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Abstract
Fractional, anomalous diffusion in space-periodic potentials is investigated. The
analytical solution for the effective fractional diffusion coefficient in an arbitrary
periodic potential is obtained in closed form in terms of two quadratures.
This theoretical result is corroborated by numerical simulations for different
shapes of the periodic potential. Normal and fractional spreading processes are
contrasted via the time evolution of the corresponding probability densities in
state space. While there are distinct differences occurring at small evolution
times, a re-scaling of time yields a mutual matching between the long-time
behaviours of normal and fractional diffusion.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In 1905 Pearson proposed what we now know as a random walk [1]. For a one-dimensional
system the problem can be formulated in the following way: a particle jumps at each point
of time from its current position x to the position x + �x with probability p, or x − �x
with probability 1 − p. The approach towards diffusion theory, pioneered by Einstein, relies
on postulates very similar to the ones for the random walk, leading to the same results when
the jump width �x → 0 [2]. However, in many situations the assumptions used by Einstein
and Pearson do not hold; one such example is the transport of charge carriers in amorphous
semiconductors when exposed to an electric field.

Sixty years after Pearson, in 1965, Montroll and Weiss introduced the theory of continuous
time random walks (CTRW) [3, 4]. It was applied to transport in semiconductors in works by
Scher and Lax [5], and Scher and Montroll [6]. Due to its historical importance and vivid clarity
we recall here the definition of the CTRW as given by Scher and Montroll [6]: In our model
we postulate our material to be divided into a regular lattice of equivalent cells, with each cell
containing many randomly distributed localized sites available for hopping carriers. Carrier
transport is a succession of carrier hops from one localized site to another and finally from one
cell to another. We define the hopping time to be the time interval between the moment of arrival
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Figure 1. CTRW in a periodic cosine potential. Two different possibilities for introducing the
one-dimensional lattice: (a) the lattice period �x is much smaller than the potential period L . The
particle at site i hops to site i + 1, or i − 1, respectively. (b) The lattice step size �x is equal to the
potential period L and the lattice sites are centred at the potential minima. The particle performs
hops from one potential minimum to one of the neighbouring ones.

of a carrier into one cell and the moment of arrival into the next cell into which it lands. The
random distribution of sites and hence the disorder of an amorphous material is incorporated
into a hopping-time distribution function ψ(τ). The appropriate distribution ψ(τ), leading to
the agreement with the experiments, was shown to possess the power-law form ψ(τ) ∝ τ−1−α
with α ∈ (0, 1) [6–8]. For this range of the fractional exponent α all the moments of the
distribution ψ(τ) diverge and the corresponding process has no characteristic timescale, thus
exhibiting the phenomenon of ageing. As a result, the process undergoes subdiffusion [9–11],
i.e. the mean square displacement grows in the absence of an external force slower than linearly
in time, 〈δr 2(t)〉 ∼ tα (0 < α < 1).

In the original study of fractional transport in the context of anomalous transport in
semiconductors, an ensemble of carriers executing a random walk, when biased by an electric
field, was studied [6, 5]. In the present paper our focus is different: We instead address the
problem of the carriers executing a random walk in a spatially varying periodic potential. This
situation is representative of many applications occurring in areas such as in condensed matter
physics, chemical physics, nanotechnology, and molecular biology, to name but a few. For
those applications it is of the utmost importance to account for the spatial variation of the
transport process [12–17].

Our work is set up as follows: in section 2 we propose the model and define the theoretical
and numerical problem. In section 3 we recall some prior results about the biased CTRW [18]
and a CTRW proceeding in a washboard potential [19]. In section 4 the formula for the
effective fractional diffusion coefficient in a periodic potential U0(x) = U0(x + L) with
period L is derived and the theoretical result is corroborated by numerical simulations of the
CTRW for different shapes of periodic potential. Finally, we address the problem of particles
spreading anomalously in a periodic potential also in the light of the time evolution of the space
probability density, as compared to the case with normal diffusion.

2. Set-up of the model

Following the general picture of the CTRW we introduce a one-dimensional lattice {xi = i�x}
with a lattice period �x and i = 0,±1,±2, . . .. After a random residence time τ a particle at
site i hops to site i ± 1 with a probability q±

i (see figure 1(a)): the sites here correspond to the
cells in [6]. The random time τ is extracted from a residence time distributionψ(τ). A suitable
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possible choice for ψ(τ) is a Mittag–Leffler distribution defined by

ψi (τ ) = − d

dτ
Eα(−(νiτ )

α), with Eα(−(νiτ )
α) =

∞∑

n=0

[−(νiτ )
α]n

�(nα + 1)
. (1)

The quantity νi is the time-scaling parameter at lattice site i .
The CTRW with the Mittag–Leffler residence time density can be described through a

fractional master equation for the site populations Pi (t) [19, 20]; i.e.

Dα
∗ Pi (t) = fi−1 Pi−1(t)+ gi+1 Pi+1(t)− ( fi + gi)Pi (t), (2)

with the Caputo fractional derivative Dα∗ [21] on the left-hand side defined by

Dα
∗χ(t) = 1

�(1 − α)

∫ t

0
dt ′ 1

(t − t ′)α
∂

∂ t ′χ(t
′). (3)

The quantities fi = q+
i ν

α
i and gi = q−

i ν
α
i in the fractional master equation (2) are referred to as

the fractional forward and backward rates. Using the normalization condition for the splitting
probabilities, i.e. q+

i + q−
i = 1, one obtains that

q+
i = fi/( fi + gi), q−

i = gi/( fi + gi), (4)

νi = ( fi + gi)
1/α. (5)

For an arbitrarily shaped potential landscape U(x) the fractional rates can be chosen as

fi = (κα/�x2) exp[−β(Ui+1 − Ui)/2], (6)

gi = (κα/�x2) exp[−β(Ui−1 − Ui )/2]. (7)

Here Ui ≡ U(i�x) and β = 1/kBT is the inverse temperature; κα is the fractional free
diffusion coefficient with dimension cm2 s−α . The form (6) and (7) of the fractional rates
ensures that the Boltzmann detailed balance relation is satisfied, i.e. fi−1/gi = exp[β(Ui−1 −
Ui )]. The lattice period �x must fulfil the condition U ′′(x)�x � 2U ′(x) in order to ensure
the smoothness of the potential. In the case of a periodic potential this implies in particular that
the lattice step size �x is much smaller than the potential period L, �x � L. Furthermore, in
order to recover the continuous limit addressed below, the condition |β(Ui±1 − Ui)| � 1 must
be obeyed.

In the space-continuous limit the CTRW with the Mittag–Leffler residence time density
can be described through the fractional Fokker–Planck equation [10, 19, 22, 23],

Dα
∗ P(x, t) =

[
∂

∂x

U ′(x)
ηα

+ κα
∂2

∂x2

]
P(x, t). (8)

Here, P(x, t) is the probability density and a prime stands for the derivative with respect to
the space coordinate. The quantity ηα denotes the generalized friction coefficient, possessing
the dimension kg sα−2. It is related to the bare fractional anomalous diffusion coefficient κα
through ηακα = kBT .

With this material at hand we have defined our theoretical problem as well as the numerical
procedure. In the simulations of the CTRW we use for α ∈ (0, 0.8] a Pareto residence time
distribution, i.e.

ψi (τ ) = − d

dτ
Pα(νiτ ), with Pα(νiτ ) = 1[

1 + �(1 − α)1/ανiτ
]α , (9)

instead of the Mittag–Leffler one, as for every 0 < α < 1 the long-time behaviour of the
system is determined solely by the tail of the residence time distribution [24]. For α > 0.8 the
Mittag–Leffler density (1) is employed. For α = 1 the Mittag–Leffler density transforms into
the exponential distribution, covering the regime of normal overdamped Brownian motion. The
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spatial lattice step in our simulations is �x = 0.001, measured in units of the spatial period
L. The energy is measured in units of the potential amplitude A, and the time unit is set as
τ0 = (ηαL2/A)1/α. For a detailed description of the algorithm for the numerical simulations
and of the employment of the Pareto or Mittag–Leffler distribution, we refer readers to the
comprehensive work in [25].

3. Biased CTRW and CTRW in a washboard potential

3.1. Biased CTRW

The anomalous diffusion that is biased by a constant external force F is a well established
phenomenon found in many different systems. For the biased CTRW the fractional rates (6)
and (7) become site-independent, fi ≡ f and gi ≡ g, as Ui±1 − Ui = ±F�x . From the
fractional master equation (2) one finds then the solutions for the mean particle position and for
the mean square displacement [18],

〈x(t)〉 = 〈x(0)〉 + �x( f − g)

�(α + 1)
tα, (10)

〈δx2(t)〉 = 〈δx2(0)〉 + �x2( f + g)

�(α + 1)
tα +

[
2

�(2α + 1)
− 1

�2(α + 1)

]
�x2( f − g)2t2α. (11)

The solutions of the corresponding fractional Fokker–Planck equation are in the same form
as the ones for the fractional master equation; i.e.

〈x(t)〉 = 〈x(0)〉 + F

ηα

tα

�(α + 1)
, (12)

〈δx2(t)〉 = 〈δx2(0)〉 + 2κα
tα

�(α + 1)
+ F2

η2
α

[
2

�(2α + 1)
− 1

�2(α + 1)

]
t2α. (13)

The comparison of the solutions (10)–(12) and (11)–(13) gives

�x( f − g) = F/ηα and �x2( f + g)/2 = κα. (14)

The latter equations define the anomalous current and the anomalous diffusion coefficient
through the fractional rates f and g, and are of the same form as the corresponding relations
for normal Brownian diffusion, determined through the corresponding escape rates.

If at a given temperature T the system is close to thermal equilibrium, the mean square
displacement in the absence of an external force and the average displacement induced by a
bias F = 0 are related through the generalized Einstein relation [9, 26, 27],

〈δx2(t)〉∣∣
F=0

= 2

βF
〈x(t)− x(0)〉|F . (15)

Note that equation (15) is strictly valid only in the linear response regime, which is approached
when F → 0. It then leads to the generalized fluctuation-dissipation theorem

κα = (βηα)
−1. (16)

3.2. CTRW in a washboard potential

Solving in the stationary limit the fractional Fokker–Planck equation (8) for a biased periodic
potential U(x) = U0(x)− Fx , one finds for the mean particle position [19],

〈x(t)〉 = 〈x(0)〉 + vα(F)

�(α + 1)
tα. (17)
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The anomalous current vα(F) in the washboard potential is then given by a generalized
Stratonovich formula, put forward in [19], i.e.

vα(F) = καL[1 − exp(−βF L)]
∫ L

0 dx
∫ x+L

x dy exp(−β[U(x)− U(y)]) . (18)

In analogy to the case with normal Brownian motion, in order to study the fractional
diffusion in a periodic or washboard potential it would seem natural to choose the lattice period
�x to be equal to the space period L and the sites to be centred at minima, as illustrated in
figure 1(b). In this case the fractional rates, that we mark for such a lattice with f j and g j ,
are independent of the site j , f j ≡ f̂ and g j ≡ ĝ. It was proved in [19] that considering
the CTRW in the lattice {x j = j L}, the asymptotic solution (t → ∞) for the mean square
displacement in a tilted periodic potential is of the same form as the solution (11) for the biased
CTRW, as the equation (17) is of the same form as equation (10). The fractional rates f̂ and
ĝ, however, are no longer given by equations (6) and (7) and the model does not provide their
explicit dependence on the potential.

Whereas in the washboard potential �x( f̂ − ĝ) is equal to the generalized Stratonovich
current vα , one could expect that�x2( f̂ + ĝ)/2 follows a generalized formula for the effective
diffusion coefficient in a tilted periodic potential [28, 29], in correspondence to equations (14),
because the problem can be mapped onto the case with a constant bias. However, in the long-
time limit the ballistic term ∝t2α prevails over the term proportional to tα and the effect of the
latter term is negligible: the ratio between the mean square displacement and squared average
coordinate depends in the asymptotic limit only on the fractional exponent α and obeys the
same result as for the biased CTRW [6, 19]. The term proportional to tα becomes relevant for
t → ∞ only in the limit α → 1, leading to the normal diffusive behaviour, or for F → 0 as
f̂ − ĝ → 0, i.e. for a periodic potential.

4. Fractional diffusion in a periodic potential

4.1. The mean square displacement

In this section we present our results for fractional diffusion in spatially varying, periodic
potentials. We start from the expression of the mean square displacement for the particle
in the periodic potential U0(x). For zero tilting the fractional rates f̂ and ĝ become equal
and the ballistic term occurring in equation (11), reformulated for a washboard potential, thus
disappears. Therefore, the asymptotic mean square displacement now reads

〈δx2(t)〉 = 〈δx2(0)〉 +�x2( f̂ + ĝ)
tα

�(α + 1)
. (19)

This equation is confirmed by the numerical results, depicted in figure 2 for various values of
the fractional exponent α, which is equal to the slope of the numerically evaluated curves on
the logarithmic scale.

Correspondingly, the asymptotic solution of the fractional Fokker–Planck equation for the
periodic potential U0(x) can be written in the form analogous to the case of the fractional
diffusion in the absence of force, i.e.

〈δx2(t)〉 = 〈δx2(0)〉 + 2κ (eff)
α

tα

�(α + 1)
, (20)

This equation defines the effective fractional diffusion coefficient κ (eff)
α ,

κ (eff)
α = �(α + 1) lim

t→∞
〈δx2(t)〉 − 〈δx2(0)〉

2tα
. (21)
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Figure 2. The mean square displacement computed numerically for the CTRW in the cosine
potential U0(x) = A cos(2π x/L) for different values of the fractional exponent α. The re-scaled
temperature is set at kBT/A = 0.5.

Also the explicit expression for the fractional rates to hop from one minimum to one of the
neighbouring minima follows from equations (19) and (20), as for f̂ ≡ ĝ

κ (eff)
α = �x2( f̂ + ĝ)

2
≡ �x2 f̂ ≡ �x2ĝ. (22)

4.2. Effective fractional diffusion coefficient

Next, a useful analytical expression for κ (eff)
α in a periodic potential can be derived from a

generalized Einstein relation. Equation (15) is valid in the linear response regime also for any
periodic potential U0(x), as the problem of fractional diffusion in a periodic potential can be
mapped onto the force-free case [19]. In doing so we can write

κ (eff)
α = 1

β
lim
F→0

vα(F)

F
= 1

β

dvα(F)

dF

∣∣∣∣
F=0

, (23)

where vα(F) is given by the generalized Stratonovich formula (18). As a central result we thus
obtain the following closed, exact analytical expression for the effective fractional diffusion
coefficient, reading

κ (eff)
α = κα

L−2
∫ L

0 dx exp [βU0(x)]
∫ L

0 dy exp
[−βU0(y)

] . (24)

This expression is valid for an arbitrarily shaped, unbiased periodic potential U0(x). It reduces
for α = 1 to the corresponding formula for the normal diffusion in a periodic potential, first
derived by Lifson and Jackson in [30] and independently again in [31, 32]. Our new result
therefore provides the generalization for fractional diffusion processes which are anomalous.

The behaviour of equation (24) versus re-scaled temperature kBT/A is illustrated in
figure 3(a) for the following periodic potentials, depicted in figure 3(b):

(i) a cosine potential,

U (1)
0 (x) = A cos(2πx/L), (25)

(ii) a double hump potential,

U (2)
0 (x) = Aa1[cos(2πx/L)+ cos(4πx/L)], (26)

with the coefficient a1 = 16/25, and
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Figure 3. (a) Effective anomalous diffusion coefficient κ(eff)
α in a periodic potential versus the re-

scaled temperature kBT/A. The quantity κ(eff)
α is re-scaled by the corresponding free fractional

diffusion coefficient κα . The theoretical curves obtained from equation (24) (lines) are compared to
the numerical results (symbols). The different periodic potentials used are given by equations (25)–
(27). For each potential and at given temperature the numerical points are computed for some values
of α within the interval α ∈ [0.1, 0.9]. (b) A comparison among the different periodic potentials
(25)–(27) used for the numerics: (1) the cosine potential U (1)

0 (x); (2) the double hump potential

U (2)
0 (x)− (2a1 − 1); (3) the ratchet potential U (3)

0 (x).

(iii) a ratchet potential,

U (3)
0 (x) = A[a2 sin(2πx/L)+ a3 sin(4πx/L)], (27)

with a2 = 85/(21
√

21), a3 = 25/(21
√

21). The coefficients a1, a2, a3 are chosen
such that the potentials (25)–(27) have the same amplitude A. The theoretical curves
are confirmed by numerical results, depicted in figure 3 with symbols. The anomalous
diffusion coefficient is computed as defined by equation (21). As the ratio κ (eff)

α /κα <

1, one can conclude that, analogously to the normal case, the effect of any one-
dimensional non-biased periodic field is to suppress the macroscopic anomalous diffusion
coefficient compared to the value in the absence of force [30]. A possible enhancement
may be expected in the presence of time-dependent, periodic landscape modulations as
demonstrated for normal diffusion in [33–35]. Furthermore, it is to be noticed that the
ratio κ (eff)

α /κα does not depend on the fractional exponent α and, moreover, the shape of
the periodic potential U0(x) has only a small influence, as one can see by comparing the
theoretical curves in figure 3(a) (note also [36, 37]).

4.3. Probability density: anomalous versus normal

In the previous section it was demonstrated that the effective fractional diffusion coefficient in a
periodic potential is of the same form as the Lifson–Jackson formula for normal diffusion. This
represents a further element of the formal analogy between fractional and normal diffusion,
besides, for example, the validity of the generalized Stratonovich formula (18) [19] and the fact
that the stationary reduced probability density is the same for both cases [25]. Here, we present
additional results which support and corroborate this formal analogy further. We notice that in
the absence of a bias, all the odd moments of the probability density are identically zero for
both normal and fractional diffusion. As for the second moment, upon introducing the re-scaled
time,

t ′ = (t/τ0)
α

�(1 + α)
, (28)
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Figure 4. The time evolutions of the probability densities characterizing the anomalous and normal
diffusion processes in the periodic cosine potential (25). The re-scaled temperature is kBT/A = 0.5
and the fractional exponent is α = 0.5. The anomalous probability density P(x, t) cannot be
distinguished from that of the normal case, P(x, t ′), once the time has been re-scaled according to
equation (28). Similar results are obtained for other values of α ∈ (0, 1) (not depicted).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.2 0.4 0.6 0.8 1.0

P
(
x,

t′
)

x / L

(1)

(2)

(3)

(4)
normal

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.2 0.4 0.6 0.8 1.0

P
(
x,

t)

x / L

(1)

(2)

(3)

(4)

anomalous

ˆ ˆ

Figure 5. The different small-time evolutions of the normal (left) and anomalous (right) reduced
probability densities P̂(x, t) and P̂(x, t ′) defined by equation (29), in the cosine potential (25).
Curve labels (1)–(4) represent increasing values of re-scaled time t ′ = 0.01, 0.02, 0.04, 0.11 for
the normal case and of time t for the anomalous case, related to t ′ through equation (28). The solid
line represents the theoretical stationary solution. The re-scaled temperature is kBT/A = 0.5 and
α = 0.5 for the anomalous process, as in figure 4.

it follows from equation (20) that the mean square displacement (in units of L2) formally
coincides with that of the normal diffusion case, [〈δx2(t ′)〉 − 〈δx2(0)〉]/L2 = 2T ′t ′,
independently of the fractional exponent α, wherein T ′ = kBT/A, with A the potential
amplitude, is the re-scaled temperature. The study of the time evolution of the probability
density is illustrated with the example in figure 4, choosing the times t for the anomalous
diffusion process and the corresponding times t ′ for normal diffusion so that they satisfy
equation (28): the probability densities for anomalous diffusion (continuous lines) and normal
diffusion (dashed lines) processes are barely distinguishable from each other for sufficiently
long evolution times.

In clear contrast, however, appreciable differences between the normal diffusion coordinate
density P(x, t ′) and the anomalous coordinate density P(x, t) emerge for small times. This is
best detected by comparing the reduced probability density, mapped onto a single spatial period

P̂(x, t) =
∑

n

P(nL + x, t), n ∈ Z, (29)

as done in figure 5. In the normal case (figure 5 left) the two initial maxima at x = 0 and
x/L = 1, due to the initial conditions P̂(x, 0) = δ(x), move toward the centre and finally
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Figure 6. The time evolutions of the probability densities characterizing the normal (above) and
anomalous (below) diffusion processes in a tilted cosine potential U(x) = A cos(2π x/L) − Fx .
The re-scaled temperature is kBT/A = 0.5 and the fractional exponent is α = 0.5, as in figure 4.
The tilting force is F = 0.1 × Fcr, where Fcr = 2π A/L is the re-scaled critical bias, corresponding
to the disappearance of potential minima. For sufficiently small times the probability densities of the
normal and anomalous processes are very similar. However, at larger times (in the long-time limit)
the maximum of the density for normal diffusion moves with the directed current. In contrast, the
mean square displacement of an ensemble of particles undergoing fractional diffusion is dominated
by the ballistic contribution and the typical stretched spreading in the direction of bias is observed,
while leaving the maximum of the density near the origin.

merge into the asymptotic stationary density (solid line) P̂st(x) = N−1 exp[−βUo(x)], where
N = ∫ 1

0 dx ′ exp[−βUo(x ′)] is a normalization factor and U0(x) = A cos(2πx/L). On the
other hand, in the anomalous case the two initial maxima gradually disappear while a new peak
grows at x/L = 0.5 and evolves into the stationary density P̂st(x).

Moreover, as soon as the process is biased by an external finite force, F = 0, a qualitative
difference arises in the time evolution of the probability densities of the anomalous and the
normal processes in the long-time limit as well, see also [25]. This is true even for small
values of F in the linear response regime, as one can defer from figure 6. All this indicates a
profound difference between a fractal diffusion dynamics that is based on the fractal Brownian
motion introduced by Mandelbrot and van Ness [38] and the fractional diffusion based on the
CTRW [3]. The time evolution of the density of an ensemble of particles undergoing normal
diffusion can be interpreted as a superposition of a translational motion and a spreading of
the initially localized density. In this case one observes the global maximum of the probability
density moving in the direction of the external bias (figure 6 (above)). Instead, in the anomalous
case, only a spreading of the initial density takes place, resulting in a long tail in the direction
of the bias. The global maximum of the density remains close, however, to its initial position
(figure 6 (below)) [25]. This intriguing behaviour is related to the presence of a ballistic
contribution proportional to t2α in the mean square displacement (see equation (11)). We
remark that for α close to 1 and for small values of external bias F , at small times the term
∝tα can prevail over the ballistic term. However, in the long-time limit the ballistic term takes
over and always dominates. The latter remark may be relevant for experimental studies. It in
addition also provides a crucial test that allows one to distinguish between fractal and fractional
Brownian motion on a practical level.
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5. Conclusion

In this work we investigated anomalous diffusion whose dynamics is governed by a fractional
Fokker–Planck equation with a spatially varying, periodic potential. As a main result we derive
a generalization of the celebrated Lifson–Jackson result for normal diffusion [30–32] to our
case with anomalous fractional diffusion: it relates the effective fractional diffusion coefficient
κ (eff)
α in equation (24) to the bare fractional diffusion coefficient in terms of two inverse

quadratures of the periodic potential only. This result is consistent with a general integral
transformation connecting the solutions of normal and fractional Fokker–Planck equations in
the same potential with natural, or free, boundaries [23, 39]. As a consequence, we find
that as in the case with normal diffusion the effective anomalous diffusion always becomes
suppressed over the bare value. This result may find ample application in diverse areas where
anomalous diffusion occurs; typical examples are the case of superionic conductors [40] or for
Josephson junction dynamics [17, 41] when the role of disorder may change normal diffusion
into anomalous diffusion.

In addition, we contrasted the time evolution for normal diffusion with anomalous,
fractional diffusion. In doing so, we find that after a proper re-scaling of time the corresponding
asymptotic densities P(x, t) for the coordinate x match each other. Distinct differences occur,
however, at small evolution times. This time evolution of the densities drastically changes upon
the application of a finite bias F . Now, the long-time evolution between normal diffusion and
anomalous diffusion becomes markedly distinct as well: while the maximum of the biased
normal diffusion moves with the normal, directed current, the anomalous case is dominated
by a ballistic spreading that leaves the maximum of the density around the origin. Moreover,
this characteristic difference can be put to work to differentiate between fractional and fractal
Brownian diffusion.

Acknowledgments

We acknowledge fruitful discussions with Dr Gerhard Schmid. This work has been supported
by the Estonian Science Foundation through grant no 6789 and by the Archimedes Foundation
(EH), by the DFG via the collaborative research centre, SFB-486, project A10, and by the
Volkswagen Foundation, via project no I/80424.

References

[1] Pearson K 1905 The problem of the random walk Nature 72 294
Lord R 1905 Nature 72 318
Pearson K 1905 Nature 72 342
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