a neighborhood of a puncture
is a disc on which the harmonic perturbation can be made exact and can be encoded in the R—coordinate of the
H—holomorphic curve. By this procedure we transform the H—holomorphic curve into a usual pseudoholomorphic
curve defined on a disc D. By the C*®—convergence established before on any compact complement of the punctures,
we assume that the transformed curves converge on an arbitrary neighborhood of dD. Then we use the results of
[7], especially Gromov compactness with free boundary, to obtain a convergence results for cylinders of type b;.
This part uses extensively the results established in Appendix [A] and Appendix [E]

In Chapter [4| we discuss the condition imposed on the conformal period and co-period, that is, for a sequence of
H—holomorphic curves, the conformal period and co-period have to be uniformly bounded. The conformal period
and co-period can be seen as a link between the conformal data and the topology on the Riemann surface as well
as the harmonic perturbation 1—form. Without these conditions, the transformation performed in Appendix
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cannot be established. The reason is that the domain-dependent almost complex structure, which was constructed
in order to change the H{—holomorphic curve into a usual pseudoholomorphic curve, does not vary in a compact
space, and so, the results established in [14] cannot be applied. By means of a counterexample stated in Proposition
we show that the condition on the uniform bound of the conformal period is not always satisfied. It should
be pointed out that Bergmann [5] claimed to have established a compactification of the space of H—holomorphic
curves by performing the same transformation as we did in Appendix |B i.e. by pushing the M—component of the
H—holomorphic curve by the Reeb flow up to some specific time determined by the conformal period, and then by
assuming that the conformal period can be universally bounded by a quantity which depends only on the periods
of the harmonic perturbation 1—form (note that if the [?—norm of a sequence of harmonic 1—forms is uniformly
bounded then their periods are also uniformly bounded). In this context, Proposition |57 contradicts his argument.



Chapter 2

Definitions and main results

In this chapter we present the basic concepts related to the compactness of H—holomorphic curves. In particular, we
provide the Deligne-Mumford compactness in order to describe the convergence of a sequence of Riemann surfaces,
introduce the concept of a stratified H{—holomorphic buildings of height N, which serves as limit object, and discuss
the convergence of such maps. The main result of this chapter is summarized in Theorem

2.1 Deligne-Mumford convergence

In this section we review the Deligne-Mumford convergence following the analysis given in [6] and [2].

Consider the surface (S,j, MIID), where (S,j) is a closed Riemann surface, and M and D are finite disjoint subsets
of S. Assume that the cardinality of D is even. The points from M are called marked points, while the points
from D are called nodal points. The points from D are organized in pairs, D ={d, d;, d},ds,...,d;, d}. A nodal
surface (S,j, MIID) is said to be stable if the stability condition 2g+[MUD| > 3 is satisfied for each component of
the surface S. In our analysis we do not deal with the stability of Riemann surfaces; this is only a technical condition
and can always be achieved by adding additional marked points to M. The stability ensures the convergence of
the domains of H{—holomorphic curves; for more details we refer to [2]. With a nodal surface (S,j, M IT D) we can
associate the following singular surface with double points,

Sp=S/Hdl ~dl'|i=1,..,k}

The identified points d{ ~ d{’ are called nodes (see Figures and [2.1.2). The nodal surface (S,j, MII D) is said
to be connected if the singular surface Sy is connected. For each p € M II D of a stable nodal Riemann surface

Figure 2.1.1: The surface S with marked points M = {mj, ..., ms} and nodal points D = {d;, d;'}.

14
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Sp

Figure 2.1.2: The singular surface Sp with one node d; = d] ~ dJ’.

(S,j, M II D), we define the surface SP with boundary as the oriented blow-up of S at the point p. Thus SP is the
circle compactification of S\{p}; it is a compact surface bounded by the circle I, = (T,S\{0})/R.. The canonical
projection 7 : SP — S sends the circle I, to the point p and maps SP\I}, diffeomorphically to S\{p}. Similarly,
given a finite set M’ = {p1,...,px} € M II D of punctures, we consider a blow-up surface S™’ with k boundary
components [y, ..., . It comes with the projection 7 : S™' — S, which collapses the boundary circles I, ..., I to
points p1, ..., px and the maps SM'\ ]_[].le I diffeomorphically to $ = S\M'.

The arithmetic genus g of a nodal surface (S,j, M II D) is defined as

1 &
9= §|'D‘_b0+;9i+1v
where |D| = 2k is the cardinality of D, bg is the number of connected components of the surface S, and Zibil gi
is the sum of the genera of the connected components of S. The signature of a nodal curve (S,j, M II D) is the
pair (g, i), where g is the arithmetic genus and p = [M|. A stable nodal Riemann surface (S,j, M II D) is called
decorated if for each node there is an orientation reversing orthogonal map

v T = (T, SON/R = I; = (Tq, S\O)/R . (2.1.1)

27id 727ﬁ8r(

For the orthogonal orientation reversing map r;, we must have that ri(e p)=e p) for all p € T;.

In the following we argue as in [6]. Consider the oriented blow-up S at the points of D as described above.
The circles T'; and T; defined by are boundary circles for the points d{, d!’ € D. The canonical projection
m:SP — S, collapsing the circles T'; and I'; to the points d/ and d{’, respectively, induces a conformal structure
on Si)\]_[ll1 Ty IIT;. The smooth structure of Si)\]_[ll1 Ty IIT; extends to S”, while the extended conformal
structure degenerates along the boundary circles T'; and T'; (see Figure . Let (S,j, M II D, r) be a decorated
surface, where v = (11,..., 7). By means of the mappings 1;,1=1,...,k, I'; and I'; can be glued together to yield a
closed surface S". The genus of the surface S”°" is equal to the arithmetic genus of (S,j, M IT D). There exists a
canonical projection p : S®>" — S, which projects the circle Iy = {T,T;} to the node d; = {d{,d{'}. The projection
p induces on the surface S”" a conformal structure in the complement of the special circles I'; (see Figure ;
the conformal structure is still denoted by j. The continous extension of j to SP>" degenerates along the special
circles T3.

According to the uniformization theorem, for a stable surface (S, j, MIID) there exists a unique complete hyperbolic
metric of constant curvature —1 of finite volume, in the given conformal class j on S = S\(M II D). For details
see [2]. This metric is denoted by WP Each point in M II D corresponds to a cusp of the hyperbolic metric
WMID - Assume that for a given stable Riemann surface (S,j, M IT D), the punctured surface S = S\(M II D) is

endowed with the uniformizing hyperbolic metric h)»MH1?P,
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Figure 2.1.3: The surface S with boundary circles I'; and T; and the projection 7r: S? — S. 7t maps SP\(I'; IIT;)
diffeomorphically to S\{d;, d;'}.

S’.D,r

Figure 2.1.4: The surface and the projection p : $P7 — Sp. p maps SP>"\I diffeomorphically to Sp\d;.
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Fix § > 0, and denote by
Thicks (S, WMD) — {x e$lplx) = 5}

and

Thing (S, WMD) — {x eS| px) < 5},

the 5—thick and d—thin parts, respectively, where p(x) is the injectivity radius of the metric hJ>*™I? at the point
x € S. A fundamental result of hyperbolic geometry states that there exists a universal constant g = sinh (1) such
that for any 5 < 8o, S can be written as the disjoint union of Thicks(S, W"MI?) and Thins (S, KW"™?), and each
component C of Thing (S, hJ:I?P) is conformally equivalent either to a finite cylinder [—R, R] x S if the component
C is not adjacent to a puncture, or to the punctured disk D\{0} = [0, 00) x S! if it is adjacent to a puncture (see,
for example, [15] and [2]). Each compact component C of the thin part contains a unique closed geodesic of length
2p(C) denoted by I'c, where p(C) = infycc p(x). When considering the d—thick—thin decomposition we always
assume that 6 is chosen smaller than §g.

The uniformization metric W can be lifted to a metric B on $7 := SP-T\M. The lifted metric degen-
erates along each circle Tj in the sense that the length of I is 0, and the distance of I} to any other point in §D.r
is infinite. However, we can still speak about geodesics on SD:" which are orthogonal to I}, i.e., two geodesics rays,
whose asymptotic directions at the cusps d{ and d{’ are related via the map r;, and which correspond to a compact
geodesic interval in SP»7 intersecting orthogonally the circle I;. It is convenient to regard Thins(S, h*1?) and
Thicks (S, W-™MIP) as subsets of SD.r. This interpretation provides a compactification of the non-compact compo-
nents of Thins (S, W"MI?) not adjacent to points from M. Any compact component C of Thing (S, WMD)  §Pr
is a compact annulus; it contains either a closed geodesic I'c, or one of the special circles, still denoted by I'c, which
projects to a node (as described above).

Consider a sequence of decorated stable nodal marked Riemann surfaces (Sy,jn, My II Dy, 11, ) indexed by n € N.

Definition 12. The sequence (Sy, jn, MuIID;, 1) is said to converge in the Deligne-Mumford sense to a decorated
stable nodal surface (S,j, MIID, 1) if for sufficiently large n, there exists a sequence of diffeomorphisms ¢, : ST'7 —
SPmTm with ©n (M) =M, such that the following are satisfied.

1. For any n > 1, the images @, (I}) of the special circles Iy ¢ ST7 for i = 1, ..., k, are special circles or closed
geodesics of the metrics W MnIPn on §PriTn - All special circles on S~ ™ are among these images.

2. hy, — hin C (SP\ ]_[f;l M), where h,, := @* R nMnlIPn and h = R

loc

3. Given a component C of Thins (S, W"MI?) « SP:7 containing a special circle Ty, and given a point ¢; € Iy, let
dI" be the geodesic arc corresponding to the induced metric h,, = @=hWnMalIDn for any n > 1, intersecting
I} orthogonally at the point ci, and having the ends in the 6—thick part of the metric h,,. Then, in the limit
n — oo, (C N8 converge in C° to a continous geodesic for a metric h passing through the point c;.

Remark 13. In view of the uniformization theorem, Condition 2 of Definition [12|is equivalent to the condition

k
Oijn —+j in %, (s’”\]_[ n) ,

i=1

which in turn, by the removable singularity theorem, is equivalent to

k
©5jn —j in C2. <SD’r\H ri> .
i=1
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In this context, a sequence (Sy,jn, Mn II Dy,) is said to converge in the Deligne-Mumford sense to (S,j, M II D)
if there exists a sequence of decorations 1, for (Su,jn, Mn II Dy,) and a decoration v of (S,j, M II D) such that
(Snyjn, My IT Dy, 1) converges to (S,j, M II D,r) as Definition We are now in the position to state the
Deligne-Mumford convergence theorem.

Theorem 14. (Deligne-Mumford) Any sequence of nodal stable Riemann surfaces (Sn,jn, Mn I Dy, ) of
signature (g, ) has a subsequence which converges in the DeligneMumford sense to a decorated nodal stable
Riemann surface (S,j, MIID,r) of signature (g, 1).

Corollary 15. Any sequence of stable Riemann surfaces (Sn,jn,Mn) of signature (g,u) has a subsequence
which converges in the Deligne-Mumford sense to a decorated nodal stable Riemann surface (S,j, M1 D,r)
of stgnature (g, u).

2.2 H—holomorphic curves

Let (M, &) be a 3—dimensional compact manifold equipped with a contact form «, which by definition, is a 1—form
on M such that o /A d is a volume form. Associated to a pair (M, o) we have the contact structure & = ker(«).
The contact structure is a 2—dimensional subbundle of TM and d«|s defines on any fiber a symplectic form. Hence
& — M is a symplectic vector bundle with the symplectic form d«. Furthermore, there exists a unique vector field
X, called the Reeb vector field, defined by the two conditions

tx,x=1and tx, do=0.

The vector field X, spans a line bundle with global section X,. Thus, a contact form « on M defines a natural
splitting

TM=XRPE
of the tangent bundle into a line bundle and a symplectic vector bundle (, d«).

A compatible complex structure | for the contact structure £ — M is a smooth fiber preserving fiberwise linear
map ] : &£ — & such that J2> = —1 and being compatible with the symplectic form do on &. As a result

defines a smooth fiberwise metric on the vector bundle & — M and

g(p)(v,w) == afp)(v)ee(p)(w) + dex(p) (v, J (P) e W)

for p € M and v,w € T,M defines a smooth metric on M, where 7 : TM — & is the projection along X. It is
well known that the space of all such J’s equipped with the C*—topology is contractible.

Given | as above, there is an associated almost complex structure | and an associate Riemann metric g on R x M
defined by

I((l, f)(h) k) = (_‘X(f) (W)7 ](f) (T[ch) +VX¢X(f))7
gla, f)((v,w), (v, W) :== w' + a(w)a(w’) + doe(taw, J(f)taw’), (2.2.1)
where (a,f) € R x M, (v,w), (v/,w’) € Tiq,n(R x M).

In our treatment we assume that all periodic orbits are non-degenerate. This means that for every periodic orbit
x of period T, the linear map d¢§(x(0)) : & o) — &x(r) does not contain 1 in its spectrum. Consider now a
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5—tuple (S,j, P, u,y) consisting of a closed Riemann surface (S,j), a finite subset P C S called the set of punctures,
a smooth map u = (q,f): S — R x M, where S = S\P, and a 1—form vy € J{}(S), where J}(S) represents the space
of harmonic 1-forms on S with respect to j. The energy E(u; S) of u is defined as in ((1.0.15).

Definition 16. The 5—tuple (S,j, P, u,v) is called a H—holomorphic curve with harmonic perturbation y if

medfoj =]Jom,df on S
(f*a)oj =da+vy on$S (2.2.2)
E(w;S) < +4oo.

Here we consider a more general setting as in Definition [7]in the sense that the properness requirement is dismissed.
The L?>—norm, period, co-period, conformal period and conformal co-period of the harmonic 1—form v is defined
as in (1.0.17)), (1.0.18)), (1.0.19), (1.0.20) and (1.0.21)). Note that the closedness of y and y oj implies that all these
quantities depend only on the isotopy class of c.

Remark 17. Equation ([2.2.2)) can be also written as

oju=g

with )
7Tu = 5(du+j(u) oduoj) (2.2.3)

and

1 0 .
9—5 (—Y®6T,—WOJ)®ch>

being an anti-holomorphic section of the bundle Hom(u*T(R x M)) — S.
Locally, with respect to holomorphic coordinates s + it, Equation (2.2.2)) takes the form

s 0sf + J(U) oy 0tf =0
o(0sf) =—0ta — Yt (2.2.4)
o(0+¢T) =0sa+7Ys

where Y = ysds + y¢dt. It is important to note that the integrands of the «— and dx—energies are non-negative.
Indeed, in the local holomorphic coordinates s + it, we have

¢'(a)dacjAda=¢'(a)[(dsa)® + (3:a)?] ds A dt

and
o = [Hm@ﬁ“é} + ||naatﬂ|’g]} ds A dt.

Remark 18. If Eqo(u;S) = 0, then f(S) is contained in some trajectory of the Reeb vector field X.

To describe the behavior of a H—holomorphic curve near the puncture from P we need some auxiliary tools. One
of these is the lemma about the removal of singularity. Consider a H—holomorphic curve (S,j, P, u,v), and assume
that the set of punctures P C S is not empty. For p € P, consider a neighborhood U(p) = U C S, which is
biholomorphic to the standard open disk D C C, such that, under this biholomorphism, the point p is mapped to
0.

First we mention a removable singularity result for a harmonic 1—form 7y defined on the punctured unit disk D\{0}.

Lemma 19. Ify is a harmonic 1—form defined on the punctured disk D\{0}, and having a bounded L2—norm
with respect to the standard complez structure i on D, i.e. ||Y||2L2(D\{o}) < oo then vy can be extended across
the puncture.
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Proof. With z = s + it = (s, t) being the coordinates on D, we express vy as y = f(s,t)ds + g(s,t)dt, where
f,g : D\{0} — R are harmonic functions. As y is harmonic with respect to the standard complex structure {i,
F:=f+1ig:D\{0} — C is a meromorphic function with a bounded [?—norm, i.e.,

J [F(s, t)[Pdsdt = J (If(s, ) +1g(s, 1)) dsdt < oo.
D\{0} D\{0}

Consider the Laurent series of F,
o0
Fz) = )  Fuz",
n=-—oo

27tin®

where F, € C. Since the Laurent series converges in C)_ to F and e is an orthonormal system in L%(S!), we

infer that for every fixed 0 < p < 1,

o0

1
| Foermopae = 3 Faren,
0

n=—oo

Consequently, due to Fubini’s theorem,

1 o
J [F(z)?dsdt = 27‘[J p|F(pe?™9)2dodp = 27(J Z [Fnl?p?™ 1dp.
D\{o} (0,1]xS?

0 n=—oo

As the terms in the sum are all non-negative, it follows that

1

J [F(z)]*dsdt > 2ﬂ|Fn|2J 0¥ dp
D\{0} .

for all n € Z. However, for n < 0 and because of

1
J p2n+1dp = o0,
0

this yields a contradiction to the finiteness of the L>—norm of F. Hence F_,, = 0 for all n > 1, and so, F can be
extended to a holomorphic function on D. Therefore v can be extended across the puncture.

O
A removable singularity result for H{—holomorphic curves is the following

Proposition 20. Let (D,1,{0},u,v) be a H—holomorphic curve defined on D\{0} such that the image of u lies
n a compact subset of R x M. Then u extends continously to a H—holomorphic map on the whole disk D.

Before proving Proposition [20| we state the following lemma.

Lemma 21. Let u = (a,f): [0,00) xS = RxM be a H—holomorphic curve with harmonic perturbation y with
respect to the standard complez structure i on the half cylinder [0, 00) x S*. Assume that E(u;[0,00) x S1) < Eq
and Eqs(u;[0,00) x S1) < 1/2, where h > 0 is the constant defined in with respect to Eq. Then, for
every 6 € (0,1) there exists a constant ks > 0 such that

lduz)l|:== sup [du(z)vllg < ks

HV eucl. —

for all z € [§,00) x S,
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Proof. The proof is analogous to that of Lemma [37] by contradiction and using the standard bubbling-off analysis,
hence omitted.

O
We come to the proof of Proposition 20}

Proof. (Proposition @) Without loss of generality, we assume that the dox—energy of u is less than h/2. If this is
not the case we can consider a smaller disk around 0. Since D is contractible and dy = d(y o i) = 0, the harmonic
perturbation y can be written as v = dI', where I' : D — R is a harmonic function. Hence U = (q, f) := (a + T, f)
is a pseudoholomorphic curve (unperturbed), which still has the property that its image lies in a (maybe larger)
compact subset of R x M. By the biholomorphism 1 : [0,00) x St — D\{0}, (s,t) — e >"(5+1) we consider the
map 0 = (a,f) =ToP:[0,00) x S' — R x M. Obviously, & has a finite energy and a dx—energy less than h/2.
The Hofer energy of u is bounded. Indeed, we have

EW(@D\0) = sup | wd(ga)

oeA JD\(0}
= sup wd(ewx)

@A J[0,00)x ST

= sup lim J wd(ex)
@A R— Jig R1xS!?

= sup J p(a)f o — lim J (p(d)?*oc} .
LJ{o}xs? {R}xS1?

@EA R—00

From Lemma [21] it follows that U has a bounded energy. Application of the usual removable singularity theorem
(see Lemma 5.5 of [6]) then finishes the proof of the proposition.

O

In a neighborhood of a puncture, the map a is either bounded or unbounded. In the first case, Proposition [20| can
be used to extend the H—holomorphic curve across the puncture. In the second case, in which a : D\{0} — R is
unbounded, we have the following result.

Proposition 22. Let (D,1,{0},u,y) be a H—holomorphic curve defined on D\{0} such that the tmage of u
1s unbounded in R x M. Then u is asymptotic to a trivial cylinder over a periodic orbit of Xy, t.e. after
identifying D\{0} with the half open cylinder [0,00) x S there exists a periodic orbit x of period [T| of Xq,
where T # 0 such that

lim f(s,t) =x(Tt) and lim M

$—00 s—00 S

=T i C>®(SY
where (s,t) denote the coordinates on [0,00) x St.
Proof. As we restrict the curve to the disk, the harmonic perturbations y are exact, i.e. there exists a harmonic

function I defined on the unit open disk such that Y = dI". The new curve U = (@, f) = (a + I, f) is pseudoholo-
morphic. Let

PR, x ST — D\{0}
(S,t) — efzn(s+it)

be a biholomorphism, which maps D\{0} to the half open cylinder R, x S'. We consider the pseudoholomorphic
curve U as being defined on the half open cylinder R, x S! with finite energy and having an unbounded image in
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R x M. Since the contact structure is non-degenerate, we obtain by Proposition 5.6 of [6], that there exist T # 0
and a periodic orbit x of X, of period |T| such that

a(s,t)

lim f(s,t) =x(Tt) and lim =T in C*®(SY).
s—+00 s—+00 S
By the boundedness of the harmonic function I', we have
t
fim 28U 1 s,

S——+o00 S

Thus the proof of the proposition is finished.
O

The puncture p € P is called positive or negative depending on the sign of the coordinate function a when
approaching the puncture. Note that the holomorphic coordinates near the puncture affects only the choice of
the origin on the orbit x of X4; the parametrization of the asymptotic orbits induced by the holomorphic polar
coordinates remains otherwise the same. Hence, the orientation induced on x by the holomorphic coordinates
coincides with the orientation defined by the vector field X, if and only if the puncture is positive.

Let S” be the oriented blow-up of S at the punctures P = {py, ..., px} as defined in the previous section or in Section
4.3 of [6]. S” is a compact surface with boundary circles Iy, ..., I.. Noting that each of these circles is endowed with
a canonical S!—action and letting @; : S* — T} be (up to a choice of the base point) the canonical parametrization
of the boundary circle I, for i =1, ..., k, we reformulate Proposition [22] as follows.

Proposition 23. Let (S,j,P,u,y) be a H—holomorphic map without removable singularities. Then the map
f:S — M ezxtends to a continous map f:S” — M such that

fl@i(e*™) = xi(Tt), (2.2.5)

where x; : S* = R/Z — M is a periodic orbit of the Reeb vector field X, of period [T|, where T # 0, parametrized
by the vector field X,. The sign of T coincides with the sign of the puncture p; € P.

2.3 Stratified H{—holomorphic buildings

In this section we introduce the notion of a stratified H—holomorphic building. These are the objects which are
needed for the compactification of the moduli space of H—holomorphic curves. In the first step of our analysis we
define a H{—holomorphic building of height 1. Then we introduce the general notion of a H{—holomorphic building
of height greater than 1, describe the notion of convergence of a sequence of H—holomorphic curves to a stratified
H—holomorphic building, and finally, state the main result.

Let (S,j) be a Riemann surface, and P C S and P C S two disjoint unordered finite subsets called the sets of
negatie and positive punctures, respectively. Let P = {p ,..,p } P ={p1,...,p¢} and P = PII P. The set of
nodal points, defined by

D ={d;,d{,...,d,d} CS,

is a finite subset of S, where the pair {d/, d!'} will be called node (see Figure[2.3.1). Denote by S” the blow-up of
the surface S = S\P at the punctures P. The surface S” has |P| boundary components, which due to the splitting
of P, are denoted by I' = {I';, ..., } and T = (T4, ..., Tt} (see Figure[2.3.2).

Definition 24. (S,j,u,P,D,v,1,0), where T = {Ti}i—1,|p|/2, O = {Oi}i=1, D2 and T,0; € R for all i =
1,...,1D|/2 is called a stratified H—holomorphic building of height 1 if the following conditions are satisfied.
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Figure 2.3.1: Surface S with punctures P = {py,P,, s} I {p,,p,} and nodes D = {d;, d;’}.

£1 £2

Figure 2.3.2: Blow-up surface S” with boundary components I' = {T'y, T3, T3} 11 {I';,T',} and nodes D = {d}, d}'}.
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Figure 2.3.3: A stratified HH{—holomorphic building of height 1.

1. (S,j,u,?P,v) is a H—holomorphic curve as in Definition

2. For each {d{, d{'} € D, 71, 0; € R the points u(d) and u(d;’) are connected by the map [—1/2,1/2] — R x M,
s — (—20is + b,d%*,. ((wy)) for some b € R and wy € M such that u(d{) = (o1 + b, d$ (wr)) and
u(d{’) = (—oi + b, d% (wr)).

See Figure

Remark 25. The M—component f : S — M of a stratified H—holomorphic building uw = (a,f) : S -5 R x M of
height 1 can be continously extended to S”. For the extension f : S¥ — M, it is apparent that f|-, where I =T'IIT,
defines parametrizations of Reeb orbits.

Remark 26. The energy of a H{—holomorphic building of height 1 is the sum of the x— and da—energies of the
H—holomorphic curve, as defined in (|1.0.15).

In a second step we define a stratified H—holomorphic building of height N. Let (S1,j1),..., (Sn,jn) be closed
(possibly disconected) Riemann surfaces, and for any i € {1, ..., N}, let P; = {Eij} C Siand P; = {pi;} C Si be the
sets of negative and positive punctures on level i, respectively. We further assume that there is a one-to-one
correspondence between the elements P; ; and P, given by a bijective map ¢; : P;_; — P;. A pair {T)Fl,i’Bij}’
where Py = ©i(Pi_1,), is called a breaking point between the levels S;_; and S;.

Let P = H]i\]:;l P, 11 P; be the set of punctures, P; = P, I1 P; the set of punctures at level i,
Dy = {dil) {17 ey i/ki) ﬁq}

the set of nodes at level i, and D = ]_[{11 D; the set of all nodes (see Figure .

If S?‘ is the blow-up of S; at the punctures P; = P, I1 P;, then accounting of the splitting of the punctures P;, we
denote the boundary components of Si?" by I'; and T;; they correspond to the negative and positive punctures P; and
P;, respectively. There is a one-to-one correspondence between the elements of ;_; and I'; given by an orientation
reversing diffeomorphism ®; : Ty ; — I';. A pair {ﬂ_l,j,[ﬁ}, where ['; = <Di(ﬁ_1,j), is called a breaking orbit
for all i = 2,...,N. This gives an identification of the boundary components I';_; from S?jfl and the boundary
components ['; from Sf‘ (see Figure . Further on, let
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Figure 2.3.4: The Riemann surface (S,j) = (S1,j1) IT (S2,j2) 1T (S3,j3) with punctures P, II P; = {P;,} 11 {P11},
Py I Py ={p,,} U {P21, P2z} and P5 LIP3 = {p,,,p,,} L {Ps;}, nodes D1 = {d{;, di}, di5, di5}, D2 = {d3;,d3)} and
D3 ={d};, d};} and the maps @2 and @3.
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Figure 2.3.5: The surface SY = Sfl I Sg)Z 11 Sgg’ with boundary components I'; 11 T, = {fy 11 {T11}, I, I Ty =
{Co1}I{T 21, To2} and I3 I T3 = {34, 35} 11{I"31 }, nodes Dy = {d{p d{/11 d{zy dilz}y D,y = {dél: déll} and D3 = {déy dé/l
and orientation reversing diffeomorphisms @, and @3.
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— a1

3Ty

Figure 2.3.6: The surface S™® with nodes D; = {d};,d}},d],, di5}, D2 = {d};, dS;} and D3 = {d},;, ds;} and
boundary circles I';; and T's;.

P q N Pi
§T® = ST U, S32 Ua, - Upy ST = (Hi:l S )/N

where ~ is defined by identifying the circles fi_l,j and ['; via the diffeomorphism for alli = 2,...,Nandj = 1, ..., |P;].
Obviously, S™® is a compact surface with |P,| + |Pn| boundary components. The equivalence class of ﬁ_l,j in
S7®  denoted by lj for all i = 2,...,N and j = 1, ...,[P;], is called a special circle; the collection of all special
circles is denoted by I'" (see Figure . A tuple (S,j,P,D) with the properties described above will be called a
broken building of height N.

We are now well prepared to introduce a stratified -HH{—homolomorphic building of height N.

Definition 27. A tuple (S,j,u,P,D,v,7,0), where T = {ty;, | i = 1,..,Nandj; = 1,..,|D:[/2} U{ty, | 1 =
1,.,N—1landj;=1,..,|i4[}, o = {64, li=1,..,Nandj; =1,...,|D;|/2} and (S,j, P, D) is a broken building of
height N, is called a stratified H—holomorphic building of height N if the following are satisfied:

1. For any i = 1,...,N, (Si,ji,ui, Py T Pi, Dy, vi, (B, |§i = 1,..,1Dil/2},{6%, | ji = 1,...,|Dil/2}) is a stratified
H—holomorphic building of height 1, where u; = uls,\»,, and j; is the complex structure on S;.
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Figure 2.3.7: The surface S with boundary circles I';; and T3, special circles 1,31 and T's; and nodal special
circles TRpd, TRed Thod and roed,

2. For all breaking points {p;_; 1Py .} and Tyj € T, there exist T;; > 0 such that the J{—holomorphic building of

height 1, u;_q : S1 1 — R X M is asymptotic at p;_ ; to a trivial cylinder over the Reeb orbit xi; of period
Ti; > 0, and u; : Si — R x M is asymptotic at P to the trivial cylinder over the Reeb orbit xi;(- 4 Ti;) of
period —Tj; < 0.

Remark 28. The energy of a stratified H{—holomorphic buidling of height N is defined by

N
E(w) = max Ea(w)+ ; Eao(ui).

We come now to the convergence issue. Let let SCP'UDi be the blow-up of S; at the punctures P; and nodes D;.
To each pair of nodes {du, d” }, the corresponding boundary of ST YD1 is denoted by {IV i lJ}, and for each such
pair of boundary circles, let rLJ Fl’] — F” be orientation reversing diffeomorphisms. The diffeomorphisms ri; are
used to glue the boundary circles Fl’J and F” together. Consider the surface S := S¥YP:®UT which is obtained from
S by blowing-up the punctures P and the nodes D, and by using the orientation reversing diffomorphisms @ and
. S is a compact surface with boundary components given by the sets I'; and Ty. The equivalence class of F’ i
S is denoted by F{;°d and is called nodal special circles; the set of all nodal special circles is denoted by e (see
Figure .
The collar blow-up S is a modification of the usual blow-up S defined in [6]. Essentially, we insert the cylinders
[—1/2,1/2] x S' between the special circles T;_ 1, and [';;, and between the nodal special circles Fi’). and Fl’J’ To
obtain a surface with boundary components I'; and 'y that has the same topology as S§ we modify the orientation

reversing the diffeomorphismsm ®;; and ry; as follows:

1]’
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{3y x5

\+/ {*§}XS

Figure 2.3.8: The glueing of Fi,l,j, the cylinder [-1/2,1/2]xS* and Ij; via the orientation reversing diffeomorphisms

q)ij : Fi,l,]— — {—1/2} x S' and Qij {1/2} x St — Ei,j'

A1 The orientation reversing diffeomorphisms ®;; correspond to two orientation reversing diffeomorphisms
@i :Tiq,; — {—1/2} x S and Dy :{1/2} x S' > Ty foralli=2,..,Nand j=1,.., [P

A2 Instead of glueing Fi,l,j and [;; via the orientation reversing diffeomorphisms @i, we glue Ti1j, the
cylinder [-1/2,1/2] x S, and I';; via the orientation reversing diffeomorphisms 61;’ and ®@; (see Figure D

A3 For the nodal special circles F-’j and T/

i ij?
and T{; {1/2} xSt — I"l’]’ the orientation reversing diffeomorphisms that glue Fi'j,
and I} together.

we proceed analogously, and denote by r{j : Fi’j — {~1/2} x §t

the cylinder [—1/2,1/2] x St

Let S be the surface obtained by applying the above construction to all special and nodal special circles. The
equivalence class of the cylinder [~1/2,1/2] x S! in S corresponding to the special circle I is denoted by Ajj, and
is called special cylinder. The equivalence class of the cylinder [~1/2,1/2] x S! in S corresponding to the nodal
special circle Fi]-°d is denoted by A’ilj"d, and is called nodal special cylinder. The boundary circles of Aj; are still
denoted by I'i_1; and [j;, while the boundary circles of /-\lfj°d are also still denoted by Fi’). and Fl’)’ . Finally, the
collections of all special and nodal special cylinders are denoted by A and A™9 respectively. Take notice that
there exists a natural projection between the collar blow-up S and the blow-up surface S, which is defined similarly
to [6], i.e. it maps S\(A II A=°?) diffeomorphically to S\(I'1I T°9) and the annuli A and A™? are mapped to I
and ™4, This induces a conformal structure on S\(A IT A%%). Let S be the closed surface obtained from S by
identifying the boundary components I'; and I'y to points, i.e. by reversing the blow-up.

Having now a stratified H{—holomorphic building (S, j, u, P, D, v, T, o) of height N, we define the continous extension
f of f on the surface S and the continous extension @ of a on S\A. The extension f may be defined on the clinders
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Ajj and /-\Ii‘]-"d, while the extension a is defined only on /—\Ii‘j"d. Set

f(s,t) = d%aq,, (W), forall (s,t) € AT = [-1/2,1/2] x S,
?(S,t) = d)i(erl)Tu (Xi]' (Tut)), for all (S,t) (S Ai]' = [—1/2, 1/2] X Sl

and
a(s,t) = 20655 +b, forall (s,t) € A}P? =[-1/2,1/2] x S

for some b € R and wy € M. Here xyj is the Reeb orbit of period Ti; > 0.
We are now in the position to introduce the notion of convergence.

Definition 29. A sequence of H{—holomorphic curves (Sy,jn, un, P4 = P1 HT;,yn) converges in the C{5_ sense

to a H—holomorphic curve (S,j,u, P, D,v), if the tuple (S,j, P, D) is a broken building of height N and there exists
a sequence of diffeomorphisms ¢, : S = Sn, where S is the modified collar blow-up as defined above, such that
(pgl(ﬁln) =P, and @} (P}) = Py and such that the following conditions are satisfied:

1. The sequence of complex structures (¢@n).jn converges in C{°_ on S\(A II A9 to j.

nod
e
special cylinder Aj;; there exists an annulus Ki]- = [~1,1] x S such that Ay C Ki]- and (Ki]- ,J((pn)*jn) and
(Aij, (@n)+jn) are conformally equivalent to ([—Ry, Rn] x S*,1) and ([—Rn 4+ hn, R —hnl x S, 1), respectively,
where Ry, hn,Rn/hn — 00 as n — oo, 1 is the standard complex structure and the diffeomorphisms are of
the form (s,t) — (k(s),t).

2. The special circles of (Sy,jn,Pn) are mapped by @' bijectively onto {0} x S! of A;; or A9, For every

3. The H—holomorphic curves u, o @, : § = S\(P, II2PN) = R x M together with the harmonic perturbation
(@n)*Yn which are defined on S converge in C° on S\ (AHAn°d) to the H—holomorphic curve u with

loc

harmonic perturbation y. Note that S\ (A II A”°9) may be conformally identified with S\ (%P II D).

Next we describe the C°—convergence. Let (Sy,jn,uUn,Ps,Yn) be a sequence of H—holomorphic curves. For
any special circle T}, let 7 € R and ofj € R be the conformal period of @}, yn on [}; with respect to the
complex structure ¢7,jn, and the conformal co-period of @}, yn on I}; with respect to the complex structure @, jn,
respectively. For any nodal special circle I"ij°d consider the numbers 1 € Rand 67} € R, where 17 is the conformal
period of @} vy on I"inj°d with respect to the complex structure ¢¥j,, and gk is the conformal co-period of @} vn

on F{§°d with respect to the complex structure ¢} jn, respectively.

Remark 30. For a sequence (Spn,jn,uUn,Ph,Yn) of H—holomorphic curves that converges to a H{—holomorphic
curve (S,j,u, P, D,v) in the sense of Deﬁnition the quantities T} 03}, tij and 67j can be unbounded (see, e.g,

ij? ij
Chapter . If T{;, 0'{;, f% and (‘Y{‘j are bounded, then after going over to a further subsequence, and assuming that
there exist the real numbers Tij, 0ij, Tij, 61j € R such that

T = Tij (2.3.1)
0j — Oij, (2.3.2)
- 1y, (2.3.3)
635 — G (2.3.4)

as N — oo, we are able to derive a C°— convergence result.

The convergence of a sequence of H—holomorphic curves to a stratified H—holomorphic building of height N should
be understood in the following sense:
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Definition 31. A sequence of H{—holomorphic curves (S,,jn, P/, Un,Yn) converges in the C° sense to a statified
H—holomorphic building (S,j,u, P, D,v,T, ) of height N if the following conditions are satisfied.

1. The parameters T3}, 07}, 17} and 67} converge as in (2-3.1)-(2.3.4).

2. The sequence (Sy,jn, P, Un,Yn) converges to the underlying H—holomorphic curve (S,j,u,P, D,vy) in the
sense of Definition |29| with respect to a sequence of diffeomorphisms @, : S — Si,.

3. (§,j,u,P,D,v,T,0) is a stratified H{—holomorphic building of height N corresponding to the constants T;;,
ti; and 6y, as in Definition
4. The maps u,, o @ converges in C?  on §\A to the blow-up map u defined on §\A.

loc

5. The maps f,, o ¢, converges in C° on S to the blow-up map f defined on S.

6. E(un;gn) — E(u;S) as . — oo.

The compactness result will be established for finite energy H—holomorphic curves with harmonic perturbation
1—forms having uniformly bounded [?>—norms and uniformly bounded conformal periods and co-periods. Specifi-
cally, we will consider a sequence of H{—holomorphic curves uy = (an, frn) : (Sn\Pn,jn) = R x M with harmonic
perturbations vy;,, satisfying the following conditions:

B1 (S,1,jn) are compact Riemann surfaces of the same genus and P,, C S,, is a finite set of punctures whose
cardinality is independent of n.

B2 The energy of u,, as well as the [?>—norm of y,, are uniformly bounded by the constants Eq > 0 and
Co > 0, respectively.

Remark 32. For the sequence of punctured Riemann surfaces (Sy,jn,Pn), the Deligne-Mumford convergence
result implies that there exists a punctured nodal Riemann surface (S,j, P, D) and a sequence of diffeomorphisms
@n : SPT — S, such that ¢%j, converges outside certain circles in C. to j. Here, SP.7 is the surface obtained
by blowing up the points from D and identifying them via the decoration r (see Section . Denote by F{md, for
i=1,...,|D|/2, the equivalence classes of the boundary circles of SPin SP:7. Let Fﬁf’id = (@n).MP? for alln € N
and i=1,...,|D|/2.

The main result of our analysis is the following

Theorem 33. Let (S, jn, Un, Pn,Yn) be a sequence of H—holomorphic curves in Rx M satisfying assumptions
B1 and B2. Then there ezxists a subsequence that converges to a H—holomorphic curve (S,j,u,P,D,vy) in
the sense of Definition [29 Moreover, if there ezists a constant C > 0 such that for all n € N and all
1 < i< |D|/2 we have |T[rgo%]’yn|,|0-[r:zloz§l]'yn‘ < C then (S,j,u,P,D,vy) is a stratified broken H—holomorphic
building of height N and after going over to a subsequence the H—holomorphic curves (Sn,jn,Un, Pn,¥Yn)
converges to (S,j,u,P,D,vy) in the sense of Definition .
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Chapter 3

Proof of the Compactness Theorem

Let (Sn,jn,Un, P}, Yn) be a sequence of H—holomorphic curves satisfying Assumptions B1 and B2 from the end of
Section After introducing an additional finite set of points M,, disjoint from the set of punctures P/ we assume
that the domains (Sy, jn, P, IIM;,) of the sequence of H—holomorphic curves are stable. This condition enables us
to use the Deligne-Mumford convergence (see Section which makes it possible to formulate a convergence result
for the domains (Sy, jn, P, IIM,,). Note that M,, can be choosen in such a way that their cardinality is independent
of the index n. As an additional structure, let hi~ be the hyperbolic metric on S, := Sa\ (P, IT M,,). By the
Deligne-Mumford convergence result (Corollary there exists a stable nodal decorated surface (S,j, PIIM, D, )
and a sequence of diffeomorphisms ¢, : S?" — S,,, where ST>" is the closed surface obtained by blowing up the
nodes and glueing pairs of nodal points according to the decoration r as described in Section such that the
following holds: Let h be the hyperbolic metric on S\(P II M II D). The diffeomorphisms ¢, map marked points
into marked points and punctures into punctures, i.e. (M) = M, and @, (P) = P}. Via @, we pull-back the
complex structures j, and the hyperbolic metrics hi, i.e. we define j(™) := ©%jn on SP7 and h, = @ h" on
§Pr .= §P.m\ (MIIP). By the Deligne-Mumford convergence, h,, — h in Cfgc(SD’r\ ]_[j Ij) as n — oo, where [ are
the special circles in S”7 (see Section for the definition of special circles) and by abuse of notation h denotes
the hyperbolic metric on $P>". This yields j(™) — j in Co(SPm\ ]_[]. Ij) as n — oo.
Let M be a closed contact manifold with co-oriented contact structure £ given by the contact form «, i.e. & = ker(«).
Let X, be the Reeb vector field associated with the contact form « and let 71, : TM — & be the projection along
the Reeb vector field. Furthermore, let ] be a da—compatible almost complex structure on the contact structure
&. Recall the metric g on M, defined by g(+,) = « ® o« + d«(+, J-) and the metric g on the symplectization R x M,
defined by G(-,-) = dr ® dr + g. Consider now the maps {in = (dn,fn) == Un 0 @n : SP"\P — R x M and
Yn = @5 ¥vn € J'C).l(n, (SP>7). Then {i, is a H—holomorphic curve with harmonic perturbation ¥, ; it satisfies the
equation

Madfn 0™ =Jom,dfy,

D,r
(Fro) o™ —ddn+9n W

and has uniformly bounded energies, i.e. for Eg > 0 and all n € N we have E({i,,; S?"\P) < Eg. The L>—norm of
Yn goes over in

|H’n||%_2(s'D,r) = LT’ Yno j(n) AYn = LD PnYn o ORin A QLYn = L Yn 0jn AyYn = ”VnH?_Z(Sn)

and it is apparent that the L2—norm of ¥,, is uniformly bounded by the constant Cy > 0. Hence B1 and B2 from
the end of Section are satisfied for i,,.

In the following, we first establish a convergence result on the thick part, i.e. on away from special circles,
punctures and certain additional marked points, and then treat the components from the thin part.

S’D,r
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3.1 The Thick Part

For the sequence ii,, : ST'"\P — R x M as defined above, we prove the Cio.—convergence in the complement of the

special circles and of a finite collection of points in SP»" := SP:"\(PIIM). Set SP-7 := §P:1\ ]_[j I5. To simplify the
notation we continue to denote the maps i, by u, and ¥, by yn. The main result of this section is the following

Theorem 34. There ezists a subsequence of un, still denoted by un, a finite subset Z C §D’T, and a
H—holomorphic curve u : S"\Z — R x M with harmonic perturbation vy defined on SP" with respect
(§PM\2) and vy — v in C2(SP:T),

to the complex structure j such that u, —u in C3 o

loc

Before proving Theorem [34] we establish some preliminary results.
Assume that there exists a point z! € K C $P»", where X is compact, and a sequence z,, € K such that

zn — 28 and  ||dun(zn)|| = oo

as N — 0o. The next lemma describing the convergence of conformal structures on Riemann surfaces is similar to
Lemma 10.7 of [6].

Lemma 35. There ezist the open neighbourhoods U, (z!) = U,, and U(z!) = U of z!, and the diffeomorphisms
PYn:D—=>U,, v:D—-U

such that

1. P, are i—j™ —biholomorphisms and \ is a i — j—biholomorphism;

2. Yn = ¥ in CX.(D) as n — oo with respect to the Euclidean metric on D and the hyperbolic metric h
on their 1mages;

3. P (0) =z for every n and P(0) = z!;
4. zn € Uy, for every sufficiently large n;
5z =9 (z,) = 0 as 1 — co.
Proof. Lemma (97| applied to the compact Riemann surface with boundary X and the interior point z!, yields the

diffeomorphisms 1V, : D — U,, and 1V : D — U for which the first three assertions hold true. The fourth and fifth
assertions are obvious since z,, converge to z?.

O

Remark 36. The coordinate maps 1, and ¢ have uniformly bounded gradients with respect to the Euclidian
metric on D and the hyperbolic metric h on their images. This follows from the second assertion of Lemma
Let h > 0 be defined by ((1.0.22)). The next lemma essentially states that the da—energy concentrates around the
point z! and is at least /2 > 0. The proof relies on bubbling-off analysis and proceeds as in Section 5.6 of [f].

Lemma 37. For every open neighbourhood U(z') = U C §D.r we have

0<h < lim Egqe(un;U) < Eq.

n—o00
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In particular, for each open neighbourhood U of z' there ezists an integer N1 € N such that for alln > N;
we have

Eqolun; U) > 5
Proof. Consider the maps iy, := un 0Py : D — R x M, where \, are the biholomorphisms given by Lemma [35]
They satisfy the H—holomorphic equations

Mgdfn o1 =J(fn) o medfy
. . . N on D,
(ffa)oi =dan+Yn
where ¥, := 1}, Yn is a harmonic 1—form on D with respect to i. The energy of 11,, on D is uniformly bounded as
E(Qt,; D) < Eg, while the Ly—norm of the i—harmonic 1—form ¥,, is uniformly bounded on D as

||W7nH%2(D]:J f/noi/\f/n:J Yn o™ Ayn < Co
D Un

by the constant Co. Furthermore, for z(™) := ;1 (zy), Hdﬂn(z(“))H — 00 as N — oo. This can be seen as follows.
If vip € T,(n)D with [[vn|lsue =1 is such that

(m)
O )’ﬁ =l
then,
[atntzm ] = dun(zn) e E g 20
; @bl | .
= [ldun(za)|| Hdﬂ)n )Vn‘ -
> ldun(za)ll 5 Hdwn(z<“>)H
> lldun(za)ll 7 (0] - o0
as n — oco. The first inequality follows from the i — j™) —holomorphicity of {,,. Set R/, := Hdﬁn(z(“))H and note

that R}, — oo as n — co. Choose €], > 0 such that €/, — 0 and R/,e/, — co as n — 00, and consider

1=z
el = m1n{|4 |,e1'1}

for all n € N. Then, €/ — 0 and R/,e// — 0o as 1 — 00, and D¢y (z!™) C D for all n € N. By Hofer’s topological
lemma (Lemma 2.39 of [2]) with respect to the sequences R/, and €]/, there exist €,, € (0,€e/] and 2™ € D such
that

L en || dan(Z™)]| > ef/R7;
2€//.

n»

3. [|dtn (2)]| < 2||dtn (2™)]], for all z € D, (2)).

N
N
2
|
[\}_t\
2
N

For R, = Hdﬂn(i(“))H, the first assertion yield R,, — oo, Rneén — 00 as n — co. From €, € (0, €], we get
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€n — 0, from the third assertion, we get
[dtn (2)]| < 2Rn

forall ze€ D, (M), and finally, from the second assertion, we get (™) — 0 as n — co. Doing rescaling we define
the maps

vn(2) = (bn(2), gn2)) = (an (zw + Ri) —an(z™), i (z(“’ + Rzn))

for all z € D¢ g, (0). The maps v, = (bn, gn) : De, g, (0) = R x M satisfy ||dv,(0)]| =1 and ||dvn(z)] < 2 for all
z € D¢, R, (0), and we have

Ea(vn;Dean(O)) = Eoc(ﬂn;Den (z(n))) < Eq(tin; D)
and

Edoc(vn;DenR (0)) = Edoc(ﬂn;Den(i(n))) < Eau(lin; D)

n

giving E(vn; De, g, (0)) < Eg. Moreover, v, solves the H{—holomorphic equations

Tedgn o1 =] omydgn,
(gro)oi =dbn+vy,,

where Y, = Yn/Ry. Because v,, has a bounded gradient, there exists a smooth map v: C — R x M with a bounded
energy (by Eg) such that v, — vin C2.(C) as n — co. Nevertheless, because ¥, is bounded in L?—norm, Y, —0
asn — 0. Thus v= (b,g) : C - R x M is a pseudoholomorphic plane, i.e. it solves the pseudoholomorphic curve
equation

nxdgoi =]Jomudg,

(g*a)oi =db.

We prove now that the a— and dx—energies of v are bounded. Let R > 0 be arbitrary and for some 19 € A consider

J T4(b)dboiAdb = lim T4 (bn)dby 0 1A dby
Dr(0) n—o JDg(0)
= lim (G — an(2™))dan 0 i A day
M= D ra (M)
= lim T, (4n)da, oiAdéan

N0 Dy p, (£(0))

N

lim supj T/ (4yn)dén oi A dén,
n=00 1A Dy g (200

)
= lim Ea(@n; Dy, (™)),
n—oo
where T, = To(- — Gn(£(™))) is a sequence of functions that belong to A. Taking the supremum of the left-hand

side over Ty € A, we get
E(v;Dr(0)) € lim Eq(fn;Dgyr, (™)),

n—o0

while picking some arbitrary € > 0, we obtain

Eo(v; DR(0)) < lim Eq(tin; Dgyg, (™)) < lim Eq(tn; Dc(0)).

n—o0 n—o0
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For the dax—energy, we proceed analogously: for R > 0 we have

Eao(v;Dg(0)) = lim J ghdx = lim J f* da,
e JDg(0) N DR, Ry (200)
while picking some arbitrary € > 0, we find
Eax(v;Dgr(0)) = lim J ffldocg lim J frdo < lim Equ(tn; De(0))
n—o0 DR/Rn(z(n)) n—o0 De(O) n—o00

Because the x— and da—energies are non-negative,
E(v; Dr(0)) = E«(v; Dr(0)) + Equ(v; Dr(0))
< lim Eo(@n;De(0)) + lim Eqo(tn; De(0))
n—oo n—oo
= lim E(tn;Dc(0))

n—oo

g E01

and since R > 0 was arbitrary, we obtain E44(v;C) < Eg. As v is a usual pseudoholomorphic curve, it follows
that E(v;C) = Eg(v;C), where By is the Hofer energy defined by (|1.0.4); thus Ex(v; C) < Eg. Moreover, as v is
non-constant we have by Remark 2.38 of [2], that for any e > 0,

0 <h < Equ(v;C) < lim Equ(lin; De(0)) < T}LI%OEdcx(un;lbn(De(O)))'

n—o0

Choosing € > 0 such that P (D(0)) C U for all n, we end up with

0<h < lim Egulun;U) < Eo,

n—oo

and the proof is finished.

The next proposition is proved by contradiction by means of Lemma [37}

Proposition 38. There ezists a subsequence of un, still denoted by u,, and a finite subset Z C §SD:r such
that for every compact subset KX C ST:"\Z, there exists a constant Cx > 0 such that

laun(z) == sup  [ldun(z)vily < Cs
veT ST |Iv]ly,,, =1

forallz € X.
Proof. For the sequence u,, and any finite subset Z C §D’r, we define
Ziuntz = {Z € §®’r\Z | there exists a subsequence u,, of u, and a
sequence zy € §D’T\Z such that z,x — z and ||dun, (zk)]| = o0 as k — oo} .

If Z(y,1,0 is empty then the assertion is fulfilled for the sequence u, and the finite set Z = (). Otherwise, we

choose z! € Z{w,},0- In this case, there exists a sequence L € S and a subsequence ul of u, such that
zL — z! and ||dul,(z})|| — co. Consider now the set 2,1} (z1). If Zy1) (,1} is empty then the assertion is fulfilled
for the subsequence ul and the finite set Z = {z!}. Otherwise, we choose an element z2 € Zuz ),{z1)- In this
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case, by definition, there exists a sequence z2 € S"\(z'} and a subsequence u? of ul such that z2 — z> and
|[duZ(z2)|| — oo. Let us show that the set of points Z = {z!,z?,...} constructed in this way is finite, or more
precisely, that |Z| < 2Eq/h. Assume |Z| > 2Ey/h and pick an integer k > 2Ey/h and pairwise different points
Zl Lz € 2. Let Uy, ...,Ux C $D:T be some open pairwise disjoint neighborhoods of z, ...,z*. Applying Lemma
1nduct1ve1y, we deduce that there exists a positive integer N such that for every n > N Ed,x(un, U;) > h/2 for
all i=1,...,k. Since the U; are disjoint, we obtain

= <D Eaalun; W) < Baalun; $77) < Eo.

Thus k < 2Eg/h which is a contradiction to our assumption.
O

By means of Proposition [38| we can prove the convergence of the H{—holomorphic maps in a punctured thick part
of the Riemann surface.

Proof. (of Theorem For some sufficiently small k € N we consider the subsets

Qy thmkl/k(s@r h)\ UDl/k (zY),

i=1

where Z = {z!,...,zN} is the subset in Proposition [38] and D?/k(zi) is the open disk around z; of radius 1/k with
respect to the metric h. In order to keep the notation simple, the subsequence obtained by applying Proposition
is still denoted by w,. Obviously, Qy build an exhaustion by compact sets of S?:"\2. These sets are compact
surfaces with boundary. By Proposition the maps u, have uniformly bounded gradients on Q. Thus after a
suitable translation of the maps 1, in the R—coordinate, there exists a subsequence ul of u, that converges in
C*(Q;) toamap u: Q; — Rx M. Iteratively, at step k+ 1 there exists a subsequence uk“ of uk that converges in
(Ol (Qk+1) toamap u: Qy; — Rx M which is an extension from Qy to Qy ;. This procedure allows us to define
amap u: SD T\Z — R x M. After passing to some diagonal subsequene u};, the maps uj; converge in CIOC(SD "\Z)
to the map u : SD ™\Z — R x M. Since the [>—norms of vy, are unlformly bounded on ST, they converge in

CfgC(SD ) to some harmonic 1—form vy with a bounded L2—norm on SD T. This can be seen as follows. For each

pE Th1ckp/2(SD T h), consider the charts Y} : D — U}, and PP : D — UP as in Lemma [35| for a sufficiently small
and fixed p > 0. As Thick (SD 'T,h) is compact, there exist finitely many {pi}i—1, N € Thlckp/z(SD T, h) such that
UR', U, WP o= PRt (D1-5(0)), and UF* := P (D1-5(0)) cover the whole Thlckp(gD’r,h) for a sufficiently small
and fixed & < p. For some p;, we pull-back the harmonic 1—forms v,, by Ph' to the harmonic 1—form YT/‘L,"L on D
with uniformly bounded L?—norms. By Lemmas |35/ and Yn converges in C*®(UL") to a harmonic 1—form vy
on UF' with respect to the hyperbolic metric h. Let 1 be an index such that UF' N UL # (. On UL' we go over
to a further subsequence and arguing as above, we find that y,, converges in C*°(U}") to a harmonic 1—form AL
The uniqueness of the limit impli'es that v(!) and y(!) agree on the overlaps uPt nUlt. Consequently, there exist a
harmonic 1—form y® on Thick (§D " h) and a subsequence of v, still denoted by vy, that converges in C*® to y°

with respect to the hyperbolic metric h. Passing to a diagonal subsequence, we find that vy, converges in C}35. to

a harmonic 1—form vy defined on SD’T with respect to the hyperbolic metric h. What is left to show is that after
projecting vy from SDT to S\(MIIP), v can be extended across the punctures. This result follows from Lemma
Hence the map u is a H{—holomorphic curve on §D'r\Z with harmonic perturbation vy.

O
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Lemma 39. Let vy, be a sequence of harmonic 1—forms defined on the closed unit disk D and having
uniformly bounded L>—norms by the constant Cy > 0. Then, for each & > 0 there exists a subsequence of yn,
still denoted by yn, which converges in C*(D;_5(0)) to a harmonic 1—form v defined on D;_5(0).

Proof. Let vy, = fndx + gndy, where f,,,gn, : D — R is a sequence of harmonic functions and x,y are the
coordinates on D. Since v, has a uniformly bounded [2—norm, f,, and g, are uniformly bounded in [?(D). Let
us show that the derivatives of f,, and g, are uniformly bounded on D;_;5(0). For z € D;_(;5/2)(0), the mean-value
theorem for harmonic functions yields

16
f < — fn(x,y)l dxd
a2l < o jD iy axay
4Cq
< <
dy/m
and so, f;, is uniformly bounded in D;_(5,2)(0). Applying the same argument for the function g,, we find that

the holomorphic function Fy, := fn 4+1ign : D1_(5,2)(0) — C is uniformly bounded. In view of the Cauchy integral
formula we deduce that for k € N and z € D;_5(0), we have

Njon

F () = 2 J _Fnl8) gl K fﬂzkfn(“ée”mt o 2KV2C
" 27 |Jop 4 (2) (& —2z)KH1 27 | Jo Skeikt STkl
2

Hence, for every k € Ny the quantities |[fn|lcx(p, ;(0)) @d |gnllcx(p, ;(0)) are uniformly bounded. From here
we deduce by Arzela-Ascoli theorem that f, and g, converge in C*(D;_5(0)) to the harmonic functions f and ¢
defined on D;_5(0), respectively.

O

3.2 Convergence on the thin part and around the points from 2

In this section we investigate the convergence of the H{—holomorphic curves u,, on the components of the thin
part and in the neighborhood of the points from Z that were constructed in Theorem For a sufficient small
5 > 0, the set Thin5($D’T, h,) can be decomposed in two types of connected components: (I) the so called cusps,
which are neighborhoods of punctures with respect to the hyperbolic metric, and (II) the components which are
biholomorphic to the hyperbolic cylinders that mutate to nodes in the Deligne-Mumford limiting process. For more
details we refer to Chapter 1 of [2]. This section is organized as follows. First, we analyze the convergence of u,
on components that can be identified with hyperbolic cylinders, and describe the limit object. Second, we treat
the convergence of u,, on components that can be identified with cusps, and as before, describe the limit object.
The convergence results established here can be used to describe the convergence of u,, in a neighborhood of the
points from Z. Third, we use the description of the convergence of the H{—holomorpic curves u,, on the thick
part (established in Section , the thin part, and in the neighborhood of the points from Z (established in this
section) to define a new surface by gluing the two parts together. On this surface we describe the convergence of
U, completely.

Before proceeding we emphasize that by techniques of hyperbolic geometry, the compact components of the thin
part, called hyperbolic cylinders, can be biholomorphically identified, for a suitable R > 0, with the standard
cylinders [—R,R] x S! endowed with the standard complex structure i.
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bl:, o0 ". bl:. o0

Figure 3.2.1: The component of the thin part, which is biholomorphic to a cylinder, is divided in cylinders of types
b; and oo in an alternating order.

3.2.1 Cylinders

We analyze the convergence of u,, on compact components of the thin part which are biholomorphic to hyperbolic
cylinders. When restricted to these cylinders, the curves u, can have a dox—energy larger than the constant h > 0
defined in . Since we do not have a version of the monotonicity lemma in the H—holomorphic case, the
classical results on the asymptotic of holomorphic cylinders from [6] and [14] are not directly applicable. To deal
with this problem we shift the maps by the Reeb flow to make them pseudoholomorphic. Actually we proceed as
follows. We decompose the hyperbolic cylinder into a finite uniform number of smaller cylinders; some of them
having conformal modulus tending to infinity but a dax—energy strictly smaller than h, and the rest of them having
bounded modulus but a dx—energy possibly larger than h. We refer to these cylinders as cylinders of types co and
by, respectively. We consider an alternating appearance of these cylinders, as it can be seen in Figure|3.2.1

The convergence and the description of the limit object are first treated for cylinders of type oo, and then for
cylinders of type b;.

As cylinders of type oo have a small dx—energy, we can assume, by the classical bubbling-off analysis, that the maps
U, have uniformly bounded gradients. To make the curves u,, pseudoholomorphic, we perform a transformation
by pushing them along the Reeb flow up to some specific time. This procedure is made precise in Appendix
As the gradients of these transformed curves still remain uniformly bounded, we can adapt the results of [14] to
formulate a convergence result for the transformed curves (see Appendix. Undoing the transformation we obtain
a convergence result for the H{—holomorphic curves.

In the case of cylinders of type b; we proceed as follows. Relying on a bubbling-off argument, as we did in the case of
the thick part (see Section, we assume that the gradients blow up only in a finite uniform number of points and
remain uniformly bounded in a compact complement of them. In this compact region, the Arzela-Ascoli theorem
shows that the curves u, together with the harmonic perturbations y;, converge in C* to some H—holomorphic
curve. What is then left is the convergence in a neighborhood of the finitely many punctures where the gradients
blow up. Here, a neighborhood of a puncture is a disk on which the harmonic perturbation can be made exact
and can be encoded in the R—coordinate of the curve w,. By this procedure we transform the H—holomorphic
curve into a usual pseudoholomorphic curve defined on a disk D. By the C*—convergence of u, on any compact
complement of the punctures, we assume that the transformed curves converge on an arbitrary neighborhood of
0D. This approach, which is described in detail in Section [3.2.3] uses a convergence result established in Appendix
[A] As for cylinders of type co, we undo the transformation and derive a convergence result for the H{—homolorphic
curves on cylinders of type b;. Finally, gluing all cylinders together, we are led to a convergence result for the
entire component which is biholomorphic to a hyperbolic cylinder from the thin part.

Let C,, be a component of Thing(S™'", h,,) which is conformally equivalent to the cylinder [~0%,0%] x St. Observe
that from the definition of Deligne-Mumford convergence, 65 — co as n — oco. In the following, we drop the
fixed, sufficiently small constant & > 0, and assume that the curves u, are defined on [—on,0,] x St Let
Upn = (an,fn) : [=0n, 0n) X ST — R x M be a sequence of H—holomorphic curves with harmonic perturbations yn,
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le.,

Madfnol= ](fn) o My dfn,
(fra)oi=dan +vn

on [—on,0n] x S, and let us assume that the energy of u,, as well as the L2—norm of y,, on the cylinders are
uniformly bounded, i.e. for the constants Eq, Co > 0 we have E(u; [0, 0] xS!) < Eg and ||’Yn||?_2( ) S
Cp for all n € N.

Before describing the decomposition of [0, 0] x St into cylinders of types co and b; we give a proposition which

[~0on,0n]xS?

states that the C!—norm of the harmonic perturbation v, is uniformly bounded. This result will play an essential
role in Section We set v, = fnds+ gndt, where f,, and g,, are harmonic functions defined on [0y, 0] x St
with coordinates (s,t) such that f,, + ig, is holomorphic. By the uniform [2—bound of y,,, we have

2
Yol onisss = | (2 + g2) dsdt < C

[70'n,0-n]><31
for all n € N. As a result, the [2—norm of the holomorphic function f, + ig, is uniformly bounded. Denote this
function by G = +1ign.-
Proposition 40. For any & > 0 there exists a constant Cs > 0 such that

HGn”C1 ([~on+8,0n—8]xS1) < GCs

for alln € N.

Proof. First, we prove that the sequence G,, is uniformly bounded in C°—norm. As Gn : [~0n,0n] X St = C is
holomorphic, f, = R(G,) and g, = J(G,,) are harmonic functions defined on [—o0,, 0,] x S!. For a sufficiently
small & > 0 we establish C°—bounds for f, on the subcylinders [—o,, + (5/2), o — (8/2)] x St. By the mean value
theorem for harmonic function, we have

16

f (p):—J fn(s,t)dsdt
" 7% Jo ¢ () "

for all p € [0y + (8/2), 0 — (8/2)] x S*, where D /4(p) C [—0mn, 0n] x S*. Then Hélder’s inequality yields

16
f = — fn(s,t)dsdt
) = ], Felsds
16
< o] s uisa
7o Bs (p)
4
1 1
2 2
16 )
< - [T (s, t)]“dsdt dsdt
7% \Je g p) By (p)
2
- L J Ifn(s,t)?dsdt
v \ sy T
4
< —/C
Jms Ve
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for all n € N. As a result, we obtain
4
||fn||co([_0n+%’0n_%} Xsl) < ﬁ vV COv

and note that the same result holds for g;,.
By means of bubbling-off analysis we prove now that the gradient of G,, is uniformly bounded. Assume

sup IVGn(p)l — oo
pE[*GnﬂLé,Un*é]XSl

as N — oo. Let py € [—on + 8, 01, — 8] x ST be such that

IVGn(pn)l = sup IVGn(pll;
pel—on+68,0,—8]xS?t

1
then R, :=|VGn(pn)| = 00 as n — oco. Set €, := Rp? \,0 as n — oo, and observe that €,R,, — 0o as n — oo.
Choose ng € Ny sufficiently large such that Digc, (pn) C [—0n,0n] x St for all n > ng. By Hofer’s topologial
lemma there exist €/, € (0, e,] and p/, € [0, o] x S? satisfying:

1. €/ R/ > enRp;
2. p, € Dac, (pn) C Dige, (Pn);
3. [VGn(p)l < 2RL, for all p € D/ (ph) C Dige,, (Pn),

where R/, := |du, (p},)|- Via rescaling consider the maps Gn: De:r: (0) — C, defined by
~ w
Gn(w) :==Gn (Pﬁ + R')

for w € D¢/ g/ (0). Observe that p; + (W/R;)) € D¢ (py,) for w € D¢/ g/ (0), and that for G, we have:

1. [VGL(0)| = 1;

2. [VGn(w)| <2 for w € D¢, gy (0);
3. G, is holomorphic on De: g (0);
4. Gy, is uniformly bounded on [—on + 8, 0y — 8] x S? (by Assertion 1).

By the usual regularity theory for pseudoholomorphic maps and Arzela-Ascoli theorem, G, converge in C_(C) to

a bounded holomorphic map G : C — C with [VG(0)] = 1. By Liouville theorem this map can be only the constant
map, and so, we arrive at a contradiction with |[VG(0)| = 1.

O

For § > 0 we can replace the cylinder [0, + 8, 0n — 8] X S! by [0, 0n] x ST if we consider Thing (S, h,,) for
a smaller § > 0. We come now to the decomposition of [—0,,, o] x S! into cylinders of types co and b;. Consider
the parameter-dependent function with parameter h € [—o0,, 0] defined by

Fonilhonl =R, s J f dox.
[h,s]xS?
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—opn = h% hl h? h3 h% hS on =h8
Figure 3.2.2: Decomposition of [0y, 0] x S! into smaller cylinders [h%m), h&mﬂ)] x S! having da—energy h/4 or
less.

As f7 doc is non-negative, Fy, 1, is positive and increasing. For the constant h defined in (|1.0.22)), we set hE?) = —0n,

and define "
h%m] = sup (F;}h‘&ml) <[0, 4})) .

Since Egqq(Un;[—0n, 0n] x St) < Eg, the sequence {h%m)}meNo has to end after N,, steps, where h;N") = 0p. On
the cylinder [h%N“_l),hglN")] x S!, the da—energy of u,, can be smaller than h/4. Obviously, we have —c, =
O <l < < hi™ < < W) = 6, giving Ego(un; MY, R x ST = h/4 for m = 1,...,Nn — 1 and

Eao(un; [h%N“_l),h%N“)] x S1) < h/4. Hence the dox—energy can be written as
. 1 h .M (Ny—1) 1. (Ny) 1
Eqo(Un;[=on,0n] xS§*) = (Nn_l)Z+Edoc(unv[hn vy ™ x 8§,

which implies the following bound on Ny:

4E,
0< N < e + 1.
After going over to a subsequence, we can further assume that N,, is also independent of n; for this reason, we set
N, = N. Thus the cylinders [0, 0,] x S! have been decomposed into N smaller subcylinders [hE? ),h;l 1 x
St RN mIN] % St on which we have Ego(in; R0 Y, h™] x S1) = h/4 for m € {1,..,N — 1} and

Eaa(un; Y YT x S1) < hy/a
Definition 41. A sequence of cylinders [an, b,] x S?, where a,,, b, € R and a, < by is called of type by if b,, —an,
is bounded from above, and of type oo if b, — an — 00 as 1 — co.

This is illustrated in Figure [3.2.2

Lemma 42. Let [h;mil],h%m]] x S be a cylinder of type oo and let h > 0 be chosen small enough such that
hT(Im) — hiﬂ“*” —2h = (h&m) —h)— (h%mil) +h) >0 for all n € N, Then there exists a constant Cy, > 0 such
that
[dun(z)]co = | ﬁup 1 |dun (2)v]| < Ch
V=

eucl

forallze M™ Y 4+ k™ —h] x St and n € N.

Proof. The proof makes use of bubbling-off analysis. Assume that there exists h > 0 such that h%m) —hS{“*” —2h >
0 and
sup | dun(z)]|co = o0. (3.2.1)
ze{™ Y 4hh(™ —hx st

Then there exists a sequence z,, € (h\™ ) + h, him h) x S* with the property R, := ||dun(zn)|co — oo as

_1
n — oco. Let e, =Rn? \(0 as n — oo, and observe that €,R,, — 0o as n — co. Choose ng € N sufficiently large
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such that Dige, (zn) C [h;mil],h%m)] x St for all n > ng. By Hofer’s topological lemma, there exist €/, € (0, €,,]
(m—1) 1 (m)
h

and z/, € [hn ,hn ] x St satisfying:
1. €/ Rl > enRp;
2. Za € Dzen (Zn) - D106n (Zn);
3. [|[dun(z)||co < 2Ry, for all z € D¢/ (z],) C Dige,, (zn),
where R} := ||dun(z; )| co. Applying rescaling consider the map vy, : D¢ g, (0) — R x M, defined by

Vn(W) = (bn(w)y gn(W)) =Un (Zil + ]:\,)) - an(Z;L)

for w € D¢/ g/ (0). Note that z;, + (W/R]) € D¢/ (2],) for w € D¢, g, (0), and that for v,, we have

L. [[dvn(0)]lco = 1;

2. [[dvn(W)[|co < 2 for w € De: e (0);

3. Eqa(vn;Derry (0)) < 1/4 (straightforward calculation shows that the x—energy is also uniformly bounded);
4. v, solves

Mydgn o1 =] omydgn,

on DEQRA (0)

As the gradients of v;, are uniformly bounded, v,, converge in C°_(C) to a finite energy planev = (b, g) : C - RxM

characterized by:

L |dv(0)[lco = 1;
2. ||[dviw)||co < 2 for w € C;
3. Eaa(v;C) < h/4;

4. v is a finite energy holomorphic plane.

Assertion 3 follows from the fact that for an arbitrary R > 0 we have

NE

Eqx(v,Dgr(0)) = lim Egqu(vn;Dr(0)) < lim Egu(vn;Derry (0)) < —,
n—oo n—oo
while Assertion 4 follows from the fact that v,, has a uniformly bounded [?—norm. Note that by employing the
above argument, a bound for the x—energy can be also obtained. Now, as v is non-constant, Theorem 31 of [1]
gives Eq«(v;C) > h, which is a contradiction to Assertion 3. Thus Assumption does not hold, and the
gradient of u, on cylinders of type co is uniformly bounded.
O
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i) v
5 v 3
N \

i) ™ R himl _p himtt)

Figure 3.2.3: On the white surface, the pseudoholomorphic curves have uniformly bounded gradients.

Now we change the above decomposition so that the lengths of the cylinders of type b; are also bounded from
below and describe the alternating appearance of cylinders of types co and b;. This process is necessary, because
on the cylinders of type b; whose length tends to zero we cannot analyze the convergence behavior of the maps u,
and cannot describe their limit object. We proceed as follows.

Step 1. We consider a cylinder [h%m),h%mﬂ)} x St of type oo, on which we apply Lemma When doing
this we choose a sufficiently small constant h > 0, so that the gradients are uniformly bounded only on
[hEJ“) + h, h;mﬂ) —h] x S! by the constant C, > 0, which in turn, is again a cylinder of type co. This
can be seen in Figure By this procedure, a cylinder [h%m), h%mﬂ)] x S1 of type oo is decomposed into
three smaller cylinders: two cylinders [hglm),hglm) +h] x St [hElmH) —h, h&m“)] x St of type by and one
cylinder [hEl‘“) +h, hElmH) —h] x S! of type co. The length of these two cylinders of type by is h > 0. To
any other cylinder of type co we apply the same procedure with a fixed constant h > 0. Note that by Step
1, the gradients of u,, are uniformly bounded on the cylinders of type oo by the constant Cy, > 0.

Step 2. We combine all cylinders of type by, which are next to each other, to form a bigger cylinder of type
bi. This can be seen in Figure By this procedure, we guarantee that in a constellation consisting of
three cylinders that lie next to each other, the type of the middle cylinder is different to the types of the
left and right cylinders. Thus we got rid of the cylinders of type b; with length tending to zero, and make
sure that the cylinders of types co and b; appear alternately. We additionally assume that the first and last
cylinders in the decomposition are of type oo, since otherwise, we can glue the cylinder of type b; to the
thick part of the surface and consider Thins(S™:", h,) for a smaller & > 0. By this procedure, we decompose
[0, 0n] x St into cylinders of types co and by, while the first and last cylinders in the decomposition are
of type oco.

Step 3. For Eq = 2(Eg + Cn) (see Remark for the explanation of this choice) and in view of the non-
degeneracy of the contact manifold (M, «), let the constant hy be given by

ho == min{|T, — To| | Ty, To € P, Tt # To, Ty, To < Eo}. (3.2.2)

Observe that because of Eg > Eq, hy < h. If [h%m_l) , h%m)] x S is a cylinder of type oo for some m € {1,..., N},
we define the constant hy as above and apply Step 1 and Step 2 to decompose this cylinder into cylinders
of types oo and by, while the first and last cylinders in the decomposition are of type co. The cylinders of
type co have now a da—energy smaller than hy/4. We apply this procedure to all cylinders of type co. In
summary, [—on, 0] x S is decomposed into cylinders of type co with a da—energy smaller than hy/4 and
cylinders of type by, with the first and last cylinders being of type co.

Step 4. We enlarge the cylinders of type b; without changing their type. Let h > 0 be as in Lemma

and pick m € {1, ..., N} such that [h%m_l),h%m)} x S is of type b;. For n sufficiently large, we replace the

cylinder [h%m_l), h%m)] x S by the bigger cylinder [h;m_l) — 3h, h%m] + 3h] x S!, and apply this procedure
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b1 § by
h1(1m] h‘(aerl) h'glm—o—Q)
[ sum up to
h‘(nm) h‘51m+2)

Figure 3.2.4: Two cylinders of type b; are combined to form a bigger cylinder of type b;.

Figure 3.2.5: Decomposition of [—0,,, 0,,] X S? into cylinders of types co and by in an alternating order.

to all cylinders of type b;. As a result, neighboring cylinders will overlap. Essentially, this means that if
[hg‘“*” , hﬁl‘“*”] x S! is a cylinder of type oo, which lies to the left of a cylinder [h;mfl) —3h hm) +3h] xSt
of type by, then their intersection is [hﬁf“*” — 3h, hﬁlmfl)} x S1. This can be seen in Figure

By the above procedure, the cylinder [0, 0] x S! is decomposed into an alternating constellation of cylinders of
types oo and b;. On cylinders of type oo, the dox—energy is smaller than hg/4, while on cylinders of type by, the
do—energy can be larger than hy/4. By Lemma the gradients of the H{—holomorphic curves on the cylinders
of type oo are uniformly bounded by the constant C;, > 0 with respect to the Euclidean metric on the domain, and
to the metric described in on the target space R x M. Finally, the cylinders of types oo and b; overlap.
We are now well prepared to analyse the convergence of the H{—holomorphic curves on cylinders of types co and
b;. After obtaining separate convergence results, we glue the limit objects of these cylinders on the overlaps, and
obtain a limit object on the whole cylinder [0y, 0] x St. Sections and deal with the convergence and
the description of the limit object on cylinders of types oo and b, while in Section [3.2.4] we carry out the gluing
of these two convergence results.

3.2.2 Cylinders of type oo

We describe the convergence and the limit object of the sequence of H—holomorphic curves u,,, defined on cylinders
of type co. Let m € {1,..., N} be such that [hilmfl), h&lm)] x S is a cylinder of type oo as described in Section
ie. hﬁlm) — h&lmfl) — 00 as N — oo. Consider the diffecomorphism 1V, : [—R%m), R;‘“J] — [h;m],hﬁlm“]] given by
Pn(s) =s+ (hﬁlm) +h£1m+l))/2 and the H—holomorphic maps 1, oY, = (an o Pn, frnon): [—Rglm),R%m)] xSt —
R x M with harmonic perturbation 1}, y,. For simplicity we continue to denote u,, o\, and P}y, by u, and yn,
respectively. For deriving a C{°.—convergence result we consider the following setting:
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C1 Rilm)—>ooasn—>oo.

C2 v, is a harmonic 1—form on [—REJ“), RE{“)]

dyn =dynoi=0.

x S! with respect to the standard complex structure i, i.e.

C3 The dx—energy of u, is uniformly small, i.e. Eqq(un; [—R%m],R;m)} x S1) < hy/2 for all n, where hy is
the constant defined in (3.2.2).

C4 The energy of u, is uniformly bounded, i.e. for the constant Ey > 0 we have E(u,;[~Ry ,Rn ] x S?) <
Eg for all n € N.

C5 The map u, together with the 1—form <y,, solve the H{—holomorphic curve equation

I(fn) o My dfn,
dan +vYn.

Tedfp ol

(o) oi on [—Rﬁ,Rf’l} x St
n

C6 The harmonic 1—form vy, has a uniformly bounded [?—norm, i.e. for the constant Cy > 0 we have
HY“”2L2([—R;‘M,R,&m)]xsl) < Cp for all n.

C7 The map u,, has a uniformly bounded gradient due to Lemma [42|and Step 4 of Section [3.2.1} i.e. for the
constant C;, > 0 we have

[dun(z)]lco = Wi [dun(z)v]| < Cn
v =1

euc

for all z € [-R™ RU™] x S! and all n € N.

C8 If P, := Py ({0} x S') is the period of y,, over the closed curve {0} x S?, as defined in ((1.0.18)), we assume
that the sequence R, P;, is bounded by the constant C > 0. Moreover, after going over to some subsequence,
we assume that R,,P,, converges to some real number T.

C9 If S, :=S,, ({0} x S!) is the co-period of 'y, over the curve {0} x S! as defined in ([1.0.19)), we assume that
ShiRyn > 0asn — oco.

Remark 43. The special circles "% in Remark are of two types: contractible and non-contractible. In the
contractible case, I“{md lies in the isotopy class of (pn oy ) ({0} x St), where p,, is the biholomorphism from a compact
component C, of the thin part to [—0,,, on] x S? as described in Section and the conformal periods and co-
periods of the harmonic 1—forms y,, vanish. Hence, conditions C1-C9 are satisfied on the sequence of degenerating
cylinders [—R,(im],RELm)] x S!. In the non-contractible case, I'™°9 also lies in the isotopy class of (pn oy ) ({0} x S1),
and by the assumptions of Theorem [33] conditions C1-C9 are satisfied.

To simplify notation we drop the index m. By Theorem [72] and Remark [75] from Appendix we consider
two cases. In Case 1, there exists a subsequence of u,, with vanishing center action, and we use Theorem [63| and
Corollary [64| to describe the convergence of the H{—holomorphic curves with harmonic perturbations y,,. In Case
2, each subsequence of u,, has a center action larger than hg, and we use Theorem |65 and Corollary [66|to describe
the convergence.

Definition 44. For every sequence h, € R, with h; < R,, and hy,R,,/hy — 00 as 1 — oo, consider a sequence
of diffeomorphisms 6, : [-R,,Rn] — [—1, 1] having the following properties:

1. The left and right shifts 0;(s) := 0, (s + Rn) and 0, (s) := On(s — Ry,) defined on [—h,,,0] — [1/2,1] and
[0,hn] — [—1,—1/2], respectively, converge in C{3_ to the diffeomorphisms 8~ : [0,00) — [-1,—1/2) and
0" : (—o0,0] — (1/2, 1], respectively.



CHAPTER 3. PROOF OF THE COMPACTNESS THEOREM 49

Figure 3.2.6: The diffeomorphism 6,.

2. On [—R,, + hn, Ry — hyy] we define the diffeomorphism 6,, to be linear by requiring

N A O R
2’21/’ 2(Rp —hy)’

where Op([—R,, + hyn, Ry — hy]) and Op([—1/2,1/2]) are sufficiently small neighborhoods of the intervals
[Ry, + hn, Ry — hnl and [—1/2,1/2], respectively.

en : Op([_Rn +hn;Rn —hnﬂ — Op ([

See Figure [3.2.6

Note that the diffeomorphism 0,, gives rise to a diffeomorphism between the cylinders [-R,,, Rn]xS* and [-1, 1] x S,
according to [—Rn, Ra] x ST — [—1,1] x S%, (s,t) — (On(s),t). By abuse of notation these diffeomorphisms will
be still denoted by 0,,. Denote by ul(s,t) := un(s + Ry, t) the left and right shifts of the maps u,, and by
Y == yn(s & R, t) the left and right shifts of the harmonic perturbation, which are defined on [0,h,] x S*
and [—h,,0] x S!, respectively. In both cases we use the diffeomorphisms 0, to pull the structures back to
the cylinder [—1,1] x S'. Let i,, := d0, o1io dO,' be the induced complex structure on [—1,1] x S'. Then
up 00,1 :[—1,1] x S — R x M is a sequence of H{—holomorphic curves with harmonic perturbations (0,;)*yn
with respect to the complex structure i,, on [1, 1] x S! and the cylindrical almost complex structure J on the target
space R x M. From the result 0,,!(s) = (0;,) " !(s) — R and 0,,1(s) = (6;0)"*(s) + Ry, and the fact that 0, and
0" converge in C° to 6~ on [—1,—1/2) and 0" on (1/2, 1], respectively, it follows that the complex structures i,

loc

converge in C°. to a complex structure fon [—1,—1/2) x S* and (1/2,1] x S. First, we formulate the convergence

in the case when there exists a subsequence of u,,, still denoted by u,,, with a vanishing center action (see Definition

7).

Theorem 45. Let u,, be a sequence of H—holomorphic cylinders with harmonic perturbations v, that satisfy
C1-C9 and possessing a subsequence having vanishing center action. Then there exists a subsequence of U,
still denoted by un, H—holomorphic cylinders u* defined on (—o0,0] x S* and [0,00) x S, respectively, and
a point w = (wq,ws) € R X M such that for every sequence h, € R, and every sequence of diffeomorphisms
On : [—Rn,Rn] — [—1,1] constructed as in Remark the following C2.— and C°—convergence results hold
(after a suitable shift of u, in the R—coordinate)

C{o,—convergence:

1. For any sequence sn € [—Rn + hn,Rn — hy] there exists a constant tjs, y € [—7, 1] (depending on the
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sequence {sn}) such that after passing to a subsequence, the shifted maps un (s + sn,t) + Snsn, defined
on [—Rn 4+ hy — sn, Ry — hyy — sn] x ST, converge in C, to (Wa,cbfT(s )(Wf)). The shifted harmonic

perturbation 1—forms yn(s+ sn,t) possess a subsequence converging in C3s, to 0.

2. The left shifts u, (s,t) — RnSn = un(s — Ry, t) — RySy, defined on [0,h,,) x S!, possess a subsequence
that converges in C°, to a pseudoholomorphic half cylinder u™ = (a™,f~), defined on [0, +00) x S*. The
curve u~ 1s asymptotic to (Wq, ¥ (wy)). The left shifted harmonic perturbation 1—forms y;, converge

in C2, to an ezact harmonic 1—form dI'~, defined on [0,+00) x S*. Its asymptotics is 0.

3. The right shifts u, (s,t) + RnSn := un (s + Rn,t) + RuSn, defined on (—hn,0] x S, possess a subsequence
that converges in C, to a pseudoholomorphic half cylinder u™ = (a*,f"), defined on (—o0,0] x St.
The curve u" is asymptotic to (wq, d%.(we)). The right shifted harmonic perturbation 1—forms v;,

converge in C, to an ezact harmonic 1—form dI'", defined on (—o0,0] x S*. Its asymptitics is 0.

C®—convergence:

1. The maps vy : [—1/2,1/2] x S — R x M defined by vn(s,t) = un(0,1(s),t), converge in C° to (—20s +
Waq, cb§2~rs (Wf))

2. The maps v, —RnSn : [—1,—1/2] xS — Rx M defined by v, (s,t) = un((0,;) 1(s),t), converge in C° to a
map v :[—1,—1/2] x St - R x M such that v (s,t) =u ((07) " 1(s),t) and v (—1/2,t) = (wq, dX(wy)).

3. The maps v;; + RSy : [1/2,1] x S* — R x M defined by v (s,t) = un((0})71(s),t), converge in C° to a
map v :[1/2,1] x S = R x M such that v (s,t) =u((07)71(s),t) and v (1/2,t) = (Wq, d*.(ws)).

An immediate corollary is

loc

Corollary 46. Under the same hypothesis of Theorem the following C9° —convergence results hold.

1. The maps v; —RnSy converge in Cg5. to v—, where v~ is asymptotic to (wq, d&(wy)) as s - —1/2. The

harmonic 1—forms [(8;))1]*y;, with respect to the complez structure [(0,;)"'1*1 converge in C¥, to a
harmonic 1—form [(07)"1]*dT"~ with respect to the complex structure [(0) 1]*i which is asymptotic to

some constant as s — —1/2.

2. The maps v} + Rn Sy, converge in C, to v, where v is asymptotic to (wq, d*(ws)) as s — 1/2. The

harmonic 1—forms [(0;)) 11*y,, with respect to the complezx structure [(0,;) !]*i converge in C, to a
harmonic 1—form [(0F)71]*dI't with respect to the complex structure [(01)~1]*i which is asymptotic to

some constant as s — 1/2.

Next we formulate the convergence in the case when there is no subsequence of u,, with a vanishing center action.
This result follows from Theorem [65] of Appendix

Theorem 47. Let u, be a sequence of H—holomorphic cylinders with harmonic perturbations vy, satisfying
C1-C9 and possessing no subsequence with vanishing center action. Then there exist a subsequence of u,,
still denoted by u,,, H—holomorphic half cylinders u* defined on (—oco,0] x ST and [0, 00) x S, respectively, a
periodic orbit x of period [T|, where T € R\{0}, and sequences ¥: € R with [f, —7| = co as n — co such that
for every sequence h,, € R, and every sequence of diffeomorphisms 0., : [—Rn,Rn] — [—1,1] as tn Remark
the following convergence results hold (after a suitable shift of u,, in the R—coordinate).

C{.—convergence:
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1. For any sequence s, € [~Rn + hyn,Ry — hy] there exists a constant 1(5, ) € [-7,7] (depending on the
sequence {sn}) such that after passing to a subsequence, the shifted maps un(s + sn,t) —snT — Snsn,
defined on [—Rp +hn —sn, Ry —hn —sn] X S, converge in C, to (Ts+ ao, d)ET(SM (x(Tt)) =x(Tt+71,1))-

The shifted harmonic perturbation 1—forms yn(s+ sn,t) possess a subsequence converging in C2, to 0.

2. The left shifts u, (s,t) — RaSn, defined on [0,h,) x S, possess a subsequence that converges in C3, to
a H—holomorphic half cylinder u™ = (a™,f~), defined on [0,+00) x S. The curve u™ is asymptotic to
(Ts+ ag, S (x(Tt)) =x(Tt+7)). The left shifted harmonic perturbation 1—forms y,, converge in C52. to

loc
an ezact harmonic 1—form dTI'~, defined on [0,+00) x S'. Their asymptotics are 0.

o0

3. The right shifts ul(s,t) + RnSn, defined on (—h,,0] x S! possess a subsequence that converges in C,
to a H—holomorphic half cylinder ut = (a*t,f"), defined on (—o0,0] x S*. The curve ut is asymptotic
to (Ts + ag, d*.(x(Tt)) = x(Tt —T)). The right shifted harmonic perturbation 1—forms vy} converge in

C%. to an exact harmonic 1—form dI'", defined on (—o0,0] x St. Their asymptotics are 0.

C%—convergence:

1. The maps fn 001 : [—1/2,1/2] x St — M converge in C° to %, (x(Tt)) = x(Tt — 27s).

2. The maps f;, o (0;) 71 :[—1,—1/2] x S -+ M converge in C° to a map f~ o (07) 1 :[-1,-1/2] x St = M
such that f~((07)71(—1/2),t) = ¢ (x(Tt)) = x(Tt + T).

3. The maps f o (0;7)71:[1/2,1] x S — M converge in C° to a map f+ o (07)71:[1/2,1] x S — M such
that fT((07)71(1/2),t) = = (x(Tt)) = x(Tt — 7).

4. There ezist C >0, p >0 and N € N such that for any R >0, a, 00,/!(s,t) € [f,, + R— C, T\ — R+ C] for
alln >N and all (s,t) € [—p, p] x St.

An immediate corollary is

Corollary 48. Under the same hypothests of Theorem [{7 and the notations from Theorem [{{] we have the

following C32 —convergence results.

1. The maps v;, — RnSn converge in C, to v— where f—((67)"1(—1/2),t) = x(Tt + 1). The harmonic
1—forms [(8;,) 11*y,, with respect to the complezx structure [(8,)*]*1 converge in C2,
1—form [(07)~']*dl~ with respect to the complex structure [(07)~']*i which is asymptotic to some

constant as s — —1/2.

to a harmonic

2. The maps v, +R, Sy, converge in C2, to v where f™((07)71(1/2),t) = x(Tt—1). The harmonic 1—forms

loc

[(6)) 7"y, with respect to the complez structure [(8;))7]*i converge in C$2, to a harmonic 1—form
[(0F)71]*dl* with respect to the complex structure [(0F) 1]*i which is asymptotic to some constant as

s —1/2.

Since 0~ : [0,00) x S — [~1,—1/2) x S! is a biholomorphism with respect to the standard complex structure i on
the domain and the pull-back structure i := [(0~)~1]*i, we can identify [—1, —1/2) x S! with the punctured disk
equipped with the standard complex structure, that extends over the puncture.

We use now Theorems [45| and 47| to describe the limit object.

In Case 1, the “limit surface” in the symplectization consists of two disks which are connected by a straight line at
the origin. The limit map u = (a,f) : [~1,1] x S = R x M with the limit perturbation 1—form v can be described

as follows (see Figure [3.2.7)).



CHAPTER 3. PROOF OF THE COMPACTNESS THEOREM 52

-1 — 1
2

N =

Figure 3.2.7: The limit surface consists of two cones connected by a straight line.

D1 On [-1,—1/2) xS?, u is a H{—holomorphic curve with harmonic perturbation vy such that at the puncture
it is asymptotic to (0 + wq, dS(wy)), while the harmonic perturbation is asymptotic to a constant.

D2 On (1/2,1] x S, uwis a H{—holomorphic curve with harmonic perturbation y such that at the puncture
it is asymptotic to (—o +wq, $* (w¢)), while the harmonic perturbation is asymptotic to a constant.

D3 On the middle part [—1/2,1/2] x S?, u is given by u(s,t) = (—20s + wq, ®%,.(Wr)). On this part the
1—form v is not defined.

In Case 2, the limit surface is the disjoint union of the cylinders [—1, —1/2) xS and (1/2, 1] xS*. The H{—holomorphic
curve u = (a,f) : ([-1,—1/2)[[(1/2,1]) x St — R x M with harmonic perturbation y can be described as follows.

D1’ uis asymptotic on [—1,—1/2) x S* and (1/2,1] x S! to a trivial cylinder over the Reeb orbit x(Tt + T)
or x(Tt — 1), respectively, while the harmonic perturbation is asymptotic to a constant.

D2’ On the middle part [-1/2,1/2] x S!, the M—component f is given by f(s,t) = x(Tt — 27s).

3.2.3 Cylinders of type b;

We analyze the convergence on cylinders of type b; by using the results of Appendix [Al Let m € {1, ..., N} be such
that the cylinders [h%mfl) — 3h, hﬁ{“) + 3h] x S! are of type b;. By the construction described in the previous
section and Lemma [42] and Step 1 from Section [3.2.1] the H{—holomorphic curves have uniform gradient bounds on
the two boundary cylinders [hT(lmfl) —3h, h%mil ] x S and [h&m),hﬁl‘“) +3h] x St.

The convergence analysis is organized as follows. As in Section we apply bubbling-off analysis on the cylinder
[h%m_l],h%m)] x S to show that on any compact set in the complement of a finite number of points Z(™) in
[h%m_l] — 3h, hfim) + 3h] x S, the gradient of u, is uniformly bounded. The points on which the gradient might
blow up are located in (th“‘” —h, hEJ“) +h) x S!. Each resulting puncture from 2™ lies in a disk D, of radius
r smaller than h/2. For a smaller radius r, we assume that all disks D, are pairwise disjoint and that their union
lies in (K™ —h, h{™ +h) x St (see Figure .

Under these assumptions, the H{—holomorphic curves converge in C*® on the complement of the union of these
disks (centered at the punctures) to a H—holomorphic curve. What is left to prove is the convergence in each Dy;
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Figure 3.2.8: The gradient might blow up on the discs D, (z;) contained in (h;mfl] —h, h;m) +h) x St.

for this we use the results of Appendix [A] In the final step, we glue the convergence results on the disks to the rest
of the cylinder, and obtain the desired description on the entire cylinder of type b;.

Under the biholomorphic map [h;mfl) —3h, h](im] +3h] x St = [0, HELm)] x S1,(s,t) = (s — h&mil) + 3h,t), where
HE{“] = hi{“) — h](imfl] +6h, assume that the H{—holomorphic curves u,, together with the harmonic perturbations
Yn are defined on [O,H&Lm)] x S'. By going over to a subsequence, we have HLm) — H(™) as n — co. Consider
the translated H{—holomorphic curves u, — a,(0,0) = (an,fn) —an(0,0) : [0, H;m]] x S — R x M with harmonic
perturbations y,,. In order to keep the notation simple, let the curve u,, — a,,(0,0) be still denoted by w,,. The
analysis is performed in the following setting:

E1 The maps u, = (an, ) are H—holomorphic curves with harmonic perturbation vy, on [O,H%m)] x St
with respect to the standard complex structure i on the domain and the almost complex structure | on &.

E2 The maps u, have uniformly bounded energies, while the harmonic perturbations vy,  have uniformly
bounded L?—norms, i.e., with the constants Eq, Cq > 0 we have E(uy; [0, HEI“)] xS < Eg and |[yn
Cp for all n € N.

2
172 10, 148m 1051 <
E3 The maps u,, have uniformly bounded gradients on [0,3h] x S and [H%m) —3h, H,(im)] x S! with respect

to the Euclidean metric on the domain and the cylindrical metric on the target space R x M, i.e.

[dun(z)[[= sup [dun(z)v]g < Cn

HVHeucl.:]'
for all z € ([0,3h] U [H™ — 8h, H™]) x S! and n € N.
The next lemma states the existence of a finite set Z(™) of punctures on which the gradient of u,, blows up.

Lemma 49. There exists a finite set of points 2™ C [3h, H%m) —3h] x S such that for any compact subset
X C ([O,Hilm)] x SY\Z(™) there exists a constant Cy > 0 such that

[dun(z)[| = sup [dun(z)vlly < Cx

VIleuer =1

forallze X and n e N.

Proof. The proof relies on the same arguments of bubbling-off analysis, which have been employed in Theorem
from Section [3.1] for the thick part.

O

Pick some v > 0 such that r < h/2, and let D, (Z™)) consists of |2(™)| pairwise disjoint closed disks of radius
T > 0, centered at the punctures of Z(™). Obviously, D, (Z(™)) c (2h, Hﬂm) —2h) x S!. Then by Lemma@, Un
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has a uniformly bounded gradient on ([O,H,(lm)} x SY\D,(2(M)). As ([0, H%m)] x S1\D,(Z(™)) is connected, we
assume, after going over to some subsequence, that u“'([o,Hﬁl‘“)}xsl)\Dr(Zm)) converge in C*® to some smooth map
u|([0,H(m)}Xsl)\DT(Z(m)) = (q, f)|([O,H(m)]X51)\DT(Z(m)). Before treating the convergence of the H—holomorphic
curves in a neighborhood of the punctures of Z™), we establish the convergence of the harmonic perturbations yn

on [0, HT(Im]] x S, so that at the end

. un|([ converge in C* to a H{—holomorphic curve g j(m)jxs1)\D, (z(m)), and

0,H{™ IxST\D, (2(m))

e the harmonic perturbations v, have uniformly bounded C*—norms on the disks D, (Z(™)) for all k € Ng.

The latter result is needed to describe the convergence of the harmonic perturbations y,, on the disks D, (Z(™)). As
in the previous section, we set y,, = f,,ds+ g, dt, where f;, and g,, are harmonic functions defined on [0, HElm)] x St
such that f, + igy, are holomorphic. By the uniform [2—bound of y,, it follows that

2 - 2 2
||’YTIHL2[[O,H£J“)]><SI) = J[O H(m)]XSI (fn + gn) dsdt < CO

for all n € N, and so, that the [2—norms of the holomorphic functions f, + ig,, are uniformly bounded. Letting
Gn = fn +ign we state the following

Proposition 50. There exists a subsequence of G, also denoted by G,, that converges in C® to some
holomorphic map G defined on [0,H(™)] x S'. Moreover, the harmonic perturbations yn converge in C® to
a harmonic map .

Proof. By Proposition G, has a uniformly bounded C!—norm, while by the standard regularity results from
the theory of pseudoholomorphic curves (see, for example, Section 2.2.3 of [2]), the C¥ derivatives of G,, are also
uniformly bounded. Hence, in view of Arzela-Ascoli theorem, we can extract a subsequence that converges to some
holomorphic function G.

O

Let us analyze the convergence of the H{—holomorphic curves in a neighborhood of the punctures of Z(™), which
are given by Lemma For v > 0 as above and z € Z(™), consider the closed disks D, (z) and the H{—holomorphic
curves Un = (an,fn) : D+(z) =& R x M with harmonic perturbations y, that converge in C*® to some harmonic
1—form y. According to the biholomorphism D — D.(z), p — p + z, where D is the standard closed unit disk,
regard the H{—holomorphic curves u, together with the harmonic perturbations as being defined on D instead of
D, (z). The following setting is pertinent to our analysis:

F1 The maps u,, = (an,fn): D — R x M are H—holomorphic curves with harmonic perturbations y,, with
respect to the standard complex structure i on D and the almost complex structure | on €&.

F2 The maps un = (an, fn) and v, have uniformly bounded energies and L2—norms.

F3 For any constant 1 > T > 0, unfa, . = (an,fn)la,, converge in C* to a H—holomorphic map u with
harmonic perturbation v, where Ay r ={z € D |t < |z] < 1}.

As the domain of definition D is simply connected, we infer that v, is exact, i.e. it can be written as vy = diy,
where I, : D — R is a harmonic function. By Condition F2, I, has a uniformly bounded gradient VI;, in the
L2 —norm, and it is apparent that the existence of I}, is unique up to addition by a constant. Let us make some
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remarks on the choice of I, and discuss some of its properties. By using the mean value theorem for harmonic
functions as in Proposition we conclude (after eventually, shrinking D) that the gradient VI, are uniformly
bounded in C°. Denote by z = s + it the coordinates on D, and let

1
K, = —J (s, t)dsdt
TJp

be the mean value of [, so that by the mean value theorem for harmonic functions, K,, = I’y (0). Finally, define
the map I (z) := ' (z) — ' (0) which obviously satisfies y,, = dl's.

Remark 51. From Poincaré inequality it follows that ||l ||i2p) < ¢ HVI:an(D) for some constant ¢ > 0 and so,
that I, is uniformly bounded in [?>—norm. Again, by using the mean value theorem for harmonic functions, we
deduce (after maybe shrinking D) that I, has a uniformly bounded C°—norm, and consequently, that I}, has a
uniformly bounded C!—norm. Because y,, = dl', is a harmonic 1—form, 94T}, + 10T is a holomorphic function.
In this context, by Proposition ', converge in C* to a harmonic function I': D — R.

In the following we transform the H{—holomorphic curves defined on the disk in a usual pseudoholomorphic curve by
encoding the harmonic perturbation vy, = dI}, in the R—coordinate of the H{—holomorphic curve u,. Specifically,
we define the maps U, = (an, fn) = (an + T, fn) which are obviously pseudoholomorphic. The transformation is
usable if we ensure that the energy bounds are still satisfied. For an ordinary pseudoholomorphic curve, the sum
of the a— and do—energies, that are both positive, yield the Hofer energy Ex(Wn; D). A uniform bound on the

Hofer energy, which ensures a uniform bound on the cx— and da—energies of 1, is

Ea(niD) = sup | dlpa) = sup | @i < | [fal<cn
eeAJD pcA oD oD

Here, the last inequality follows from Condition F'3, according to which, u,, converge in C* in a fixed neighborhood
of 0D. Note that the constant Cj, is guaranteed by Lemma

In a next step we use the results of Appendix [A]to establish the convergence of the maps 1,, and to describe their
limit object. Then we undo the transformation in the R—coordinate (more precisely, the encoding of y,, in the
R—coordinate of the curve u,,) and give a convergence result together with a description of the limit object for u,,.
Before proceeding we state the setting corresponding to the pseudoholomorphic curves i, .

G1 The maps U, = (@n,fn): D — R x M solve the pseudoholomorphic curve equation
Mo dfy, o= J(fn) o madfn,
fraoi=da,
on D.
G2 The maps U, have uniformly bounded energies.

G3 For any 1> 0, Unla, . = (ﬁn,T‘n)IAl,T converge in C*™ to a pseudoholomorphic map.

We consider two cases. In the first case, the R—components of t,, are uniformly bounded, while in the second case
they are not. Actually, the first case does not occur. We will prove this result in the next lemma by using standard
bubbling-off analysis. Let z, € D be the sequence choosen from the bubbling-off argument of Lemma {49} i.e. for
which we have that
[[dtin (zn)|| = sup [[diin (z)[| — oo (32.3)
zeD

as m — o0.
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Lemma 52. The R—coordinates of the maps U, are unbounded on D.

Proof. We prove by contradiction using bubbling-off analysis. Assume that the R—coordinates of the maps u,, are
uniformly bounded. Employing the same arguments as in the proof of Lemmafor the sequence R, := ||dtun (zn)]|,
we find that the maps v, : D¢y (0) — R x M converge in C{5 (C) to a non-constant finite energy holomorphic

plane v. Note that the boundedness of Eg,(v; C) follows from the fact that for an arbitrary R > 0 we have
Eaa(v,Dr(0)) = lim Egqu(vn; Dr(0)) < lim Equ(vn;Deyry, (0)) < Ch,
n—o0 n—o0

yielding Eq4(v;C) < Cp,. As we have assumed that the R—coordinates of 1,, are uniformly bounded it follows that
the R—coordiantes of v,,, and so, of v, are also uniformly bounded. By singularity removal, v can be extended
to a pseudoholomorphic sphere. Thus the dx—energy vanishes and by the maximum principle, the function a is
constant. For this reason, v must be constant and we are lead to a contradiction.

O

We consider now the second case in which the R—coordinates of the maps 1t,, are unbounded, and make extensively
use of the results of Appendix [A] By the maximum principle, the function @, tends to —oo, while by Proposition
the maps U, = (an, fn): (D,1) — R x M converge to a broken holomorphic curve Ut = (q, f) : (Z,j) — R x M.
Here, Z is obtained as follows. Let Z be a surface diffeomorphic to D, and let A = A, Il A, C Z be a collection
of finitely many disjoint loops away from 0Z. Further on, let Z\A, = ]_[5‘;“01 Z™) for some N € N as described
in Appendix For a loop & € A, there exists v € {0, ..., N} such that 5 is adjacent to Z®) and ZV*Y| Fix an
embedded annuli

A%Y = [—1,1] x St c Z\A,
such that {0} x S = §, {—1} x S* ¢ Z(™), and {1} x S* ¢ Z(V*Y) . In this context, there exist a sequence of

diffeomorphism ¢, : D — Z and a sequence of negative real numbers min(a,,) = rg)) < rg) <. < rg\l“) = —K-2,
where K € R is the constant determined in Appendix E and rQH) — T%V) — 00 as N — oo such that the following
hold:

H1 iy := (@n)si — jin C2_ on Z\A.

loc

H2 The sequence i, o @ 7(v) : Z™) - R x M converges in C®. on Z(Y\A, to a punctured nodal

loc

pseudoholomorphic curve ©¥) : (Z(),j) - R x M, and in C2 _on Z(¥).

loc

H3 The sequence f,o@;* : Z — M converges in C° to amap f : Z — M, whose restriction to A, parametrizes
the Reeb orbits and to A,, parametrizes points.

H4 For any S > 0, there exist p > 0 and N € N such that @, o o t(s,t) € [r,(lv] +S,r](1v+1) —S]foralln >N

and all (s,t) € A%Y with |s| < p.

To establish a convergence result for the H{—holomorphic curve u,, we undo the tranformation. The maps u, are
given by u, = Uy — Iy, where I}, : D — R is the harmonic function defined in Remark 51} Observe that by Remark
the T, converge in C*®(D) to some harmonic function and are uniformly bounded in C°(D). Via the above
diffeomorphisms ¢, : D — Z, consider the functions ¥, := ', o @,;! : Z — R. Since I, are harmonic functions with
respect to i, ¢4, are harmonic functions on Z with respect to i,,. Moreover, their gradients and absolute values are
bounded in [?— and C°—norms, respectively, i.e.

J A%, 0in A d%, < Co (3.2.4)
VA
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and
[“nllcoz) < Ca (3.2.5)

for some constant C; > 0 and for all n € N, respectively.

Lemma 53. For any compact subset X C (Z\A) there exists a subsequence of 4, , also denoted by ¥, , such
that 4, — 4 in C*®(XK) as n — oo, where ¥ is a harmonic function defined on a neighborhood of XK.

Proof. Let X C (Z\A) be a compact subset. By Lemma there exists a finite covering of X by the charts
11,)%1] :D — uEP and P : D — UMY, where 1 € {1,...,N} and N € N. For some v € (0, 1), the following hold:

1. 11),(1‘ ) are i— in—biholomorphisms and (! is an i — j—biholomorphism;

2. P 5 M in

(D) as n — o0;

3. K c UM, Wi (Dy(0) for all n € N, and K c YN, pV(D,(0)).

Consider the function %ﬁ” =%, 0 11)51” :D — R for some 1 € {1, ..., N}. Because 11)](1” are i — i, —biholomorphisms,
%ﬁ” is a harmonic function with respect to i. From |i and (3.2.5b, %" satisfies

JD dz\V 0 i A dg\V < Cp and Hgy)] oy < €

Relying on the compactness result for harmonic functions we assume that %ELU converges in C°(Dj, ,2(0)) to a
harmonic function 4V defined on Dj, ,2(0). By the mean value theorem for harmonic functions, there exists a

constant ¢ > 0 such that HV%EU’ CO(Dar 1 (0)) < ¢ for all n € N. Hence %ELU is uniformly bounded in C!(Dy, 3(0)).
ar/3(0

Because d{%ﬂl) defines a harmonic 1—form, as%i” + iat%i” is a uniformly bounded holomorphic function de-
fined on Dy, 3(0), where s,t are the coordinates on Dy,/3(0). By means of the Cauchy integral formula, all

derivatives of OS%(LU + iat%ﬁ” are uniformly bounded on Ds,/4(0). From this and the fact that %T(lu converges
uniformly to ¥(Y) we deduce that there exists a further subsequence, also denoted by %ELU, that converges in
C*(Dgr,5(0)) to a harmonic function @) . Deg,/5(0) — R. For n sufficiently large, P(D,(0)) C ll)(l)(Der/g,(O))
and YV (D,(0)) C d)g)(Dﬁr/g,(O)). Hence the harmonic function ¥, = %(11) o (lp;”)—l :pM(D,(0)) — R converges
in C>® (M (D,(0))) to a harmonic function ¥V := @M o (V)1 : (V(D,(0)) — R. Obviously, if 1,1’ € {1,...,N}
are such that (D, (0)) NP ) (D,(0)) # 0, the uniqueness of the limit yields g“”w“)(DT(O))mJJ“’)(DT(0)) =
gﬁ(l/)lwm (D, (0))p (V) (D, (0))- Hence all v glue together to a harmonic function defined in a neighborhood of X.

O

By Lemmait is apparent that after going over to a diagonal subsequence, ¢, converges in C;o_(Z\A) to a harmonic
function ¢ : Z\A — R with respect to j. This shows that the 5{—holomorphic curve u, o @;;*|;(v) : Z) = R x M
with harmonic perturbation d%, converges in C{°_ on ZOY\A, to a H—holomorphic curve u¥) : (Z(V),j) = Rx M
with harmonic perturbation d¢, where u(¥Y) = @Y) —¢ for all v. What is left is the description of the convergence
of the H{—holomorphic curves u,, o @,;! with harmonic perturbation d¥, in a neighborhood of the loops from A,,,
i.e. across the nodes from A,. Observe that, from , ¥, is uniformly bounded on Z by the constant C;
and the [°—norm of d¥, is uniformly bounded by the constant Cy. A neighborhood C, of a loop in A,, can be
biholomorphically parametrized as [—1,,,Tn] x S by the biholomorphism 1, : [Ty, Tr] x St = C,,, where 1,, = 0o
as n — co. From the C° bound of %, on Z, the maps u, o @, are uniformly bounded in C° on C,, (maybe after

some shift in the R—coordinate). Thus we consider the H{—holomorphic cylinder u, o @;* o {,, with harmonic
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perturbation % d%, defined on [—T,,,T,,] x S1. Note that the energy of u,, o @, o, is uniformly bounded by the
constant Eg. As in Section we divide the cylinder [—1,,Tn] x S! into cylinders of type co with an energy less
than hy/2 and cylinders of type b;. We apply the result of Sectionto cylinders of type co. Keep in mind that
according to Remark, conditions C1-C9 are satisfied. For cylinders of type by, the maps u, o @, oy, after a
specific shift in the R—coordinate, are contained in a compact subset of R x M. By the usual bubbling-off analysis
and the maximum principle, these maps together with the harmonic perturbation converge in C* on cylinders of
type b;.

We “glue” the convergence result for the co-type subcylinders of [—1,,,Tn] x S introduced in Sectiontogether
with the C*°—convergence result for the cylinders of type b;. This process is similar to that described in Section

B2.4

Remark 54. Around a puncture from Z(¥), the H—holomorphic curve u, o ¢, is asymptotic to a trivial cylinder
over a Reeb orbit (see Section. This result is a consequence of the uniform C°—bound of the harmonic functions
Gn.

We are now in the position to formulate the convergence result for the H—holomorphic curves u,, with harmonic
perturbation vy, defined on the disk D.
There exist the diffeomorphisms ¢, : D — Z such that the following hold:

I1 i, —jin C° on Z\A, [T A9,

loc

12 For every special cylinder Ajj of Z there exists an annulus Ay; = [—1,1] x S such that Ay; C Ay; and
(Aij,in) and (Ayj,in) are conformally equivalent to ([—Rn,Rn] x S',1) and ([—Rn + hpn, Ry — hy] x S, 1),
respectively, where R, —h,, hy = 0o as 1 — o0, iis the standard complex structure and the diffeomorphisms
are of the form (s,t) — (k(s),t).

I3 The sequence of H—holomorphic curves (D, 1, un, yn) with boundary converges to a stratified H{—holomorphic
building (Z,j,u, P, D,vy) in the sense of Definition from Section Note that the periods and conformal
periods of vy vanish. Moreover, the curves converge in C*® in a neighborhood of the boundary 0D.

This convergence result can be applied to disks such as neighborhoods of all points of Z(™). To deal with the entire
cylinder of type by, we glue the obtained convergence result on disks centered at points of Z(™) to the complement
of disk neighborhoods of Z!™). During the convergence description of the :{—holomorphic curves u, restricted to
disk neighborhoods of the points of Z(™), the diffeomorphism ¢, describing the convergence, have the property
that in a neighborhood of 0D they are independent of n (see Appendix . Coming back to the puncture z € Z(™)
we focus on the neighborhood D,(z). Considering the translation and stretching diffeomorphism D — D.(z),
p — z+ 1p, we see that @, : D;(2)\Dy1(z) — Z is independent of n; hereafter, we drop the index n and denote it
by @ : D+(z)\Dy<(z) < Z. This map is used to glue Z and ([0, H(™)] x S1)\D,.(z) along the collar D, (z)\D<(z).
Consider the surface
Cm) = ([0, H™] x S)\Dye(z)) 112/ ~,

where x ~ y if and only if x € D;(z)\Dy:(z), y € @(D+(z)\D+(2z)) and @(x) = y. This gives rise to the
diffeomorphism 11)3“) . [0, HE:“)] x St — C(™) | defined by

(m) vy _ 4% x € C(MN\D,(z2)
M {@nux x € s (2).

We are now able to describe the convergence on cylinders of type b;. Let A,, A, and A9 be the collection of
loops from C(™) obtained by the above convergence process for each point of Z(™). Take notice that the complex
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structure j(™) on C(™) is given by

(m) i, peCmhD,(z™)
j M p) =,
jh pel
and that it is well-defined since ¢ is a biholomorphism. There exists a sequence of diffeomorphisms Ll);m) :
[0, HEI‘“)] x ST — C™) guch that the following hold:

J1 (Hi™)d =™ in C®

loc

on C(T“]\Ap IT Anod,

J2 For every special cylinder Ay of C (M) there exists an annulus Xij = [~1,1] x S! such that Ay C Kij and
(Aij,in) and (Aij,in) are conformally equivalent to ([—Rn,Rn] x S?,1) and ([—Rn + hy, Ry — hal x S1i),
respectively, where R, Rn —hy — co as n — o0, iis the standard complex structure and the diffeomorphisms
are of the form (s,t) — (k(s),t).

J3 The H—holomorphic curves ([0, Hflm)] xS, 1, Un,Yn) with boundary converges to a stratified 7{—holomorphic
building (C'™),j,u, P, D,y) with boundary in the sense of Definition

3.2.4 Gluing cylinders of type oo with cylinders of type b;

By a modified version of the diffeomorphisms 0,, we identify the cylinders of type co with the cylinder [-1—2h, 1+
2h] x S! where h > 0 is the constant from Lemma so that after the gluing process, we end up with a bigger
cylinder of finite length and a sequence of diffeomorphisms. Let us make this procedure more precise.

Let [h%mfl),h;m)] x S! and [h%m) — 2h, hﬁf‘”” + 2h] x S! be cylinders of types oo and by, respectively. First
we consider the cylinders [h&m*”,hgm)] x St of type co. With the constant h > 0 defined in Section let
[h%mfl) + 3h, h%m) — 3h] x S! be a subcylinder. By the uniform gradient bounds of u, on cylinders of type
0o, we conclude that the H{—holomorphic curves u, together with the harmonic perturbations y, converge in
C*® on [h%m) — 3h, hEl‘“)] x S! to a H{—holomorphic curve u with harmonic perturbation y. For the subcylinders
[h%m_l) + 3h, h%m) — 3h] x S! we perform the same analysis as in Theorems and After going over to a
subsequence we obtain a sequence of diffeomorphisms

0 : (R 4 3, h(™W —3h] x ST — [—1,1] x S,

so that Theorems andhold for the cylinders [hEI“‘” +3h, h%m) —3h] x S!. Next we extend the diffeomorphisms
0, to [hfmm_l) +h, h%mJ —h] x S, such that

e“'([h.‘f“*“+h,h£€‘*”+zhlxsl)H([h.‘f“’fzh,h‘n“’—hlxsl) =1id.

By this procedure, we have obtained a diffeomorphism 0., : [h%mfl) +h, hLm) —h] xS = [-1—2h,1+2h] x S?
which is the identity near the boundary. We consider now the cylinders of type b; and note that the diffomorphisms

Py : (R — 20 h(™HD) 4 9h) x ST — ¢(m)

have the property that

Ib“|([h(n’“)72h,h£lm)fh] xSUI(R{™ ) ph h (™) 4 on]xst) = id.
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In this regard we consider the surface

([F1—2h,1+2n] x SHYyTIC™)) /

where x ~y if and only if x € [h,2h] x S* and y € [hEI”) —2h, hﬁlm) —h] x S! such that 0,,(y) = x.

By this procedure we glue all cylinders of types co and by, and obtain a bigger cylinder C,, together with a sequence
of diffeomorphisms @, : [~0y, 0n] x St — C,,, where [—0,,, on] x S! is the parametrization of the 6—thin part, i.e.
of Thins (S, hy). Let @n : € — [—0n, 0n] x S be the conformal parametrization of the cylindrical component of
Thine (SP°", hy). Since both ends of [—0y, 0y x S? contain cylinders of type oo, we infer by the above construction,
that @, is identity near the boundary. Specifically, with the constant h > 0 we have

Qnl((—on,—on+hIxSHII([on—h,on]xs1) = 1d.

Then we consider the surface
((S'D’T\ﬁpﬁl([—crn +h,on —h x 51)) I cn) /.

where x ~ y if and only if x € S "\ @;;}([~0n +h, 0, —h] x S!) and y € C,, such that @, o @, (x) =y.
In this way we handle all components of Thins(S™", h,,) that are conformal equivalent to hyperbolic cylinders.

3.2.5 Punctures and elements of Z

We analyze the convergence of u,, on components of the thin part which are biholomorphic to cusps, as well as, in
a neighborhood of the points from 2. Recall that cusps correspond to neighborhoods of punctures. Let p € SP"
be a puncture or an element from Z. By Lemma [97] of Appendix [D] there exist the open neighborhoods U, and U
of p, and the biholomorphisms P, : D — U,, and ¢ : D — U such that 1\, converge in C* to 1. We consider the
sequence of H—holomorphic curves u,, with harmonic perturbations vy, restricted to U,,. By the convergence of
U, on the thick part, for every open neighbourhoods U and V of p, such that V € U, the H{—holomorphic curves
U, together with the harmonic perturbations y, converge in C* on U\V to some H—holomorphic curve u with
harmonic perturbation y. Via the biholomorphisms 1, and 1, we consider the H—holomorphic curves u,, and the
harmonic perturbations v,, as being defined on D\{0}. Actually, we consider the following setup: For the sequence
of H—holomorphic curves u,, = (an,fn) : D\{0} - R x M with the harmonic perturbations y,, defined on the
whole disk D, the following are satisfied:

K1 The energy of u, is uniformly bounded, i.e. with the constant Ey > 0 we have E(u,; D\{0}) < Eg for all
neN.

K2 The L?—norms of v, are uniformly bounded, i.e. with the constant Cy > 0 we have HYHH%Z(D\{O}) < Cq
for allm e N,

K3 For every open neighborhoods U and V of p such that V € U, the H—holomorphic curves u, with
harmonic perturbations y,, converge in C* on U\V to a H—holomorphic curve u with harmonic perturbation

2

We consider two cases. In the first case there exists a subsequence of u,, for which the singularity at 0 is removable,
i.e. the R—coordinate a,, is bounded in a neighborhood of 0, but not necessarily uniformly bounded. In particular,
this case is typically for neighborhoods of points from Z. Hence the sequence of H{—holomorphic curves u, can be
defined across the puncture 0 and we end up with a sequence of H—holomorphic disks with fixed boundary. To
describe the compactness we use the results of Section [3.2.3

In the second case, there exists no subsequence of the u,, that has a bounded R—coordinate a,, near 0. Since D is
simply connected, there exists a harmonic function I, : D — R such that v, = df,. By the second condition from
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0 E by s half open cylinder

Figure 3.2.9: Decomposition of a punctured neighbourhood into cylinders of type oo, b; and a half open cylinder.
above, the gradients Vi, are uniformly bounded in [?—norm by the constant Cq > 0. Denote by

1 ~
Kn = —J I (x,y)dxdy
T JD

the mean value of I, on the disk D. Furthermore, define I, := M — Kn; Th is a harmonic function on the disk
with vanishing average and satisfying y,, = dlx, while the gradients VT, have uniformly bounded L?>—norms. By
Poincaré inequality, the L2—norm of I}, is uniformly bounded, i.e. with the constant Cy > 0 we have |||"nHL2(D) < Gy
for all n € N. Pick T € (0,1) and denote by D, the disk around 0 of radius 1. From the mean value inequality
for harmonic functions, I, is uniformly bounded in C°(D.). Via the biholomorphism [0,00) x S' — D\{0},
(s,t) — e 27(5+1) we consider the H—holomorphic maps u, together with the harmonic perturbations v, as
being defined on the half open cylinder [0,00) x S!. Specifically we consider the following setup: For the sequence
Upn = (an, fn) : [0,00) xS — RxM of H—holomorphic half cylinders with harmonic perturbations y,, the following
are satisfied:

L1 The energy of u,, and the L?—norm of the harmonic perturbations v,, are uniformly bounded, i.e. with
the constants Eg, Co > 0 we have E(un;[0,00) x S!) < Eg and ||Yn||?_2(D\{o}) < Cq for all n € N.

L2 The H—holomorphic curves u,, converge in C. to a H{—holomorphic curve u with harmonic perturbation
Y.

L3 The harmonic perturbations y,, satisfy y,, = dl,, where I, : [0, 0c0) x S — R is a harmonic function with
a uniformly bounded gradient VT, in [2—norm. Furthermore, T, is uniformly bounded in C°([0, c0) x S!).

By using the decomposition discussed in Section [3.2.1] we split the half cylinder into smaller cylinders with
do—energies smaller than hg/2. As described in Section we end up with a sequence of finitely many cylinder
of types co and bj, and a half cylinder with a dx—energy less than hy/2. The appearance of the cylinders of types
b; and oo is alternating; the decomposition starts with a cylinder of type co and ends with a cylinder of type by
followed by the half cylinder (see Figure .

For the cylinders of types oo and b; we formulate the convergence results as in Sections and Since
the harmonic 1—forms y,, are defined over the puncture p, the period of the harmonic perturbation v, over each
cylinder (either of type oo or type b;) is 0. Hence, the converge properties of the cylinders of type co are the same
as in the classical theory of Hofer (see [14]), and we are left with the half cylinder having a dx—energy smaller than
fp/2. We have the following setup:

M1 u, = (an, fn):[0,00) x S = R x M is a H{—holomorphic curve with harmonic perturbation v,,.

M2 The energy of u,, and the L?>—norm of v, are uniformly bounded by the constants Eq and Cg, respectively,
while the du—energy of u,, is smaller than hgy/2.
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M3 The harmonic perturbations y,, satisfy y,, = dI},, where I, : [0, 00) x S* — R is a harmonic function with
a uniformly bounded gradient VT, in L2—norm. Furthermore, T, is uniformly bounded in C°([0, c0) x S!).

M4 The gradients of u,, are uniformly bounded, i.e. with the constant C;, > 0 from Lemma [42| we have

ldun(z)[l = sup [[dun(z)(V)[5 < Cn (3.2.6)

for all z € [0,00) x S and all n € N.

By bubbling-off analysis and in view of the uniformly small da—energy, Assumption is also valid. Moreover,
by the mean value thorem for harmonic functions and the uniformly boundedness of the L2—norms of VI, the
harmonic perturbation v, is uniformly bounded in C°® on [0, 0o) x S with respect to the standard Euclidean metric.
We turn the H—holomorphic curve u,, with harmonic perturbation y,, into a usual pseudoholomorphic curve it,,
by setting 1, = (an,fn) = (an + M, fn) as in Section In the following we show that the ox— and doa—
energies of [, are uniformly bounded. As f, = f,, we have

h,
Edqu(tn; [0, 00) x Sl) = Equ(un;[0,00) x Sl) < 70

and therefore the da—energy is uniformly small. By definition and accounting on the uniform bound on the
gradients (3.2.6) and the uniform C°—bound of the harmonic 1—forms v, we obtain

Eatng [0, +00) x §') = sup | ¢ (Tn)ddn 01 A day
@eA J[0,+00)x ST

r

= — sup d(e(an)da, oi) — @(an)d(da, o)
peA J[0,+00) xS

= — sup Al () ATy 01) + (TP dox
peA J[0,+00) xS

= — sup J d(e(an)da, o) +J' (p(an)f:d(x]
peA LJ[0,+00) xS [0,+00) xSt

< —sup d(e(an)dan oi) + Equa(un)

@eA J[0,+00)x ST

= —sup | lim J (p(ﬁn)dﬁnOi—J
{r}xS?

@(an)da, o i:| + Eaalin)

@EA [T {0}xS?
< limJ IdanoiH—J |da, o il + Equ(un)
T—=00 Jir}x St {0}xS?
< 2Ch + %

Thus the x—energy is uniformly bounded. From the definition of Eq (see Section [3.2.1)) we have E (i, ; [0, 00) x S') <
Eq for all n e N. In this regard, we consider the following setup:

N1 U, = (an,fn) 1 [0,00) x S* = R x M is a pseudoholomorphic curve.

N2 The energy of i, is uniformly bounded by Eo, while the dx—energy of U, is uniformly smaller than
ho/2.

Using the diffeomorphism 6 defined above together with the notation (C.0.2|), and employing Theorem of
Appendix [C] we have the following
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Theorem 55. There exists a subsequence of U,, still denoted by U,, such that the following s satisfied.

1. Ty, is asymptotic to the same Reeb orbit, i.e. there exists a Reeb orbit x of period [T| # 0 with |T| < Eq
and a sequence ¢, € S' such that

an (s, t)

lim fa(s,t) =x(T(t+cn)) and lim =T

$—00 s—00 S

for alln € N.
2. U, converge in C¥, to a pseudoholomorphic half cylinder  : [0,00) x S — R x M having a bounded
energy and a da—energy smaller than 1y /2. Moreover, there exists c* € S' such that

lim F(s,t) = x(T(t + ¢*)) and lLm “&Y _ 1.

s—00 s—00 S

3. The maps gn = fn, 0071 : [0,1] x S* — M, where gn(1,t) = x(T(t + cn)) converge in C° to a map
g:10,1] x St — M, that satisfy g(1,t) = x(T(t+c*)), where x ts the same Reeb orbit of period [T| # 0 as
wn Part 1 of the theorem.

With this result we are in the position to formulate the convergence of the sequence of H—holomorphic half cylinders
U, with harmonic perturbations y.

Theorem 56. There exists a subsequence u, still denoted by w,, such that the following s satisfied.

1. un is asymptotic to the same Reeb orbit, i.e. there exists a Reeb orbit x of period |T| # 0 with |T| < Eq
and a sequence ¢, € S' such that

an(s,t)

lim f,(s,t) =x(T(t+cn)) and Lm =T

S—00 S—00 S
for alln € N,

2. u, converge in C32. to a H—holomorphic half cylinder u : [0,00) xSt — Rx M with harmonic perturbation
Y having a bounded energy and a dox—energy smaller than hy/2. Moreover, there exists c* € S! such
that

lim f(s,t) =x(T(t+c¢*)) and lm als,t) =T.
s—00 s—00 S

3. The maps gn = fnL 0071 : [0,1] x St — M, where gn(1,t) = x(T(t + cn)) converge in C° to a map

g:10,1] x St — M, and satisfy g(1,t) = x(T(t +c*)), where x is the same Reeb orbit of period [T| # 0 as

wn Part 1 of the theorem.

Proof. Since the T, are uniformly bounded in C°—norm, the first assertion is obvious. Employing the same
arguments as in Appendix [E] i.e. the mean value theorem for harmonic functions and Cauchy integral formula, we
deduce that I}, have uniformly bounded derivatives, and so, converge in C{°. on [0, 00) x S! to a harmonic function
I':[0,00) x S* — R with a gradient bounded in L?—norm. Let us show that ' : [0,00) x S — R is bounded
in C°. Via the conformal diffomorphism [0, c0) x St — D\{0}, (s,t) — e 27(s*1t) we assume that the harmonic
functions I, and I" are defined on the disk D. Then, since the I}, are uniformly bounded in C° and have gradients
with uniformly bounded L?—norms, it follows that I, — ' in C*°(D,(0)) for some 0 < p < 1. This shows that
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I is uniformly bounded on D and hence, via the conformal map [0, 00) x S' — D\{0} it is uniformly bounded on
[0, 00) x S'. Thus, the second assertion is proved, and by means of f,, = f,,, the third assertion is evident.

O

By cutting a small piece of finite length from the infinite half cylinder, we can make the cylinder preceding the
infinite half cylinder to be of type b;. Assuming that the infinite half cylinder is of type oo, we glue all cylinders of
types oo and b; together (as described in the previous section). Via the map [0,1)xS! — D\{0}, (s, t) — (1—s)e?™t,
we identify the cylinder [0, 1) x S!, which is diffeomorphic with the infinite half open cylinder, with a punctured disk
D\{0}. In this way the upper half open cylinder [0,1) x S! can be identified with a neighbourhood of a puncture.



Chapter 4

Discussion on conformal period

In this section we analyze Condition C8 of Section dealing with the boundedness of the sequence R, Py,
and which can be regarded as a connection between the conformal data of the Riemann surface and the harmonic
1—forms y,,. Without this additional condition the convergence result from Appendix [B|cannot be established. The
reason is that the almost complex structure constructed on the contact manifold M might not vary in a compact
interval. We show that this condition is not automatically satisfied by giving a counterexample. It should be
pointed out that this example contradicts Lemma A.2 of [5]. Essentially, we will construct a sequence of harmonic
1—forms v, on a sequence of stable Riemann surfaces that degenerate along a single circle, have uniformly bounded
[2—norms but unbounded P,, /£, where P,, denotes the period of y,, along the degenerating circle and {,, its length
with respect to the hyperbolic metric. Observe that the quantity 1/{, is similar to R, .

Let (Sn,jn,Mn) be a sequence of stable Riemann surfaces of genus g, where M,, C S,, are finite sets of marked
points with the same cardinality. Choose a basis cy, ..., c2g € H1(Sn;Z) which is independent of n. This choice is
possible because all S,;, have genus g and are closed (they are topologically the same). By the Deligne-Mumford
convergence,

(Snydn, M) = (8,5, M, D, 1),

where (S,j,M,D,r) is a decorated nodal Riemann surface. Again, according to the definition of the Deligne-
Mumford convergence, there exist diffeomorphisms ¢, : S¥»" — S,, such that j,, — j on STT\ ]_[)-1:1 I or equiv-
alently, h,, — h on S-D’r\ ]_[}:1 I where I are special circles, and h, and j, are the pull-back of the complex
structure and the hyperbolic metric from S, and S,, via the diffeomorphism ¢,,. Assume that | = 1, i.e. that there
exists only one degenerating geodesic in the Deligne-Mumford convergence. Denote this geodesic by I'. Furthermore,
assume that I' = c¢; (" lies in the homology class of ¢;). The main result of this section is the following

Proposition 57. There exists a sequence of harmonic 1—forms vy, € J{;H(Sn) with uniformly bounded
L2—norms, periods, and co-periods, but unbounded conformal periods.

Proof. Choose a sequence of harmonic 1—forms y, € U{jln(SD'T) with vanishing periods except on T (on all of
ci with i # 1 except on ¢; = TI). By normalization, assume that ||yn[/;2(s».r) = 1. The uniform bounds on the
L2 —norms imply that the periods P, of v, over I' converge to 0 (Lemma. Thus, by the second part of the proof
of Theorem Yn converge in Cio. to y on SP"\T" which can be seen as a harmonic 1—form on a closed, smooth
Riemann surface S of genus one less, with vanishing periods. By Hodge theory, we have v = 0. For n sufficiently

large, the L?—norms of y,, concentrate in the collar neighborhood around I'. Indeed, from

2 2 2
1= ||Yn||L2(s‘I%r) = |Wn||L2(en) + ”‘YHHLQ(SDW\Cn) )

where G, is the cylindrical component of the 6—thin part for some sufficiently small but fixed 6 > 0, it follows
that S?>"\C, is contained in a compact subset of SP>"\T', and so, that H'YnH?_z[S’D,r\en) converge to 0, and for n

65
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sufficiently large we have |[yn[[;2(e,) <1 and |[ynlli2(e,) — 1 as n — oo. If Fy is the unique holomorphic 1—form
with Re(F.,) = vn,

9 i
[Falliz(so.ry = 3 LD,T Fn AFn.

The collar G,, is conformaly equivalent to [~Ry,R,] x S!, where R,, ~ 1/{,, and {, is the length of I" with respect
to h,. On G,, we write y,, = f,ds + gndt, where f, and g,, are harmonic functions on the cylinder [-R,, R} x St
(s is the coordinate in [~R,,Ry,] and t is the coordinate on S!), express the holomorphic 1—form F, as F, =
(fn —ign)dz = (fn —ign)(ds +~idt), and notti that [[Fnlli2(e,) = ['Ynlli2(e,)- Consider the quantity | ||Fnlli2(c, ) —
[bol ||dZHL2(en) |, where by = —S,, —iP,, and S, is the co-period defined by

5. = J Yn ojn = —J £.(0,t)dt.
r {0}x St
Recalling that
Po = [ vn=] al00a,
r {0}xS?
we obtain
[Fnlli2 (e, ) — Ibol ||dZ||L2(Cn)‘ = [|[(fn + Sn) —ilgn — Pn)] dZHL2(en)
< H(fn + Sn)dszLz(en) + H(gn - Pn)dz||[_2(€n) :

Further calculation gives [|dz|li2(¢,) = V2Rn, H(fn—i—én)dzHLz(en) = !’fn+§“‘|L2([—Rn,Rn]><Sl) and similarly
[(gn —Pn)dzllize,) = llgn — Pulli2(_r, r,xs1) With respect to the standard Euclidean metric on the cylinder

[—Rn, Ry x St. Application of Lemma yields

R
% 2
[fn + S”HLQ([fRn,Rn]XSl) = J

)+ S se s

Rn ~ ~
< (36J' . 02(5)d5> max {an(_Rn) + Sn”iz(y) ) anH’Rn) + S“HiQ(Sl)}

and

Rn

lgn — PnHiZ([fR“,Rn]xsl) < (36J pz(s)ds> maX{HQn(_Rn) - Pn”iz(sl) Mlgn(+Rn) — PnH2LZ(Sl]} )

—Rn

where p is the function from Lemma [58] Using

RWl
J p%(s)ds = 4(1 —e *Rn) < 4,
—Rn

we obtain
5 2 5 2 5 12
[fn + S“HLQ([fRn,Rn]XSl] < 144 max {an(_Rn) + Sn||L2(sl) 1 (+Rn) + S“HLZ(Sl)} '
2 2 2
lgn — PnHLz([fRn,Rn]xsl] < 144 max {Hgn(_Rn) - Pn||L2(sl) s Ign(+Rn) — PnHLZ(sl)} -

Because the harmonic 1—forms y,, converge to 0 in Cfgc(SD’T\F), fr(£Rn), gn(£Rn), S,, and P, converge to zero.

‘”FHHLZ(GH] —V2[boly/ Rn’ —0

Hence
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as N — 00. As [[Fnl2(e, ) is almost 1, there exists the constants Co, C; > 0 such that

giving

or equivalently,

Cm/ \/PR 1 ($aRu)2 < Cy %".

These inequalities show that either PR, or SnRn tend to oo, although P,, and Sn stay uniformly bounded (v,
have uniformly bounded [2—norms). If P,,R,, remains uniformly bounded then we replace Y, by yn ©jn.

O

Lemma 58. For any harmonic functions f and g on the cylinder [-R,R] x S! such thatn = fds + gdt is a
harmonic 1—form on [—R,R] x S! we have

£+ 8l osn) < 6p(s>max{|\f<4<)+§Hmsq,HfuRHélng(sq}

lg(s) = Pllisissy < Bo(s)max {|g(—R) = Plliagsa» 9g(+R) = Pllis i) }
for all s € [-R,R]. Here S and P are the co-period and the period of n, respectively, and

p(s)? = 8e 2R cosh(2s).

Proof. Any harmonic 1—form 11 defined on the cylinder [—R, R] x S! can be written as n = (—Sds+Pdt)+f(s, t)ds+
G(s,t)dt where f and § are harmonic functions on [—R,R] x S! with vanishing average. Note that the average of
f corresponds to the co-period S and the average of g corresponds to —P. To show this, write 11 in the form
n = f(s,t)ds + g(s, t)dt and compute the averages of f and g as

1 J 1
— f(s,t)ds/\dt——J n/\dt:J noj=-S
2R Ji—r,Rr]xs? 2R Ji_r,Rxs? (0}x St ]

and

1 J 1 1 (R
— g(s,t)ds/\dt:—J dsAn:——J (J n) ds =
2R J_Rr,Rr]xst 2R J|_gr,Rr]xs1 2R (s}xSt

respectively. Hence the 1—form n — (—Sds 4+ Pdt) = f(s, t)ds + §(s, t)dt has vanishing average twist and vanishing
periods. The Fourier series of f and § in the t variable are

f(s,t) = ‘102(5 —|—Zak cos(kt) + by(s) sin(kt),

) cos(kt) + Bk(s)sin(kt).

(s, t) =

Since f and § are harmonic, the Fourier expansion coefficients solve a;/ = k?ay, by = k?by, « = k%o and
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i/ = k?By for k € Ny. The solutions to these ordinary differential equations are of the form

ag(s) = co + sdo,
ai(s) = cy cosh(ks) + d sinh(ks),
bk (s) = ex cosh(ks) + fy sinh(ks),
Xo(s) = 8o + €os,
o (s) = &y cosh(ks) + €y sinh(ks),
Bk (s) =Ny cosh(ks) + Oy sinh(ks).

68

Since dn = d(noj) = 0 we obtain d,f = 05§ and dsf = —0+¢§, giving ap(s) = ¢p and ag(s) = 8g. As fds + gdt
has vanishing co-period and vanishing period, we find ag(s) = ag(s) = 0, and the following relations relating the
coefficients ay, by, oy, and By for k € N: 8y = fy, ex = ek, Nk = —dk and 0, = —ck. Consequently, ay, by, &,

and By can be written as

ax(s) = cy cosh(ks) + dy sinh(ks),
by (s) = ex cosh(ks) + fy sinh(ks),
o (s) = fy cosh(ks) + e sinh(ks),
Bk (s) = —di cosh(ks) — cy sinh(ks).

Let us express f and g as

f(s,t) = Z ax(s) cos(kt) + by (s) sin(kt) Z Fie(5)e2mikt,
k=1 KeZ\{0}

g(s,t) = > ouels)cos(kt) + Bi(s)sin(kt) = > Ti(s)e?™*,
k=1 kez\{0}

where Fy = %(ak —1iby), Fox = %(ak +1iby), Ik = %(O(k —1PBk) ,and ' = %(O(k +1ipk) for k >

h inh
cosh(ks) < 3e R cosh(s) < 3p(s) and |sinh(ks)| < 3e Rcosh(s) < 3p(s),

cosh(kR) | sinh(Rs)|
where p(s)? = 8¢ 2R cosh(2s), it follows that
cosh(ks) < 3p(s) cosh(kR) and |sinh(ks)| < 3p(s) sinh(Rs).

Define the functions

K(k) = +1, cx and dy have the same parity
" | =1, otherwise

and
G(k) = {+1, ei and fy have the same parity

—1, otherwise.

For s € [0, R] x S! we then have

||f(s)||iz(51]= Z [Fie(s)?

keZ\{0}

1. From
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(cy cosh(ks) + dy sinh(ks))? + (ex cosh(ks) + fy sinh(ks))?

l\)\r—l
|\/|8
N =
™M

k=1 k=1
1 > 1 >
=> ) (cxcosh(ks) + dysinh(ks))? + 5 > (cxcosh(ks) + dy sinh(ks))?
k=1,K(k)=1 k=1,K(k)=—

1 o0
(ex cosh(ks) + fy sinh(ks))? + 5 E (ex cosh(ks) + fy sinh(ks))?
=1 k=1,G(k)=—

i
M

w
Il
o)
=

I
N | =
M

cZ cosh?(ks) + dZ sinh?(ks) + 2ci dy cosh(ks) sinh(ks)

Z_
N
=
5
I

cZ cosh?(ks) + d2 sinh?(ks) — (—2cy dy ) cosh(ks) sinh(ks)

_|_
| =
M

k=1,G (k)
1 o0
+ 3 Z el cosh?(ks) + f2 sinh?(ks) — (—2ey f ) cosh(ks) sinh(ks)
k=1,G(k)=—1
1 o0
< §9p(s)2 Z c? cosh?(kR) + d? sinh?(kR) + 2cy dy cosh(kR) sinh(kR)
k=1,K(k)=1

+590(s)> ) cfcosh?(kR) + df sinh®(kR) + 2cy dy cosh(kR) sinh(—kR)

+590(s)> ) €} cosh®(kR) + f} sinh®(kR) + 2eyfy cosh(kR) sinh(kR)

+ =9p(s)? i e, cosh?(Rk) + f3 sinh? (Rk) + 2ey fx cosh(Rk) sinh(—kR)

= —p(s)? (cx cosh(kR) + dy sinh(kR))? + gp(s)Q i (cx cosh(—kR) + dy sinh(—kR))?
+ gp(s)z i (e cosh(kR) + fy sinh(kR))? + gp(s)z i (ex cosh(—kR) + fy sinh(—kR))?
< gp( )2 i(ck cosh(kR) + dy sinh(kR))? + =p(s)? i(ck cosh(—kR) + dy sinh(—kR))?

k=
+ gp( )2 Z(ek cosh(kR) + fi sinh(kR))? + gp(s)2 Z(ek cosh(—kR) + fy sinh(—kR))?2

k=1 k=1
= 50057 Y 6ulR)? + S0ls)” 3 au(—R)+ Sols)” 3 (R + Zp(s) 3 bulRP

k
= 90()? (IR} 52, + [FRIFa(s1)) -
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The same inequality holds for negative s, and a similar estimate can be derived for the harmonic function §. Thus

1) 122 52, < 90150 (I[FRIF2(s0) + IFRTa (s )

13(5) 1251, < 900512 (I8R50, + I1G(—RIE (51, )

and from f(s,t) := f(s,t) + S and J(s,t) :=g(s,t) — P, we end up with

I#5) + 8]t 1) < (uf R) 81t s+ [F-R)+ 8P s

< 18p(s)? max { | /(R) + 8|7 ) ,Hf(—R)+§||2L2(sl)},
lg(s) = Pl s1) < 90(s (||g R) = Pll2agsi + Ig(—R) =PIz ) )

< 18p(s)?max {1 g(R) = Pl 51, }9(—R) = Plifa(s:) -

O

Remark 59. In [5], a notion of convergence for H{—holomorphic curves is derived by using a result (Lemma A.2)
which states that the conformal co-period of a harmonic 1—form on a Riemann surface can be universally controlled
by its periods. Proposition [57] gives a counterexample to this statement.
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Appendix A

Holomorphic disks with fixed boundary

This appendix is devoted to the description of the convergence of pseudoholomorphic disks with fixed boundaries
in a symplectization, as well as, of their limit object. The results are used for proving the convergence of a cylinder
of "finite length”, i.e. of type b; as discussed in Section [3.2.3

Let up = (an,fn) : D = R x M be a sequence of pseudoholomorphic curves in the symplectization R x M of the
contact manifold (M, «), and being defined on the open unit disk D with respect to the standard complex structure
i and the cylindrical almost complex structure ] on R x M. Fix some T > 0 (to be defined later) and assume that
there exists a subsequence of u,, also denoted by u,,, such that

Up — U (A.0.1)

asn — oo in C*®(D\D+(0)). Furthermore, we assume that the Hofer energy Ex(uw,; D) of u, is uniformly bounded.
In the following we analyze the convergence of u,.

The functions a,, can be supposed to be not uniformly bounded. If this is not the case, we may deduce using
standard bubbling-off analysis that the gradients of u,, are uniformly bounded on all of D, which in turn, implies
that u, converge in C*(D) to a pseudoholomorphic disk with finite Hofer energy.

To describe the convergence and the limit object we use the results from [7] and [9]. However, since the arguments
in [7] and [9] can be almost carried out line by line, we drop the details and explain only the strategy, point out the
differences and mention the convergence result. As we have assumed that the R—coordinates of u,, are unbounded,
the maximum principle for subharmonic functions gives a, — —oo. By we have the C*—convergence
of u,, on an arbitrary neighborhood of 0D, and by a specific choice of this neighborhood, we assume that the
R—components of u,, when restricted to this neighborhood, do not leave a fixed interval [—K, K] for some K € R
with K > 0. Thus from level —K — 2 we start with the decomposition of a,;!((—oco,—K — 2]) into cylindrical,
essential and one “bottom” boundary components. This decomposition which is identical to the decomposition
done in [7] and [9] is illustrated in Figure[A.0.1] From [7] and [9] we know that there are at most N € N cylindrical
components.

In addition to the above decomposition, we add one more boundary components, namely the “upper” boundary
component. In the following we investigate the convergence of the upper boundary component. This component is
given by

Bn = a;, ([-K — 2 — Rg, 00))

where Ry > 0 is the constant from Section 5.4 of [10]. By the above considerations, B, is contained in a compact
region X = [-R,R] x M C R x M for all n € N and a sufficiently large R > 0. This surface has two types of
boundaries. The first one is the boundary 0D which lies in a specific neighborhood such that its image under u,
belongs to [—K, K] x M. The second one is the boundary which connects certain cylindrical components from the
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upper
boundary

decomposition into
essential and
cylinderical regions

I

bottom
boundary

Figure A.0.1: Decomposition of a;*((—o0, —K —2])

decomposition of a,;!((—oo, —K — 2]). For the cylindrical, essential and bottom boundary components we use the
results established in [7] and [9] to describe the convergence and the limit object. The arguments by be applied line
by line. For the “upper” boundary component we use Theorem 3.2 of [7], also known as the Gromov compactness
with free-boundary theorem (hereafter simply called Gromov compactness theorem).

Before stating the Gromov compactness theorem we explain the notion of convergence by considering a general
setting as in [7]. Let I be a compact surface of genus g with m smooth boundary components and q distinct
marked points M = {z',...,z9} C int(Z) in the interior of £. Here g is by definition, the genus of the surface
obtained by filling in a disk at each boundary component. Consider a finite collection A of disjoint simple loops
in int(X). Denote by L the nodal surface obtained by collapsing the loops in A. Thus, L is a finite disjoint union
of smooth surfaces with finitely many pairs of points identified. Denote by A the image of A under the projection
m:Z — Z. A conformal structure j on I is a conformal structure on each component of £. We call the pair (Z,j)
a nodal Riemann surface. A continous map u: (Z,j) — (X,]) is called a nodal holomorphic curve if its restriction
to each component of ¥ is holomorphic. Moreover, we require that there is no sphere with less than three nodal
or marked points on which u is constant. We will refer to this property as stability. Denote by u: £ — X its left,
which is constant on each component of A.

Definition 60. We say that a sequence of pseudoholomorphic curves with q marked points u, : (Zn,jn, Mn) —

(X,]) converges to a nodal holomorohic curve u : (£,j, M) — (X,]) if there exists a sequence of diffeomorphisms
dn : £y — Z such that

L (dn)ejn — 1 in C° on Z\A and ¢pn(zh) =zt foralll=1,..,q,

loc

2. upodpyt - uin CC_ on I\(AUIL),

loc
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3. upodpyt —uin C_

on X\0ZX,

4. areag(u,) — areag(u),

where areag of a pseudoholomorphic curve is defined as in Section 2.2 of [15].

The Gromov compactness theorem will be formulated for pseudoholomorphic curves u : (Z,j) — (X,]) satisfying
the following conditions.

O1 (%,j) is a compact Riemann surface of genus g with m boundary components and q distinct marked
points M in the interior.

O2 The area of u with respect to g is bounded by the constant C > 0.
O3 The image of u is contained in a compact subset K C X.

O4 At the boundary components I' of (X, j) there exists mutually disjoint conformal embeddings
B :[0,5L] x St — I\M
mapping {0} x S! onto T for some L > L4(g,m,q,C,K) > 1.

O5 For each boundary component T, the differential of u o " satisfies

L <o) <D

for all z € [0,5L] x S! with respect to the Euclidean metric on [0, 5L] x S and the cylinderical metric g on X,
for some constant D > 0.

Theorem 61. (Gromov compactness with free boundary) Let W, : (Zn,jn,Mn) — (X,]) be a sequence of
pseudoholomorphic curves with q marked points satisfying (O1)-(05) with g, m, q, C, K, L, D independent
of n. Then, a subsequence of U, converges to a nodal pseudoholomorphic curve u: (Z,j, M) = (X,]).
Moreover, we can choose the maps ¢, such that the restricted maps

dnoPl:[0,1] x ST = I\A
are independent of n and T'.
For a proof we refer to [10]. The Gromov convergence result will be applied to the maps
Unls, = (an, fo)ls, : Bn = (X,]),

where the choice of the neighborhood of 9D, on which the R—components of u,, lie in [—K, K], plays an essential role.
The existence of a special parametrization of a neighborhood of 9D will enable us to apply “Gromov compactness
with free boundary” in the analysis of the convergence property of the upper boundary component. Essentially,
the application of “Gromov compactness with free boundary”, requires that the properties (O4) and (O5) under
Definition 3.1 of [7] are satisfied. The following considerations ensure these conditions: Choose L) > 1 as in
Remark 3.3 after Theorem 3.2 of [7]. More precisely, Lj depends only on the genus g of the surface, the number
of boundary components m, the number of marked points ¢, the uniform bound C on the area of the considered
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pseudoholomorphic curves, the constant €y from Remark I1.4.3 of [15], and the constant Cyp, from Lemma 3.17 of
[7] (the classical monotonicity lemma). For this L) we write L§(g, m, q,C, €9, CmL). Further on, choose Ly as

LO = maX{Lé(O, 1: 2) C) €0, CML): Lé(o: 21 1: C) €0, CML):
L(/)(Ov 37 0) C: €o, CML)) ey Lé(ov 2N0a 0) C) €o, CML)}-

Note that when determining the constant L§ in the first two cases, we introduce one and two artificial punctures, i.e.
q =2 or q = 1, in order to make our surface stable. Set 19 = e 1°"lo and choose T < 1. In view of , assume
that there exists a constant K > 0 such that u,(D\D.(0)) C [-K,K] x M for all n € N. Hence the boundary
is fixed in the symplectization. The boundary region can be conformaly parametrized as follows. Consider the
map Bop,o : [0,5L0] x ST — D\D«,(0), (s,t) — e 27(s+1)  This map is obviously a conformal parametrization of
the boundary region. Let now L = —In(T)/10mt. Obviously, L > Ly and the map Bsp : [0,5L] x St — D\D.(0),
(s,t) — e 275+t i5 3 conformal parametrization of a neighborhood of the boundary circle dD. Fix this boundary.
This conformal parametrization is obviously independent of n and will be used in conjunction with “Gromov
compactness with free boundary”. Finally, glue the upper boundary component to the rest of the surface, and
obtain the resulting limit surface together with the convergence description.

To formulate the convergence result we introduce some notations. Let Z be an oriented surface diffeomorphic to
the standard unit disk D and A = A, I A, C Z a collection of finitely many disjoint simple loops divided into two
disjoint sets. Denote by ZA, the surface obtained by collapsing the curves in A;, to points. Write

N
Z=Za\A, = 20T [ [ 2 1z

v=1

as a disjoint union of components Z(¥). Here Z(°) is the bottom boundary component which is the disjoint union
of finitely many disks, while Z(N+1) is the upper boundary component whose boundary is of two types. One
type is the boundary of the disk D and the other boundary components are certain loops from A,. Let j be a
conformal structure on Z\A such that (Z\A,j) is a punctured Riemann surface together with an identification of
distinct pairs of punctures given by the elements of A. This shows that Z* has the structure of a nodal punctured
Riemann surface with a remaining identification of punctures given by the loops {6'}ie1 = Ay, for some index set
I. A broken pseudoholomorphic curve (with N + 2 levels) is a map F = (F(© F() _ F(N¥L) . (Z* 5) — X, where
X = ]_Isliol (R x M) such that F) : (Z(¥)j) — R x M is a punctured pseudoholomorphic curve with the additional
property that F extends to a continous map F: Z — X. Here X is obtained as follows. The negative end of the
compactification of R x M of the v—th copy is glued to the positive end of the compactification of R x M of the copy
v + 1. This procedure is done for v =0, ..., N. For a loop § € A, there exists v € {0, ..., N} such that 6 is adjacent
to ZV) and Z(V*Y) | Fix an embedded annuli A®Y = [—1,1] x S* C Z\A, such that {0} x S* =5, {—1} x St ¢ z()
and {1} x St ¢ z(v+1),

In this context, we state a convergence result which has been established in [7] and [9].

Proposition 62. The sequence of pseudoholomorphic disks u, = (an,fn): (D,i) = R x M satisfying
and having a uniformly bounded Hofer energy has a subsequence that converges to a broken pseudoholomor-
phic curve uw = (a,f): (Z,j) > Rx M with N+2 levels in the following sense: There ezists a sequence of diffo-
morphisms @, : D — Z and a sequence of negative real numbers min(a,) = ‘rgf)) < rg) <. < r%NH) =—-K-2

with K € R and rED'H] — 1‘3’) — 00 as N — oo such that the following hold:

1. Z wnth the circles A collapsed to points 1s a nodal Riemann surface (in the sense of the above discussion,
but with boundary). in := (@n)si — j 1n C on Z\A. For every i € I, the annulus (Al, (@n).i) s
conformally equivalent to a standard annulus [—R,,R,] x S! by a diffeomorphism of the form (s,t) —

(k(s),t) with R, — 00 as n — oo.
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2. The sequence Un © @ 7 (v) : Z™) 5 R x M converges in Ch. on ZOYN\A,, to a punctured nodal pseudo-
0

holomorphic curve u™) : (Z™V)j) = R x M, and in CY. on zM),

3. The sequence fnoo@,* : Z — M converges in C° to a map f : Z — M, whose restriction to A, parametrizes
the Reeb orbits and to A, parametrizes points.

4. For any S >0, there ezist p > 0 and K € N such that a, o 91 (s,t) € [r&” + S,T%VH) —S] for alln > K
and all (s,t) € A>Y with |s| < p.

5. The diffeomorphisms @n o Bop : [0,5L] x St < Z are independent of n.



Appendix B

H—holomorphic cylinders of small area

In this appendix we describe the convergence of a sequence of H—holomorhic cylinders u, = (an, fn) : [-Rn, Rnl X
S! - R x M with harmonic perturbations y,. As before, we denote by P, C R the set defined by

Po ={0}U{T > 0| there exists a T — priodic orbit of X}

We assume that all periodic orbits of the Reeb vector field X, are non-degenerate, in the sense that the linearized
flow along any periodic orbit restricted to the contact structure has no eigenvalues equal to 1. We will refer to
this case as the Morse case. As shown in [2], a non-degenerate T—periodic orbit is isolated among periodic orbits
having periods close to T. Thus we define the constant hy > 0, introduced in Section by

fo =min{Ty —To| | Ty, To € P with Ty, To < Eo and Ty # To}

where Eq = 2(C; + Eg) is defined in Section Step 3. Note that Ey < Eg. For a sequence of H{—holomorphic
cylinders u, = (an,fn) : [Rn,Rn] x S — R x M with harmonic perturbations y,, the analysis is performed in
the following setting.

Pl R, > 0 asn — .

P2 There exist constants 5 > 0 and C; > 0 such that [|dfn(z)| := supyy,
2 ([—R,—R + 8o] T [R — 8, R]) x SI.

—1[[dfn(z)v]ly < Cq for all

eucl. ™

P3 The energy of u,, as well as the [>—norm of 'y, are uniformly bounded by the constants E; > 0 and
Co > 0, respectively.

P4 For Eg, the da—energy of 1, is uniformly bounded by hg /2.

P5 There exists a constant C > 0 such that for all n € N, we have |t,,|,|0n| < C, where T, is the conformal
period of yn, on [—R,,Rn] x S, ie. T, = Ry Py, and o, is the conformal co-period of y,, on [—Rn, Rn] x S%,
i.e. on = RySn. Here, P,, and S,, are the period and co-period of v,, on the cylinder [—R,,, Rn] x S. After
going over to a subsequence, we assume that 7,, — T and o, — 0 as n — oo for some 1,0 € R and 7,0 > 0.

The task is to describe the asymptotic behavior of such cylinders. More precisely, we will derive the following
results. For a finite energy H{—holomorphic cylinder u = (a, f) : [-R, R] x S* = R x M with harmonic perturbation
v we introduce the notion of center action (Definition as in [14] which may be defined as the unique element
A(u) € Py which is sufficiently close to
J u(0)*«.
Sl

7
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For more details the reader might consult Section By Theorem 72| it follows that A(u) is either 0 or strictly
greater than some positive constant which will be determined in Section We distinguish between two cases;
the first case is when there exists a subsequence of u,, with a vanishing center action and the second case is when
there is no subsequence of w, with this property. In this regard, Theorem [63| deals with the asymptotic behavior
in the case of vanishing center action, while Theorem [65| deals with the asymptotic behavior in the case of positive
center action.

Before stating the main result we recall the construction of a sequence of diffeomorphisms 6., : [~R,, Rn] — [—1, 1]
introduced in Definition The construction is similar to that given in [7] and will enable us to describe the
C%—convergence.

Theorem 63. Let u,, be a sequence of H—holomorphic cylinders with harmonic perturbations y,, that satisfy
P1-P5 and possessing a subsequence having vanishing center action. Then there exists a subsequence of U,
still denoted by u,, the H—holomorphic cylinders u® defined on (—oo0,0] xS and [0, 00) x S, respectively, and
a point w = (Wqg,ws) € R x M such that for every sequence h, € R, and every sequence of diffeomorphisms
On : [-Rn,Rn] — [—1,1] constructed as in Remark the following C2.— and C°—convergence results hold
(after a suitable shift of u, in the R—coordinate)

COO

loc —CONVETGENCE!

1. For any sequence s, € [—Rn + hyn,Ry — hy] there exists a constant 1(, ) € [—7,7] (depending on the
sequence {sn}) such that after passing to a subsequence, the shifted maps u, (s + sn,t) + Snsn, defined

on [—Rn + hy — sn, Ry — hyy — sp] x ST, converge in C°, to (wa,d)fT(S“}(wf)). The shafted harmonic

perturbation 1—forms yn (s + sn,t) possess a subsequence converging in Cg5, to 0.

2. The left shifts u;(s,t) — RnSn := un(s — Rn,t) — RySy, defined on [0,h,) x St, possess a subsequence
% to a pseudoholomorphic half cylinder u~ = (a—, "), defined on [0, +oc0) x St. The

loc
curve U~ is asymptotic to (wq, d¥(wy)). The left shifted harmonic perturbation 1—forms y;, converge

in C, to an ezact harmonic 1—form dI', defined on [0,+00) x S*. Their asymptotics are 0.

that converge itn C

3. The right shifts u, (s,t) + RnSn := un (s + Rn,t) + Ry Sy, defined on (—hn,0] x S, possess a subsequence
that converge in C$°. to a pseudoholomorphic half cylinder u™ = (a*,f"), defined on (—o0,0] x St.
The curve u" is asymptotic to (wq, d%.(ws)). The right shifted harmonic perturbation 1—forms vy,

converge in C. to an ezact harmonic 1—form dI'", defined on (—o0,0] x S*. Their asymptotics are 0.

C%—convergence:

1. The maps vy, : [—1/2,1/2] x S — R x M defined by v, (s,t) = un(0,,1(s),t), converge in C° to (—20s +
W(l1 d)iQTs (Wf))

2. The maps v; —Rn Sy : [—1,—1/2] x S! — R x M defined by v, (s,t) = un ((0;,)"1(s),t), converge in C° to a
map v~ :[—1,—1/2] x St = R x M such that v (s,t) =u ((07)71(s),t) and v7(—1/2,t) = (wq, dZ(wy)).

3. The maps vii + RnSn : [1/2,1] x St — R x M defined by v, (s,t) = un((0;7)71(s),t), converge in C° to a
map v :[1/2,1] x St = R x M such that v (s,t) =u"((67)1(s),t) and v (1/2,t) = (wqa, d* (wy)).

An immediate corollary is

Corollary 64. Under the same hypothesis of Theorem@ the following C9°,—convergence results hold.

loc
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1. The maps vy, —R.Sn converge in C52, to v—, where v~ is asymptotic to (wq, §$(wy)) as s — —1/2. The

harmonic 1—forms [(8;)) *]*y,, with respect to the complez structure [(0,,) ']*1 converge in C¥, to a
harmonic 1—form [(07)~1]*dT"~ with respect to the complex structure [(07)~11*i which is asymptotic to

some constant as s — —1/2.

2. The maps v + RSy, converge in C, to v, where v is asymptotic to (wq, d* (ws)) as s — 1/2. The

harmontic 1—forms [(8;0)1]*y;, with respect to the complez structure [(0,7)"'1*1 converge in C¥, to a
harmonic 1—form [(07)71]*dT" with respect to the complex structure [(07) 11*i which is asymptotic to

some constant as s — 1/2.

o0

o to v we recall that

Proof. To show that v, converge in C

Vi (8,8) = SR = (@, ((65) X5, 1) — T ((85) (), )
I L N (N ((: = R O B5))

and that 8, — 0~ in C{3.. The convergence of the harmonic perturbations vy, follows from Corollary (107, while

the convergence of v is proved in an analogous manner.
O

In the case of positive center action we have the following.

Theorem 65. Let u, be a sequence of H—holomorphic cylinders with harmonic perturbations vy, satisfy
P1-P5 and possessing no subsequence with vanishing center action. Then there exist a subsequence of U,
still denoted by un, H—holomorphic half cylinders u* defined on (—o0,0] x S* and [0,00) x S, respectively,
a periodic orbit x of period T € R\{0}, and sequences ¥t € R with [F, —T7| — oo as n — oo such that for
every sequence h,, € R, and every sequence of diffeomorphisms 0, : [—R,,Rn] — [—1,1] as in Remark
the following convergence results hold (after a suitable shift of u, in the R—coordinate).

C{.—convergence:

1. For any sequence s, € [—Rn + hy,Ry — hy] there exists a constant 1( ) € [—7,7] (depending on the
sequence {sn}) such that after passing to a subsequence, the shifted maps un(s + sn,t) —snT — Snsn,
defined on [—Rp +hn —sn, Ry —hn —sn] X S, converge in C, to (Ts+ ao, CIDET{S“} (x(Tt)) = x(Tt+75,3))-

The shifted harmonic perturbation 1—forms yn(s+ sn,t) possess a subsequence converging in C3, to 0.

2. The left shifts u, (s,t) — RaSn, defined on [0,h,) x S, possess a subsequence that converges in C3, to
a H—holomorphic half cylinder u~ = (a—,f~), defined on [0, +oc0) x S'. The curve u™ is asymptotic to
(Ts+ ag, dZ(x(Tt)) =x(Tt+1)). The left shifted harmonic perturbation 1—forms y;, converge in C{5, to
an exact harmonic 1—form dTI'~, defined on [0,4+00) x S'. Their asymptotics are 0.

3. The right shifts ul(s,t) + RnSn, defined on (—h,,0] x S! possess a subsequence that converges in C,
to a H—holomorphic half cylinder ut = (a*, "), defined on (—o0,0] x S*. The curve ut is asymptotic
to (Ts+ apg, d*. (x(Tt)) = x(Tt — 7). The right shifted harmonic perturbation 1—forms vy} converge in
C®. to an exact harmonic 1—form dI'", defined on (—oo,0] x St. Their asymptotics are 0.

CO—convergence:

1. The maps fn 00,1 : [—1/2,1/2] x St — M converge in C° to %, (x(Tt)) = x(Tt — 27s).
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2. The maps f,, o (0,;) "1 :[-1,—1/2] x S* — M converge in C° to a map f~ o (07)"1:[-1,-1/2] x St = M
such that f~((07)71(—=1/2),t) = X (x(Tt)) = x(Tt + 7).

3. The maps f o (0;7)71:[1/2,1] x S — M converge in C° to a map f+ o (07)71:[1/2,1] x S - M such
that fH((07)71(1/2),t) = X (x(Tt)) = x(Tt — 7).

4. There ezist C >0, p >0 and N € N such that for any R >0, a, 00;!(s,t) € [f,, + R— C, T} — R+ C] for
alln >N and all (s,t) € [—p, p] x St.

An immediate corollary is

Corollary 66. Under the same hypothesis of Theorem [65 and the notations from Theorem [65 we have the

following C32.—convergence results.

1. The maps v,, — R,S, converge in C2. to v where £ ((07) 1(—1/2),t) = x(Tt + 1). The harmonic
1—forms [(0;)) '1*y, with respect to the complez structure [(0,) ']*i converge in C. to a harmonic
1—form [(07)!*dl~ with respect to the complex structure [(07) ']*i which is asymptotic to some
constant as s — —1/2.

2. The maps v, +R, Sy converge in C, to v where f™((67)1(1/2),t) = x(Tt—1). The harmonic 1—forms
[(630) 1"y, with respect to the complez structure [(0);) ']*i converge in C{2. to a harmonic 1—form
[(0F)711*dl'" with respect to the complex structure [(01)71]*i which is asymptotic to some constant as

s —1/2.

In order to establish this, we need to make use of a modified version of the results from [14].

Remark 67. If the sequence of H—holomorphic curves w,, together with the harmonic perturbations v, satisfy
conditions P1-P4 we can conclude that the left and right shifts u! together with the harmonic perturbations y;:
defined on [0, hy,] x S! and [~h,,,0] x S!, respectively, converge after a suitable shift in the R—coordinate in C{°_,
to H—holomorphic half cylinders u* with harmonic perturbations dI'* defined on [0, 00) x S* and (—o0, 0] x S,
respectively. The H{—holomorphic curves u* are asymptotic to points wt = (wZ, wf) € R x M or trivial cylinders
over Reeb orbits (x*,T). Without the assumption P5, the asymptotic data of u~ and u* cannot be described as
in Theorems and In fact, dropping assumption P5 it is not possible to connect the asymptotic data w™
or x (T-) of the left shifted H{—holomorphic curve u~ to the asymptotic data w* of x*(T-) of the right shifted
H—holomorphic curve u™ by a compact cylinder as in Theorems [63| and In the proof of these theorems it will

become apparent that P5 is a necessary condition for the CO—convergence result.

We begin this Appendix by considering a general J{—holomorphic cylinder u = (a,f) : [-R,R] x S = R x M with
harmonic perturbation y and having the following properties:

Q1 E(u;[—R,R] x 1) < Eo and [[Y[[f>(_g rixs) < Co-
Q2 Eau(w;[-R,R] x §1) < ho/2.

Q3 The conformal period T = PR, where P is the period of v over the cylinder [—R,R] x S! is bounded, i.e.
for the constant C > 0 from Assumption A5, we have |t| < C.

Q4 There exist constants 8o > 0 and C; > 0 such that ||df(z)|| < C; for all z € ([-R, —R+80]II[R—&q, R]) x St.
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In Section this H—holomorphic curve is transformed, as in [20], by the flow $* : Rx M — M of the Reeb vector
field X4 into a usual pseudoholomorphic curve with respect to a domain dependent almost complex structure that
varies in a compact set. Here, condition Q3 is essential. The transformed curve is a Jp;—holomorphic curve. The
lower index Ps, where P is the period of the harmonic perturbation and s the coordinate in [—R, R], describes the
variation of the complex structure Jp,; we have |Ps| < C for all s € [-R, R]. The conditions imposed on the energy
are transferred to the Jps—holomorphic curves. We then derive a notion of center action for the Jps—holomorphic
curves by employing the same arguments as in Theorem 1.1 of [14]; here, we distinguish the cases when the center
action vanishes and is greater than hg.

In Section we consider the case of vanishing center action. First, we derive a result for Jp,—holomorphic
curves, which is similar to that established in Theorem 1.2 of [14], and which basically states that a finite energy
Jps—holomorphic curve with uniformly small do—energy and having vanishing center action, is close to a point in
R x M. This is done by using a version of monotonicity lemma for Jp,—holomorphic curves given in Appendix
Then we describe the asymptotic behavior of Jps—holomorphic curves, and finally, by using the inverse transforma-
tion with the flow of the Reeb vector field, we translate these results in the language of H—holomorphic cylinders
and prove Theorem

In Section we formulate the above findings in the case of positive center action. We prove a result which is
similar to that stated by Theorem 1.3 of [14] for Jps—holomorphic curves, and then Theorem

In order to prove Theorems [63|and [65| we use a compactness result for a sequence of harmonic functions defined on
cylinders and possessing certain properties; this is established in Appendix [E]

B.1 Jp,—holomorphic curves and center action

In this section we transform a H—holomorphic curve into a pseudoholomorphic curve with domain-dependent
almost complex structure on the target space R x M, and introduce a notion of center action for this curve.

B.1.1 Jp,—holomorphic curves
We consider a H{—holomorphic curve u = (a,f) : [-R,R] x S — R x M with harmonic perturbation y satisfying
Assumptions Q1-Q4, and construct a new map U = (@, f) : [-R,R] x S — R x M as follows. Let ¢$&: M — M be

the Reeb flow on M. Defining
f(S,t) = d)%s(f(s)t)) (Bll)

we find by straightforward calculation that

Todf = dp% medf and f o= Pds + f o
giving

ffuoi=—Pdt+f'xoi=—Pdt+da+vy. (B.1.2)
Remark 68. Obviously, as v is a harmonic 1—form, the 1—form —Pdt + vy is harmonic with vanishing period over
[-R,R] x S!. Thus —Pdt + v is globally exact, i.e. there exists a harmonic function I': [-R, R] x S! — R which is

unique up to addition of a constant such that —Pdt +vy = dI'. By technical reasons, which will become apparent
later on, we choose I' such that it has vanishing mean value over [-R,R] x S!, i.e.

1

= M(s,t)ds A dt = 0.
2R J'[R,R]xsl
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Set,
a=a+T (B.1.3)

where " was chosen as in Remark
Define the domain-dependent almost complex structure J : [-C, C] x M — End(&) by

To(p) = ddbg (%, (p)) 0 Je (%, (p)) 0 dbZ , (p) (B.1.4)

forall p € [-C,C] and all p € M, where C > 0 is the constant from Assumption Q3. Note that for a H{—holomorphic
curve u: [—R, R] x S = R x M satisfying Assumptions Q1-Q4, Ps € [-C, C] for all s € [-R, R].

Proposition 69. The curvei = (a,f) : [-R,R]xS? — RxM, where a and f are the maps defined by and
, respectwvely, is pseudoholomorphic with respect to the domain-dependent almost complex structure
] warying in a compact space of almost complez structures, i.e.

o df(s,t) oi = Jps(f(s, 1)) o medf(s,t), (B.1.5)
(Fo)oi=da (B.1.6)

for all (s,t) € [-R,R] x St. Moreover, for the x— and do—energies we have
Eaa(T; [—R, Rl x ') = Equ(u; [-R,R] x S1),

Eo(i <R, R] x S1) < J 1o +j [0 + Eae (155 [<R, R] x S1).
{R}xS? {—R}xS?

Proof. By Remark (68| it is obvious that Equation (B.1.6) holds. Let us consider Equation (B.1.5). The left-hand
side of this equation goes over in
Mo df(s,t) oi = dpfmadfoi,

while the right-hand side goes over in

Tps(f(s,t)) o e df(s,t)

= Jps(Gps(f(s, 1)) o AP, (f(s, t))madf(s, t)

= ddp, (¢Zp (bps(fs, 1)) o J(PZp, (dps(f(s, 1))
o dd%p (dp(f(s, 1)) o ddpp,(f(s, t))madf(s,t)

= ddp,(f(s, 1)) o J(f(s,t)) o mudf(s,t).

Hence

Mo df(s,t) oi— Jps(f(s,t)) o medf(s,t)

- dd)PsT[O(df oi— dd)Ps( (57 t)) o ](f(s) t)) o nadf(s,t)
= ddp, [madf o1 — J(f(s,t)) o M df(s,t)]

=0.

Thus U = (a,f) : [-R,R] x S* — R x M is an i — J—holomorphic curve, where ] is a domain-dependent almost
complex structure. The energies transform as follows. The dx—energy remains unchanged. Indeed, by definition
we have

—%

Eao (T =R, R x S1) = J Fda,
[-R,R]xS?
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and by noticing that
Fda = da(dd¥ medf-, dp S e df-) = f*dx,
we obtain

Eao(W; [—R,R] x S1) = J ?*da:J f*da = Eqq(u; [—R, R] x S1).
[-R,R]xS1 [-R,R]xS?

For the a—energy we start from the definition and obtain
Eo(W; [—R,R] x S1) = supj ¢’'(a)daciNda
@cA J[-R,R]xS?

= sup |— d(e(a)daoi) — (p(a)d(daoi)]
peA L J-RrRIxS?

= sup |— d(e(a)daoi) —|—J
eeA | J[—R,R]xS?

d(daOl)]
[—R, R]><S1

= sup |— a)daoi— J f*doc}
peA L Ja([fR,Rstl] —R,R] ><51

+J f*doc]
peEA [— RR]><51

sup U p(a)daoi —|—U e(a)daoi|+ Egu(u; [—Ry, Ryl x Sl)}
peA LIJ{R}xS? {—R}x St

up ([ gl@lawoii | pl@Idao i+ Eaalus R, Ral x sl)}
peA LJ{R}xS? {—R}xS?

N

sup a)daoti

L Ja([R,R]xSl)

N

N

N

U o +J 100 + Eae (155 [-R, R] x sl)] .
{R}xS?t {—R}xS?
O

Remark 70. The a—energy of u,, that was constructed from u,, (satisfying Assumptions A1-A5), is uniformly
bounded. To show this we argue as follows. Due to Assumption P2, the quantities

J [f¥ o and J [f3 ol
{Rn}xS? {—Rp}xS?

are uniformly bounded by the constant C; > 0. Hence, according to the definition of Eq we obtain
E(Tn; [—Rn, Ru) X $1) = Eq (Wn; [=Rn, Rn] x $') + Eqa(Un; [~Rn, Rnl x $1) < Eg

For this reason it makes sense to assume, by Proposition that the energy of U, is uniformly bounded.

To analyze the properties of the transformed pseudoholomorphic curve U, we consider the following additional
structure on M: On the contact structure & = ker(«), let ] : [-C,C] x M — End(£) be the parameter-dependent
almost complex structure defined by having the property J,(p)? = —1 for all p € [-C,C] and all p € M.
On R x M we use the following family of Riemannian metrics:

Go.p (v, W) = dr @ dr(v,w) + x @ (v, w) + da(v, ], (p)w) (B.1.7)

for all p € [-C,C] and all p € M, where 1 is the coordinate on the R—component of R x M.

Definition 71. A triple (i, R,P) is called a Jps—holomorphic curve if P,R € R with R > 0, and U = (q,f) :
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[R,R] x St — R x M satisfy the following assumptions:

1. For the constant C > 0 from Assumption Q3 we have |PR| < C.
2. U solves the i — Jp,—holomorphic curve equation
7'[“(1?(5, t) oi= TPS (?(S, t)) © 7'[0((1?(5, t))
flaoi=da.
3. The energy E(T; [—R, R] x S!) of T is bounded by the constant Eg.

4. The dou—energy of U is smaller than hy/2.

5. For the constant g > 0 from Assumption Q4 we have Hdﬂz)” < Cy forall z € ([—R, —R+80] II[R—8g, R]) x ST,
for some constant Cl > Cy.

B.1.2 Center action

In the following we apply the results established in [14] to this new curve, and introduce the notion of the center
action for the Jps—holomorphic curve (i, R, P).
The next result is similar to Theorem 1.1 of [14].

Theorem 72. For all { such that 0 < V < hg/2, there exists hg > 0 such that for any R > hy and any
Jps—holomorphic curve (U, R,P) there exists a unique element T € P such that T < Ey and

v P
Llu(O)oc T’<2.

To prove the theorem we need the following lemma.

Lemma 73. For any & > 0 there ezists a constant C|{ > 0 such that the gradients of all Jps—holomorphic
curves (1, R,P) with R > §, are uniformly bounded on [-R+ §,R — 8] x St by the constant Cj, i.e.

sup ldT(s, t)] <.
(s,t)€[—R+8,R—5]x St

JeucsgPs

Proof. We prove this lemma by using bubbling-off analysis. Let us assume that the assertion is not true. Then we
find 8¢ > 0 such that for any C;,n = n there exist the Tpns—holomorphic curves (Un, Rn, Pn) with R, > g such
that

sup [dwn (s, t)]|
(s,t)€[—Rn+80,Rn—080]xS?

_ > =
Jeucl.»9Pp s = Cl’n n.

Consequently, there exists the points (sn,tn) € [=Ry + 89, Rn + 8g] x S* for which

— > n.
Jeucl.»9Pp s Zn

Hdﬁ“(sn’t“)ngucl.@pnsn = sup [[ditn (s, t)|]
(s,t)€[—Rn+80,Rn—580] xSt
Set R,y = ||dﬁn(sn,tn)||geucl_,§Pnsnand note that R,, — oo. Choose a sequence €, such that €, > 0, ¢,, — 0 and
enRn — +0o0. Now, apply Hofer’s topological lemma [I] to the continous sequence of functions ||dt, (s, t) ngud.,@pns
defined on [—R,, R,,] x St. For each (s, tn) and €y, there exist (s/,t/) € [=Ry + 80, Rn — 8] x S! and €/, € (0, €y,
with the properties:
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L eTI‘ ”dﬁn(s;"tT/l)”Qeucl.,?pns;l Z €n Hdﬁn(sn’tn)||geuc1.,§Pnsn’

2. (snytn) = (85, 1 ) lgewer, < 2€n;

3 |1 dTn(s,)llg,.., g, < 20dTn(shth) g, g, ., forall (s,t) such that |(s,t) — (s}, t})| < €.

Thus we have found the points (s}, t/) and a sequence €/, such that:

1. €/, >0, €/, =0, R, =] dun(s),t)] — o0 and €/ R}, — oo;

Jeucl. 7§P“ sh

2. ||dtn (s, t)|| < 2R}, for all (s,t) such that |(s,t) — (s}, t,)] < €.

geucl.ngns n
We do now rescaling. Setting z], = (s/,t},) and defining the maps
~ — / z — '\ F / z ~ s
tn(s,0) = (an (20 + 2 ) (et o (20 + - ) ) = a2 )
R RL

for z = (s,t) € Bes ®/ (0), we obtain

diin (2) = ~dil, (z;l + Z,)
n jQT‘L
and )
[dtn (2., = — ||du, (Z/ +>
9 1.79Pn(s,’1+975€> 9%41 n 3?,1/1 98“51.75]) ( s )
n|sn Tnﬁ
Thus, for all z = (s,t) € Be; »/ (0) we have that
ldin (@), 5 <2 (B.18)
P

n (51/1 + %*)
Rn

and ||dii, (0)] = 1, and moreover, that {i = (@, ) solves

Jeucl. :gP“ sh

Wadfn(z) oi= TPn (s ) (Fn(z)) S Wadfn(z),

’ s
n+g{;1

frooil=ddy.

As Pns/ is bounded by C, we go over to some convergent subsequence, i.e., Pys/, — p as n — oo. From
the uniform gradient bound (B.1.8) it follows that there exists a subsequence converging in C{°_ to some curve
L= (& f): C = R x M such that:

1. 1 solves
Madf(z) oi= TP(F(Z)) o mydf(z) and f* oo i = dd;
< 2 and ||dt(0)|| =1

2. the gradient bounds go over in ||dii(z)|| Gonet s

Jeucl.,gps/

From the last two results, 1t is a usual non-constant pseudoholomorphic plane with bounded energy by the constant
Eo (finite energy plane). As the da—energy is smaller than hg we arrive at a contradiction (see [13]).

O
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Proof. (of Theorem @ We prove Theorem by contradiction. Assume that we find 0 <\ < hg /2 such that for
any constant hg,, = n, there exist R, > hg,, =n and the Jps—holomorphic curves (Un, Ry, Pn) satisfying

b
2

J un(O)*oc—T’ >
Sl
for any T € P with T < Eo. By Lemma [73| we have for 6 =1,

< Cy.

Jeucl. 7§Pn s =

sup |[dt, (s, 1) ]
(s,t)e[—Rn+1,R,—1]xS?

As |P,R,| < C and R,, — oo it follows that P, — 0 as n — co. Furthermore, by the boundedness of P,,R,., the
metrics gp_, are equivalent for all s € [-R,,,Ry,] and all n (the almost complex structures J varies in a compact
set). Hence there exists a constant C, > 0 such that

1
S, Mo < lHlp,s < Callllo
for all n and all s € [-Rn, Ry]. By making the constant C; larger (eventually by multiplying it with C;) we obtain

sup [ldTn (s, t)]]
(s,t)€[—R +1,R,—1]xS?

<Cy.

Jeucl.,Jo

Thus the maps 1i,, converge in C{°_ to some usual Jo—holomorphic curve U = (@, f) : R x S — R x M, for which
we have:

1. T solves
Tedf(z) 0i=To(f(2)) 0 Mudf(z) and f x 01 = da;

2. E(W;R x SY) < Eo, Eau(W;R x SY) < ip/2 and

b
2

J u(O)*oc—T‘ >
Sl
for all T € P with T < Eo.

The rest of the proof proceeds as in the proof of Theorem 1.1 from [14]. For the sake of completeness we present
this proof in detail. The map U can be regarded as a finite energy map defined on a 2—punctured Riemannian
sphere. A puncture is removable or has a periodic orbit on the Reeb vector field as asymptotic limit. In both cases,
the limits

lim J Uu(s)*a e R
Sl

s—Fo0

exist. The limit is equal to 0 if the puncture is removable, and equal to the period of the asymptotic limit if this
is not the case. As a result and by means of Stoke’s theorem, the dx—energy of it can be written as

J ﬁ*dOC:Tz—Tl,
RxS?!

with T, > T, where Ty, T, € P and Ty, T, < Eo. By the energy estimates, Eqq(T;-) < ho/2, and from the definition
of the constant hy we conclude that that T; = T,. Set T:=T; =T,. If T =0, both punctures are removable, i has
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an extension to a Jo—holomorphic finite energy sphere S> — R x M, and so, the map 1 must be constant; hence
J u0)*a=0=T,
Sl

which contradicts the assumption on the center action. If T > 0, the finite energy cylinder U is non-constant, has a
vanishing dx—energy., and so, U must be a cylinder over a periodic orbit x(t) of the form (s, t) = (Ts+c, x(Tt+d))
for some constants ¢ and d, and with a period T < Eg; hence

J u0)*a—T=0< 9

s 2’

which again contradicts the assumption on the center action. Thus, there exists a constant hg > 0 such that for
any Jps—holomorphic curve (U, R,P) with R > hg satisfying the energy estimates, the center loop (0, -) has an
action close to an element T € P with T < Eo, i.e.

J u(O)*oc—T‘ <P (B.1.9)
st 2

To deal with the uniqueness issue, we consider two elements Ty, T, € P with T;, T, < Eo satisfying the above
estimate. Then we have
vy

\Tl—T2|<*+*—1J)

By assumption, P < hg/2, and from the definition of hg it follows that Ty = T,. Therefore the element T € P
satisfying T < Eg and the estimate (B.1.9) is unique.
O

Definition 74. The unique element T € P, associated with the Jp,—holomorphic curve (i, R, P) satisfying the
assumptions of Theorem [72]is called the center action of U and is denoted by

A =T.

If the curve U = (@, f) : [-R,R] x S — R x M fulfills the assumptions of Theorem the actions of all loops are

estimated by

J u(s) o — T’<w+h0<ho
51

for all s € [-R,R].

Remark 75. From the definition of the constant hg, the center action A (1) of a curve u fulfilling the assumptions
of Theorem [72| satisfies A(1t) = 0 or A() > hg.

Before going any further we make a remark about the metrics involved.

Remark 76. For any p, the norms induced by the parameter-dependent metrics g, on R x M that are defined by
(B.1.7) are equivalent, i.e. there exists a positive constant C; > 0 such that

1 _
& Mg, < IHlgy < G ll-lg, - (B.1.10)

This follows from the fact that the parameter-dependent almost complex structure Tp varies in a compact set.
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B.2 Vanishing center action

In view of Remark [75|and Theorem [72| we consider the case in which there exists a subsequnce of 1,, with vanishing
center action. We use a version of the monotonicity lemma (Corollary to characterize the behavior of a
Jps—holomorphic curve (i, P,R) (Theorem . Using these results we describe the convergence of a sequence of
Jps—holomorphic cylinders (Theorem @) and then prove Theorem

Lemma 77. Choose 0 <\ < hg/2, and let hg > 0 be the corresponding constant from Theorem . For
all 8 > 0 there exists h > hy such that for any R > h and any Jps—holomorphic curve (,R,P) fulfilling the
assumptions of Theorem and having vanishing center action, the loops u(s) satisfy

diamg, (1(s)) <& and |o(0.u(s)) <O (B.2.1)
for alls € R+ h,R—Hh].

Proof. The proof is similar to that given in [14]. Nevertheless, for the sake of completeness it is sketched here. We
consider (B.2.1). Arguing indirectly we find a constant 6y > 0, a sequence R, > hy := n + hp, and a sequence of
Jps—holomorphic curves (in, Rn, Py) such that

E(Tn; [-Rn, Ral x 81) < E
Edoc(ﬁn; [_Rnan] X Sl) <

)

~01
ho
7)
VP

2

L,l Un (0)* e

diamg, (n (sn))

<
> O

for a sequence s, € [-Ry +n+ hg,R,, —n — hg]. By Stoke’s theorem, we have

< hy.

Llﬁn(sn)*cx

Define now the maps {in = (@n, fn): [—Rn — Sn, Rn + sn] x ST = R x M by
Tin (s, t) == (@n(s + sn, t)’?n(s +sn,1)),
for which, the above assumptions go over in

E({in; [=Rn, Rn] x S') < Eo,

Edcx(ﬁn; [7RH7R11] X Sl) < ?O)

Ll 1, (0)*

diamg, (i, (0)) > O.

As s, € [-Rq +n+ hg, R, — n — hgl, we see that |[R,, + sn| — oo and |Ry — sn| = o0 as n — oo. Moreover, i,
satisfies the pseudoholomorphic curve equation

nadfn(sr t)oi= Tan(stsn) ('Fn(sa t))o nadfn(sr 1),

% . ~
frooi=ddn.
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For the new sequence

n(s,t) = (bn(s,t),Vn(s,t)) = (dn(s,t) — an(0,0), (s, 1)),

the R—invariance of ] and of gy, yields

E(Vn; [~Rn — sn, Rn — snl x $1) <

)

M‘g oz

Eaa(¥n;[—Rn — sn, Rn —sn] X Sl)

N

<

5

b

Ll I (0)*

diamg, (¥ (0))

\%

do
and
TadVn(s,t) 01 =T _p, (s1s5.)(In(s, 1)) 0 madin(s,t),
P aoi=dby.

By the same bubbling-off argument as in the proof of Theorem a subsequence of ¥, converges in C{5. to a usual

J«—holomorphic cylinder ¥ = (b,v) : R x S — R x M for some fixed T € [-C, C] (after going to a subsequence,
this the limit of P,,sy,) characterized by

In particular, ¥ is a non-constant finite energy cylinder having a vanishing da—energy. Hence ¥ is a cylinder over
a periodic orbit of period 0 < T < Eg.Consequently, we obtain

J v(0) & =T > ho,
Sl

meaning that v is constant. This contradicts our assumptions, and therefore, diamg, (T(s)) < 6 for all s € [-R +
h,R —h]. For |«(01(s))| < & we proceed analogously, and the proof is finished.

O
The next theorem characterizes the behavior of a Jps—holomorphic curve (i, R, P) with vanishing center action.

Theorem 78. Let { be as in Theorem [74 and let hyg > 0 be the constant from Theorem[72. For any € >0
there exists hy > hg such that for any R > h; and any Jps—holomorphic curve (U, R,P) satisfying A(i) = 0
we have U([—R +hy,R —hy] x S1) c BZ°(1w(0,0)).

Proof. In the first part of the proof we employ exactly the same arguments as in the proof of Theorem 1.2 from
[14]. With € > 0 as in the statement of the theorem, we choose > 0 and 0 < r < € sufficiently small such that

65 < Cgr? and 45 +1 < (B.2.2)

€
5
For the Jp,—holomorphic curve (i, R,P) with R > h and h as in the Lemma and satisfying the assumptions of
Theorem we have diamg, (U(s)) < 6 and |(9¢f(s))| < & for all s € [-R+h,R—h]. The definition of the energy
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and Stoke’s theorem give
E(u\ —R+h,R—h]xS1; [ R+h. R— h] X S ) 6d. (B23)

If the conclusion of Theorem [78|is not true for this h, we find a point (sg,tg) € [-R +h, R —h] x S* for which
dlSt ( (SO)tO) (070)) > €

From diamg, (U(s)) < & we obtain
distg, (T(so, ), Ww(0,t)) > € — 258

for all t,t’ € S'. Choosing a point s; between 0 and sq such that

distg, (T(s1,t), W(so,t')) > 5 — 45 and distg, (ti(sy,t),1(0,t")) > 2—46
for all t,t’ € S?, using < €/2 — 45, and applying the monotonicity Lemma to the open ball B (Ti(sq, 1)),
we conclude that E(T|[_grin r_njxs1;[— R+h R —h] x S') > Cgr?. In view of (B.2.3] , this implies that Cgr? < 26,
which is in contradiction to the choice in . Hence (s, t) € B2 (w(0, 0)) for all (s,t) € [-R+h,R—h] x S!
as claimed by Theorem

O

B.2.1 Proof of Theorem [63]

We are now well prepared to describe the convergence and the limit object of the H{—holomorphic cylinders u,,
with harmonic perturbations y,. Consider a sequence of H—holomorphic cylinders u, = (an,fn) : [-Rn, Rnl] X
S! — R x M with harmonic perturbation 1—forms vy, satisfying Assumptions P1-P5. As in Section we
transform the map u, into a Jp;—holomorphic curve i,, with respect to the domain-dependent almost complex
structure J,. We consider the new sequence of maps f, defined by fi(s,t) = ¢ s(fn(s,t)) for all m € N.
Thus W, = (@n,fn) : [~Rn,Rn] x S — R x M is a Jp, s—holomorphic curve. Due to Remark the triple
(Un, Rn, Pn) is a Jp, s—holomorphc curve as in Definition After shifting u,, by —an.(0,0) in the R—coordinate,
we assume by Propositionthat an(0,0) is bounded. Hence, after going over to a subsequence, we assume that
U, (0,0) > w=(wq,ws) ERx M as n — oo.

By Theorem |78| applied to the sequence of Tpns—holomorphic curves (U, Ry, Pr) we have the following
Corollary 79. For every sequence h, € R, satisfying h,, < R,, and h,,R,/h,, = oo and every € > 0 there

exists N € N such that
Un ([—Rn + M, Ry — ] x S1) € B0 (w)

for allm > N. Moreover, for the period P, and co-period S, we have that h,,P,,hn,S, — 0 as n — oo.

Proof. Consider a sequence h, € R, such that h,, < Ry and h,,R,/h;;, — o0 as n — oo and let € > 0
be given. From Theorem there exists he > 0 and N, € N such that for all n > N, we have R, > h. and
U ([—Rn+he, Rn—hel xSt) € B2 (w). By making N, sufficiently large and accounting of h,, — 0o, We may assume
that for all n > Ne, we have that R,, > h, > h., which in turns, gives Ty ([—Rn 4+ hn, Rn — hyl x S1) € B2 (w).
The second statement follows from the fact that R,,P,, = T, RnSnw — 0 and h;;R,, > co as n — oo.

O

To describe the C°—convergence of the maps 1,, we define a sequence of diffeomorphisms, which is similar to that
constructed in Section 4.4 of [7]. For a sequence h,, € Ry with hy, < Ry and h,,Ry/h,y, — 00 as n — oo, let
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On : [—Rn, Rn] — [—1, 1] be a sequence of diffeomorphisms defined as in Remark We define the maps

7n(5vt) :ﬁn(agl(s)vt)v S € [_1) 1]a
Va(s,t) =1,((6,)7(s), 1), s € [-1,1/2],
Vi(s,t) =wi((05)71(s),t), s €[1/2,1], (B.2.4)
Vs, 1) =w ((07) M (s),t), s € [-1,-1/2),
vi(s,t) =T ((07) 7 (s),1), s € (1/2,1],
and
Vn(svt) :un(e;l(s)vt)v S € [_1) 1]a
Vi (s,t) =u,((6,)71(s), 1), s € [-1,-1/2],
vi(s,t) =u((6;0)71(s),1), s €[1/2,1], (B.2.5)
v (s,t) =u ((67)7(s),t), s€l-1,-1/2),
vt(s,t) =ut((6+)71(s),1), s € (1/2,1],

where, (s, t) = Wn (s + Rp,t) and ul(s,t) = un(s + Ry, t) are the left and right shifts of the maps ,, and u,,
respectively.

The next theorem states a C®

O p—
0>.— and a C”—convergence result for the maps .

Theorem 80. There exist a subsequence of the sequence of Tpns—holomorphic curves (Un,Rn,Pn), also
denoted by (Un,Rn, Pn), and pseudoholomorphic half cylinders Ut defined on (—o0,0] x S* and [0,00) x S,
respectively such that for every sequence h, € R, and every sequence of diffeomorphisms 0, : [-R,,Ra] xSt —
[—1,1] x S satisfying the assumptions of Remark the following convergence results hold:

C{y.—convergence:

1. For any sequence sn € [—Rn + hn,Rn — hy] there ewists a constant T, ) € [—7,1] (depending on the
sequence {sn}) such that after passing to a subsequence, the shifted maps U, (s + sn,t), defined on

[~Rn + iy — $n, Ry — hyy — sn x S, converge in C°, to w.

2. The left shifts U, (s,t) := Un(s—Rn, t), defined on [0, h,,) xS, possess a subsequence that converges in C,
to a pseudoholomorphic half cylinderti = (a—,f ), defined on [0,4+00)xS'. The curve U 1is asymptotic
tow = (wq,ws). The maps v, : [—1,—1/2] xS? — Rx M converge in C, to v~ : [-1,—1/2) xS - RxM

such that v~ 1s asymptotic tow as s — —1/2.

3. The right shifts U/ (s,t) := Wn (s + Ry, t), defined on (—h,,0] x S, possess a subsequence that converges
in C°. to a pseudoholomorphic half cylinder " = (ﬁ+,?+) , defined on (—o0,0] x S'. The curve u" is
S 5 R x M converge in C°, tov: (1/2,1] x S —

asymptotic to w = (wq,wy). The maps v, : [1/2,1] x x.

R x M such that v is asymptotic to w as s — 1/2.

CP—convergence:

1. The maps Vn : [—1/2,1/2] x S* — R x M converge in C° to w.

2. The maps v, : [-1,—1/2] x S — R x M converge in C° to a map v : [-1,—1/2] x S* — R x M such that
v (—1/2,t) =w.

3. The maps v\ : [1/2,1] x S — R x M converge in C° to a map v’ : [1/2,1] x S — R x M such that
v(1/2,t) =w.
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Proof. We prove only the first and second statements of the C{°.- and C°- convergences because the proofs of the
third statements are exactly the same with those of the second statements. For the sequence h,, € R, with the
property h,,,R./h,, — 0o as n — oo, consider the sequence of diffeomorphisms 6, : [—Rn, Rn] — [—1,1] fulfilling
the assumptions of Remark For any sequence s, € [—R,, + hy, Ry —hy], the shifted maps Uy, (- + sn, ), defined
on [-Rn +hn — 51, Rn — iy — sn] x S1, converge, due to Corollary [79| and Lemma in C2. to w. To prove the
second statement of the C{°.—convergence we consider the shifted maps U, : [0,hn] x St — R x M, defined by
U, (s,t) =Un(s —Rn,t). By Lemma these maps have bounded gradients, and hence, after going over to some
subsequence, they converge in C{°_([0,00) x S!) to a usual pseudoholomorphic curve T~ : [0,+00) x S = R x M
with respect to the standard complex structure i on [0, +00) x S! and the almost complex structure ] . on the
domain; here, T is the limit of P,,R,, as n — oco. Let us show that U™ is asymptotic to w € R x M, i.e. let us show
that lim,_,. U (r,t) = w. We prove by contradiction. Assume that there exists a sequence (sy,ti) € [0,00) x S!
with s — 0o as k — oo such that limy_, U (s, tx) =w’ € R x M with w’ # w. Let e := distg, (w,w’) > 0. For
any k € N there exists Ny € N such that for any n > Ny, (sk, tx) € [0, h,]. Thus for arbitrary k and n such that

n > Ny we have

distg, (W, W) < distg, (W, Ty, (sk, ti)) + distg, (T, (s, ti), T (51, ti))

+ distg, (T (s, tx), w’).

By Theorem there exists h > 0 such that distg, (U, (s,t),w) < €/10 for all (s,t) € [h,hy] x S*. Choose
now k and n > Ny sufficiently large such that (si,tx) € [h,hn] x S'. Hence, distg, (U, (sk,tk),w) < €/10.
Making k and n > Ny larger we may also assume that distg, (U (sk, ti),w') < €/10. After fixing k and making
n > Ny sufficiently large we get distg, (0, (sk, tx), U (sk, tx)) < €/10. As a result, we find distg, (w, w’) < 3€/10,
which is a contradiction to distg, (w,w’) = €. The maps V; (s,t) = U, ((6;) (s),t) converge in C{2_ to the map
Vv (s,t) =1 ((67) *(s),t). This follows from the fact that (6;) ' :[—1,—1/2] — [0, h,] converge in C{°_ to the
diffeomorphism (8—)~!:[—1,—1/2) — [0, +00). By the asymptotics of i, v~ can be continously extended to the
whole interval [—1,—1/2] by setting v (—1/2,t) = w. This finishes the proof of the second statement, and so, of
the C{>.—convergence.

We consider now the first statement of the C°—convergence. From Corollaryit follows that distg, (Vn (s,t),w) — 0
as n — oo for all (s,t) € [—1/2,1/2] x S, and the proof of the first statement is complete. The proof of the second
statement of the C°—convergence is exactly the same as the proof of Lemma 4.16 in [7] and is omitted here.

O
We are now in the position to prove Theorem

Proof. (of Theorem @) As before, we focus only on the proofs of the first and second statements of the C{o.—
and C°—convergences, because the proofs of the third statements are similar to those of the second statements. For
the sequence h,, € R, with the property h,,,R,,/hy — 00 as n — oo, consider the sequence of diffeomorphisms
On : [-Rn, Rn] — [—1, 1] fulfilling the assumptions of Remark By the construction described in Section we
have

fr(s,t) = ¢p, s(fn(s,t)) and da, = dIy, + dan,

where (s,t) € [-Rn +hn, Rn —hnl x St and I, : [<Ry, Rn] x ST — R is a sequence of harmonic functions such that
dl’, has a uniformly bounded L?—norm. Then we obtain

fn(s,t) = d%p ((fn(s,t)) and an(s,t) = an(s,t) — (s, t). (B.2.6)

For the sequence of harmonic functions T}, (s, t), the [?—norms of dI}, are uniformly bounded, while by Remark
the functions I, can be chosen to have vanishing average. By Theorems |78| and 105 T, (0, ), un(0,) — w =
(Wa,ws) € R x M as 1 — oco. Hence an(0,-),an(0,:) = wq. Recall that P,R,, — T € R, U{0}. By Theorems
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and for any sequence s, € [—Rn +hn, Ry —hn] there exists a subsequence of shifted maps un (- +Sn, *) + Snsn,
defined on [—Ry + hn — $n, Rn — hyy — s x S1, that converges in C{2. to the constant (wq, d)ET(Sn) (ws)), where
T(s,} is the limit point of P,s,,. The shifted harmonic 1—form defined on [-R, + hy, — s, Ry — hy — 55 X St
takes the form yn (s + sn,t) = dlw (s + sn, t) + Pndt. Thus by Theorem we have Y (s + sn,t) = 0in C9, as
n — oo, and this finishes the proof of the first statement. To prove the second statement of the C{5.—convergence
we transfer the convergence results for the shifted maps U, : [0,h,] x St — R x M, T, (s,t) = Un(s — Ry, t) of
Theorem to the maps u;,, and use the convergence results of the harmonic functions established in Theorem
of Appendix The shifted maps u,, = (a,;, ;) : [0,hn] x St — R x M, defined by u; (s,t) = un(s — Rn, t),

together with the maps u,, and the harmonic functions I, satisfy
fuls,t) = OF (s g, )(fn(s,t)) and Ty (s, t) = ai (s, 1) + Ty (s, 1), (B:2.7)

where ', : [0,h,] x S! — R is the left shifted harmonic function, defined by T, (s,t) = '\ (s — Ry, t). Hence we
obtain

f;(svt) = d)iPn[szn)(¥;(Svt)) and aT_‘L (Syt) = a;(syt) - FTT (Syt)' (B28)
Thus, by Theorems and U, — SnRy converge in C{°,_ to a curve u™(s,t) = (a™(s,t),f (s,t)) = (@ (s, t) —

(s, 1), GX(f (s,t))), defined on [0,00) x St. The map u~ is asymptotic to (Wq, $(w¢)), and can be regarded as
a H—holomorphic map with harmonic perturbation d"~. This finishes the proof of the second statement. For the
third statement, we proceed analogously; the only difference is that the asymptotic of the map u™ is (wq, &% (wy)).
To prove the first statement of the C°—convergence, we consider the maps v,, and recall that

frls,t) = dF (fn(s, 1)), @n(s,t) = an(s,t) +Tn(s,t),
and
Va5, 1) = (@n((0,1)(5),1) = Tn((0,1)(5),1), 0% 6.1y (Fa((8,1)(5), 1))
for s € [-1/2,1/2]. If S,R, — 0 as n — oo we have, using Theorem [106} that
@ ((0r) 1(5), ) = Tn((8) X(s), 1) — W + 208] = 0

for all s € [-1/2,1/2] as n — oo. Moreover, there exists a constant ¢ > 0 such that for all (s,t) € [-1/2,1/2], there
holds

distg, (fn ((8n) 7 *(s), 1), wr) > cdistg, (fn((0n) 7 (s), 1), &%p (0,11 (s) (Wr)).

Noting that
Pn(en)_l(s) =2(PyRy —Prhy)s (B.2.9)

for s € [-1/2,1/2], and that P,R, — 7 and P ,h, — 0 as n — oo, it follows that P,,(6.) *(s) — 21s in
C%([—1/2,1/2]). Hence, for (s,t) € [-1/2,1/2] x S! we have

CildiStﬁg (?n((en)il(s)) t))wf) + diSt§0 (d)iPn(en)*l(s)(wf)) ¢)E2TS (Wf)) > diStﬁo(fn((en)il(s)) t)) ¢E2Ts (Wf)))

and distgo(d)fpn(en),l(s)(wf),¢)f2TS(Wf)), distgo(?n((en)*l(s),t),wf) — 0 as n — oo. Thus v, converge in
CO([—1/2,1/2]) to (Wwq — 208, %, (wr)) which is a segment of a Reeb trajectory. The proof of the first statement

is complete. To prove the second statement we consider the maps v;,, for which we have

Vi (s,1) = (@, ((8,) 7 (s), 1) = T ((05) (), ), 0%p (6 )1(5)1p, r, (Fn ((0)7H(5), 1))
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If SyRn — 0 as N — +oo, Theorem [106] shows that @, ((05,)*(s),t) — Iy ((65)7*(s),t) — SnRn converge in C° to
a function @ ((07)~*(s),t) = ((67)~%(s),t) on [~1,—1/2]. From

Pn(0;)7*(s) € [0, Prhy] (B.2.10)

for all (s,t) € [-1,—1/2] x St, and P,,(0;;) " *(s) — 0 in CO([—1,—1/2]), it follows that v, (s,t) — c,Rn converge in
C%([—1,—1/2]) to the map

@ ((07)7H(s),t) =T7((87)7H(s), 1), dF(F ((67)7*(s),1))).

This finishes the proof of the second statement of the C°—convergence, and so, of Theorem

B.3 Positive center action

In this section we consider the case when there is no subsequence of U,, with vanishing center action. Note that in this
case, due to Remark 75}, the center action of i, is bounded from below by the constant fiy > 0 defined in Assumption
P4. As in the previous section we first characterize the asymptotic behavior of the Jps—holomorphic curves with
positive center action (Theorem . We then prove a convergence result for the transformed psudoholomorphic
curves U, and induce a convergence result on the H{—holomorphic curves u,, with harmonic perturbations y,, by
undoing the transformation. Theorem [91|establishes the convergence of the transformed pseudoholomorphic curves
U,

B.3.1 Behavior of Jp;—holomorphic curves with positive center action

Via the natural action of S' on C*®(S*, M), defined by (€™ xy)(t) := y(t + ) for > € S! we choose an
S!—invariant neighborhood W in the loop space C*®(S!, M) of the finitely many loops t — x(Tt),0 < t < 1, defined
by the periodic solutions x(t) of X4 with periods T < Eq. Moreover, as the contact form is assumed to be non-
degenerate, we choose the neighborhood W so small that it separates these distinguished loops from each other.
The following result, which is similar to Lemma 3.1 of [14], ensures that “long” Jps—holomorphic curves (i, R, P)
with small dx—energies and positive center action are close to some periodic orbit of the Reeb vector field.

Lemma 81. Given any S'—invariant neighborhood W C C*®(S!,M) in the loop space of the loops defined
by the periodic solutions of X, with periods T < Eo, there exists h > hg (the constant hy s guaranteed by
Theorem@) such that the following hold: For any R > h and any Jps—holomorphic curve (i, R, P) such that
A(T) > 0 the loops t — f(s,t) satisfy f(s,-) € W for all s € [-R+h,R—h]. Moreover, with T = A(u) being the
center action, the loops f(s) will be in the S'—invariant neighborhood of a loop t — x(Tt) corresponding to a
T—periodic orbit x(t) of the Reeb vector field.

According to [14], W separates the loops of the periodic orbits with periods T < Eo, and so, all these loops f(s, -)

for s € [-R+h,R—h] are in the neighborhood component of W containing precisely one of the distinguished loops
defined by a periodic orbit (x, T) with period T < Eo. From «(Xy) = 1 we find

T= Ll x(T)*«,
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and so, given € > 0 we can choose W so small that

J f(s,-)*ch‘ <e (B.3.1)
Sl
for all s € [-R+h,R—Hh].

Proof. (of Lemma The proof is almost the same as that of Lemma 3.1 from [14]. For completeness reasons
we outline the parts which are different. Arguing indirectly, we find a constant 0 < 1 < hg/2, a sequence R,, with
Rn = n+hy, and a sequence of Jp, ;—holomorphic curves (i, Ry, Pn) having positive center actions and satisfying
frn(sn, ) € W for some sequence s, € [-R,, +n,R, —n]. By assumption, the center actions are positive. Hence
A(Tn) = Ty > hyg, and by an earlier inequality, we find that

- h
J fn(s)*oc>—o—1l):: € >0
st 2

for all n and all s € [-Ry, R,,].
We define the new curves v,, = (by,gpn) : [-Rn — Sn, Rn — sn) x S* = R x M by

Vn(s,t) = (bn(s,t),gn(s,t) = (@n(s + Sn:t);]?n(s +sn,1)).
These curves have bounded total energies, small dox—energies, and satisfy

ﬂadgn(s1 t) oi= TPn(sn+s) (gn(sa t)) o ﬂadgn(s: t))
(Gho) oi = dby

and g, (0,-) ¢ W for all n. The left and right ends of the interval [—-R; — sn, Ry, — s] converge to —oo and +o0,
respectively. Define now the sequence of maps V,, = (bn,Vn) : [Rn — Sn, R — sn] x S — R x M by setting

Vn(s,t) = (bn(s,t) —bn(0,0),9,(s,t)). The maps v, solve

ﬂmdvn(sa t) oi= TPn(sn+s) (Vn(S, t)) © ﬂadvn(s’ t)v
(vix) oi=dby.

As in the proof of Theorem the gradients of V,, are uniformly bounded. Hence, by Arzela-Ascoli’s theorem, a

subsequence of V,, converges in C®

D le.

VI — Vin CZ (R x SY,R x M),
where ¥ = (b,v) : R x S* — R x M is an usual J—holomorhic curve for some T € [~C, C] satisfying

Ea(#;R x S1) + Eau(% R x ') < Eo,

EaalBR x 51 < 2,

J (s, )" > €g, for all s € R.
Sl

The rest of the proof follows as in Lemma 3.1 of [14].
O

In view of Lemma we fix a non-degenerate periodic solution x(t) of period T < Eo and analyze the curves
(it = (@, f), R, P) with f([-R,R] x S') C U, where U is a small tubular neighborhood of x(R).
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To study long curves with positive center action we need some special coordinates. Denote by op the standard
contact form oy = d9 + xdy on S! x R? with coordinates (9,x,y). The next lemma introduces the “standard
coordinates” near a periodic orbit of the Reeb vector field. For a proof we refer to [13].

Lemma 82. Let (M, «) be a 3—dimensional manifold equipped with a contact form, and let x(t) be the
T—periodic solution of the corresponding Reeb vector field x = Xy (x) on M. Let 19 be the minimal period
such that T = ktg for some positive integer k. Then there exist an open neighborhood U C S* x R? of St x {0},
an open neighborhood V.C M of P = x(R), and a diffeomorphism ¢ : U — V mapping S* x {0} onto P such
that

Prau="F- o

for a positive smooth function f: U — R satisfying
f=1 and dAf =0 (B.3.2)
on St x {0}.

The following description is borrowed from [14]. As S! = R/Z we work in the covering space and denote by (9, x,y)
the coordinates, where 9 is mod 1. In these coordinates, the contact form « is « = f - &g for a smooth function
f:R® — (0, c0) defined near S! x {0}, being periodic in 9, i.e. (¥ +1,x,y) = f(9,x%,y), and satisfying . The
Reeb orbit X, = (Xg, X1, X2) has the components

1

1 1
XO = —(f-ﬁ—xﬁ,j), X1 = ﬁ(ayf—xasf), X2 = _f72

= Oxf.

The vector field X, is periodic in ¥ of period 1 and constant along the periodic orbit x(R), i.e. X4(9,0,0) =
(To_l, 0,0). The periodic solution is represented as x(Tt) = (kt,0,0), where T = ktg is the period, Ty the minimal
period, and k the covering number of the periodic solution. The subsequent lemma is rather technical and describes
the behavior of a long Jp,—holomorphic curve (i, R, P) in the coordinates introduced by Lemma

Lemma 83. For any N € N, § > 0, there exists h > 0 such that for any R > h and any Jps—holomorphic
curve (W, R,P) as in Lemma the representation

u(s,t) = (als, t),9(s, t),z(s, t) = (x[s, 1), y(s, 1))

of the cylinder in the above local coordinates satisfies the following: For all (s,t) € [-R+h,R—h] x S! we
have
[0%(a(s,t) —Ts)| < & and [0%(D(s,t) —kt)| < 6
for 1 <|af <N, and
[0%z(s, )| < &

for all 0 < |&| < N. Here, T is the period and k the covering number of the distinguished periodic solution
lying in the center of the tubular neighborhood.

Proof. The proof is more or less the same as that of Lemma 3.3 in [I4]. We argue by contradiction. There exist
N € N, 8y > 0 such that for any h,, = 2n we find R,, > 2n and the Jp_—holomorphic curve (ii,,, Ry, Pn) satisfying
the following. Representing the maps 1, in local coordinates by

Un (s, t) = (@nls,t),Onl(s, t).zn(s, 1)),

we assume the existence of a sequence (sn,tn) € [~Rn —N, R, —n] x S! and a multiindex o« with 1 < |&| < N such
that
0% [ — Ts, 9 — Kt)] (50, tn)] = So. (B.3.3)
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We define the translated sequence ¥y, : [-n,n] x S = R x M by

Un(s,t) = (bn(s,t),vals, 1)) = (@n(s + sn,t) — An(sn, tn), fuls +sn,t)).
By the R—invariance of ] for all T, these maps satisfy the same assumptions on the energy as the ii,,, and solves

Tadvn(s,t) 01 =Tg (sys,.) © Tadvn(s,t),

(Vi) oi=dby.

The rest of the proof is exactly as in [I4]. We conclude as in Lemmathat the sequence ¥, has uniformly bounded
gradients on [-n+1,n—1] x S!, and so, it possesses a C{°_ converging subsequence. Its limit ¥ = (b,v): R x St —

R x M is a J.—holomorphic cylinder for some T € [~C, C] with the energy bounds

Eao(WR x SY) + Eo(¥; R x S') < Eo,
ho

Edoc({);R X Sl) < ?

In addition, due to , the map Vv is non-constant. Therefore ¥ is a pseudoholomorphic cylinder over a periodic
orbit z(t) of period T’ < Eq, and so, of the form ¥(s,t) = (T’s + ag, z(T’t)). By , the period T’ is close
to the period T of the distinguished periodic orbit x(t). As this periodic orbit is non-degenerate, there exists a
tubular neighborhood U of x(R) which does not contain any other periodic orbit with a period close to T. Hence,
choosing the tubular neighborhood sufficiently small, we conclude that T = T and z(Tt) = x(Tt), so that in local
coordinates we have ¥(s,t) = (Ts + ag, kt + 99, 0) for two constants ag and dg. Using ¥, — ¥ in C2. and setting
s =0, it follows that
|a(X [(an - TS,ﬁn - kt)] (Sn;tn” — (0; 0)

for || > 1. This gives a contradiction. Similarly, the last estimate in Lemma is proved by assuming that
0%z (Sn, tn )| = &g for some « with 0 < || < N and some &g > 0. As the limit map ¥ has its z—component equal
to zero, we employ the same arguments to obtain [0%z,(sn,tn)| — 0. This gives again a contradiction and the
proof is now complete.

O

As in [14], an immediate consequence is the next corollary showing that the quantity

Ll F(s)ax

gets arbitrary close to the center action A(w) =T.

Corollary 84. If the Jp,—holomorphic curve (1, R, P) satisfies the assumption of Lemma then
J f(s)* =T+ 0O(8)
Sl
for alls € [-R+h,R—h].

For a proof we refer to Corollary 3.4 of [14].
We compute the Cauchy-Riemann equations for the representation

u(s,t) = (a(s, t), f(s,t)) = (als, t),9(s, t), z(s, )
= (ﬁ(s,t),ﬁ(s,t),x(s,t),y(s,t))
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of a Jps—holomorphic curve (i, R, P) in the local coordinates R x R? of the tubular neighborhood given in Lemma
In the following, we adopt the same constructions as in [I4]. On R® we have the contact form o = fag. At
point m = (t,%,y) € R3, the contact structure &,, = ker(a,) is spanned by the vectors

—X
El = 1 and Ez = 0
1

We denote by Tp(m) the 2 x 2 matrix representing the compatible almost complex structure on the plane &, in
the basis {E;, Eo} for all p € [-C, C]. In the basis {E;, Eo}, the symplectic structure d«|z, is given by the skew
symmetric matrix function f(m)]Jo, where
0 -1
Jo = ( 0 ) |

Therefore, in view of the compatibility requirement, the complex multiplication J,(m) has the properties J,(m)? =
—id, Jo(m) JoJp(m) = Jo and —JoJ,(m) > 0. In particular, JoJ,(m) is a symmetric matrix for all p € [-C, Cl, and
it follows that

<X’y>p = <X’ _]OTp(m)9>

is an inner product on R? which is left invariant under Tp(m) <]p m)x, ]p y> p forall p € [-C,Cl.
The Reeb vector field X, can be written as X, = (XQ,X]_,XQ) € R x R2. Settlng z = (X y) € R? we define
Y(t,z) = (X1(t,2), Xa(t, z)) € R2. Since X(t,0) = (1/79,0) we have Y(t,z) = D(t, z)z, where

1
D(t,2) = | av(t,pz)dp,
0
and d is the derivative with respect to the z—variable. In particular, if z = 0 we obtain

1
D(t,0) = dY(t,0) = (agyff _aawff)
XX xy

We introduce the 2 x 2 matrices depending on (s, t) and Ps by

J(s,1) =TJps(f(s, 1) = Jps (D(s, t).2(s, 1)),
S(s,t) = [0c@— 5@ J(s,t)] D(f(s, 1)).

In the basis {E;, E5} of the contact plane &,,, at m = (s, t) and for the representation T(s, t) = (a(s, t), 9(s, t),z(s, 1)) €
R x R x R?, we write
7o 0sT(s, 1) + Jps (f(s,1))a 0 f(s, t) = 0.

We find
zs +J(s,t)z¢ +S(s,t)z=0

and further on, with z(s,t) = (x(s, t),y(s, t)),
as = (D¢ +xy)f(f) and @, = —(Os + xys)f(f).

It is convenient to decompose the matrix S(s,t) into its symmetric and anti-symmetric parts with respect to the
inner product {-,—JoJ(s,t)-) = <~, —]oTps(ﬂs,t))~> on R? by introducing

B(Sat) = % [S(S)t) + S*(S)t)] and C(Svt) = [S(Svt) - S*(Svt)] )

N =
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where S* is the transpose of S with respect to the inner product (-, —JoJ(s,t)-). Explicitly we have S* = JJoS"]oJ,
where ST is the transpose matrix of S with respect to the Euclidean inner product (-,-) in R?. In terms of B and
C, the above equation becomes

zs + J(s,t)z¢ + B(s,t)z+ C(s,t)z =0.

The operator A(s): W2(S, R?) c 12(S!,R?) — L2?(St,R?), given by

d
A(s) =—]J(s,t)=— — B(s,t
(s) = (s, t) 5 — Bl ),
is self-adjoint with respect to the inner product (-,-), in L?, defined for x,y € L*(S!,R?) by
1

(i |0, —Tol(s, Uy (o) a

0

The norms ||x||? := (x,x), are equivalent to the standard [?(S',R?)—norms (denoted by |-||) in the following sense:

Lemma 85. There exist the constants h,c > 0 such that for all R > h and all Jps—holomorphic curves
(T, R, P) satisfying the assumptions of Lemma all x € L2(S',R?), and all s € [-R,R], we have

1
< Ixlls < lIxll < e fllls -

Proof. The first inequality follows from the result according to which for p € [-C,C] and p € M, the domain-
dependent complex structure Tp (p) varies continously in a compact subset of the set of complex structures. For
the second inequality, we additionally use the fact that —JgJ(s,t) is uniformly positive definite.

O

Lemma 86. There exists a constant h > 0 such that for every R > h and every Jp,—holomorphic curve (i, R, P)
satisfying the assumptions of Lemma the following holds true. If U = (a,f) is the reparametrization in
local coordinates and A(s) the associated operator, then there exists a constantn > 0 such that

[A(s)Ells ZmllEll
for all s € [-R+h,R—h] and all § € W12(S!, R?).

Proof. We prove by contradiction by adapting the proof given in [14] to our setting. Assume that the inequality
does not hold. Then for any h, = 2n there exist R,, € R, with R, > 2n and a sequence of Jp _;—holomorphic
curves (Un, Rn, Pn) satisfying the assumptions of Lemma and

—*
J f x> €g
Sl

for all s € [—R,, Rn]. Here €9 > 0 is the constant defined by Theorem Representing 1, in local coordinates as
Un(s,t) = (@n(s,t),dn(s,t),zn(s,t)), consider the associated operator

Anls) = —Tnls, )5 — Bals,t),

where S, (s,t) and B, (s,t) are defined as above, and J,,(s,t) = Jp, s(fn(s,t)). Further on, assume that there exist
the sequences s, € [-R, —n,R,, + 1] and &, € W%2(S1,R?) such that

[&nlls, =1 and [[An(sn)énlls, — 0, (B.3.4)
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and consider the translated maps
Un(s,t) = (bn(s,t),val(s, 1)) = (@n(s +ss,t) — Anlsn, 0)a¥n(s +sn,1))

for all n and (s,t) € [-n,n] x S'. Arguing as before we find ¥, — ¥ in C{2 (R x S*, R x M), where ¥ is a cylinder
over a distinguished periodic orbit x(t) lying in the center of the tubular neighborhood. Hence, in local coordinates,

we can write V(s,t) = (Ts + ag, kt + 8¢, 0) with two constants ag and §. Setting s = 0, we obtain
aan(sn;t) -0,
0 _
7011(371,1:) — T1
0s
Sn(Sn,t) — kt+190,

Zn(sn,t) = 0

as N — oo, uniformly in t. Consequently,

Bn(sn,t) — TTT{SH}(kt + 99, 0) - dY(kt + 9o, 0), (B.3.5)
Jn(sn,t) = Jx,,,, (kt +90,0) (B.3.6)
as 1 — oo, uniformly in t and for some T } given by Pnsn — Ts.). In using ||Jn(s, )&l = [|&|| for every

£ € L?(S',R?) and Lemma|85] we find that there exists a constant ¢ > 0 such that for all n € Nand § € W'2(S1,R?),
&) < cUAnswIEl + [Balsn, 2l (B3.7)

Consequently, the sequence &, given by (B.3.4) is bounded in W2, Since W'?2 is compactly embedded in 12,

a subsequence of &, converges in [2. Therefore, by assumption (B.3.4), the limits (B.3.5) and (B.3.6)), and the
estimate (B.3.7) we have that after going over to a subsequence, &, is a Cauchy sequence in W12(St, R?); thus,

£, — £ in WH2(S! R?).

From
An(sn)an = 7]n(snat)én - Bn(snat)an —0 in Lz(sl:Rz)

together with (B.3.5) and (B.3.6) we conclude that & solves the equation
d
a&(t) = TdY(kt + Vo, 0)&(t).

This is a contradiction to the fact that the periodic orbits x(t) = (kt + 99, 0) was assumed to be non-degenerate.
O

The next theorem is similar to Theorem 1.3 of [14]; the only difference is that it is formulated for pseudoholomorphic
curves with respect to a domain-dependent almost complex structure on the target space R x M.

Theorem 87. Let hg > 0 be the constant appearing in Theorem and being associated with 0 <1 < hg/2.
Then there exzist the positive constants 8y, W, and v < min{dm, 2u} such that the following hold: Given
0 < 6 < 8¢, there exists h > hg such that for any R > h and any Jps—holomorphic curve (i, R,P) such that
A(T) > 0, there exists a unique (up to a phase shift) periodic orbit x(t) of the Reeb vector field X, with period
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T=A®[) < Ey satisfying

J f(O)*oc—T‘ < v and
st 2

J. f(s)*oc—T‘ < hg, for all s € [-R,R].
Sl

In addition, there ezists a tubular neighborhood U = S' x R?™ around the periodic orbit x(R) = S x {0} such
that f(s,t) € U for all (s,t) € [-R+h,R—h] x S!. Using the covering R of S' = R/Z, the map U is represented
in local coordinates R x U as

u(s,t) = (als, t), 9(s, t), z(s, t))
= (Ts + ao + d(s, t), kt + 9 + (s, 1), z(s, 1)),
where (ag,d) € R? are constants. The functions &, 3, and z are 1—periodic in t, and the positive integer k

1s the covering number of the T—periodic orbit represented by x(Tt) = (kt,0,0). For all multiindices « there
exists a constant C, such that for all (s,t) € [-R+h,R —h] x S! the following estimates hold:

cosh(us)

& 2 < 2
025, P < Cad® prrp =1

and
cosh(vs)

0%d(s, ) a“{)st2<C "
For the proof of the theorem we need the following

Remark 88. By Lemma |83 which is similar to Lemma 3.3 from [14], we have [0%f(s,t)| < & for all o« > 1 and
all (s,t) € [-R+h,R—h] x S'. As a result, the derivatives with respect to the s coordinate of J(s,t) and B(s, t)
contain factors estimated by &. This can be seen as follows. Recalling that J(s,t) = Jps(d(s, ), z(s, t)) we find

as](syt) = PapTPs(?(Syt)) + aSTPs(¥(Syt))asﬁ + azTPs(¥(Svt))asZ-

For R sufficiently large, the assumption on the universal bound of the conformal co-period gives |P| < 0; consequently,
10sJ(s,t)| € O(8). In a similar way it can be shown that [02](s, t)|,|0sB(s, t)| € O(8).

The proof of Theorem [87| which is omitted here, proceeds as in [14] by using Lemma [86| and Remark

B.3.2 Proof of Theorem [65]

Applying Theorem [87| to the sequence of Jp_s—holomorphic curves (ii,,, Ry, Py ) we find the following.

Corollary 89. For every € > 0 there exist h >0 and N¢ n € N such that for every n > N¢ n, we have
R, > h and
d(fn(s,1),x(Tt)) < € and [an(s,t) —Ts —ag| < € (B.3.8)

for all (s,t) € [-R,, +h, R, —h] x St uniformly in t € S and some a € R.

For h > 0 sufficiently small and in regard of Condition P2 we continue to denote the cylinder [-R,, +h, R, —h] x St
by [—Rn, Rn] x St. In view of (B.3.8)) we assume that the quantities

T, = inf @u(—Rn,t) and 7| := sup @n (R, t)
tes?t test

satisfy T, — T, — oo as n — 0.
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Recalling that P, S, and 1/R,, are zero sequences we reformulate the above findings as in Corollary

Corollary 90. For every sequence h, € R, satisfying h,, < R,, and h,,R,/h,, = o0 and every € > 0 there
exists N € N such that

distg, (fr(s,t),x(Tt)) < € and [@n(s,t) — Ts —aogl < €

for alln > N and some ag € R. Moreover, for the period P,, and co-period S,, we obtain that h,,P,,,h,S, — 0
as n — 0.

Proof. The proof of the first and second statement follows as in Corollary [79]
O

The next theorem which states a C{°.— and a C®—convergence result for the maps U, with positive center action
is the analog of Theorem

Theorem 91. There ezists a subsequence of the sequence of Jp_ s—holomorphic curves (i,,Rn,Pn), also
denoted by (U, Ry, Pr), and the pseudoholomorphic half cylinders u* defined on (—oo, 0] x St and [0, c0) x S,
respectively such that for every sequence h, € R, and every sequence of diffeomorphisms 0y, : [-R,,Ru] xSt —
[—1,1] x S satisfying the assumptions of Remark the followtng convergence results hold:

C{o.—convergence:

1. For any sequence s, € [—Ry, +hn, Ry —hy] there exists a subsequence of the shifted maps Uy (S + Sn,t) —
Ts,, defined on [-R, +hy — sn, R — hny — 5] x S, that converges in C°, to (Ts + ag,x(Tt)).

loc

2. The left shifts U, (s,t) := Un(s — Rn,t) — T, defined on [0,h,) x S, possess a subsequence that con-
verges in Ci5. to a pseudoholomorphic half cylinder U~ = (@ ,f ), defined on [0,4+00) x St. The curve
U~ ts asymptotic to (Ts + ag,x(Tt)). The maps v, converge in C, on [—1,—1/2) x S! to Vv, where
f ((07)"1(—1/2),t) = x(Tt) for all t € St.

3. The right shifts U, (s,t) := Un(s + Rn,t) — T, defined on (—h,,0] x S!, possess a subsequence that
converges in C2. to a H—holomorphic half cylinder ut = (E+,¥+), defined on (—o0,0] x St. The curve
Ut 1s asymptotic to (Ts + ag,x(Tt)). The maps V| converge in C. on (1/2,1] x S' to V', where
FH(0%)"1(1/2),t) = x(Tt) for all t € S.

CP—convergence:

1. The maps f, 00,1 : [-1/2,1/2] x St — M converge in C° to x(Tt).

2. The maps f, o (0;,)7:[-1,—1/2] x St = M converge in C° to a map f o (07)"1:[-1,-1/2] x St = M
such that f ((07)71(—=1/2),t) = x(Tt).

3. The maps 17‘1 o (0)7t:[1/2,1] x St =+ M converge in C° to a map o (0F)L:[1/2,1] x St — M such
that T ((07)"1(1/2),1) = x(Tt).

4. For any R > 0, there ezist p >0 and N € N such that a,, 00,/1(s,t) € [F,, + R,7,; —R] for alln > N and
all (s,t) € [—p, p] x St.
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Proof. As in Theorem we prove only the first and second statements of the C{°.—convergence. Let h, € R
be a sequence satisfying h,, < R, and h,,R,/h,, — 00 as n — oo and let the sequence of diffeomorphisms 6, :
[—Rn, Ru] — [—1, 1] fulfill the assumptions of Remark To prove the first statement we consider the shifted maps
Upn(-+5n, ), defined on [~Ry, +hy —sn, Rn—hn —sn] x St, for any sequence s,, € [-Rp +hpn, R —hnl. By Corollary
there exists a subsequence of Ty, (s +sn,t) — Tsy that converges in Ci°_ to a trivial cylinder (Ts+ ag,x(Tt)) over
the Reeb orbit x(Tt). To prove the second statement, we consider the shifted maps 1, : [0, h,] xS — RxM, defined
by T, (s,t) = Un(s —Rn, t) —T,, where T, := inf;cs1 @y (—Rp, t). By Lemma U, converge in C° ([0, 00) x St)
to a usual pseudoholomorphic curve U~ = (@, f ): [0, +00) x S* = R x M with respect to the standard complex
structure i on [0, +00) x S' and the almost complex structure J_. on the domain, wheret = lim,,_,o PnRn. We

show that T~ is asymptotic to a trivial cylinder over the Reeb orbit x, i.e. (Ts + ag,x(Tt)). In fact, for proving

Tim (ﬁ’(r, t)—Tr—ao, F (1, t)) — (0,x(Tt)) (B.3.9)
we argue by contradiction. Assume that there exists a sequence (sy,tx) € [0,00) x S! with s, — oo as k — oo,
and since S! is compact, also assume that t, — t* as k — oo such that limx_e f (s, tx) = x/(T't*) € M, where
x’ is some Reeb orbit with w’ := x/(T't*) # w := x(Tt*). Letting e := distg, (w,w’) > 0, using Corollary [90| and
employing the same arguments as in Theorem (80| we are led to the contradiction distg, (w, w’) < 3e/10. Consider
now the R—coordinate a,,. To prove for the R—coordinate it is sufficient to replace f by the function
a (r,t) — Tr — ag and to repeat the above arguments. Because, (0;)! : [-1,—1/2] — [0,hy] converge in C{2,
to the diffeomorphism (67)~! : [-1,—1/2) — [0, +o00), the maps U, ((6;;)(s),t) converge in C° to the map
u ((67)7*(s),t) on [-1,—1/2) x S*. This finishes the proof of the C{2_—convergence.

To prove the first statement of the C°—convergence, we use Corollary [79| which yields distg, (fr(0,,1(s),1),x(Tt)) <
1/nfor all (s,t) € [~1/2,1/2] xS, so that, we conclude that f,, converge in C°([—1/2,1/2] x S*) to x(Tt) uniformly.
For the second statement we take into account that the maps f,, ((0;)*(s),t) converge in C°. to f ((07)71(s),t)
on [—1,—1/2) xS, so that by the asymptotics of f ,f can be continously extended to the whole interval [—1, —1/2]
by setting v (—1/2,t) = x(Tt). Now, the proof of the convergence of f_ in C°([—1,—1/2]) to f is exactly the
same as the proof of Lemma 4.16 in [7]. For the maps V;| we proceed analgously, while for the fourth statement we
apply Proposition Thus the proof of the C°—convergence is complete.

O

Proposition 92. For any R > 0, there exist p >0 and N € N such that a, 00, (s,t) € [F,, + R, T\ —R] for all
n >N and all (s,t) € [—p, p] x St.

Proof. The proof follows exactly the steps from Lemma 4.10, Lemma 4.13, and Lemma 4.17 of [7].

We give now the proof of Theorem which closely follows the proof of Theorem

Proof. (of Theorem @) We start by proving the first statement of the C{5.—convergence. Let h,, € R, be
a sequence satisfying h, < R,, and h,,R./h,, — o0 as n — oo and let the sequence of diffeomorphisms 0, :

[—Rn, Ru] — [—1, 1] fulfill the assumptions of Remark As in the proof of Theorem |63| we consider for (s,t) €
[~Rn + hn, Rn — hal x St the maps (cf. (B.2.6))

fnls,t) = ¢%p ((fnls,t)) and an(s,t) = an(s,t) — (s, ), (B.3.10)

and that by Rema.rk the functions I, can be chosen to have vanishing average. By Theorem un,(0,-),un(0,) —
(ag,x(Tt)) € R x M as n — oco. Hence a,(0,:),ans(0,:) — ag. By Theorems and for any sequence
sn € [-Rn+hy, R, —h,] there exists a subsequence of shifted maps u, (-+sn,:)—Tsn+Snsn, defined on [-R, +h,—
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$ny Rn—hn —sn] x S?, that converges in C2. to the twisted trivial cylinder (Ts+ ao, R, (x(Tt)) = x(Tt—71s5,.))
over the Reeb orbit x(Tt), where t(5 } = limp_,o Prsnn. To prove the second statement of the C{y.—convergence, we
consider the shifted maps U, : [0, h,] x S* — R x M which are defined by U, (s,t) = U (s —Rn, t) —T,,, where T,, :=
infycs1 @n(—Rn,t). The shifted maps u,, = (a,;, f;) : [0, hn] xS? — Rx M, defined by u, (s,t) = un(s—Rn,t)—T,,
where T, :=infics1 an(—Rn, ), together with the maps i, satisfy giving ; whence by Theorems
and u; — SnR,, converge in C°_ to a curve u ™ (s,t) = (a (s, t),f (s,t)) = (@ (s,t) = (s,t), pX(f (s,1))),

loc

defined on [0,00) x S!. The map u~ is the twisted trivial cylinder (Ts + ag, $<(x(Tt)) = x(Tt + 7)), and can be
regarded as a H—holomorphic map with harmonic perturbation dI'~. As in Theorem the statement concern-
ing the harmonic perturbations v, follows from Corollary while the proof of the third statement proceeds
analogously; the only difference is that the asymptotic of the map u™ is (Ts + ag, d=(x(Tt))).

To prove the first statement of the C°—convergence, we consider the maps f,, satisfying f,(s,t) = 7 s(fnls, 1))
and

Fr(s,t) = Fn(077(s), 1) = %5 g1 () (Fu((657(s), 1))
for s € [-1/2,1/2]. There exists a constant ¢ > 0 such that for all (s,t) € [-1/2,1/2] we have

distg, (fn (05,7 (s), 1), x(Tt)) > cdistg, (fn (05 (s), 1), 6%p gs (g (x(T1)))
Accounting of we deduce that for (s,t) € [-1/2,1/2] x S! we have
CildiStﬁg (¥‘n(6:11(5)7t)1 X(Tt)) + diSt§0 (d)ipnggl (s) (X(Tt))a d)gQTs (X(Tt))) 2 diSt§0 (fn(e‘r:]- (S)) t)) d)iQTs (X(Tt)))

and distg, (fn (05, (s), t), x(Tt)) ,distgo(¢an6:1(s)(x(Tt)),d)ngs(x(Tt))) — 0 as n — oco. Thus f,, converge in

CO([—1/2,1/2]) to ¢*,.((x(Tt)) which is a segment of a Reeb trajectory. To prove the second statement we
consider the maps v;, satisfying

Fr((07)718),8) = %5 (0 11011 Pk, (Fn ((87)72(s), 1)),

and use (B.2.10) to conclude that v, (s,t) converge in C°([—1,—1/2]) to the map ¢ (f ((0;,) *(s),t)). The third
statement is proved in a similar manner, while the last statement follows from Proposition [92| and the fact that the
harmonic functions T}, are uniformly bounded in C°. More precisely, with T,, as defined in Appendix [E| we can
write

an (01 (s),t) = An (0,1 (s),t) — Snb (s) — Tn(s, t)

for (s,t) € [-1,1] x S'. Hence by Theorem there exists a constant Cg > 0 such that T, is uniformly bounded
in C°([—1,1] x S!) by Cy > 0. Since we have assumed that the sequence S, is positive we get

_San - C0 g Snegl(s) +Fn(srt) < San + C0

for all s € [—1,1]. On the other hand, from Proposition we have that for every R > 0 there exist p > 0 and
N € N such that @, (0,,1(s),t) € ¥, +R,T,; —R] for all n > N and all (s,t) € [-p, p] x S1. Thus we obtain

an(0,1(s),t) € [F, —SnRy — Co + R, ¥, + SRy + Co — R
for alln > N and all (s,t) € [—p, p] x S!. If we assume that S,R,, — 0 as n — oo we find
an (0, (s),t)elf, —0—1—Co+R, T, +0+1+Cy—R]

for all n > N and all (s,t) € [—p,p] x St. For C := 0 + 1 + Cq the last statement readily follows. The proof of
Theorem [68] is finished.

O



Appendix C

Half cylinders with small energy

This appendix is devoted to the description of the convergence of a sequence of pseudoholomorphic half cylinders
Un = (an,fn) : [0,00) x S — R x M with uniformly bounded c— and do—energies. More precisely, we assume
that there exists a constant Eq > 0 such that E(un;[0,00) x $*) < Eq and

ho

F—dcx(un; [0,00) X Sl) < 5

(C.0.1)
where hp > 0 and Eg is defined as in Section Step 3. Since the dx—energy is smaller than hy/2 it follows,
from the usual bubbling-off analysis, that the gradients of u,, are uniformly bounded with respect to the standard
Euclidean metric on the cylinder [0,00) x S! and the induced cylindrical metric on R x M. To analyze the
convergence of such a sequence we use the results of Appendix [A]and Appendix [B] As before we split the analysis
of the convergence in two parts, namely the C°_— and the C®—convergence. Before stating the convergence results
we need some auxiliary results similar to those from Appendix |B| We begin with a remark on the asymptotic of a
pseudoholomorphic half cylinder.

Remark 93. Let u = (a,f) : [0, 00) x S — R x M be a pseudoholomorphic half cylinder with E(u; [0, 00) x S1) < Eq
and Egq(u;[0,00) x S?) < hp/2. To describe the behavior of 1 as s — oo, we first assume that u has a bounded
image in R x M. Consider the conformal transformation h : [0,00) x St — D\{0}, (s,t) — e 27(s+it) Then
Uoh™t = (aoh™!,foh™!) is a pseudoholomorphic punctured disk satisfying the same assumption as u does.
By the removal of singularity, 1 o h™! can be defined on the whole disk D. In this case we use the results from
Appendix [A]to describe the convergence. If u has an unbounded image in R x M, then due to Proposition 5.6 from
[6], there exists T £ 0 and a periodic orbit x of X, such that x is of period |T| and

lim f(s,t) =x(Tt) and lim M

s—00 s—00 S

=T in C®(SY).

To analyze the convergence of the sequence of pseudoholomorphic half cylinders 1, = (an, fn) : [0,00) xS! = RxM
we distinguish two cases.

In the first case each element of a subsequence of w,,, still denoted by u,,, has a bounded image in the symplectization
R x M. By Remark we consider the sequence of pseudoholomorphic disks u, o h™! : D — R x M having
uniformly bounded energies and small dx—energies. After applying bubbling-off analysis and accounting on the
uniform energy bounds as well as on the small dox—energies, we obtain a subsequence having uniform gradient
bounds with respect to the Euclidean metric on the domains and the induced metric on R x M. After a specific
shift in the R—coordinate, 1, o h™! converge in C* to a pseudoholomorphic disk u: D — R x M.

In the second case each element of a subsequence of u,, still denoted by u,, has an unbounded image in R x M.
In the following we assume that after a specific shift in the R—coordinate, a,(0,0) = 0. Before describing the
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convergence of 1, we prove an asymptotic result for punctures which is similar to that given in [6].

Proposition 94. After going over to a subsequence the pseudoholomorphic half cylinders u,, are asysmptotic
to the same Reeb orbit, i.e. there exists a Reeb orbit x of period |T| # 0 with |T| < C and a sequence c,, € S?

such that
an(s,t)

lim f(s,t) =x(T(t+cn)) and lm =T.

s—00 $—00 S

Moreover, u, — u in C,, where u is a pseudoholomorphic half cylinder u: [0,00) x S* — R x M which is

asymptotic to the same Reeb orbit x(T(t+c*)) of period T as above. Here, c* € S' and c,, — c* as 1 — oo.

Proof. Let the sequence u,, be asymptotic to some Reeb orbit. More precisely, for all n € N there exist T, # 0
and a periodic orbit x, of period |T,| such that
. . t
lim fn(s,t) =xn(Tat) and lim anls,t)

s—00 s—00 S

:Tn

in C®(S!). For simplicity, choose a subsequence of T, also denoted by T., which is always positive (positive
puncture). Since we are in the non-degenerate case and T, < Ep, assume, after going to some subsequence, that
T. =T > 0 and x,(Tt) = X(T(t4+cy)), where c,, € S for all n. Thus after going over to some subsequence we
may assume that ¢, — ¢* € S'. From the uniform boundedness of the gradients of 1, the elliptic regularity, and
Arzela-Ascoli theorem, we have u,, — u: [0,00) x S' — Rx M in C.. Here u is a pseuhoholomorphic half cylinder
with bounded energy and a small dx—energy which is asymptotic to some periodic orbit with period T or a point;
both being denoted by x . Choose the sequences N, N, "% 50 and N,, < N, such that after going over to a
subsequence we have
lim f,(N,,t) =x(Tt) and lim f,,(Ny,t) =X(T(t+c*)) in C*(S'),

n—oo n—oo

and consider the maps
Vn = U’“'MHNn]xSl'

which have by construction da—energy tending to 0. Performing the same analysis as in [6] we conclude that x =X
and T=T.

O

To describe the C%—convergence of 1, we use the results established in Appendix In view of Proposition
choose a sequence R, > 0 such that R, — oo and a,(R,,t) — TRy — 0 as n — oo. Consider the shifted maps
Un(s,t) :=un(s+Rn,t) — TR, for (s,t) € [-Rn,Rn] x St. These are pseudoholomorphic cylinders with uniformly
bounded o— and da—energies and a dx—energy smaller than h/2. Recall that these pseudoholomorphic cylinders
are a special case of the H{—holomorphic cylinders described in Appendix [A] We distinguish two cases corresponding
to subsequences with vanishing and non-vanishing center actions. In latter case, the cater action is greater than
h > 0. By Proposition the first case does not appear and we are left with the case in which A(tt,,) > h. By
Corollary for every € > 0 there exists h > 0 such that for all n € N and Ry, > h, distg, (fn(s,t),x(T(t+cn))) < €
and [an(s,t) — Ts —ag| < € for all (s,t) € [-R,, +h, R, —h] x S'. On the other hand, we have the following result:
For every € > 0 there exists h > 0 such that for all n € N and R,, > h, distg, (fn(s,t),x(T(t + cn))) < € and
lan(s,t) —Ts—ap| < € for all (s,t) € [h,2Rn —h] x S'. As R, can be chosen arbitrary large the following equivalent
statement readily follows:

Corollary 95. For every € > 0 there exist h >0 and N € N such that for alln > N, distg (fn(s,t),x(T(t +
cn))) < € and |an(s,t) —Ts — ag| < € for all (s,t) € [h,00) x St.
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Consider the diffeomorphism 0 : [0,00) x S* — R x M and the maps
gni=fro0071:[0,1) x S = M, (C.0.2)

which by Propositionconverge in C_toamap g:=fo61:[0,1) xS' - M. By Corollary the maps g, and
g can be continously extended to [0,1] x S* by gn(1,t) = g(1,t) = x(Tt+cy,) for allm € N and all t € S'. Hence
due to Corollary gn converge in C° to g. As a consequence, we formulate the following compactness property
of the sequence of pseudoholomorphic half cylinders u, : [0,00) x S — R x M with uniformly bounded energies
and do—energies less than h/2:

Theorem 96. Let u, be a sequence of pseudoholomorphic curves having uniformly bounded energy by Eg

and satisfying condition . Then there exists a subsequence of u,, still denoted by wu,, such that the
following s satisfied.

1. u,, s asysmptotic to the same Reeb orbit, i.e. there exists a Reeb orbit x of period |T| # 0 with |T| < C
and a sequence ¢, € S' such that

t

lim f(s,t) =x(T(t4+cn)) and lm nls,t)

$—00 $—00 S

=T.
for allm e N.

2. u, converge in C, to a pseudoholomorphic half cylinder u : [0,00) x S — R x M having uniformly
bounded energy by the constant Eq and satisfying condition .

3. The maps gn : [0,1] xS* — M converge in C° to a map g: [0,1] xS! — M and satisfy g(1,t) = x(T(t+c*)),
where x 1s a Reeb orbit of period |T| # 0.



Appendix D

Special coordinates

Let S be a compact surface with boundary, and let j,, and j be complex structures on S for all n € N. Additionally,
let h,, and h be the hyperbolic structures on S with respect to j,, and j, respectively. Assume that j,, — j and
h, — hin C*®(S). In this appendix we construct a sequence of biholomorphic coordinates around some point in S
with respect to the complex structure j,, that converges in a certain sense to the biholomorphic coordinates with
respect to j. This result is used in Section [3|for proving the convergence on the thick part.

Lemma 97. For each z € int(S) there exist open neighborhoods U, (z) = U, and U(z) = U of z and diffeo-
morphisms

such that

1. ¥, are i—jn—btholomorphisms and \ ts a i —j—biholomorphism,

2. Pn = in C2(D1(0)) as n — oo with respect to the FEuclidean metric on D1(0) and h on S;

loc

3. Pn(0) =z for every n and P(0) = z.

Proof. Around z € int(S), choose the i — j—holomorphic coordinates ¢ : D>(0) — U such that U C int(S) and
¢(0) = z, and consider the complex structures j™ := c¢*j,. Since j, —jasn — oo in C®,j™ — iin C.(D2(0))
as n — oo. Let dg be the operator defined by dgf = dfoj™) and let d* be the operator defined by d°f = df o i.
Denote by py : R? — R, (x,y) — x the projection onto the first coordinate. Consider the problem of finding a
smooth function f: D;(0) — R such that

ddSf =0 on D;(0),

f = px on 0D4(0) (D.0.1)
for all n and c
dd~f =0 on D¢(0),
D.0.2
f = px on 0D;(0). (D.0.2)
As the second problem translates into
Af =0 on Dy(0), (D.0.3)

f =px on 0D4(0),
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where A is the standard Laplace operator in R, the unique solution is f(x,y) = x for all (x,y) € D1(0). To see the
uniqueness observe that the difference of f with any other solution of solves Au = 0 with ulsp, (o) = 0. Thus
from the maximum principle for harmonic functions we deduce that uw = 0, and so, that has the unique
solution f. In coordinates representation, j(™) can be written as

() .(n)
sm) _ [ J1i1 12
) = .(m) .(n)
Jo1” Ja2

and take notice that j(™) — iin C*® on D;(0) as n — oco. The solutions of (D.0.1) are equivalent to the solutions of

ddSf =t, on D;(0),

f —0ondD,0), (D.0.4)

where t,, = —ddSp,. Hence ddS is an elliptic and coercive operator, and thus by Proposition 5.10 from [18], the
problem m has a uniquely weak solution f, € W%2(D4(0)) for all n. From regularity theorem, the solutions
f,, are smooth for all n. Thus f,, = fn + Px is the smooth unique solution of 1' Let us show that f,, — f in
Cr.(D1(0)) as n — oco. For uyn = f, —f we have

ddSu, =g, on D1(0),
Un =0 on 0D;(0).

Here, g, € C®(D;(0)) is defined by g, := dd%f, and because of j™ — 1 in C®(D;(0)) as n — oo, g, converges
to 0 in C2.(D1(0)) as n — co. For every m € Ny we consider the bounded operator ddS; : W?m’z(Dl(O),]R{) —
W™2(D;(0),R), where W37™?(D;(0),R) consists of maps from W2*™2(D;(0),R) that vanish at the boundary.
By Proposition 5.10 together with Propositions 5.18 and 5.19 of [18] we deduce that the operator dd is bounded
invertible; hence u, = (dd$) *g,. Since dd§ — A in operator norm, (dd%)~! is a uniformly bounded family,
and so, |[un|\ymi22 — 0 as N — oco. Further on, as m € Ny was arbitrary, the Sobolev embedding theorem yields
un — 0 in C2.(D1(0)) as n — oco. Thus we have constructed a unique sequence of solutions {f; : D1(0) — R}nen
of , and a unique solution f: D;(0) = R, (x,y) — x of 2)) satisfying f, — f in C2.(D1(0)) as n — oo.
According to Lemma 6.8.1 of [16], there exists a j (“)—i—holomorphlc function F,, : D;1(0) — C and a i—i—holomorhic
function F : D;(0) — C such that f,, = 93(F,) and f = R(F). Let us investigate the unique extensions of the functions
F,. and F. For doing this we set F,, = f,, +ib and F = f + ib, where b,;,b: D;(0) — R are harmonic functions. As
F. and F are j(™) — i—holomorphic and i — i—holomorphic, respectively, they solve the equations

dF, +1io0dF,0j™ =0

and
dF4+i0dFoi=0,

respectively, which in turn, are equivalent to
db,, = —df, oj™

and
db = —dfoi,

respectively. By the harmonicity of f,, and f, and the application of Poincare lemma on D;(0), we find the solutions
b, and b which are unique up to addition with some constant. They can be make unique by requiring that b, (0) =0
and b(0) = 0. In particular, we find F(x,y) = x +iy. Then we get db,, — db in C{3.(D1(0)) as n — oo, and from
b (0) =0 and b(0) = 0, we actually get by, — b in C{5.(D1(0)) as n — oco. Hence F,, = F =1id in Cf.(D1(0)) as
n — 00.
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For n large, F,, is bijective onto its image (maybe after shrinking the domain). This follows from the proof of the
inverse function theorem. With F,, = F,, — . (0), the maps VP, and { are defined by {,, = co Fo: D;(0) — U,
and P =coF:D;y(0) — U for sufficiently large n, respectively.

O



Appendix E

Asymptotics of Harmonic Cylinders

In this section we describe the C{°.- and C°- convergence of a sequence of harmonic functions I}, on cylinders

[—Rn, Ry x S!. This result is used in the proof of Theorems (63| and The analysis is performed in the following
setting:
R1 R, — o0;

R2 T, is a harmonic function on [-R,,R,] x S! such that dI}, is a harmonic 1—form with respect to the
standard complex structure i on RxS!, i.e. if s, t are the coordinates on Rx S*, 9, +i0 : [=Ry, R xSt —
C is holomorphic;

R3 T, has vanishing average over the cylinder [—R,,,R,] x S?, i.e. for all n € N we have

1

— (s, t)dsdt = 0;
2R, J[Rn,R“]xsl "

R4 the L?>—norm of dI, is uniformly bounded, i.e. there exists a constant C > 0 such that

Hdrn||?_2([7Rn’R“JXS1] ::J drn SRWAN drn < C

[—Rn,Rn]xS?t

for all n € N.

The subsequent lemma gives a decomposition of I}, in a linear term and a harmonic function satisfying properties
R1-R4 and having a uniformly bounded L?—norm.

Lemma 98. There exists a sequence S, € R with |Sy| < +/C/2R,, such that the harmonic function I}, :
[-Rn,Rnl xS — R can be decomposed as I (s, t) = Sns—l—l:n(s,t), where 1, : [-R., Ral xS — R is a harmonic
function satisfying properties R1-R4 and additionally

~ 2 ~, 2
HF“HLQ([—Rn,Rn]xSl) S Hdr“HLQ([fRn,Rn]xSl) . (E'O'l)

Proof. We consider the Fourier series of the harmonic function T}, i.e.

Tn(s,t) = Z M (s)e2™kt = ¢ (s) + Z cl(s)e2mikt,
keZ kez\{0}

Because I, has vanishing mean value, we have
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R, (1 Rn
O:J I"n(s,t)dsdt:J J I"n(s,t)dtds:J cy (s)ds. (E.0.2)
[—Rn,Rn]xS? —R,, Jo —Ry

As T3, is a harmonic function, the coefficients c}} can be readily computed; we find

)

ei(s) = A} sinh(27ks) 4+ B cosh(2mks), k € Z\{0}
Sns+dn, k=0

where A}, BY, Sn, dn € C. By (E.0.2), dn =0, and the Fourier expansion of I}, takes the form

M(s,t) = Sns + Z CE(S)eznikt =Sns+ I:n(s)t))
kez\{0}

where
Fa(s,t) =Tn(s,t) —=Sus= Y cp(s)e®™ ", (E.0.3)
kez\{0}

For every s € [-R,,, R,.] we have

sn:J dTn(s, t)dt € R
{s}xS?

and so, [, is a real valued harmonic function. On the other hand by Hélder’s inequality we find the estimate

1 C
Sl < —— Tn(s, t)ldsdt < 1/ ——.
Snl < o J{RmRn]XSJ (Tals, ldsdt < /7

We show now that di’, has a uniform L2—bound. By 1' and Holder’s inequality we get

~ 2 2 .
Hdr“HLQ([fRn,Rn}xSl) = ||drn||L2([—Rn,Rn]xsl) - 2SnJ dlnoi/Ads
[=Rn,Rn]xS?

+ 252 R,
<4C.

Thus ©, satisfies the property R4 from above, and obviously, properties R1-R3. Next we prove estimate (E.0.1).
By (E.0.3), the L2—norm of I, computes as follows

~ 2
HrnHI_z[[fRn,R“]xsl): Z HCEH%Z([*Rn,Rn])'
keZ\{0}

On the other hand we have
delnl(s,t) = Z 2mikc] (s)e? ™kt
kezZ\{0}

and

~ 12 ~ o2
HatrnHLz([_Rn,Rn]xsl) = Z 4r’k? HCTkL”?_Z([—Rn,Rn]) 2 HrnHL2([—Rn,Rn]><Sl) '
KeZ\{0}

while from

~ 2 = 2
HatrnHLZ([—Rn,Rn]XSI) < HdrnHLZ([—Rn,Rn]XSI)
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we end up with

1Pl o rraresty < NaFlliz e, rxst)-

O
Remark 99. The quantity S;,, can be interpreted as the co-period of the harmonic 1—form dI}, over the closed
curve {0} x S! with respect to the standard complex structure i on R x S!

In particular, we see that for all n we have

HF“HLZ([fRn,R“]XSl] <4C

(E.0.4)
The next lemma establishes uniform bounds on the derivatives of I}

Lemma 100. For any & >0 and k € Ny there ezists a constant C =

C(5,%,C) >0 such that

Hr HCk ([-R3,R8IxST) < C
for alln € N and RS :=R, — 5.

Proof. Set Fpy := 0l 4+ 10¢n : [=Ryn, Rn] x ST — C, and note that F,, is a holomorphic function with uniformly
bounded L%?—norm, i.e

J [Frl?dsdt < 4C (E.0.5)
[~Rn,Rn]xS?
for all n € N. As I, is harmonic it is obvious that

AlFa P =2[VF, P >0

Hence [F,,|? is subharmonic. By using the mean value property for subharmonic functions we conclude that for any
§>0and any z = (s,t) € [-RY?,RY?] x 1,

32 32
Fa@f < o | Fals 0P asat < 25 Il

S
2

Since these estimates hold for all z € |

—R¥2 R%/?] x S! we obtain
Fn .
| H o(—RE REIxsT) 7r62 IF “” ([-RZ,RE]xs1)
In particular, by using (E.0.5), we find
. 7 8v/2C
Fall

< E.0.6
—RIRTIxSY) ST ( )
for all n € N. By the Cauchy integral formula for holomorphic functions and we deduce that the derivatives
of F,, are uniformly bounded on [~R,R%] x S!. Indeed, for k € N we have

Fo@I= 2 J _Inl8) g M rnzk.Fn(Hée“) 2 3k1V2C
b 21 | JoB o (z) (E—2)¢FH 27 | Jo Skeikt S
2

NG
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for all z € [-R%,R%] x S and n € N. Since z € [-R®,R2] x S! was arbitrary, we obtain

HF(k)‘ 2kF3%1V2C
" =

CO[-RE,REIxsT) Sk H1y/m
Using 1] and the mean value property and Holder inequality for I, we find that for all z € [-R®,R2] x St,

4\/C
Sy/m

~ 4 ~
M (2)] < J T (s, t)|dsdt =
5 (z)

2
7o Bs
2

Hence we get

- 4y/C
HrkHco [—R8,R5]xS1) 5\f

for all n € N.

Remark 101. We note the following.

1. From the proof of Lemma the following result can be established: By the Arzela-Ascoli theorem, for
any sequence s,, € [-R%,R%], the sequence of maps F,,(- + sy, -) defined on [-R® —s,,R% —s,,] x S*, where
Fn = 0sim + iatfn, contains a subsequence, also denoted by Fn (- + sn,-), that converges in C{_ to some
holomorphic map F; F depends on the sequence {s,,}, has bounded L?- and C°- norms, and is defined either
on a half cylinder or on R x S*. In the later case, when RS — s, and R® +s,, diverge, F has to be 0. Indeed,

by Liouville’s theorem, F has to be constant, while from the boundedness of the L?>—norm we conclude that

Fis 0.
2. By Lemmau i and the Liouville theorem for harmonic functions, i (0, -) converges to 0. By Lemma
n and Remark (101} the sequence of harmonic functions Fn(-+ Sn,-) with sp € [R®,R®], contains a subse-

quence that converges in C{°_ to some harmonic function defined either on a half cylinder or on R x S!. In
the later case the limit harmonic function has to be 0 by the same arguments as above.

To simplify notation we drop the index 6. We define the harmonic functions l:_ :[0,2R ] xSt = R and I:;L :
[—2R,,0] x S = R by l:;(s,t) := (s — Rn,t) and ﬁf(s,t) := (s + Rn, 1), respectively. By Lemma , there
exist harmonic functions '~ : [0,4+00) x S* = R and i+ (—00,0] x S* — R such that F ﬂ "~ and F+ ﬂ [
The next proposition plays an important role in establishing a C{° - and C°- convergence of the harmonic functions

I loc
I
Proposition 102. For any € > 0 there exists h > 0 such that for any R,, > h we have

Hr“HCO([—Rn+h,Rn—h]><Sl) <&

Proof. Assume that this is not the case. Then there exist €5, Co > 0 such that for any hy := k there exist R,, >k
and a sequence (sy,tx) € [-Rn, + k,Rn, — k] x S! such that Iﬁnk(sk,tk)\ > €g. From sy € [-Ry, +k, Ry, — Kkl it
follows that |Rn, — sx| — 0o as k — co. Consider the harmonic functions Hy : [~Rn, — sk, Rn, — sx] x St = R
defined by Hy(s,t) = ]:nk(s + sk, t). Obviously, we have Hy (0, ty) = I:nk(sk,tk) and by Remark n 101| we conclude
that the Hy converge in C{°_ to some harmonic function H: R x S! — R with bounded L? and C°—norms. By the
Liouville theorem for harmonic functions, H = 0. This gives a contradiction to [Hy (0, tx)| = |FTLk (sx,ti)| = €g, and

the proof is finished.
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O

Corollary 103. For every sequence h, € R, satisfying h, < R,, and hy,R,/h, — 0o and every € > 0 there
exists N € N such that

Hl:“||C°([7Rn+hn,Rn7hn}><Sl) <€

for allm > N. Moreover, for the co-period S,, we obtain that h,S,, — 0 as n — co.

Proof. Consider a sequence h,, € R, with h, < R,, and hy,R,/hy — 00 asn — oo and let € > 0 be
given. By Proposition [102] there exist h > 0 and N, € N such that for all n > N, we have R,, > h. and

HI:“||C°([7Rn+h€,Rn7he]><Sl) < €. By taking N, sufficiently large and since h,, — co we assume that for all n > N,

we have R, > h, > h,, giving Hﬁ“HCO([
n — oo that h,,S;, - 0asn — co.

R thn Ry halxs1) < € It follows from RS, — o and R,/h,, — o as

O

In the following the subsequence I« will be denoted by .. To describe the C%—convergence of the maps i’y for a
sequence h,, € R, with h; < R,; and h,, R, /h,, — 00 as n — oo, we consider the sequence of diffeomorphisms 0,,
defined in Remark Further on, let us introduce the maps

Th(s,t) = (01(s),1), s € [-1,1],

T (s,t) =T ((67) 7 (s),t), s €[-1,-1/2],
Tl(s,t) =TT ((05)7(s), 1), s €[1/2,1],

T (s,t) =T ((07)74(s),1), s € [-1,-1/2),
T (s,t) = FH((07)1(s),1), s € (1/2,1].

We prove the following

Theorem 104. For every sequence h, € R, satisfying h,, < R, and h,,R,/h,, — 00 as n — oo, the following

convergence results hold for the maps n and Ty and their left and right shafts I:T? and T,f, respectively.

C{y.—convergence:

1. For any sequence s, € [—Rn+hn, Ry —hn] there exists a subsequence of the sequence of shifted harmonic
functions I:n(mi—sn, -}, also denoted by ]:n(-—i—sn, -), which is defined on [~R,, +h, —sn,Rn —hn —sn] x St

y. o0
and converges in C$5. to 0.

o to a harmonic function "= :[0,+00) xSt —
R which is asymptotic to 0. Furthermore, T, : [—1,—1/2] x S — R converge in C ([—1,—1/2) x S*) to
the map T :[—1,—1/2) x S' — R that is asymptotic to 0 at {—1/2} x S.

2. The harmonic functions ﬁ: [0, hn] xSt — R converge in C°

3. The harmonic functions f‘ﬁl' : [~hn, 0] x St = R converge in C, to a harmonic function "+ (—o0,0] x

S — R which is asymptotic to 0. Furthermore, T: :[1/2,1] x S* - R converge in C2,((1/2,1] x St) to
the map [ (1/2,1] x S — R that is asymptotic to 0 at {1/2} x S*.

C%—convergence:

1. The functions T, converge in C°([—1/2,1/2] x S*) to 0.
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2. The functionsT,, converge in CO([—1,—1/2]xS!) to a functionT :[—1,—1/2]xS? — R withT (—1/2,t) =
0 for all t € St.

3. The functions f: converge in C°([1/2,1] x S!) to a function T :[1/2,1] x S! — R with T (1/2,t) =0 for
all t € St.

Proof. First we prove the C{°_—convergence of the harmonic functions I3,.

1. By Remark (101} for any sequence s,, € [-R, +hy, R, —hy] the sequence of shifted harmonic maps Iy, (- +sn, -)
contains a subsequence, also denoted by I, (- + sy, -), which is defined on [~R,, +h;, — Sy, R —hp —s5] x St

b4 o0
and converges in Cfo. to 0.

2. Consider the shifted maps I'; : [0, h,] x S* — R x M. By Lemma these maps have uniformly bounded
derivatives, and hence after going over to some subsequence, they converge in C° ([0, 00) x S*) to the harmonic
function '™ : [0,400) x S* — R x M. In the following we show that ' is asymptotic to 0, i.e. that
limg_,o ' (s,t) = 0. We prove by contradiction. Because the T, are uniformly bounded in C°, we assume
that there exists a sequence (sy,tx) € [0,00) x S! with s, — 0o as k — oo such that limy_,o [ (sk, tx) =
w € R\{0}. Putting € := |[w| > 0, using Proposition and arguing as in Theorem [63| we are led to the
contradiction € = |w| < 3e/10. As (6;) ' : [-1,—1/2] — [0, hy,] converge in C. to the diffeomorphism

(67)~1:[-1,-1/2) = [0,+00), the maps I, ((6,;)"1(s),t) converge in C°. to the map ' ((67)(s),t). By
the asymptotics of '™, T is asymptotic to 0 at {—1/2} x S*.

3. The proof for the maps I proceeds as in Case 2.

To prove the C®—convergence of the harmonic functions T, we prove that the functions 'y, T,, and Fi converge
in C°.

1. From Corollary it follows that HFnHCO( ) = 0asn — oo.

[—1/2,1/2]xS!

2. Consider now the maps ', (s,t). The I', converge in C. to ' on [—1,—1/2) x S!. By the asymptotics of
I'", T can be continously extended to the whole cylinder [—1,—1/2] x S* by setting T (—1/2,t) =0. As a
matter of fact, the maps ', converge in C°([—1,—1/2]) to T . The proof of this statement is as in Lemma
4.16 of [7], and for completeness reasons, it is here described. Let § > 0 be given. By the C{°_—convergence
of the maps I',, to T on [~1,—1/2) x S! it suffices to find o > 0 and N € N such that [T, (s, t)| < & for all
(s,t) € [(1/2) —0,—1/2] x S and n > N. From Propositionthere exist N € N and h > 0 such that
for all n > N and (s,t) € [-Rn +h, R, —h] x S!, we have |, (s,t)| < 6. Recall that (07)~! maps [-1,—1/2)
diffeomorphically onto [0, c0). Thus we find 0 > 0 such that (6~) *(—0) > h+ 1. By the C{°.—convergence,
we obtain 0,,!(—0) + R, = (0;) 1(—0) > h for n sufficiently large; hence, 0,;1(—0) > —R, + h. Therefore,
by the monotonicity of 0,, we have 0, ([—(1/2) — 0,—1/2]) C [-R, + h,Ry — h] and we end up with

T (s, D) =N ((67)2(s), )] < B.

3. For the maps FK we proceed analogously.

See Figure [E.0.1]

In the following, we establish a convergence result for the harmonic functions I',. For this purpose, we define
the harmonic functions ', : [0,2R,] x S — R and I'T : [-2R,,,0] x S* — R by I (s,t) := (s — Ry, t) =
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Figure E.0.1: The sequence I';, and the limit object.

Sn(s — Rp) 4 I (s,t) and T (s,t) := Tn(s + Rn,t) = Sn(s 4+ Ry) + I (s, t), respectively. Since I — ' and
Mt — M in C2, Iy + SpRy — I converge in C2_ on [0, +00) x S* and ;Y — S, R,, — I"* converge in C
(—00,0] x S'. Moreover, by means of the homeomorphism 0,,, we define the maps

loc

£n(s,t) = Fn(erf(s),t) =Sn0,1(s) + Tnls,t), s€[-1,1],
71(8)_Rn)+f7( ) )7 RS [_1)_1/2}7
r

(st
“s)+Rp) + T (s, 1), s € [1/2,1].

We are now in the position to derive a convergence result for the sequence of harmonic functions I, .

Theorem 105. For every sequence of harmonic functions I, satisfying assumptions R1-R5 the following
holds. For every sequence h,, € R, satisfying h, < R, and h,,R,/hy — o0 as n — oo, the following
Cgo —convergence results hold for the maps I, and I',, and thewr left and right shifts Fi and Fi, respectively:

loc

1. For any sequence s, € [—R,+hn, Ry —hn] there exists a subsequence of the sequence of shifted harmonic
functions Tyn(- + sn,-), also denoted by Ty (- + sn,-) and defined on [-R,, +h, — s, Ry — hy — s,] x S,

such that T (- + sn, ) — Snsn converges in C$, to 0.

o to a harmonic function i
[0, +oo) x S! — R which is asymptotic to 0. Furthermore, I';, + SnRy : [—1,—1/2] x S — R converge in
C® ([-1,—1/2) x S!) to the map T :[—1,—1/2) x S — R such that

2. The harmonic functions Iy + SnRy : [0,hn] x S — R converge in C2

lim T (s,t)=0
s——%
in C®(S1).

3. The harmonic functions 't —S,Ry, : [h,,,0] x S — R converge in ClaC to a harmonic function I :
( 00,0] x S — R which is asymptotic to 0. Furthermore, I'}, — SRy : [1/2,1] x S* — R converge in
% ((1/2,1] x S) to the map T :(1/2,1] x S — R such that

loc

lim T (s,t) =0

s— 1
in C®(S1).

Proof. For (s,t) € [-Ry, +hy —sn, Rn — hn — sn] x S, we have Tn(s + sn,t) — SnsSn = Sns + (s + sn,t). By
Theorem (104} the first assertion readily follows. Putting ', (s,t) — SyRn = Sps + I:Tj(s,t), using the fact that
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Fo(s,t) 4+ SnRn = Sn(05)71(s) + T, (s, t) converge in C. to ' : [—1,—1/2) x S* — R which is asymptotic to 0 as

s — —1/2, and applying Theorem finishes the proof of the second assertion. The third assertion is proved in a
similar manner.

O

To derive a notion of C° convergence we assume that the sequence S, R, converges, i.e. SR, — 0 as n — oo.
Note that this assumption is the same as Assumption C9 of Section [3:2.2]

Theorem 106. For every sequence of harmonic functions Iy satisfying assumptions R1-R5 and additionally
Assumption C9 of Section the following holds. For every sequence h, € R, satisfying h, < R, and
hn,Rn/hn — 00 as 1 — oo, the following C°—convergence results hold for the maps I',, together with their
left and right shift [f:

1. There ezists a subsequence of I',, that converges in C°([—1/2,1/2] x S!) to 20s.

2. There exists a subsequence of I',, that converges in C°([—1,—1/2] x S*) toT —o, where T (—1/2,t) =0
for all t € S,

3. There exists a subsequence of I'): that converges in C°([1/2,1] x St) to [ o, where T+(+1/2,t) =0 for
all t € St.

Proof. We consider T, (s,t) = $;,05,2(s) + Tn(s,t) for (s,t) € [-1/2,1/2] x S! with
Snegl(s) = 2(SuRn — Snhn)s.

Corollary implies that S, h,s converges in C°([—1/2,1/2] x S!) to 0, and similarly, that S,,Rns converges in
Co([—1/2,1/2] x S') to 20s. By Theorem T, converges in C°([—1/2,1/2] x S!) to 0, and so, the first assertion
is proved. Setting I',, (s,t) = Sn(0;,)7*(s) — SnwRn + T, (s,t) for (s,t) € [-1,—1/2] x S, taking into account that
Sn(0;,)71(s) converges in C°([—1,—1/2] x S?) to 0, and applying Theorem [105| proves the second assertion. The
third assertion follows in an analogous manner.

O

See Figure [E.0.2]

Finally, we establish a convergence result for the derivative of I;,. Due to Lemma we have dI'; = S, ds+dl’; on
[0,h,] xSt and dT}f = S, ds+df’ on [~h,,,0] x S . For a sequence h,, € R satisfying h, < R,, and hy,, R, /h, —
0o as n — oo, consider the sequence of diffeomorphisms 0., : [Rn, Rn] — [—1, 1] as in Definition In terms of
0,, we obtain the equations dI';, = S, [(0;,)71)/(s)ds +dI',, on [—1,—1/2] x S* and dI';, = S,[(6;;)"11’(s)ds + df:
on [1/2,1] x S'. As a consequence of Theorem [105| we have the following

0
loc

Corollary 107. After going over to a subsequence, the following C
drr, I, and I’} hold:

n’ -—-m

—convergence results for the maps dI,

1. The harmonic 1—forms dI’;, converge in C ([0, +o00) x S) to a harmonic 1—form di"~ on [0, +00) x ST,

which is asymptotic to 0. The 1—forms dlI',, converge in C.([0,1/2) x S!) to a 1—form dT'  which is
asymptotic to a constant for s — 1/2.
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Figure E.0.2: The sequence I',, and the limit object in the case SR, — 0 as 1 — oo. Between —1/2 and 1/2 the
limit object is a linear function of slope o.

2. The harmonic 1—forms AT’} converge in C$2.((—o0,0] x St) to a harmonic 1—form di"t on (—o0,0] x St,

which is asymptotic to 0. The 1—forms dI'}, converge in C2,((—1/2,0] x S') to a 1—form art which is
asymptotic to a constant for s — —1/2.



Appendix F

A version of the Monotonicity Lemma

In this appendix we introduce a notion of monotonicity for the transformed curves U as in Definition Before
proceeding we recall a version of the isoperimetric inequality. For an arbitrary a > 0 let us consider the manifold
W :=[—q, a] x M together with defined structure from Section

Theorem 108. Let p € W\OW. There exist constants Cy,e > 0 such that for any Tgs—holomorphic curve
(1, R, P) and any compact subset K C [-R,R] x S' with smooth boundary and w(K) C BZ°(p), we have

areag, (k) < C202_(TWak).

Proof. By Theorem 2.5 from [21] there exists v, > 0 such that ng (p) € W\OW and exp,, = expg0 : B?E(O) C
ToW — B?g (p) defines normal coordinates around p. Consider the standard symplectic form wg on (T, W, TO,p »90,p)
given by wq(v,w) :=gg ,(Jo,pv, W) for v,w € T, W, where Jo,;, is the domain-dependent almost complex structure
Jps evaluated at p for s = 0. Pull back wo to B2 (p) € W\OW with (expp®) ' = exp,' and get an exact
symplectic form w := (exp;l)*wo on B?S (p), i.e. there exists a 1—form A such that w = dA. For any v € T,W we
have w(v, Jo,pv) = ||v|%0 > 0. We claim that there exist the constants co,c; > 0 such that for all v € T,W and all
p € [—C, C] the following inequalities hold:

- 1
2 2
culvlig, = @t Jopv) = Vi, -

To prove this claim we consider the second inequality and assume that this is not true. Thus, for each constant
Con =M there exists v, € T,W with ||vn||§0 =1 and p, € [-C, C] such that w(VmTpn,an) < 1/n. By passing to
a subsequence we assume that vi, — v with [v[|;, =1 and pn — p as n — co. Then we get w(v,J,,v) = 0 and
(we work in point p)

0=w,Jppv) =wo(v,Jppv).
We arrive at g, ,(v,v) = 0, which is a contradiction since the family of metrics g, are equivalent. The first
inequality is proved in an analogous manner. Now we claim that there exist an open neighborhood U, C B?g ()

of p and the constants cg,c; > 0 (making the old ones smaller) such that for all v € TU, and all p € [-C, C], the

following inequalities hold:
1

cwwa>wmnw>a

IvIZ. - (F.0.1)

The proof of this claim is similar to the previous one (by contradiction). Choose € > 0 to be the largest number
such that BZ°(p) C U,. After eventually making the constants cg and c; smaller, assume that li holds for all

120
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veTB?(p) and all p € [-C, Cl.

2
c1 [vllg

- 1
G > w0 Tov) > IV

Now, let (w,R,P) be a Jps—holomorphic curve and K C [-R,R] x S! a compact subset with smooth boundary
such that W(K) C BZ°(p). Then for areag, (tilx) defined as in Section II.2 from [I5], there exists a constant & > 0
(independent of K and €) for which

areag, (k) < EJ ||dﬁ||%0 Voleuer, < ECOJ
K

T'w= ECOJ A
K

oK

By the results of Appendix 1 in [15], there exists a minimal surface g : K — B2 (0) C T, W with glox = exp;l ollak
satisfying the inequality

(glox)

2
areag, , (glx) < -2,

n (T,W,9o,,). Thus

J ﬁ*?\:J' (exppog)*A:J (exppog)*wzj g wo.
oK oK K K

Wirtinger’s inequality for the vector space (T,W,qq,Jo,p) of the 2—form wq states that for all v,w € T,W,
wo (v, w) < [[vAWl5, , With respect to gy, where

||v/\w||3 —det< Go,p(\V)  Gopv,w) )
s 9 P(V7W) gO,p (W)W)
From this we find
L 9"wo < areag, , (glk),

and moreover,

CC
202 (glok)-

areag, (k) < ccoareagop(QIK) 17 o

Recall that exp,, : B2 (0) — BZ°(p) is a diffeomorphism with (dexp,)(0) = Id. Then there exists a constant K > 0
which may depend on p such that
1
[{dqexp, g, < Kx [V,

for all q € BZ° (p) and all v € TW. Hence we get

€, (glox) < KeG (Tox),

while putting all these together we obtain
areag, (k) < cco KE%U(ﬁIaK).

For the choice C, := ¢oK/(471), the assertion then readily follows.
O

Corollary 109. Let (W,]y) be as above, and let W8 C W with & > 0 consist of the points in W having
distance to OW (with respect to the metric gy) at least 5. Then there exist constants Cs, €g > 0 such that for
any Jps—holomorphic curve (U, R, P) and any compact subset K C [R,R] x S with smooth boundary satisfying
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u(K) ¢ W and diamg, (u(K)) < eo, we have
areag, (Ulx) < Cs%o (tox)-

Proof. Cover W% by balls UpeW\aW ng (p), where €, > 0 is chosen as in Theorem Since W—? is compact

there exists a finite subcover ngl (P1), s ngN (pn). For each Bg? (pi) with 1 = 1,...,N we obtain from Theorem
the constants e,, > 0 and Cp,, > 0. Set € := mini—; N €p, and Cz := maxi—; N Cp,. Let A > 0 be the
Lebesque number of the covering ng (pi), for i=1,...,N. By the choice €g := min{A, €} the proof is finished.

i

O

Corollary 110. For the same setting (W, ]o) and Hermitian metric g, for Jo and & > 0, there exist constants
Cs, €0 > 0 such that for any Jps—holomorphic curve (1, R,P) and any compact subset K C [-R,R] x St with

smooth boundary satisfying K C ﬁ_l(Wgoé) and diamyg-g, (K) < €9, we have

areag+g, (K) < C3l2.. (9K).

u 9go

Remark 111. u*g, is a positive semi-definite Riemann metric, i.e. Tw*g, vanishes only when the derivative of U
vanishes. Due to the Carleman similarity principle [22] this occurs only in a finite number of points.

Proof. Let C3 and e be the constants from Corolla:ry (1, R, P) a Jps—holomorphic curve, and K C [—R, R] x S?
a compact set with smooth boundary such that K ¢ T (W~?) and diamy+g, (K) < €0. Noting the inequality

diamy-g, (K) > diamg, (1t(K)), (F.0.2)
we obtain diamg, (1(K)) < €p, while by means of Corollary we find
areag, (tlk) < Csl3 (k).
On the other hand, by definition we have
areag, (Ulx) = J volg+g, = areay-g, (K),
K

where voly+g, is the 2—form defined by

=

volg+g, (v, W) = [Go(AT(v), ATU(v))Go(dT(w), dT(W)) — Go(dT(v), dT(w))?]
for v,w € T([-R, R] x S!); by the same reason, we find
g, (Tlok) = burg, (0K),

and the proof of Corollary is finished.

For a Jps—holomorphic curve (U, R, P) we define a positive semi-definite Riemannian metric on [—R, R] x S! by
hﬁ,(s,t) = gPS (ﬁ(s7 t))(dﬁ(s7 t)) dﬁ(si t))

Note that this metric is not exactly a pull-back metric since g is parameter dependent. By (B.1.10)), there exists a
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constant C4 > 0 such that for all v € T([—R, R] x S1),

W
Cy

wg, S VI < Ca V] (F.0.3)

u'go -
From here we have the following

Corollary 112. For the same setting (W, ]o) and Hermitian metric g, for Jo and & > 0 there exist constants
Cs, €1 > 0 such that for any Jps—holomorphic curve (1, R,P) and any compact subset K C [~R,R] x St with
-5

smooth boundary satisfying K C ﬁfl(Wgo ) and diamp_(K) < €1, we have

arean. (K) < C5/z$1i(al<).

Proof. We choose the constants C; and €y such that Corollary holds. Define €; := €p/Cy4, let (I, R,P) be a
Jps—holomorphic curve and K C [-R, R] x S' a compact subset such that K C ﬁfl(Wgo‘S) and diamy,_(K) < €;. For
any compact K C [-R, R] x S, there hold

1
?diamﬁ*go (K) < dlamhﬁ(K) < C4diamﬁ*§o (K)
4

From (F'.0.3) it follows (perhaps by enlarging the constant C4) that

1
—zarean (K) < areay+g, (K)
&

and
g, (0K) < Cyly (0K).

Thus diamy+g, (K) < Cydiamy (K) < €g. By Corollary 110

1
@areahv(K) < areagrg, (K) < Cgf%*go(aK) < CgCZﬂ%ﬁ(aK),
4

and for the choice Cs = CjCj; the proof is finished.

The next theorem is the key feature in the proof of the monotonicity lemma.

Theorem 113. Let S be a compact surface with non-empty boundary 0S and let h be a positive semi-definite
Riemannian metric that vanishes only in a finite number of points away from the boundary 0S. Let d = dy,
be the distance function with respect to h. Assume that there ezist constants C,§ > 0 such that for all
compact subsurfaces S’ C S\0S with diamy, (S’) < &,

arean (S') < Ce2(0S").
Then, for all v € (0,&/2) and all x € S such that B, (x) C S\0S, we have

2

1
arean (B, (x)) > ET .

Proof. Let P ={p1,...,pn} C S be the points where the metric h vanishes. Let h be an arbitrary Riemann metric
on S and consider for p > 0 the balls B,(p;) for all i = 1,...,N. After making p sufficiently small assume that
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By (pi) and 0S are pairwise disjoint for all i =1, ..., N, and for p < r that

N
B\ ] [ By (ps)
i=1
is a manifold with boundary. Consider the distance function dy : S — R,y — d(x,y). As this defines a metric on
S, dy is 1—Lipschitz continous, and by the co-area formula [8], we obtain

areap (B'(x)) > o voly,
Jast([o,r D\ IIi=1 BE (p+)

> i V][, voln
Jax (o, NI, BR (1)

T N .
tn (d;%t)\]_[BB(m)) dt.
i=1

WV

Jo

Hence

r N
arean (B (x)) > J A (dxl(t)\ﬂ B:;(pi)> dt,
i=1

while letting p — 0 we obtain

arean (BM(x)) > A(r) == J; n (d;l(t)) dt.

From the isoperimetric inequality it follows that

4
dtlr=r’

Alr) =t (d M (1) >

Separating the variables and integrating with respect to v’ over the full measure set of noncritical values of dy
yields

Hence areay, (B, (x)) > A(r) > 12/(4C).

The next corollaries follow from Theorem [113]

Corollary 114. Let (W,],) be as above and & > 0. Let g, be a Hermitian metric for Jo. Then there exist
constants Cg, €5 > 0, such that for all Jps—holomorphic curves (i, R,P), allr € (0,e/2), and allx € [-R,R] xSt
satisfying B (x) C ﬁfl(WgOS) N ([=R, Rl x S\O([—R, R] x S1)), we have

arean_ (B (x)) > Cgr?.

Proof. Let Cs,e; > 0 be as in Corollary Pick a Jps—holomorphic curve (i1, R,P). For any compact subset
K C [-R,R] x S with K € w (W, ") and diamp(K) < e1,
areap (K) < Cg,ﬂ%ﬁ(aK).

Pick 1 € (0, €;/2) and some x € S such that BM=(x) C ﬁfl(ng) N ([—R, R] x S1\O([-R,R] x S$1)). By Theoremm

it follows that areap_(BPw(x)) > Cg1? for some constant Cg = 1/(4Cs) and €5 = €;.
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O

We apply this result to the whole symplectisation R x M. On R x M recall that J; is a cylindrical almost complex
structure with the Hermitian metric g,, and that J, and g, are R—invariant.

Corollary 115. There exist constants C;,e3 > 0, such that for all Jps—holomorphic curves (u,R,P), all
T € (0,€e3/2) and all x € ([R,R] x S]\O([—R, R] x S!)) satisfying BI=(x) C ([-R, R] x S\d([—R,R] x S1)), we have

area_ (B (x)) > Cpr2.

Proof. The translations in the R—coordinate are isometries of all metrics g,. Consider Wy := [-2,2] x M and
Wi = [-1,1] x M. Let § := distg, (0Wp, W) > 0 yielding Wy C Wgé. For the data WO,WEB,TO and g, apply
Corollary and obtain the constants Cg, e, > 0 such that for all Jps—holomorphic curves (i, R, P) satisfying
BPw(x) c (W5 %) N ([—R,R] x SY\J([—R,R] x S)) for all v € (0, €3/2) and all x € ([-R,R] x S1\d([—R,R] x S1)),
areap_(BMw(x)) > Cer?. Set & := infre[ ¢, c)diamg, (W1) > 0 and €3 := min %,%,%26}. Let (I,R,P) be a
Jps—holomorphic curve and pick T € (0, €3/2) and x € ([—R,R] x S}\J([—R, R] x S$')) such that B (x) c ([-R,R] x
SUNO([—R,R] x S1)). We get diamg, (w(BM+(x))) < diamy-g, (B (x)) < Cediamp (B (x)) < 2rCs < €3Cs < €.
Thus there exists a translation such that after composing it with U we obtain W(BP=(x)) ¢ Wy C Wa[’. By
Corollary [I14] the proof is finished.

O
The same results hold if we replace the parameter-dependent metric g, defined by
gy =drodr+oa®a+dal,])
by the parameter-dependent metric §, defined by
do=9¢'(M(dredr+a® )+ e(r)dal-,]p)

where @ : R — [0, 1] satisfies @(r) > 0 and ¢'(r) > 0 for all r € R. By replacing g, with §, in the definition of hy
and by straightforward computation we obtain

BT (x)

area, (BN (x)) = J volp, = J' wrd(ew). (F.0.4)
BT (x) ;

Remark 116. Even though in Corollary the metric §, is not R—invariant, the results established so far are
also valid for the family of metrics §, with some fixed function ¢ : R — [0, 1] satisfying ¢(r) > 0 and ¢’(r) > 0 for
all r e R.

Using Corollary we can prove the following

Corollary 117. There ezist constants Cy,e3 > 0 such that for any Jps—holomorphic curve (i,R,P), any
T € (0,e3/2), and any x € ([-R,R] x SY)\O([—R,R] x S!) satisfying B (x) C ([-R,R] x S1\d([-R,R] x S)), we
have
E(t e, ; B (x)) = sup J wd(pa) > Cpre.
BT oen JBIT(x)
Proof. Fix a function ¢ € A such that ¢’(r) > 0 for all r € R. By (F.0.4) and Corollary there exists constants
Cr, €3 > 0 such that for any Jps—holomorphic curves (i, R, P) satisfying the hypothesis of Corollary we have

Bl BE00) > | R CUES



APPENDIX F. A VERSION OF THE MONOTONICITY LEMMA 126

The following version is also valid:

Corollary 118. There ezist constants Cg, €4 > 0 such that for any Jps—holomorphic curve (u,R,P), any
1€ (0,€e4), and any x € ([-R,R] x SY)\O([—R, R] x S) satisfying BF°(w(x)) Nw(d([—R,R] x S!)) =0, we have

(W1 (530 (qn))p T (BE(T(X))) > Car®.

Proof. First we prove that T(B™= (x)) ¢ B (ti(x)), where C4 is the constant from (F.0.3)). For y € B};Tj(x) we find
4

Cq
! T
disth (x,y) = inf J' ()|, dt < —.
her XY v, ¥ (0)=x,y(1)=y Jo I ”h“ Ca
and then
1
distg, (U(x),w = inf J N(t) ||+ dt
g0 (1(x), Tly)) nn(0)=u(x),n(1)=1uly) Jo Mk,
1
< int | Jlmemm]_a
Toy,woy (0)=Tt(x),woy (1)=1(y) Jo 9o
1
— inf V(t)||-w dt
¥y (0)=xy(1)=y Jo Y Ole-s,
1
<C inf J v(t)|,._ dt
b 4v,v(0):><,v(l):y 0 It )”h”

= Cudisth_(x,y)

=T
Hence, if B9 (T(x)) NW(d([—R, R] x S!)) = 0, we obtain
(B (x)) NT(Q([-R,R] x §1)) =1,

and further on,
B*g(x) C ([-R,R] x SY)\O([—R, R] x S1).

From Corollary there exist the constants C7, €3 > 0 such that for any Jps—holomorphic curve (u,R,P), any
r € (0,e3/2), and any x € ([—R,R] x S})\9([— x S') satisfying BMw(x) C ([-R,R] x SM\9([-R,R] x S')),
E(ulg ne )) > Cy12. Set €4 = C4€3, and let (u,R,P) be a Jps—holomorphic curve, and 1 € (0,€4) and x €
(I-R, R ] x SYN\O([—R, R] x S') be such that B (i(x)) NwW(d([—R, R] x S!)) = 0. From the above considerations we
infer that B]Zj( x) C ([<R,R] x SY)\O([—R,R] x S!), and we end up with
4

2

T .=—1(RJo (57 = .phw T
E('LL|H,1(B§0 (ﬁ(x)))vu (B?O (U(X)))) 2 E(u|th£(X)aBCL4(X)) 2 C7C7‘21
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