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Abstract 
In the design and quality control of fiber-reinforced structures, testing on coupon level and structure 

level are frequently carried out. In order to accept or reject a final product or material charge, means of 

quality control are carried out. In safety relevant structures, this is often based on holding a certain proof 

load. Acoustic emission is already used for the monitoring during proof load testing, but is only used for 

simple accept/reject diagnosis. For the accepted components typically no assessment is made for the 

expected residual capacity. We propose an acoustic emission based approach able to perform prediction 

of the ultimate strength values and to evaluate the materials present stress exposure while being tested. 

We base our approach on accepted acoustic emission measures, such as the Felicity ratio or the Shelby 

ratio to assess the structural integrity. Using a combination of an artificial neural network to predict the 

materials present stress exposure and a simple linear extrapolation we are able to predict the failure 

strength within the margin of prediction error for all test cases studied. The approach is benchmarked 

for three types of specimens, systematically changing test volume and load condition. We used tensile 

tests on fiber-reinforced thermoplastic tape samples, classical tensile test samples and bearing strength 

samples, all made from the same material.  

 

1. Introduction  
 
The design of structures from fiber-reinforced composites is one challenging task as soon as a precise 

calculus of failure modes or failure strength is involved. A multitude of theoretical concepts exist today 

in order to aid the engineer to predict the occurrence of failure, yet none of them outperforms the other 

in a general load situation [1–3]. Practically, the uncertainty caused in the design process raises a huge 

number of testing efforts ranging from small-scale specimens to large-scale structures in order to achieve 

a level of confidence in the particular material and the particular design. Apart from the aspect of testing 

costs involved, the assessment of the ultimate load by way of a quality control loading usually obstructs 

the assessment, as the structure is no longer usable when loaded close to ultimate load. Accordingly, 

several attempts were made in the past to predict the ultimate load based on data collected during 

loading to a lower load level. 

 

One data analysis technique that was frequently used to this end is the acoustic emission analysis. During 

rapid internal displacements, such as during crack initiation and growth, elastic stress-waves are 



released. These propagate in the ultrasonic range and can be detected by sensitive piezoelectric sensing 

systems. For the specific implications of measurements on fiber-reinforced materials a comprehensive 

introduction is found in [4,5]. 

 

Several concepts have been used to perform acoustic emission based assessment of failure loads, many 

of them resulting from the need to predict burst pressure levels of fiber-reinforced vessels. The usual 

load schedule applied (according to e.g. ASTM E 1067) is a cyclic load / unload scheme as seen in figure 

1. The earliest application of this schedule in combination with acoustic emission analysis goes back to J. 

Kaiser in 1950 [6]. He demonstrated for the case of metallic materials, that the acoustic emission usually 

re-initiates after exceeding the previously reached load level. This behavior of materials has been termed 

Kaiser-effect to honor his pioneering work in the field of acoustic emission. However, for fiber-reinforced 

materials the acoustic emission signals often initiate at lower load levels than previously achieved. This 

fundamental observation goes back to the work of T. Fowler [7,8]. Since the first publication in 1977, the 

evaluation of the Felicity ratio became an important concept to understand the progression of failure in 

fiber-reinforced materials using acoustic emission. 

 

As similar measure for damage progression in composite materials, the Shelby ratio has been proposed 

by K. Downs [9]. It is different from the Felicity ratio in that the AE evaluation is based on the hits detected 

during un-loading of the test item. When reaching a certain evaluation criterion (such as a total number 

of accumulated hits) during the un-loading phase the corresponding load level is used for the evaluation. 

This relates to the previously reached maximum load. This approach has been used i.e. to assess the 

quality of composite pressure vessels since those with prior damage generate noticeable amounts of AE 

during de-pressurization [9].  

 

Both quantities, Felicity ratio and Shelby ratio were correlated with the burst pressure of fiber-reinforced 

composite vessels and indicated that their values are highly correlated [7–11]. Based on this observation 

J. Waller et al. extended this approach into a forward prediction routine, collecting the Felicity ratio for 

a certain number of cycles to failure [12]. They proposed to establish a critical Felicity ratio as material 

property and evaluated their concept for fiber-reinforced strands and pressure vessels.  

 

An another approach to predict the ultimate load of fiber-reinforced composite vessels was proposed by 

E. Hill and J. Walker using the recorded acoustic emission amplitude distributions as input data [13–15]. 

They used artificial neural networks to classify the acoustic emission data and based their forward 

prediction on a second supervised training stage on the entirety of acoustic emission data. This provided 



evidence, that artificial neural networks are flexible enough to perform such predictive tasks. A similar 

approach has also been applied by other groups for prediction of tensile coupon strength [16]. 

 

2. Failure prediction concept 
 
Based on these earlier attempts on prediction of composite failure, we propose a modified version of 

these two principle approaches, effectively combining the strength of the previous attempts. The first 

part is the data reduction during cyclic loading to meaningful acoustic emission based ratios (e.g. Felicity 

ratios). Second is the use of these ratios within an artificial neural network to perform the prediction of 

the expected load status of the structure. Final part is the extrapolation of the load ratios as predictive 

approach. 

 

Since the present approach uses a supervised classification scheme for artificial neuronal networks, the 

whole concept subdivides in two stages. The first stage is the generation of a test database to establish 

the relationship between acoustic emission parameters and load levels. The second stage is the 

application of the established relationship to a new test item to perform a forward prediction.  

 

For the first stage, the steps are: 

 
1. Definition of acoustic emission parameters to evaluate in each cycle 

2. Evaluation of these parameters during load/unload cycles until failure 

3. Establishing a relationship between acoustic emission parameters and ratio of load-to-failure 

 

For the second stage, the schedule is slightly different: 

 

1. Definition of acoustic emission parameters to evaluate in each cycle 

2. Evaluation of these parameters during load/unload cycles until certain load level 

3. Using established relationship to predict ratio of load-to-failure in each cycle 

4. Extrapolating the load-to-failure ratio to unity thereby predicting the failure level and adding an 

estimation of prediction error 

 

As for the importance of the implementation of this schedule, we briefly explain the proposed 

load/unload schedule. Next, we briefly present the acoustic emission criteria used in this study and 

elaborate the background why these were chosen instead of others. In the subsequent section, we 

discuss the approach to implement the relationship between acoustic emission parameters and ratio of 



load-to-failure using artificial neural networks. Finally, the details for the proposed extrapolation and 

error estimation rules are presented. 

 
2.1 Cyclic load schedule 
Apart from monotonically increasing the applied load, repetitive loading and unloading cycles according 

to ASTM E 1067 are a popular concept used in acoustic emission testing. The two principle types of this 

testing scheme are shown in figure 1. In both cases, the specimen is subject to a monotonic increasing 

load until a certain load level 𝐿1 is reached. Then the specimen is fully unloaded (figure 1-a) or partially 

unloaded (figure 1-b). In the next “cycle” the load is increased again until a certain load level 𝐿2 is 

reached, which exceeds the previously reached load level. This process is repeated N-times up to a 

certain maximum load level 𝐿𝑚𝑎𝑥  or up to specimen failure 𝐿𝑓𝑎𝑖𝑙𝑢𝑟𝑒 . This gives rise to the definition of 

the load ratio 𝐿𝑅 for cycle 𝑁:  

 
𝐿𝑅 =  𝐿𝑁 / 𝐿𝑓𝑎𝑖𝑙𝑢𝑟𝑒                (1) 

 
In the sense of failure criteria of fiber-reinforced materials, this load ratio is the global stress exposure 

of the structure (cf. Puck’s failure theory [17,18]), which is also known as reserve factor, when taking the 

inverse. 

 

In order to conform with the definition of the acoustic emission parameters in the next section the 

minimum unload level 𝐿𝑁,𝑙𝑜𝑤 needs to be small enough to allow the measurement of small enough 

ratios, e.g. to measure a Felicity ratio of 0.7, the requirement is 𝐿𝑁,𝑙𝑜𝑤 < 0.7 ∙ 𝐿𝑁−1.  

 

 
Figure 1: Scheme for definition of load-unload cycles with full unload (a) and partial unload (b). 

 
2.2 Acoustic emission parameters 
During the loading of the material, acoustic emission signals are recorded simultaneously. For the later 

application in forward prediction it is important to define parameters such, that they can be calculated 

in the present load cycle based on input of only the past cycles. Thus, any normalization of values by the 

number of hits, amplitudes or energies of future cycles is not meaningful for a forward prediction 

attempt. Furthermore, we propose to use only parameters, which have intrinsic normalization. That is, 
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they are ratios instead of absolute values. This should make the numerical values of these parameters 

less susceptible to changes of test volume and possibly test condition (see section 4). 

 
2.2.1 Felicity ratio 
One such parameter that falls into this category is the well-established Felicity ratio. As seen in figure 2-

a below, the Felicity ratio is defined for every cycle 𝑁 > 1 using the onset of acoustic emission hits in the 

present cycle 𝐿𝐹𝑅,𝑁 and relates this value to the previously reached load 𝐿𝑁−1: 

 
𝐹𝑅𝑁  =  𝐿𝐹𝑅,𝑁 / 𝐿𝑁−1               (2) 
 
One particular challenge arises from the correct measurement of the onset of acoustic emission. In 

standards like ASTM E 1067 the term “significant” is used without further clarification. In general, the 

best measure of an acoustic emission onset may not necessarily be identical to the occurrence of the 

first signal, since this may likely be a noise signal or a premature (unique) local failure on the microscale, 

which is not representative for the full specimen or full structure under load. To decrease the 

susceptibility to such outliers, one approach is the use of the mean onset value of the first 𝐾 hits [9,10]. 

To avoid setting 𝐾 as absolute value, we propose to use an adaptive 𝐾 value, based on the number of 

hits detected in the present cycle, i.e. at 5% of the hits detected in the present cycle. 

For cases, where there are many acoustic emission hits in each cycle, curve-fitting approaches can be 

considered. As specifically proposed by [19], trend monitoring using the exponentially weighted moving 

average of the activity curves may yield an improved approach to detect the onset of acoustic emission. 

Especially for cases, where the first hits show negligible energy compared to the rest of the recorded hits 

this may yield more stable and meaningful onset values. Another curve fitting approach is the backwards 

extrapolation of the accumulated number of acoustic emission hits, if this curve is relatively linear as 

function of load. In [11,20] the Historic index was also proposed as a measure of an acoustic emission 

onset (definition see e.g. DIN EN 15857). As schematically outlined in figure 2-b, each approach may lead 

to a different onset value. However, the sequence of onsets shown in the graph is not representative of 

the particular approach, e.g. Historic index does not need to be the last of the onsets. 
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Figure 2: Scheme for definition of Felicity ratio (a) and established ways to measure the acoustic 
emission onset (b). 

 
Within this study, we define the Felicity ratio as relative shares for fractions 5%, 10%, 15% and 20% of 

the total number of hits during the ascending part of the cycle. This is denominated 𝐹𝑅5, 𝐹𝑅10, 𝐹𝑅15 

and 𝐹𝑅20 in the following. In addition, we define the average Felicity ratio as arithmetic mean of these 

for values: 

 

〈𝐹𝑅〉  =  
1

4
(𝐹𝑅5 + 𝐹𝑅10 + 𝐹𝑅15 + 𝐹𝑅20)         (3) 

 
Therefore, in total five different Felicity ratios are evaluated for each load cycle. 

 
2.2.2 Shelby ratio 
Another criterion that is applicable for the proposed scenario is the Shelby ratio. Other than the Felicity 

ratio, the Shelby ratio is evaluated during the unloading phase of the present load cycle. In the case of 

detection of unloading acoustic emission, the Shelby ratio is defined as: 

 

𝑆𝑅𝑁  =  ∆𝐿𝑆𝑅,𝑁 / 𝐿𝑁                (4) 
 

The definition uses the unloading range ∆𝐿𝑆𝑅,𝑁 at the instant of reaching a critical number of acoustic 

emission hits 𝑁𝑐𝑟𝑖𝑡 (cf. figure 3). This is than related to the previously reached peak load, i.e. the 

maximum of the present cycle 𝐿𝑁. In analogy to the definition of the Felicity ratio, the unloading range 

can be established based on a fixed number of hits, by relative shares, e.g. at reaching 95% of the number 

of unloading hits or by trend analysis methods as described above. 

 
Figure 3: Scheme for definition of Shelby ratio. 

 

Herein, we follow the same concept for the Shelby ratio as for the Felicity ratio. We define the number 

of critical hits as relative shares for fractions of 95%, 90%, 85% and 80% of the total number of hits during 

the descending part of the cycle. This is denominated 𝑆𝑅95, 𝑆𝑅90, 𝑆𝑅85 and 𝑆𝑅80 in the following. In 

addition, we define the average Shelby ratio as arithmetic mean of these for values: 

 

〈𝑆𝑅〉  =  
1

4
(𝑆𝑅95 + 𝑆𝑅90 + 𝑆𝑅85 + 𝑆𝑅80)         (5) 
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Therefore, in total five different Shelby ratios are evaluated for each load cycle. 
 

2.2.3 Energetic ratios 
In addition to the two previous ratios, which are based on the number of hits it appears feasible to define 

a measure for the acoustic emission onset by means of energetic signal quantities, as it is generally 

assumed, that the intensity of the signal is related to the severity of the damage formation. 

The primary quantities that are used to describe the energetic relevance of an acoustic emission signal 

are the maximal signal amplitude, the signal energy as integrated squared signal amplitude divided by 

input impedance of measurement system and the “Root-Mean-Square” (RMS) value as square-root of 

the mean squared signal amplitude over the duration of the hit. As schematic example for these features 

the accumulated curve of one of these values is shown in figure 4. Following the thought of self-

referencing values, the onset is defined as load value 𝐿𝐸,𝑁 where the previously reached accumulated 

value 𝐴𝑁−1 is exceeded, i.e. at the value 𝐴𝑁 ≥ 2 ∙ 𝐴𝑁−1. 

 
𝐸𝑅𝑁  =  𝐿𝐸,𝑁 / 𝐿𝑁−1               (6) 
 
 

 
Figure 4: Scheme for definition of the energetic ratios. 

 
In this study, we use the acoustic emission parameters signal amplitude in [dBAE], the absolute signal 

energy in [aJ] and the average signal level in [dBAE] to establish the accumulated values. Accordingly, we 

evaluate one such ratio for each quantity, i.e. 𝐸𝑅𝐴𝑀𝑃, 𝐸𝑅𝐸𝑁𝐸 and 𝐸𝑅𝐴𝑆𝐿. 

 
2.3 Linking acoustic emission and failure load 
The next step is the generation of a symbolic relationship between a particular combination of acoustic 

emission parameters and the measured load ratios. Using one input parameter like the Felicity ratio and 

one output parameter like the load ratio, this can be done by an analytical relationship between these 

two values. In the work of [12,19] this was achieved using a linear regression analysis. The disadvantage 

of this approach consists in the necessity of a strict analytical relationship and the strong impact of data 

scatter, which will affect the forward prediction capabilities (see section 2.4). Consequently, it appears 

useful to define a function with multiple input parameters to fit the single output parameter (load ratio): 
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𝐿𝑅 =  𝑓(𝐹𝑅, 𝑆𝑅, 𝐸𝑅, … )              (7) 
 
This type of function approximation problem can be addressed by multiple techniques of multivariate 

data analysis (see e.g. [21]). In this work, we use a multi-layer feedforward neural network implemented 

in MATLAB to perform the function approximation using a Levenberg-Marquardt algorithm. We use the 

13 different acoustic emission ratios as input values of an artificial neural network applying a linear 

transfer function for each neuron to fit the corresponding load ratio. For the present purpose, a network 

structure with 5 to 10 neurons per layer and one or two hidden layers proved sufficient to reach a 

reasonable function approximation. The specific settings depend on the complexity faced (see section 

4). To avoid overfitting the data, 70% of the input data values are used as training set, whereas another 

15% are used for the validation of the algorithm convergence and the remaining 15% for evaluation of 

the performance of the artificial neural network. For the latter, the mean-square error of the fit between 

input values and output values is applied. The full procedure is repeated 100 times for one configuration 

with new random selection of training, validation and test datasets and the artificial neural network with 

best performance is selected based on the lowest mean-square error. 

After the training step, the artificial neural network 𝑓𝑜𝑝𝑡 can be used to predict the expected load ratio 

for a certain combination of acoustic emission input parameters. 

 
2.4 Forward prediction routine 
After an established relationship between acoustic emission parameters and load ratio is available, it is 

feasible to apply the procedure for forward prediction. At a given load cycle 𝑁 we can calculate the 

acoustic emission parameters, and apply: 

 
𝐿𝑅𝑁 =  𝑓𝑜𝑝𝑡(𝐹𝑅𝑁 , 𝑆𝑅𝑁 , 𝐸𝑅𝑁 , … )             (8) 

 
This allows to predict the load ratio of cycle 𝑁. Knowing the actual peak load 𝐿𝑁 this allows to relate the 

present peak load 𝐿𝑁 and the predicted load ratio 𝐿𝑅𝑁 as seen in figure 5. For a proper function 𝑓𝑜𝑝𝑡 we 

expect a linear relationship between the 𝐿𝑅 and 𝐿𝑁, so it is appropriate to perform a linear regression 

for the data points, which follows the idea of earlier work reported by Waller et al. [12].  For our 

implementation we consider the linear regression slope 𝑚 with forced intercept at the origin and 

calculate the linear regression error 𝜀 as  

 

𝜀 = √
(∑ 𝐿𝑅𝑁−𝑚∙𝐿𝑁)2

𝑁−2
∙ (

𝑁

(𝑁∙∑ 𝐿𝑁
2 )−(∑ 𝐿𝑁)2

)        (9) 

 
For the purpose of forward prediction, the extrapolation of the linear regression to 𝐿𝑅 = 1 yields the 

corresponding predicted failure load. Based on the scatter of the data points there is an uncertainty in 

the forward prediction, which appears appropriate to be considered in the load prediction values. With 



the constraints of 𝐿 = 0 implies 𝐿𝑅 = 0, the extrapolation function has to pass the origin. Accordingly, 

we do not apply a confidence interval approach, but use 𝜀 as upper and lower bound for the slope 𝑚. 

The intersections of (𝑚 ± 𝜀) ∙ 𝐿 with 𝐿𝑅 = 1 are taken as uncertainty of the failure prediction value. 

 

 
Figure 5: Scheme for extrapolation of 𝐿𝑁 values to predict failure load. 

 
 

3. Experimental 
 

For the experimental work, we used fiber-reinforced thermoplastic composites made from Torayca 

T700S 12k carbon fibers and PPS matrix material. For the evaluation of the approach we use three 

different types of mechanical tests, which are feasible to carry out in load/unload cycles. To demonstrate 

the flexibility of the approach to adapt to different failure modes, we use data from tensile tests and 

load bearing tests. To incorporate volume effects, which could be problematic for the evaluation of 

acoustic emission parameters, we use tensile tests on tape material, classical tensile test specimens and 

load bearing test geometries of two sizes as seen in figure 6. The corresponding test volumes and 

statistics are reported in table 1, including the average accumulated acoustic emission energy of each 

test condition. The number of acoustic emission sensors was chosen based on attenuation 

measurements of the samples to ensure equal sensitivity in each configuration. In the following, we 

briefly describe the test condition of each configuration. All specimens were tested in standard climate 

condition 23 °C temperature and 50% relative humidity. 
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Figure 6: Test sample geometries investigated including acoustic emission sensor positions for 

tape tensile tests (a), tensile tests (b) and bearing strength test (c). 
 
3.1 Tensile tests on tape material 
For processing with automated tape laying, the T700 carbon fibers are embedded in the thermoplastic 

PPS matrix in form of tape material supplied with 1” (25.4 mm) width. The nominal fiber volume fraction 

of the tapes was evaluated as 0.57. As first step of this study, these tapes are tested in the as-received 

state. For preparation of tensile test specimens, we use resin impregnated cotton fabrics as additional 

reinforcement in the clamping region (see figure 6-a). The room temperature curing adhesive system 

Stycast 2850 FT was used to bond specimens and reinforcement tabs. This yields an increase of nominal 

thickness from 0.16 mm in the test region to 0.95 mm in the reinforcement range. We choose a total 

length of 250 mm with 100 mm length reduced section and kept the 25.4 mm (1”) width of the tape for 

the test samples. Since unidirectional tapes were used, the fiber axis direction is parallel to the length 

direction of the specimen. The specimens were tested in displacement controlled mode with 2 mm/min 

test speed using a universal testing machine with 50 kN load cell and self-jamming wedge grips using 

complete loading and unloading cycles. Load increments were chosen as 200 MPa load increments with 

intermediate unloading to 50 MPa tensile stress at 10 mm/min test speed.  

 
3.2 Tensile tests 
The aforementioned tape material was used to fabricate test laminates with six layers in unidirectional 

layup using in-situ laser consolidation. All specimens were cut to nominal specimen dimensions of 

250 mm × 15 mm × 1 mm (length × width × thickness) with the fiber axis direction parallel to the length 

direction of the specimen (see figure 6-b). The room temperature curing adhesive system Stycast 2850 

FT was used to bond specimens and reinforcement tabs with (± 45° layup) to the heat pressed 

specimens. The specimens were tested in accordance with DIN EN 2561 in displacement controlled mode 

with 2 mm/min test speed using a universal testing machine with 250 kN load cell and hydraulic grips 
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using complete loading and unloading cycles. Load increments were chosen as 200 MPa with 

intermediate unloading to 50 MPa tensile stress at 10 mm/min test speed.  

 

3.3 Bearing strength 
For this part of the investigation, we carried out bearing strength tests on specimens of 108.0 mm × 

54.0 mm × 5.7 mm (length × width × thickness) with 9.0 mm diameter bolts and a scaled version with 

216.0 mm × 108.0 mm × 11.4 mm (length × width × thickness) with 18.0 mm diameter bolts (both 

geometries see figure 6-c). The load was introduced using clamping strips in the spirit of DIN EN 6037 

(type 2 configuration). However, both bolts are same diameter, so no preference was given for failure 

on either side of the laminate. As for the tensile test specimens, these specimens were also built using 

automated tape laying with in-situ laser consolidation. The stacking sequence is using the directed 

configuration (0,+45,-45,0,90)4sym for the regular size and (0,+45,-45,0,90)8sym for the scaled size. Testing 

was carried out in displacement controlled mode at 2 mm/min test speed using a universal testing 

machine with 250 kN load cell. The load schedule is a step-wise increase by 40 MPa until failure with 

intermediate unloading to 20 MPa tensile stress as lower limit.  

 

3.4 Acoustic emission settings 
In all experimental settings, acoustic emission sensors were mounted on the specimen using suitable 

clamp systems to ensure reproducible contact pressure between sensor and specimen. As acoustic 

couplant, viscous Korasilone silicone grease was used. All signals were amplified by 20 dB using a 2/4/6 

preamplifier and are recorded with 10 MSP/s sampling rate and 35 dBAE threshold using the software 

AEwin. For all configurations, a bandpass filter from 20 kHz to 1 MHz was used. In all cases, the trigger 

settings were chosen as 10 µs for Peak-Definition-Time and 80 µs for Hit-Definition-Time. Based on the 

difference in the sound velocity and test geometry we empirically adjusted the Hit-Lockout-Time values 

for each test case to avoid triggering the same event multiple times. The values used are 300 µs for the 

tape tensile test, 1500 µs for the tensile test and 10000 µs for the bearing strength test.  

For the tensile test cases two acoustic emission sensors in linear arrangement were used (see figure 6-a 

and 6-b). To detect only AE signals with source positions located in the tapered area, an Event-Definition-

Time filter was used. The settings for this filter were adjusted for each specimen individually to avoid 

detection of sources outside the tapered range. For further processing, only signals localized in the 

tapered region by a classical t-based algorithm were taken into account.  

For the bearing strength testing, five acoustic emission sensors were used with the geometric 

arrangement seen in figure 6-c. In this test configuration, the presence of a bolt in the laminate and the 

anisotropy of the fiber-reinforced material cause strong disturbance of the acoustic wave field. 

Therefore, we apply a neural networks based source localization approach as described in [22] following 

the specific implications outlined in chapter 4.6 in [4] to obtain an average source localization accuracy 



of 3.3 mm. As for the tensile test cases, only localized signals were taken into account for further 

processing. 

Name Samples 
tested 

Volume  
(length × width × thickness) 

Accumulated acoustic 
emission energy 

Tensile test (tapes) 6 (100 × 25.4 × 0.16) mm³ = 406.4 mm³ (1.8 ± 1.7) × 10-7 J 

Tensile test 6 (130 × 15 × 1) mm³ = 1950 mm³ (1.5 ± 1.5) × 10-5 J 

Bearing strength (regular 
size) 

3 (108 × 54 × 5.7) mm³ = 33,242 mm³ (2.5 ± 1.8) × 10-3 J 

Bearing strength (scaled 
size) 

3 (216 × 108 × 11.4) mm³ = 
265,939 mm³ 

(7.3 ± 1.5) × 10-3 J 

Table 1: Summary of test condition volumes and acoustic emission energies. 
 

4. Results 
 

In order to demonstrate our failure prediction concept, we first present exemplarily the load schedules 

and introduce the specific acoustic emission parameters used in this study. Next, we present a discussion 

of the predicted failure loads and the measured failure loads. 

 
4.1 Evaluation of acoustic emission parameters 
Within this study, we used a load scheme with load/unload cycles to failure. Maximum load capacity was 

estimated based on quasi-static measurements in each of the three test conditions. Load increments 

were then defined accordingly to reach 10 to 20 cycles before ultimate failure (i.e. rupture for the tensile 

test cases and exceedance of the maximum strength for the load bearing cases). Exemplary load-time 

curves superimposed with the simultaneously acquired acoustic emission signals are shown in figure 7-

a for a tensile test sample and in figure 7-b for a load bearing test. 

 

An example for the typical acoustic emission evaluation result of the tensile test case is shown in figure 

8. The calculated acoustic emission ratios are plotted on the vertical axis, while the horizontal axis is 

chosen as load ratio value 𝐿𝑅. The Felicity ratio data is shown in figure 8-a, with the values of the 〈𝐹𝑅〉  

evaluation connected by straight lines for better visibility. As expected from the definition of the Felicity 

ratio values, the 𝐹𝑅5 starts first in each cycle, followed by the 𝐹𝑅10, 𝐹𝑅15 and 𝐹𝑅20, which is seen in 

the graph as a systematic shift of the numerical values from low to high. For the first five cycles evaluated, 

the overall number of acoustic emission hits is so low, that all 𝐹𝑅 values are evaluated identically, as 

single cascades of acoustic emission hits practically appeared at the same load level. In the later cycles 

it is clearly observed, that the 〈𝐹𝑅〉 value acts as arithmetic mean value of the other 𝐹𝑅 values.  

The evaluation of the Shelby ratio follows the same style of presentation and is shown in figure 8-b. The 

arithmetic average 〈𝑆𝑅〉 is connected by straight lines to improve visibility. As for the Felicity ratio, a 

falling trend of 𝑆𝑅 values is observed as function of load ratios. However, the Shelby ratio can only be 



evaluated for those cycles, which exhibit acoustic emission signals during the unloading step. As this was 

not the case for all cycles, there are less data points than for the Felicity ratio evaluation of figure 8-a. 

In addition, we evaluate energetic ratios as explained in section 2.2.3. We choose the signal amplitude 

in [dBAE] the absolute signal energy in [aJ] and the average signal level in [dBAE] to evaluate the load level 

of exceedance relative to the previous cycle. As seen in figure 8-c, these do provide a certain trend as 

function of 𝐿𝑅, but this is not necessarily linear. Based on the slight scatter in between the three different 

ratios of 𝐸𝑅𝐴𝑀𝑃, 𝐸𝑅𝐸𝑁𝐸 and 𝐸𝑅𝐴𝑆𝐿 it is also clear, that these values are not identical attempts to 

express the acoustic energy release per cycle, but show a certain common trend. 

 

 
Figure 7: Exemplary load scheme for tensile test (a) and exemplary load scheme for load 

bearing test (b), both including accumulated number of acoustic emission hits. 
 

 

 
Figure 8: Felicity ratio evaluation for tensile test example of figure 8-a (a) and corresponding 

evaluation of Shelby ratio (b) and energetic ratios (c). 
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In figure 9, an example for a load bearing test sample is shown using the same evaluations as in figure 8. 

Despite of some differences to the tensile test case, in all three figures there is a certain falling trend of 

acoustic emission ratios as function of load ratio. In figure 9-a the last cycle elucidates the susceptibility 

of the Felicity ratio, when it is based on a small number of first arriving signals. In the last cycle, the first 

acoustic emission signals appear already at 0.2 of the previous load, whereas the 𝐹𝑅10, 𝐹𝑅15 and 𝐹𝑅20 

indicate, that the primary onset is still above 0.5. In such cases, the 〈𝐹𝑅〉 evaluation provides a good 

compromise between an early onset evaluation and susceptibility to the presence of potential outlier 

data. The Shelby ratio evaluation is shown in figure 9-b, which exhibits some more scatter than the 

Felicity ratios, but overall follows the same falling trend. For the data of figure 9-c, again a falling trend 

at the lowest three cycles is seen, which is similar to the tensile test case in figure 8-c. After settling in 

for some cycles, there is a fall-off towards the final cycles. This indicates once more the necessity for a 

non-linear regression analysis to extrapolate such trends for prediction of a valid load ratio. 

 

 

 
Figure 9: Felicity ratio evaluation for load bearing test example of figure 8-b (a) and 

corresponding evaluation of Shelby ratio (b) and energetic ratios (c). 
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the ratios span the same numerical ranges. This is crucial, if these ratios are to be used for a common 

data basis for predictive capabilities, such as predicting structure response based on coupon test data. 

Using absolute acoustic emission values would not suffice to this end, since absolute amplitude values, 

number of hits and alike are highly influenced by the type of load and the size of the test structure and 

the density of the sensor network. 

 

In the following, these thirteen ratios were used to train the relationship between acoustic emission data 

and load ratios in order to perform the failure prediction outlined in the next section. 

 
4.2 Failure prediction 
In the following, we applied four different approaches to compare and discuss. For the failure prediction, 

we follow the extrapolation approach described in section 2.4. Two examples of this procedure are 

shown in figure 10, one for tensile tests and one for the bearing strength test.  

For all investigations, we define an upper limit of data points to use for the forward prediction. The data 

points excluded from the forward prediction are marked in gray in figures 10-a and 10-b. In addition, the 

prediction uncertainty is indicated by the red shaded cone. As there is zero predicted load at 𝐿𝑅 =  0 as 

fixed boundary constraint, this reduces the uncertainty at values close to zero load. As seen in both 

figures, the scatter of data points is responsible for the prediction uncertainty. For the tensile test case 

we selected the result of sample 2 (cf. figure 12) to show a representative case for a reasonably high 

scatter in the prediction value. In this case, the deviation between predicted load and measured load is 

quite large with 7.0%.  

In comparison, the example for the bearing strength test is the result of sample 3, which exhibits less 

scatter. Here the deviation between predicted load and measured load is only 2.3%. For the given two 

cases, the extrapolated linear relationship is marked as red line, with the predicted strength value shown 

as red square at the intersection between the predicted 𝐿𝑅 =  1 and the linear extrapolation. As 

reference, the true failure strength is shown as green square and the dashed black line marks the real 

linear relationship between the applied stress and the 𝐿𝑅 values. Both cases are prediction examples for 

the artificial neural network approach described in section 4.2.3.  
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Figure 10: Extrapolation of predicted load ratios to yield failure strength for tensile test sample 
2 (a) and load bearing test sample 3 (b). 

 
For better comparability, we compiled all prediction results in figures 11, 12 and 13, one for each test 

configuration. Besides the failure prediction results, these figures show the actual value of failure 

strength as solid gray horizontal line as reference. 

 
4.2.1 Same species, all samples (LR<0.85) 
This concept represents a simple test case, since only identical geometries and test settings are 

considered. For this failure prediction, only training data of the same species is taken into account and 

all six samples are used as data basis. The purpose of this approach is the use of only one artificial neural 

network with 2 hidden layers and 5 neurons each, so prediction quality can be directly compared within 

one series of species. However, this is not understood as “true” prediction as the sample to be predicted 

is already included in the training data set, which is not a good practice. The resultant prediction values 

are shown as black squares in figures 11, 12 and 13, with the extrapolation uncertainty added as error 

bars. For this investigation we choose an upper limit for the extrapolation basis of 𝐿𝑅 <  0.85, meaning 

that the minimum extrapolation length is 15% of the samples ultimate tensile strength. The exact limit 

is specific for each sample, but ranges from 0.80 <  𝐿𝑅 <  0.85. For this approach, given a higher 

number of artificial neurons and higher number of hidden layers, predicted LR values could be fitted 

exactly to their real 𝐿𝑅 values. However, this would be considered an attempt of data overfitting, which 

is generally to avoid in using artificial neural networks. Thus, we used the same neural network structure 

as in section 4.2.2, to yield a representative result for this part of the study. Accordingly, the predicted 

values match the real failure strength values reasonably well. Within the margin of error, all sample 

failure strength values are predicted. However, the exact prediction value as well as the size of the error 

bars appears unique for every sample, as this mostly depends on the scatter of the available data points 

as seen in figure 10. This proves that the prediction concept is generally feasible. 

 
4.2.2 Same species, all but present sample (LR<0.85) 
In order to remove the main limitation of the previous approach, multiple artificial neural networks are 

now trained and evaluated. For every sample, the training data set is revised and all data points from the 

sample currently under investigation are removed. Subsequent to that, the 18 artificial neural networks 

are trained following the same rules as before using a network structure with 2 hidden layers and 5 

neurons each. For each of the figures 11, 12 and 13, the training data basis is five samples of same 

species. The predicted failure strength is shown as red squares with corresponding error bars to 

represent the prediction uncertainty. We choose again an upper limit for the extrapolation basis of 𝐿𝑅 <

 0.85. For this approach, we find a valid prediction result for all specimens within the margin of error. 

This approach is considered as “true” prediction, as the artificial neural network training data does not 



include a-priori information of the specimen predicted. However, the training quality is highly unique for 

the different artificial neural networks, which is partially responsible for the large error bars. In addition, 

the smaller data basis (five instead of six samples) does not add to the stability of the procedure. 

However, this approach provides evidence, that the prediction of unknown sample properties is possible, 

given there is a sufficient number of identical type previously tested. 

 
4.2.3 All species, all but present sample (LR<0.85) 
As next step, we mix the training data of all samples of all load cases and remove solely the data points 

of the sample to be predicted. Therefore, another 18 artificial neural networks with 2 hidden layers and 

10 neurons each are trained and their results are shown in figures 11, 12 and 13 as blue squares with 

prediction uncertainty as error bars and 𝐿𝑅 <  0.85 as extrapolation limit. For each artificial neural 

network, the training data basis are 17 samples. Except for tape sample 2, the mixed training data set is 

capable of predicting the behavior in all three configurations quite well. For tape sample 2, the predicted 

value is slightly outside its margin of error, but the predicted value of 1449 MPa is actually very close to 

the true value of 1422 MPa. The main differences of prediction quality originates from the specific 

artificial neural network training quality and the corresponding accuracy reached in the forward 

prediction. This proves that the structure of the artificial neural network is flexible enough to 

compensate for the differences in evolution of acoustic emission parameters as function of 𝐿𝑅 not only 

for different samples, but also for different load conditions and test volumes, given a suitable number of 

sensors is used to detect the acoustic emission. 

 
4.2.4 All species, all but present sample (LR<0.64) 
Finally, we keep the same artificial neural networks as used in the previous section 4.2.3 and modify the 

extrapolation length. As an upper limit of 𝐿𝑅 =  0.85 may seem not adequate for quality control of 

composite structures, we reduce the upper limit to 𝐿𝑅 <  0.64, which was the best compromise 

between the availability of data points for extrapolation and reasonably low load ratio. The prediction 

results are shown in figures 11, 12 and 13 as green squares with their prediction uncertainty as error 

bars. The number of data points used for the extrapolation is shown next to the prediction value in green. 

For the tape tensile tests, the increase in forward prediction to 36% ultimate strength results in values 

which still fit with the reference values within the margin of error. For sample 5, no data points could be 

evaluated below 𝐿𝑅 =  0.64, so no prediction is made for this sample. For the tensile test samples of 

figure 12, only five out of six samples were predicted within the margin of error. Especially samples 2 

and 3 are far away from the real strength value, yet their prediction error is extraordinarily high. 

Consequently, this indicates, that the particular choice of 𝐿𝑅 in this case might not be sufficient for a 

stable prediction. For the load bearing tests shown in figure 13, four out of six samples are predicted 

systematically lower than the reference value of the ultimate bearing strength, the other two samples 



exhibit high scatter. This behavior can readily be understood from figure 10-b. For the lower number of 

cycles the slope appears to be steeper, so their extrapolation is expected to result in lower strength 

values. Including more data points at higher 𝐿𝑅 values, than changes the slope, so it becomes less steep. 

We added the measured initial bearing strength value (defined as first load drop in the load-

displacement curve) as green lines to figure 13. According to the test standards, this value is interpreted 

as load value of initial bearing failure of the bolt, i.e. the first significant formation of damage in the 

composite at the contact surface between bolt and laminate. This may readily be understood as failure 

as well. Apparently, the prediction values at 𝐿𝑅 <  0.64, coincide reasonably with the measured value 

for the first four samples. For the samples  5 and 6, the prediction uncertainty is so high, that both values 

(ultimate strength and initial strength) fall into the prediction range. This is likely because the selected 

data points at around 𝐿𝑅 =  0.64 either fall into the regime before initial bearing failure (samples 1-4) 

or include one more data point after initial bearing failure (samples 5-6). This is also the origin for the 

relatively high uncertainty of prediction. Overall, this final approach indicates, that reasonably low 𝐿𝑅 

Values can be used for forward prediction, given a suitable number of data points is still available and 

the failure mode retains unchanged.  

In a real application with a maximum proof load of 0.64 𝐿𝑅 one would rather modify the load schedule 

to yield 10-20 cycles in the load range between first onset of acoustic emission (e.g. 𝐿𝑅 =  0.2) and 

𝐿𝑅 =  0.64 to obtain a sufficient number of data points for the linear extrapolation. Given similar 

accuracy of the predicted 𝐿𝑅 values is reached as in the example of figure 10-b, this modified procedure 

should stabilize the prediction accuracy. However, the low acoustic emission activity at low 𝐿𝑅 values 

needs to be taken into account for the selection of the number of cycles, as to few signals per load cycle 

may easily lead to erroneous predicted 𝐿𝑅 values and could cause less stable prediction. 

 
Figure 11: Forward prediction result of all tape tensile tests using different approaches to generate the 

training dataset for the artificial neural network. 
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Figure 12: Forward prediction result of all tensile tests using different approaches to generate 

the training dataset for the artificial neural network. 

 
Figure 13: Forward prediction result of all bearing strength tests using different approaches to 

generate the training dataset for the artificial neural network. 
 
 

5. Conclusion 
 
Within this study, we outlined a concept to perform acoustic emission based failure prediction of fiber-

reinforced composites. The prediction is based on acoustic emission ratios evaluated in load-unload 

cycles. The ratios are defined independent of the absolute number of acoustic emission hits. With the 

presented case studies, it appears feasible to allow forward prediction for specimen strength values, 

given a suitable number of cycles is used. Clearly, the forward prediction routine benefits from a high 

number of load-unload cycles, but in a real test situation, a compromise between duration of the test 

campaign and the number of cycles is required. For the 10 to 20 cycles used in this study, the prediction 

values were found to coincide with the real strength value within the margin of error. This was regardless 

of the specific artificial neural network approach taken. Five test samples proved sufficient for the 

prediction of strength values. However, as the approach is based on a supervised training stage, the 

prediction accuracy would benefit from a larger number of test cases than used in this study. 
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Using a combination of all samples, the mean prediction accuracy with reference to the ultimate strength 

of the samples is 0.2% for the tape tensile tests, 1.3% for the classical tensile tests and 0.7% for the load 

bearing tests at a forward prediction limit of 𝐿𝑅 = 0.85. This is much lower than the typical coefficient 

of variation within the sample series, which evaluates as 9.8% for the tape tensile tests, 8.2% for the 

classical tensile tests and 5.4% for the load bearing tests. The prediction uncertainty evaluates as 7.1% 

for the tape tensile tests, 11.8% for the classical tensile tests and 10.1% for the load bearing tests when 

taking the ultimate strength as reference value. 

A reduction of forward prediction limit to 𝐿𝑅 = 0.64 results in slightly worse values of 2.6% for the tape 

tensile tests, 5.7% for the classical tensile tests and 0.2% for the load bearing tests when excluding the 

samples with uncertainties of more than 50% the nominal value and referencing to the initial bearing 

strength. The corresponding mean prediction uncertainty evaluates as 11.4% for the tape tensile test, 

8.0% for the tensile test and 15.8% for the bearing strength test. 

The prediction values as well as the prediction accuracy depends significantly on the quality of the input 

data, i.e. the acoustic emission ratios. Other definitions and approaches then presented in section 2.2, 

which lead to a more stable evaluation of the acoustic emission ratios are worthwhile to be considered 

for future approaches. Other factors, which could affect the acoustic emission release relative to the test 

data basis, should be carefully assessed as well. Among these, the research on different load concepts 

and the effect of temperature should be analyzed to understand its impact on the evaluation of the 

acoustic emission ratios. However, especially for equivalent load conditions, identical specimen 

geometries and otherwise equal measurement conditions (e.g. instrumentation, threshold, preamplifier 

gain, trigger settings, …), the presented approach is expected to safely predict the failure strength of 

composite materials. 
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