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Abstract

We study the tail behaviour of the distribution of the area under the positive excursion of
a random walk which has negative drift and light-tailed increments. We determine the
asymptotics for local probabilities for the area and prove a local central limit theorem for
the duration of the excursion conditioned on the large values of its area.
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1. Introduction and statement of results

Let {S,; n > 1} be a random walk with independent and identically distributed (i.d.d.)
increments {Xy; k > 1} and let 7 be first time when S, is nonpositive, i.e.

T:=min{n >1: 5, <0}.

Define also the area under the trajectory {So, S1, ..., S¢}:
T—1
Ar =Y Sk
k=1

If the increments of the random walk have nonpositive mean then the random variables r and A,
are finite and we are interested in the tail behaviour of the area A;.

In the case of the driftless (EX; = 0) random walk with finite variance 02 := EX f € (0, 00),
we have a universal tail behaviour

1 1/3
lim x'PP(A; > x) = 2coal/3EU e(?) dt] i (1)
0

X— 00

where e(t) denotes the standard Brownian excursion and the constant Cq is taken from
P(t = n) ~ Con=3/2. Proposition 1 of Vysotsky [15] states that (1) holds for some particular
classes of random walks. But we can easily see that the proof from [15] remains valid for all

random walks with zero mean and finite variance. Later we will provide an alternative proof
of (1).
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If the mean of X is negative then the distribution of A; becomes sensitive to the tail
behaviour of the increments. Borovkov et al. [4] showed that if the tail of X is a regularly
varying function then, as x — oo,

P(A; > x) ~P(M; > V2IEX |x'/?) ~ EtP(X; > V2|EX;|x'/?), 2)

where M; := max, -, S,. Behind this relation there is a simple heuristic explanation. In order
to have a large area under the excursion, the random walk has to make a large jump at the very
beginning and then the random walk behaves according to the law of large numbers. More
precisely, if the jump of size h appears, after which the random walk goes linearly down with
the slope —u, where p := |EX|, then the duration of the excursion will be of order /.
Consequently, the area will be of order 42/2u. If we want the area to be of order x then the
jump has to be of order /211x!'/2. The same strategy is optimal for large values of M;. As a
result, we have both asymptotic equivalences in (2).

This close connection between the maximum M, and the area A, is not valid for random
walks with light tails. Let ¢(¢) be the moment generating function of X1, i.e.

@(1) := Ee!X1, t > 0.
We will consider random walks satisfying the Cramer condition
@A) =1 forsome A > 0. 3)
Moreover, we assume that
¢’ (M) <00 and ¢”(A) < oo. 4)

If (3) and (4) hold then the most likely path to a large value of M is piecewise linear. The random
walk first goes up with the slope ¢’ (1) /@ ()); see Lemma 4.1 of [4]. After arrival at the desired
level A, it goes down with the slope — . This follows from the law of large numbers. If this
path is optimal for the area then

P(A, > x) & IP’(MT > 2ug’(3) x1/2>.
@' (X)) + ne(d)

Since P(M; > y) ~ Ce™, we arrive at the contradiction to the known results for random
walks with two-sided exponentially distributed increments; see [10] and [11].

Duffy and Meyn [8] determined the asymptotic behaviour of logIP(A; > x) for random
walks with not necessarily i.i.d. increments. Specialising their result to our setting, we conclude
that the optimal path to a large area is a rescaling of the function

1
V) = ——logp(x(1 —uw).  uel0.1].

They also showed that

. 1
xll)ngo Y logP(A; > x) = —6,

where

1
0 ;=211 and 1::] v (u) du.
0

Our purpose is to derive precise, without logarithmic scaling, asymptotics for A;.
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Theorem 1. Assume that X is integer valued and aperiodic. Assume also that (3) and (4)
hold. Then there exists a positive constant « such that

P(A, = x) ~ kx4 VY x & 0. (5)

Using a simple summation, we see that (5) yields
2k J4.—0x
]P)(AT > .X) ~ ?x € . (6)

An analogue of this relation was obtained by Guillemin and Pinchon [10] for an M/M/1 queue
and by Kearney [11] for a geo/geo/1 queue.

Equation (6) confirms the conjecture of Kulik and Palmowski [12] for all integer-valued
random walks. Unfortunately, the authors do not know how to derive a version of (5) for
nonlattice random walks. Moreover, the authors do not know how to derive (6) without local
asymptotics. One can derive an upper bound for P(A; > x) via the exponential Chebyshev
inequality. This leads to

P(A, > x) < Cx!/4e 0V, (7)

For the proof of this estimate, see Subsection 2.2. Comparing (6) and (7), we see that the
Chebyshev inequality provides the correct logarithmic rate of divergence and that the error
in (7) is of order +/x. Such an error is quite standard for the exponential Chebyshev inequality.
In the most classical situation of sums of i.i.d. random variables, we have an error of order /7.
In order to avoid this error and to obtain (5) we apply an appropriate exponential change
of measure and analyse, under transformed measure, the asymptotic behaviour of the local
probabilities for S, and A, := )} _, Sk conditioned on the event {t = n + 1}. This approach
allows us to obtain the following conditional limit for the duration of the excursion.

Theorem 2. Under the assumptions of Theorem 1, there exists A> > 0 such that

k— 1/2N2
sup x1/4]P’(r:k|Af=x)— ( mx ) } — 0, X — 00,

1
: N e
where m = (fo1 W(r)dn)~1/2

2. Nonhomogeneous exponential change of measure

Our approach to the derivation of the tail asymptotics for A; is based on a careful analysis
of large deviation probabilities for the vector (A, S,) conditioned on {r = n + 1}. For
every fixed n, we perform the following nonhomogeneous change of measure. Consider a new
probability measure PP such that, for every j < n,

Un,jy

P(X, € dy) = P(X; € dy), (8)
@(”n,j)
where _
nm—j+1
Up,j = A—.
n

The nonhomogeneous choice of transformation parameters u,, ; can be easily explained by the
fact that it corresponds to the exponential change of the distribution of A, with parameter A/n.
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Indeed,

E[exp{%An” — E[exp:% 2’::(11 i+ 1)Xj” — ;]_[1<p<"_2;1,\).

We have also the following relations between probabilities P and P:

n
P(Ay € dx, S, € dy) =e /" [ ] o(un j)P(Ay € dx, S, € dy)
j=1

and
n -
P(A, € dx, S, € dy, T > n) = e /" l_[go(un,j)]P’(An € dx, S, edy, T>n). (9
j=1

2.1. Simple properties of the change of measure

We now collect some elementary properties of the measure change from (8). We first note
that, by the definition of P,

EXj = (p/(un,j)’
w(un,j)

j=12,...,n

This implies that if j/n — t € [0, 1] then
~ / )\‘ 1_ 1A t / )\' 1_
Bx, » 2000y Lgs, —>f gAAZ) 4y,
‘ e —1)) no 0o el —u))

More precisely, there exists a constant C such that, forall j =1,2,...,n,

’ESJ- - mﬁ(i>‘ <cC.
n

This statement is a standard error estimate for the Riemann sum approximation of integrals of
a function with bounded derivative. Furthermore,

oy, = ) (ga/(un,j)>2
T o(un. ) @(Un, ;)

and, consequently,

¢'0(1=w) (¢ O —w)\?
—VdrS — du.
oA (L —u)) p(A (1 —u))
From these asymptotics for the first two moments and from the Kolmogorov inequality, we
infer that

Star]
n

—Y@)|—>0 in P probability.

sup
tel0,1]




604

Fix some ¢ > 0. Forevery j = 1,2, ..., n, we have

E[X2; |X;| > ev/n] =

E[X?e“”’fxf; |X ;| > ev/n]
(p(un,j)

1
< i ](p(u)(lﬁz[x%e”‘l; X1 > e/n] +E[X?: X1 < —e/n]).
uel0,A

Since E[ X %] and E[ X %e)‘X 1] are finite, we infer that

1 e~
~ E ]E[X?; |X;] > ev/nl— 0 forevery & > 0.
n

j=1

In other words, the sequence {X ;}"/_, satisfies the Lindeberg condition. Therefore, we have the
following version of the functional central limit theorem: the sequence of linear interpolations

sn@) =n" V2 (Sk + Xp(tn — k — 1) — ny (1)), e [S k1

],k:O,l,...,n—l,
n

converges weakly on C[0, 1] towards a centred Gaussian process {£(¢); ¢+ € [0, 1]} with
independent increments and second moments

t
E[£()] = f o2 (u) du,

0

where

o2y i YO (w’(k(l - u))>2

(A1 —u)) (A1 —u))
(This statement can be proven using the standard approach of [3, Section 8]: the convergence
of finite-dimensional distributions follows from the classical Lindeberg—Feller theorem, and
the tightness is a simple consequence of the Kolmogorov inequality for the maximum of partial
sums of independent random variables.)
Convergence on C[0, 1] implies that

Sinr) — 1Y (1) Apry —n2 [y ¥ ()ds w t
( ﬁ , 32 ) — (&(t),/o é-‘(s)ds), t €0, 1].

The limiting vector has a normal distribution with zero mean. We now compute the covariance
of £(¢) and fot &(s) ds. Using the independence of the increments, we can easily obtain

t t
COV(é(t),/ %(S)dS) =/ cov(§(1), £(s)) ds
0 0
t
=f0 cov(§(s) + &) —&(s5),§(s)) ds

t
:f cov(&(s), &(s)) ds

0

t ps
= / / oz(u) du ds
0 JO

t
= f o2(u)(t — u) du.

0



Moreover,

t t t
COV(/ ?;‘(s)ds,/ E(s) ds) =f ftcov(é(sl),é(sz)) ds; dsp
0 0 0 JO

t S1
. fo s, fo cov(E(s1), £(52)) ds2

t 51 s
= 2/ dslf (/ 2Gz(u)du> dsy
0 0 0
t S1
= Zf / o2 (u)(s1 — u)ds; du
0 Jo

t
:f Uz(u)(t—u)zdu.

0
Therefore, the density of (£(¢), fot &(s)ds) is given by

1
filx,y) = -5, N x, y)T>

1
with the covariance matrix
fot o2(u) du fot a2 w)(t — u)du
= ( fo ol —wydu [y o)t —u)? du) '
2.2. Proof of the Chebyshev-type estimate (7)

Lemma 1. Asn — oo,

[Ten ) =expl—rin}(1+ 0m™")).
j=1

Proof. 1t is obvious that (12) is equivalent to

n
> log@un, ) = —rln+ 0(n™h.
j=1

The sum on the left-hand side of (13) can be written as

S L))

where ¥, (z) := ¥ (z/n).

605

(10)

(11)

(12)

(13)

(14)



606

Applying the Euler—Maclaurin summation formula (see [9, p. 281, Equation (66)] or
[1, p. 806, Equation (23.1.30)]), we obtain

n—1

Zlﬁn(j) = fo Vn (1) dt + B (Y (n) — ¥n(0))
j=0

n—1

1! "o s
_5/0 (Bz(t)—Bz)jX:(:)I/’n(J-l-l—t)dfa (15)

where By and By (t) are Bernoulli numbers and Bernoulli polynomials, respectively.
Noting that v, (n) = ¥ (1) = 0 = ¥ (0) = v, (0), we conclude that the first correction term
in (15) disappears. Furthermore, by the definition of ,,

n n 1
/ Y (1) dt :/ lﬁ(£> dr :n/ Y(t)dt =nl.
0 0 n 0

Consequently, (15) reduces to

n—1 1 n—1

1
> u(j) = nl — 5[ (Ba(t) — B2) Yy (j + 1~ 1) dr. (16)
Jj=0 0 j=0

Since ¢(z), ¢’(z), and ¢” (z) are bounded on the interval [0, A], we obtain

9" (2)e(2) — (¢'(2))?
92 (2)

(&

n2

p 1 ” A
sup ¥, ()| = — Sup V" (2)| = — sup
z€[0,n] n= ze10,1] n= 7e10,1]

c (! 1
=< —/ |By(t) — By|dt = 0(—).
nJjo n

Therefore,

n—1

1
’[0 (Ba(t) — B2) Y (i + 1 — 1)t
i=0

Combining this estimate with (16), we obtain

n—1

DY) =nl + 0(1).
j=0 "

Taking into account (14), we conclude that (13) is valid. Thus, the proof of the lemma is
complete. U

Using (12), we can derive the upper bound (7) for P(A; > x). Obviously,

o0
P(A; > x) = Z]P’(An >x, T=n+1).
n=0

Using the exponential Chebyschev inequality and recalling that

n
A=) (n—j+DX;,

i=1
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we obtain
P(A, >x, t=n+1) <P(A, > x)

A A
< exp{——x E[exp{—An”
n n

Al —j+1
:exp{—;x E[exp{k%Xj”
1

gD()\n j+ )
1 n

Il

(]

>
o
e N
I
S| >
=
—1=

i

Applying Lemma 1, we have
P(A, >x, t=n+1) < exp{—,\f —An+ O(n_l)} < Cexp{—,\f - )Jn}. a17)
n n

Consequently,

o0 o0
P(AtZX)=Z]P’(AnZX’ r:n+1)§CZexp{—A;—c—Aln}. (18)

n=1 n=1
Using the result of Bateman [2, p. 146, Equation (25)], we have
> X o0 X 4x
Y expi—A= —iInp < | exp{—A= —Al(y+ 1) dy = exp{—A[} TKl(zwlx).
0 y

n
n=1

Now using the asymptotics for the modified Bessel function

Ki(z) ~ /2%6_Z as 7 — 00,

o0

X:exp{—kf — )Jn} <Cx'/4 exp{—2Av1x}.
n

n=1

we obtain

From this bound and (18), we obtain (7).

3. Local limit theorems

We start by proving a standard Gnedenko local limit theorem for the two-dimensional vector
(Stnrs Aney) under the measure IP. The following statement is a one-dimensional case of [6,
Theorem 4.2] and we provide its proof for completeness.

Proposition 1. Assume that the conditions of Theorem 1 are valid. Then, for every t € (0, 1],

— 0,

x—nyt) y—n?f, wmds)

2A
sup [n°P(Spunn = x, Apinn = y) — ( ,
x,}'} [f’lt] [Ylt] y ft ,\/ﬁ n3/2

where f; is defined in (10) and (11).
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Proof. Consider centred random variables
X9 :=X; —EX;
and their characteristic functions
@) = Ele™¥7], 1<j<n.
By the inversion formula,
P(Spnr) = X, Apur) = )

T s
_ 1 ~ e—ile—iUZYE[eivlS[nl]+iU2A[nt]] dU] dU2
2r)" JnJ-x

—1 " i —ivlnl/sz—jU2n3/2y0 . . |
“emr )L )Lt lej(v] + (n = j + Dua) dvy dua,
J=

where R
. X — ES[m]

, y — EApy
X0 1= i —_,

and =

3/2

Using the change of variables v| — +/nv; and v; — n”/“vy, we obtain

n°P(Spur) = X, Apr) = y)

mnl/? an3/? n .
—ivixp—ivay v, m—j+Dhuw
= 101 X0—1V2Y0 .
B /— 3/2 © 1_[ @i (nl/z + n3/2 dvy dvs. (19)

1/2 J_ 3
anl/ n =1

By the inversion formula for Fourier transforms,

1, (x — ESjnr) ’ X EA[”’]) _ 1 f / e—ivlm—ivzyoe—(vl,vz)Ez(vl,vz)T dvy dvs.
—00 J—00

2 a7 )T G
(20)
Define
Ry = {(v1,v2): v1 € [—en'/?, en'?], vy € [—en’/?, en/?]),
Ry = {(v1, 1) vy € [—n!/?, wn'"?], vy € [—mn®?, 7n®/?]).
Combining (19) and (20), we conclude that
2P(Spr) = _ X —ESju y —EApn
SXUE n“P(Spuy = x, Ay = y) — ft( N <L+DL+1+ 14
where
1 A B n - (n B ] " 1)v2 ]
I = (2m)? /_A /_B jljl(pj(nl/Z + 1372 )‘eXP{(Ul,Uz)Ez(vhvz) Hdvy dvg,

o vi (n—j+ Duv
Y\, i2 + 372

dvi duvg,

1 n
-
2m)% J IR\~ A1x[—B.B] 1_[

j=1
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I = dv; dvy,

( V1 (n—j—l-l)vz)
R | 172 372

I = 2 / / exp{—(v1, v2)Z; (v, v2) | } dvg dvy.
(277) [v1|>A J|va|>B

Choosing large enough A and B, we can make the integral 14 as small as we please.
Furthermore, the weak convergence

Stn) = ESpur1 - Apur) — EAary
( VT f) (0)/1a@d0

implies that, uniformly on every compact [—A, A] x [-B, B],

V1 (l’l - ] + 1)1)2 _ e(v1,U2)Et(U17U2)T
1/2 n3/2

(27T ()2

— 0.

Consequently, /1 converges to 0.
Itis clear that the random variables X 2 are uniformly integrable with respect to the measure P.
Therefore, for every small enough ¢,

lpj(0)] < e WDy <2 1<) <n

Consequently, there exist constants ¢ > 0 and C such that

n
U1 )
[ ‘pl(nuz T n3/2>

j=1
on the set |vi| < en'/?, |va] < en
choosing A and B large enough.

It remains to bound I3. Since the distributions of random variables X; are aperiodic,
|E[ WX = 1if and only if v = 27m. Furthermore, recalling that the dlStI‘lbllthIlS of X; are
obtained via the exponential change of measure of the same distribution and that the parameters
of these changes are taken from the bounded interval, we conclude that, for every § > 0, there
exists ¢s > 0 such that

L2y [ v1 (n—j+ D\’
e e e R
P 4 Jn n3/
< Cexp{—c(vi, 12)Z;(v1, v12) "}

/2 Therefore, I> can be made as small as we please by

1max lpj(v)| <e™® forall vsuch that |[v —27m| > § forallm € Z. (21)
<j<n

For all v; and v, from the integration region in /3, we have the following property. At least
n/2 elements of the sequence {vi/s/n + (n — j + 1)vy/ n3/ 2}’}:1 are separated from the set
{2mrm, m € Z}. From this fact and (21), we infer that there exists §p such that

n
V| V2
| =5 + =5
l_[‘pf(nuz n3/2)

j=1
Consequently, /3 converges to 0 as n — oo. Thus, the proof is complete. U

< e_c50n/2_
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Proposition 2. Assume that the conditions of Theorem 1 are valid. Then there exists a positive,
increasing function q(a) such that, for everyt € (0, 1) and every a > 0,

sup

n2]P’<S[m] =X, A1 =y, krgin Sk > —a> — q(a)ft(
X,y <[nt]

x=ny@t) y—n® [y ¥s)ds
)

— 0.
Proof. Set m = [log? n]. Then, by the Markov property at time m,
@(S[m] =X, A[m] =Y, min Sk > —a)
k<n

= 3 P(Sn=x" Ay =y minSi > —a) QW'Y x, 7).
k<m

x.y'>0
where
oW’y x,y)
— ﬁIB(S[(r':z_m =x—x, AE:Z‘)]—m =y—y —([nt] —m)x’, ksr[gti]n—m S]E’") > —x — a)
and

S]Em) =Xpue1+ -+ Xk A](Cm) = S{m) + Sém) +---+ S/Em)'

By Proposition 1,

Oy x,y) <PS™_ =x—x', A™_=y—y —(nt] —m)x') < % (22)

[nt]—m [nt]—m

It follows from the definition of P that the second moments of X ;j are uniformly bounded.
Applying the Chebyshev inequality, we then obtain

P(1Sm —ESp| > log®?n) =o(1) and P(|Am —EAn| > log”?n) =o(l).  (23)

Define
D = {(x,, y/): |_x, _ ]ESml S 10g3/2n’ |y/ _ ]EAml S 10g5/2n}

Combining (22) and (23), we conclude that, uniformly in x, y > 0,

lim n? Z@(Sm —x', A, =y, min S > —a)Q(x/y/; X, y)=0. (24)
n—oo De k<m
We now turn to the asymptotic behaviour of Q(x’y’; x, y) for (x’, y’) belonging to the set D.
Obviously,
W'y x,y) =P(Sm_, =x—x', Al =y —y — ([nt] — m)x')

—@(S(m) —x—x, A™ y—y — ([nt] —m)x’,

[nt]—m [nt]—m

min S,Em) < —x' — a). (25)

k<[nt]—m -
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We can apply Proposition 1 to the first probability term on the right-hand side of (25). As a
result, uniformly in x, x’, y, y' > 0,

n?B(Si L =x—x' Al =y —y = (Int] — m)x')
x—x' —ny@) y—y —n* [y y(s)ds
- ft ﬁ ) I’l3/2
— 0. (26)

Furthermore, it follows easﬂy from the definition of the measure P that EX ~ ¢ (L) /<p (A)
for each j < m. Therefore, IES ~ (¢ (A)/(p(k))log n and IEA ~ (¢ (A)/Z(p(k))log n.
From these relations, we infer that

x—x' —ny@) y—y —n® [y ¥s)ds x—np(t) y—n® [y ¥(s)ds
(=t e (e s

uniformly in x, y > 0 and (x’, y’) € D. Combining this with (26), we conclude that

nzﬂP?(S[(:l';%_m x —x, AEZ?] =y =Y —(nt] —m)x")
_(rmme @ y = fy ) ds
t ﬁ ) n3/2
— 0

uniformly in x, y > 0 and (x’, y") € D.
Moreover, for every (x’, y') € D and all sufficiently large n, we have

@(S(m) —x—x, A y—y —([nt] —m)x’, min S,gm) = —xl)

[nt]—m [nt]—m k<[ntl—m
< @( min S (m ) —X >
k<[nt]—m

5@( min S,Em) —log/? )

k<[nt]l—m
By the exponential Chebyshev inequality,
P(Sp < —log3?n) = P(—8; > log¥? n) < e Mg nf[e—2hSi), 27)

Furthermore, from the definition of ﬁﬁ’ it follows that

k
E[G—KhSk] — 1_[ E[e—thj]

j—l

_ 1—[ @ (itn,; = )

@ (uy ])

=exp{—,\2¢(jn:+h>+x2k:w(jn:>}. (28)

j=1 j=1
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Using the Euler-Maclaurin summation formula (15), we infer that

‘ j—1 ¢ k/n h+k/n
Z‘ﬂ< - ) Zw<—+h)5c+n< v [ w(u)du).
J=1 0

h

If h < 1 — ¢ then the function s +— fO Y(u)du — h+s Y (u) du achieves its maximum either
at O or at ¢t. Therefore,

s s+h t t+h +
max (/ Y(u)du — f Y (u) du) = (f Y(u)du — / v (u) du)
s€[0,¢1\ Jo h 0 h

If & is so small that ¥ (h) < ¥ (¢t + h) then

t t+h
/ Y(u)du — [ Y(u)ydu <0
0 h

and, consequently,

Substituting this into (28), we obtain

max E[e 5] < €°.
k<nt

Combining this estimate and (27), we finally obtain

nt
-~ » 1
IP’(mm S < —log3/2 n) < ZIP’(Sk < —10g3/2 n) < ntefe M log¥2n _ 0(—2>.
n

k<nt -
j=1

So we have, uniformly in x, y > 0 and (x/, y') € D,

x =y () y—n? [§¥(s)ds
NG 3/2 )—>0.

2 o 1
n Q(X9Y§x,)’)_pft (29)
Combining (23) and (29), we conclude that

n’ Z@<Sm =x', A =, min S > —a>Q(x’y/; x,y)
~ <

J— J— 2 o~
:f(x ny () y—n foW(S)ds)Z]P)<Sm:x,, Ay =y, %Sp_a)

NG 3/2 :
+o(l)
— —n2 d:
:ft(x j%ﬁ(t) y—n fg/;ﬁ(s) s)]}D(kmfinrsz > —a)—l—o(l). (30)

For every fixed mo > 1 and all m > mg, we have

ﬁﬁ(min Sr > —a) < ’HP?< min S; > —a)

k<m k<mg
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and R R R
]P’(min Sy > —a) > P(min Sy > —a) — IP’( min S < —a).

k<m k<mg mo<k<m

For the second probability term on the right-hand side, we have

@( min S < —a) < @(Smo < méﬁ) +@< min S < —méﬁ)
mo<k<m k<m—myg
m—my
< P(Smy <mg )+ Y B(Se < —mg”).
k=1

Using the exponential Chebyshev inequality once again, we can easily infer that there exists
f(x) — 0, x — 00, such that, foralln > 1,

ﬁP\’( min S < —a) < f(myo).

mo<k<m

Consequently,

ﬁf’( min S; > —a) — f(mp) < @(min S > —a) < @( min S; > —a).
k<mg k<m k<mg
For every j < my, the distribution of X ; converges, as n — 00, to the distribution of X

under P. (Here we note that this distribution does not depend on n.) Let Uy denote a random
walk with i.i.d. increments which are distributed according to the limiting distribution of X ;.
Then R

lim IP’(min Sk > —a) = ]P’(min U > —a).

n—>00  \k=mq k<mo

Now letting my — oo, we finally obtain

lim ﬁ(min Sy > —a) = IP’(min Ur > —a) =:q(a).

n— 00 k<m k>1

The positivity of the function g follows from the fact that the increments of Uy have positive
mean. Applying the previous relation to (30) and taking into account (24), we obtain the desired
asymptotics. U

In order to prove local limit theorems for (S,, A,) conditioned on {t > n, S, = x} with
fixed x, we are going to consider the path {Sy, /21, Sjn/2141, - - -, Sx} in reversed time. More
precisely, we consider random variables

Xv=—Xpip1 and S =X +Xo4-+Xx, k=1,2,....n

Proposition 3. Assume that the conditions of Theorem I are valid. Then there exists a positive
increasing q such that, for every t € (0, 1),

25( & 3 L Q
nIP’(S =Xx, Apprl—=1 =y, min S >—a>
[nt] [nt]—1 y et k

oA fx—=nY(l—1) y—nsz_,tﬁ(s)ds
—Q(a)fz( NG ; 1372 )

-0
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uniformly in x, y > 0. The function f; is the density function of the normal distribution with
zero mean and the covariance matrix

s _ fll—t o2(u)du .fll—t o)t —1+u)du
;=
fll_t o2u)(t — 1+ u)du fll_t o)t — 1+ u)?du
Proof. The proof follows that of Propositions 1 and 2 and we omit it. U

We now state a local limit theorem for a bridge of S, conditioned to stay positive. This result
is the most important ingredient in our approach to the proof of Theorem 1.

Proposition 4. Assume that the conditions of Theorem 1 are valid. Then, for every fixed x,
o= . y — n%l
n"P(A, =y, Sp =x, T >n)—q0)q(x)fi|0, —p ) O

Proof. From the definition of 8, it is immediate that S, = S, — >."_ | X; = Sy + Syt
Therefore, for £(n) = [nt] with some fixed ¢ € (0, 1), we have

n
{An =y, S =x} = {Al(n) + D Sk= S — Snimy) = x}
k=1(n)+1

n
= {Al(n) +—=1mNx+ D Suk =y Siw — Suciw) = X}
I(n)+1
= Ay + Antny—1 = y — (0 — L)X, Syny — Sty = X}
Consequently,
PA, =y, Sp=x, T >n)

= P(Ain) + Ancin—1 =y — (0 — L)X, Sty — Spciny = x, T > 1)
=Y PlAiy =¥ Sjony =¥ T > 1) O,y x. y),

x/’y/
where
O, y's x,y)
=@<A_ L=y —y —m—=1m)x. Sy_jony =x —x, min S’>—x>.
n—im—1=y—y —( (m)x, Sp—in) i Sk

Combining Propositions 2 and 3, we conclude that, for every fixed x,
2P(Ay =y, Sy =x, T >n) ~ q0)§()n*Z,(y),

where

5.) _th<x —nw(1/2> y —n? [y ws)ds)

17372

. (x —nw(1/2) y=y —n fl/ZW(s)ds
< e )
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From the continuity and boundedness of functions f; and fl_,, it is immediate that
y— n?l
n> Sy (y) ~ ft(u v) fizeu, 3/2 — v | dudv, n — 0o,
and, consequently,

—n?I
ZJP’(A,Z =y, S, =x,T>n)~ q(O)q(x)f fi(u, v)f1 t(u ynz/z v) du dv.

Since the left-hand side does not depend on ¢, we infer that the integral on the right-hand side
does not depend on ¢ as well. Letting ¢+ — 1 and using the continuity of f;, we infer that

f2 fiu,v) fi—s(u, z — v)dudv = £ (0, 7). O
R

4. Proofs of tail asymptotics

Proof of Theorem 1. Using (9), we obtain

P(A,=x,t=n+1) = P(Ay=x, Ss =y, t=n+1)

1M

o

PA, =x, Su=Yy, T >nPXyt1 <—Yy)

<
I
-

n (0.¢)
e/ [T 9un) Y P(An = x, Sy =y, T > WP(Xy41 < —).
j=1 y=1

From Proposition 3, it follows that, for every fixed M,

M
Y PAy=x, Sy =y. T >nPXyp1 < —Y)

y=1
0 —n?l 1
=",§2)h<x d )Zq(y)l?(xl y>+o<n—2>. (1)

y=1

Furthermore, applying Proposition 1, we have

0.@)
Y PAp=x. 8 =y. T >nPXy1 < —Y)
y=M+1

08}
< D PlAy=x, Sy = )P(Xpp1 < —y)
y=M+1

o0
C
<5 D B(X1 = ).
M+1
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Consequently, uniformly in 7,

o0
lim n? Y P(Ay=x. 8 =y, 1>mnP(Xy11 < —y) =0. (32)
M— o0 Myya

Combining (31) and (32), we conclude that

o
D> P(Ay=x, Sy =y.7>nPXyr1 < —)
y:]

1 x =12\ X . 1
=M s 2;‘](Y)IP’(X1§—Y)+0 ).
y:

According to Lemma 1,
n
[Ten ;) =expl—rin}(1 4+ 0m™")).
j=1

Therefore,

1 A —n?l
P(Ay = x, z:n+1):Q+—f()exp:_i_xn1}h(’%), (33)
n n n-

where Q = q(O)Zicz 1 4(»)P(X1 < —y). In particular, there exists a constant C such that

C A
P(Ap, T =n+1) < jexp{——x—knl}. (34)
n n
Define n_: = max{n € N: n < /x/I} and ny := n_ + 1. Changing the summation index
and splitting the series into two parts, we obtain
o0 0
Y PAy=x.t=n+1)=) PAypu=x.1=ni+k+1)
n=ny k=0
= Y PAnj=x.t=np+k+1)
k<Mn!/?
+ > PAnp=x.t=ni+k+1). (35
k>Mni/2

Applying (33) to the summands in the first sum, we have

Y PAnpp=x.t=np+k+1)

_ Q AX x—(n++k)21 —3/4
== Y exp{—n++k—u(n++k)}h( TREAEE )+0(n+ ).
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Since x — n2 I + k2T = o(n*?) uniformly in k < Mn'/?,
— k)21 21k
h(x (n4 2‘3/)2 ) ~ h<_W>' (36)
(ny + k) n/

Furthermore,

AXx Ax k k2 k3
k+)»](n++k):— 1———|———|—0 + Alny +Alk

ny + ny ny n+ n+
AX AX Axk? AX
ny na ni ny

Now recalling that ny = /x/I + &, with &, € (0, 1], we have, uniformly in k < Mn},_/2,

O<)Jk—)‘_k—(1_ X )Ak<2kke \/Z:O(x_l/4)=0<L)
(x/D(1 + ex/T/x)? - *V x n2)

”+

Consequently,

Y PAn,qk=x.T=ny+k+1)
k<Mn]/2

A k2 2IK
:gexp!—n—x_)\.ln+}[ Z exp!—kl—}h(— 1/2)+ (n 3/2)]
k<

n—i— + yn? N+
=Mny
A M
_ 9 expl — 2% —aln, e M h(=21u) du + o(n 7>
3/2 s ) +
= Q/exp ZAVIx}[/ _““2h(—21u)du—|—0(l)]. (37)
x3

We split the second sum in (35) into two parts: kK < n4 and k > n. Using (34), we obtain

Y Pl r=x.T=ni+k+1)

ke(Mn_l*_/2 nyl

C AX
< Z exp{— +k—kl(n++k)}.

n ny
* ken!?ny)

Noting that n%_ > x /I, we conclude that

M o= =2 e — ok
ny +k ny ni(l+k/ng)
<M, +uk(; - 1)
= ng 1+ k/ny
Ax AT k?

— 2 aIng - . k<ng.
ny 21’l_|_
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Therefore,
Y PAnqk=x.T=ny+k+1)

ke(Mnl/* ns]

C Ax A k2

< 5 expy——— —n4il Z expy———
ny n 12 2 ny

ke(A4n+ N4
C A o0 Alu?

< Tﬂexp{——x—n+kl}/ exp:— ! }du. (38)

ny ny M 2
For every k > n,, we have
M e k) = 2% g, K Mk
ny +k + n. T2+ k/ny)

< M I 4Tk ! 1
— — — n —
- n+ + 1 -|—k/n+

AX
< - —Any — —.
ny 2

Combining this with (17), we obtain

AX
Y PAnk=x.T=n+k+1)< Y exp:—n++k —)J(n+—|—k)}

k>l’l+

AX nyil
< Cexpy—— — Alng pexp “ [ (39)
ny

k>n4

Combining (37)—(39) and letting M — oo, we conclude that, for some C; > 0,

o0
C
> P(Ap, T=n+1)~ 3—74 exp{—2)/Tx)}.
X
n=ny

Similar arguments lead to

n—
C_
Y PAy=x,T=n+1)~ —573 exp{—23v/Ix}. O
n=1 *
Proof of Theorem 2. For k > 0, we have

P(A =x, T = +k+1
Pt = ny +k+ 1] Ay =) = etk ]P’ECAT—xn)Jr 2
—

From (33), it follows that

PAy, 4k =x, T=ny +k+1)

— A x — (ny + k)21
_(n++k)2exp: " Al(n++k)}|:.f1(0, e 1 02 )+0(1)].
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From the definition of 4, it is immediate that
ey ;= max f1(0,u) > 0 as M — oo.
u>M

Therefore, for all large enough x and all k > M ni_/z,

P(tr=ny+k+1] A; =x) <Cegy.
For k < Mni/z, from (36), we have

P(Ap, 4k =x, T=ny +k+1)

0 Ax k? k
~ —expy—— — Alngpexpy—Al— 1 fi 0,—211—/2 .

From Theorem 1, it follows that

1/4 K2 k
Pr=ny+k+1]| A =x) ~Cx /" expy—Al— f1 0,—2[1—/2 .
ny ny

Recalling that

72 }
O’ - - 9
10:2) CeXp! 2 fol o2(w)(1 —u)?du

we obtain the desired asymptotics for k > 0. The k < 0 case can be treated in the same manner.
This completes the proof. U

Proof of Equation (1). Fix some ¢ > 0. Then

P(A; > x) =P(A; > x, T < ex??) + Z P(A; > x, T =n+1). (40)

n>ex2/3

The relation A; < tM; implies that {A; > x, 7 < ex?P) ¢ My > x'3/¢}). Doney [7]
showed that yP(M; > y) — ¢ € (0, c0). Therefore, there exists a constant C such that

x1/3]P’(AT >x, T < 8x2/3) < Ce¢ forall x > 0. 41)

By the functional limit theorem for random walk excursions (see [5] and [13]),

- X
P(A; >x |t :n+1):G<—3/2>+0(1),
on

where (_?(y) = IP( fol e(t)dt > y). Furthermore, according to Vatutin and Wachtel [14, Theo-
rem 8],
Co

Pr=n+1)~ —=.
(t=n ) 3

Combining these two relations, we obtain

Co o(_x -3/2
IP)(A-L- >X,T:n+1):mG<m)+0(l’l )
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and, consequently,

_3/ = X _

n>ex2/3 n>ex2/3

Since the sum on the right-hand side can be written as a Riemann sum for the function
y_3/2G(y_3/2), we have

C 1/3 00 B
Z P(A; >x,t=n+1)= Lf y_3/2G(y—3/2) dy _|_0(x—1/3)
e

13
;125)(2/3 X 02/3
2C, O.1/3 1/(e0) B
— 3)2—]/2[0 2BG@) Az + o). (42)

Combining (40)—(42), we obtain

2C 1/3 1/(e0) B
liminf x'?P(A; > x) > 209 f 773G () dz
0

xX—>00 3

and 3
2C .
lim supx1/3]P’(Ar >x) < 209

X—>00 3

1/(e0) _
f z_2/3G(z) dz + Ce.
0
Now letting ¢ — 0, we arrive at the relation

. 1/3 2Cpo [ —2/3 A 13 1 1/3
lim x "P(A; > x) = Z G(z)dz =2Coo '"E e(t)drt . [
0 0

X—>00 3
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