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Abstract

We study the asymptotic tail behavior of the first-passage time over a moving boundary
for arandom walk conditioned to return to zero, where the increments of the random walk
have finite variance. Typically, the asymptotic tail behavior may be described through
a regularly varying function with exponent —%, where the impact of the boundary is
captured by the slowly varying function. Yet, the moving boundary may have a stronger
effect when the tail is considered at a time close to the return point of the random walk
bridge, leading to a possible phase transition depending on the order of the distance
between zero and the moving boundary.
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1. Introduction

The asymptotic behavior of random walks has long been an extremely popular topic in
probability. In 1951 Donsker [9] showed that a suitably rescaled random walk converges to a
Brownian motion. Many extensions have been studied over the years, such as generalizations
to random walks in the domain of attraction of a stable law [18] and additional conditioning
properties. For example, an invariance principle was shown for random walk bridges in [14],
whereas the authors of [2], [7], and [13] developed invariance principles for random walks
conditioned to stay positive. Recently, these two types of conditioning have been combined
in [3] to an invariance principle for random walk bridges conditioned to stay positive over the
entire interval.

A natural question that arises is whether and how these results extend to moving boundaries.
That is, how does the random walk behave asymptotically, conditioned to stays above a boundary
sequence that is not necessarily zero or even constant? This topic, as well as the closely related
first-passage asymptotics, are addressed in, for example, [1], [4], [5], [11], [12], [15], and [16].

In this paper we include a moving boundary in a particular random walk bridge setting. More
precisely, we consider a random walk S;, i > 0, conditioned to return to zero at time n with
increments that have zero mean and finite variance. The purpose is to derive the asymptotic
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FIGURE 1: Illustration of the random walk bridge.

tail of the first-passage time t, over a moving boundary (g;);eRr for this random walk bridge.
We stress that we are considering only the tail of , for all times k := k,, that are well before
the random walk bridge returns to zero. In other words, we extend a random walk bridge in the
Brownian setting to stay above a moving boundary over part of its interval; see Figure 1.

Besides this problem being of intrinsic interest, our inspiration comes from a seemingly
unrelated area: cascading failure models. These models are used to describe systems of inter-
connected components where failures possibly trigger subsequent failures of other components.
A typical reliability measure in such problems is the probability that the number of failures
exceeds a certain value. Analytic results are obtained for particular settings (see [6] and [19])
but allow for limited generalizations. It turns out that this problem has an equivalent random-
walk bridge representation, where the reliability measure translates to the probability that the
first-passage time of a random walk bridge over a moving boundary exceeds a certain time. In
Section 3 we demonstrate this relation in detail.

The main goal in this paper is to derive the asymptotic behavior of P(t, > k | S, = 0).
Clearly, the asymptotic behavior of this first-passage time depends on the boundary sequence.
We consider all boundary sequences that are within square-root order from zero and, hence,
relatively not too far from zero with respect to time. Our results distinguish between two
regimes. The first concerns values of k that are significantly smaller than the time that the
random walk returns to zero, whereas the second considers k close to the return point. In the
first case, the asymptotic tail of the first-passage time can be described through a regularly
varying function with exponent —%. When the boundary sequence satisfies certain additional
conditions, as explained in, for example, [5] and in Section 2.2 of this paper, the probability of
{tg > k | S, = 0} to occur has a power-law decay with a preconstant that can be interpreted in
a probabilistic way. However, for the second regime, a phase transition possibly occurs when k
is close to the return point of the random walk bridge, depending on how close the boundary
remains to zero. This intriguing phenomenon reflects the strong dependence on the boundary:
the effect may not solely be captured in a slowly varying function, but can affect the behavior
much more drastically.

In our approach, we consider all likely ways for the random walk to stay above the boundary
until time k, and then return back to zero in n — k time. In particular, when k = n — o(n) (that
is, k 1is relatively close to the return point n), we observe that n — k is of smaller order than k.
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This observation will prove to be crucial in understanding why a phase transition possibly
occurs in this case. That is, for the random walk to return to zero in n — k time, it is likely that
the random walk at time k is within order /n — k from zero due to the central limit theorem.
It turns out that we need to be more careful in evaluating how likely the random walk can reach
such values at time k while staying above the moving boundary, which depends heavily on the
boundary at time k.

The paper is organized as follows. In Section 2 we state our assumptions and some known
results that are used throughout the paper. Our main results are presented in Section 3.
In Section 4 we prove the result in the case that k is sufficiently far from the return point,
while the proof in the other case can be found in Section 5. In particular, the proof in the latter
case requires a result on the uniform convergence of an unconditioned random walk while
staying above a moving boundary, which we state and prove in Section 5.1.

2. Preliminaries

Before presenting our main results, we first introduce some notation, state our assumptions,
and point out the consequences.

2.1. Notation

Let X;, i > 1, be independent and identically distributed (i.i.d.) random variables with
EX; =0and IE]XZ2 = 1 forall i > 1. Define the random walk

We refer to {g;}ien as the boundary sequence. Define the stopping time
To:=min{i > 1: §; < g},

that is, the first-passage time of the random walk below the (moving) boundary. In the case
that g; = x foralli > 1, we write Ty := t, for the stopping time to emphasize the fact that the
boundary is constant.

Finally, we present the notation used throughout the paper. For sequences a,, b, € R, we
write a, = o(by) if limsup,_, . a,/b, = 0 and a, = O(b,) if limsup,_, o, |a,/bn| < o0.
We write a, = w(by) if lim,_, b,/a, = 0 and a, = Q(b,) if limsup,,_, o, |bn/an| < oo.
Finally, we write a, = ®(b,) if both a,, = O (b,) and a, = 2(b,), and denote a, ~ b, if
limy, 00 ay /by = 1.

2.2. Assumptions and properties

First, we make some assumptions on the increments.

Assumption 2.1. The increments of the random walk are i.i.d. with mean zero and variance 1.
Additionally, we assume that the law of the increments has a density f(-) (almost everywhere)
and that there exists an no € N such that f,,(-), the density corresponding to Sy, is bounded
(almost everywhere).

We point out that the boundedness requirement on the density function of the random walk
for some n( in Assumption 2.1 is a necessary and sufficient condition for uniform convergence
between the scaled density of the position of the random walk towards the standard normal
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density [17, p. 198]. Specifically, let ¢(-) and ®(-) denote the density function and the
distribution function of a standard normal random variable, respectively. Then

IP’(% < x) — P(x)

Next we assume that the boundary sequence {g; };en does not move too far from zero.

lim sup
n—oo XER

=0, Jim sup [v/n fu(v/nx) —¢(x)[ = 0.  (2.1)

xeR

Assumption 2.2. The boundary sequence {g;}icN satisfies |gi| = o(W1), and P(zy > n) >0
foralln > 1.

Under Assumption 2.2, it is known that the position of the rescaled random walk, conditioned
to stay above the boundary, converges to a Rayleigh distribution; see [5]. To be precise, as
n— o0,

P(Sy > gn+vv/n | 1g > n) ~ e="*/2 forallv > 0. (2.2)
The first-passage time itself has a regularly varying tail,

P(z, > n) ~ @Lf/(;), (2.3)

where L, (-) is a positive, slowly varying function.
The slowly varying function in (2.3) has a probabilistic interpretation:

Le(n) = E(Sp — gn; Tg > n) ~ E(=S¢,; 75 <n) € (0, 00).

The literature offers many discussions and results for which this slowly varying function
converges to a finite constant Lg(00) := lim, 00 Lg(n). We note that in the case that
L¢(00) < 00 exists, the slowly varying term can be replaced by the constant E(—Sz,).

To the best of the authors’ knowledge, [5] provides the weakest conditions that allow for the
existence of a finite L, (00). These conditions are somewhat cumbersome and, as an alternative,
we mention two easily checked cases here that are known from the literature.

In [11], it was shown that if the boundary sequence g,, n > 1, is nonincreasing and concave,
then Lg(00) exists and

o0
Y5 <00 &= Ly(00) =E(=Sy) € (0.00).
n=1

In particular, this holds for all finite constant boundaries. In [20, Theorem 5], the concavity
condition is relaxed, but a stronger summability condition is required. Specifically, it was
shown that if g,, n > 1, is nonincreasing,

> log!/? n
Do —am (e <00 = Ly(00) =E(=5y,) € (0, ).
n=1

In this paper we consider a random walk that is conditioned to return to zero at time n. The
objective is to derive the asymptotic behavior of the probability that this random walk stay
above a moving boundary over part of its interval. That is, given that the random walk returns
to zero at time n, what is the asymptotic probability of the random walk staying above the
moving boundary up to time k := k,,? We assume that this time £ is at least @ (1) distance from
both zero and n.

Assumption 2.3. Time k := k;, satisfies both k — 0o andn — k — 00 as n — 0.



631

3. Main results

We distinguish between two cases: one where k is not too close to the point of return of the
random walk bridge, and one where it is.

Theorem 3.1. Suppose that limsup,,_, .. k/n < 1. Then, uniformly in k/n,

2 y
P(ty > k | Sy = 0) ~ /;Lg(k),/”Tk—l/2 asn — 0.

Note that when £ is not too close to the boundary, the impact of the boundary is completely
captured by the slowly varying function. When k moves closer to n, the behavior of the boundary
becomes more relevant and possibly results in a change in the asymptotics.

Theorem 3.2. Suppose that k = n — o(n). In addition to Assumption 2.2, suppose there exists
an e € (0, 1) such that

sup  1gj — gkl < a(e)lgkl (3.1)
JEl(1—e)k k]

for every large enough k with a(e) — Oas e | 0. Then, asn — oo,

Pty > k| S, =0)

2 Vn—k
\/;Lg(m - if lgk| = o(v/n — k),
~) /2 lgrl \vn—k | _ (3.2)
\/;Lg(k))’< r_,{) z if Igkl = ©(Vn — k),
2Lg(k)% if gkl = w(Wn —k), gr <O,

where
2 o,
y(y) =e™Y /Z—y/ e " /2 dx.
xX=y

A typical example that is covered by this framework is when g; = —i%, i € N, witha < %
The additional assumption (3.1) is merely technical: it ensures that the boundary does not
fluctuate too much as it moves closer to k. That is, for every ¢ > 0, there is a value a(g) < 0o
such that the boundary does not fluctuate more than 2« (¢)gy in the interval [(1 — ¢)k, k] for
large enough n. In particular, this implies that ¢ € (0, 1) can be chosen small enough such that
a(e) < 1 and, hence, the boundary sequence at time [(1 — &)k, k] has the same sign (either
positive, negative, or zero). Cases where the boundary sequence strongly oscillates close to
time k are thus excluded from our framework.

The phase transition that appears in Theorem 3.2 reflects the strong influence of the boundary
sequence in this case. It might not be captured solely by the slowly varying function, but can
have a much stronger effect. Furthermore, this effect is influenced only by the behavior of
the boundary sequence close to time k. This observation is best explained by our approach.
We track the position of a random walk at time &, conditioned that it stays above the moving
boundary till that point. Then we evaluate how likely a reversed random walk moving back
from time n can reach that point. Due to a local limit theorem, the random walk is likely to
stay within /n —k = o(v/k) distance from zero. When g; < 0, those values are thus likely
to be of order max{+/n — k, |gx|} distance from the boundary. The phase transition is then a
consequence of how likely the random walk staying above the boundary sequence can move to
such values.
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Example 3.1. As pointed out in the introduction, Theorems 3.1 and 3.2 can be applied to a
seemingly unrelated problem in cascading failure models. In this example, we will describe a
particular cascading failure model as in [19], and translate it to the random-walk bridge setting
we consider in this paper.

Consider a system consisting of n (indistinguishable) components. Each component has
a limited capacity for the amount of load it can carry before it fails. The network is initially
stable, in the sense that every component has sufficient capacity that exceeds the initial load.
We assume that the difference between the initial loads and capacities, which we refer to as
the surplus capacity, are stochastic random variables that are i.i.d. with continuous distribution
function F(-). In order to trigger a possible cascading failure effect, we include an initial
disturbance that causes all components to be additionally loaded with [,,(1). When the capacity
of a component is exceeded by its load demands, that component fails. Every component failure
causes (equal) additional loading on the remaining components, possibly triggering knock-on
effects. We write [,,(i) for the total load surge per component when i — 1 components have
failed and assume this is a deterministic nondecreasing function. The cascading failure process
continues until the capacities on the remaining components are sufficient to deal with the load
increases.

A measure of system reliability is the number of component failures at the end of the
cascading failure process, written by A,. Since F(-) is continuous, it satisfies the identity
(see [19))

P(A, > k) = IP’(UZ) <Fl,@),i=1,...,k),

where U}, denotes the ith order statistic of n uniformly distributed random variables with

support [0, 1]. In[19], the goal was to determine which choices of F(-) and /,, (-) asymptotically

exhibit power-law behavior for large values of k as in Assumption 2.3. In particular, the authors

considered a setting where

. 0+i—1

F(lp(i) = ———.

Next we show how this problem can be related to our random-walk bridge framework.

Consider the random walk S, = n — Z?Zl E; where (E;);cN are independent identically
exponentially distribution random variables with mean 1. It is well known that

1
Ei Y | Ei > i1 Ei A )
—_—, — e — E Ei=n]),

n n n
i=1

(3.3)

n n ny\ D
(U(]), U(Z)’ LRI U(n)) -_— <

where ‘=’ denotes equality in distribution. Then the probability that the number of component
failures exceeds k can be written as

0+i—1
P(Anzk)=P<UZ)SL,izl,...,k)
n

=PS;=>1-0,i=1,....k| Sy1 =1
~PS;>1—-0,i=1,...,k| S, =0)
=P(Ti_g > k| S, =0).

Theorems 3.1 and 3.2 yield the result immediately. That is, as n — oo, we obtain

2 n—k
P(A, = k) ~ ;Ll—e(k) o
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and since the boundary is constant,
Li_gk) ~E(=S8S7_,) =—1-0)+1=0,

where the equality is due to the memoryless property of exponentials.
Yet, (3.3) is a very specific case. Sloothaak et al. [19] explored for which perturbations the
power-law behavior prevails. That is, if

) 0+i—1—g;
F(ln(l))=Tl,

which perturbations of (g;);en yield power-law behavior? The analytic approach used in [19]
allows for relatively limited generalizations. More specifically, they allow only boundaries for

which g; = 0 for every i = w(1). Theorems 3.1 and 3.2 provide the answer to a much broader
range of possible perturbations, and quantify their effect on the prefactor in a probabilistic way.

4. Proof of Theorem 3.1

We first consider the case where lim sup,,_, o, k/n < 1 asinTheorem 3.1. Define the reversed
random walk as

m
Sm:ZXm’ I <m <n, (41)
i=1

where Xm = —Xn41-m, 1 < m < n. Therefore, Sm obeys the same law as —S,, for all
1 <m <n. Iflimsup,_, ., k/n < 1, we can use a direct approach to derive the asymptotic
behavior.

Proof of Theorem 3.1. Note that
IP’(rg>k|Sn:())=/Oo P(ry > k; S edu | S, =0)
uTgk N
" 100 Jug,
B P(zy > k) [
Jn(0) U=gy

where fn_k(-) is the density of the reversed random walk at time n — k. Since the reversed
random walk has i.i.d. increments with zero mean and finite variance, it also satisfies (2.1) and,
hence, there is a uniform convergence to the normal density. Note that since lim,_,~c k/n < 1,
it holds that lim,,_, 5 k/(n — k) < 00. Therefore,

P(Sk € du; 74 > k)f~n_k(u)

P(Sk € du | tg > k) fu—r(u),

P(zg > k| S, =0)
exp(—u?/2(n — k))
V2n(n — k)

rg>k).
e vk v? n—k
Te > k)~ exp| —— vexpl —— | dv = .
0 2n—k 2 n

= + 0] k [4
]./\/ 2JTI’l u_—gk

" St
= (1+0(1)P(ry > k)\/n;kE<eXP(_m)

It follows from (2.2) that

E —S]%
(eXp(_z(n - k))
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Using (2.3), we conclude that

_ 2 [n—
Pty > k | Sy =0) = (14 0(1)),/ nn—k]P’(tg > k)= (1 +0(1))\/;Lg(k) nknk_ U

5. The k = n — o(n) case

Unfortunately, the analysis in the previous section does not follow through when k = n —
o(n). In particular, in our analysis we consider all ways for the random walk to stay above the
moving boundary until time k, and in time n — k to get back to its return point. In view of
(2.2), at time k the random walk conditioned on {7, > k} is most likely to be at a position of
order ® (v/k). However, for u = ©(v/k), we can no longer replace f,_x (1) by an appropriately
scaled normal density if n — k = o(k). We therefore need to refine our approach, which we
elaborate on in this section.

5.1. Density of random walk at time k

For the evaluation of the first-passage time of the random walk bridge, it is sensible to
consider the position of a random walk at time & itself. A uniform convergence result can be
found in [8, Proposition 18] in the case of constant boundaries. As this result is crucial in our
analysis, we pose it here for our setting.

Proposition 5.1. (See Doney [8, Proposition 18].) Let x := x, > 0 denote the starting point
of a random walk (depending on n) and let y := 'y, be a sequence of nonnegative numbers. Let
U () denote the renewal function in the (strict) increasing ladder height process, and V (-) the
renewal function corresponding to the decreasing ladder height process. Let E(—St,) be the
expected position of a random walk at stopping time Ty, and IE(—STO) the expected position of
a random walk with increments —X;, i > 0, at stopping time Ty. Then the following results
hold uniformly for every A € (0, 00) as n — Q.

(i) For max{x//n,y//n} — 0,

V() [2H U w) dw

P(S A), T, So = x) ~ 5.1
Sn€ly,y+2A),To>n| S =x) Nl (5.1
(ii) For any (fixed) D > 1 withx//n — 0and y//n € [D™', D),
2 E(=S7)V(x)A
P(S, € Ly, y+ A), Ty > n | Sp=x) ~ \ﬁ VDAY 2 (55
i Jn n
and uniformly for y//n — 0 and x//n € [D™', D],
2 E(—S7,)U(y)A
PSS, ely,.y+A),To>n| Sy=x)~ \/j (=S)U©) ie_xz/zn. (5.3)
T Jn n
(iii) For any (fixed) D > 1 withx//n € [D™', D] and y//n € [D~', D],
A ,
P(S, € [y, y + A). To > 1 | Sp = x) ~ 241y, (5.4)

I



635

where q(x,y) is the density of P(W(1) € dy,info<,<; W() > 0| W(0) = x) with
{W(t), t > 0} the standard Wiener process. This has the explicit form (see [10]):

(u,v) = —1 (ex (——(u _ v)Z) —ex (——(u + U)2

The asymptotic behaviors of V () and U (-) are quite well understood: the functions are both
nondecreasing functions and regularly varying with exponent 1. In particular, as t — oo,

)) foreveryu,v > 0.

t
u@i)y~ ———, Vi)~ ——. (5.5)
E(—Sz,) E(-S7n)
Moreover, for all random walks with finite variance ol = 1, it holds that
E(—S7,)E(=Sg,) = 0% = 1. (5.6)

The goal is to exploit Proposition 5.1 to derive the asymptotic behavior of the random walk
at time k, while staying above the moving boundary. Intuitively, we derive this by looking at
the position of the random walk at time (1 — ¢)k, where € € (0, 1) satisfies (3.1). Due to the
additional assumption (3.1), one can replace the boundary between (1 — &)k and k by a constant
boundary with value (approximately) gx. The density is then derived using (2.2), (2.3), and the
result of Doney [8] with constant boundaries. This strategy yields the following result.

Proposition 5.2. Lett > g witht — g = O(|gk|) and (t — gx) — o0 as k — oo. Then,
uniformly as k — oo,

P(Sp edr;g > k) ﬁ Ly(k) |E(=Sp)U(t —gr) ift = o(Vk),
dr T K32 | ge=tt/2%k ift = 0Wk).

For the proof of Proposition 5.2, we separate three cases depending on the position of the
random walk at time (1 —¢)k: a position close to the boundary (Lemmas 5.1 and 5.2), a position
very far from the boundary (Lemmas 5.3 and 5.4), or in a typical distance from the boundary
(proof of Proposition 5.2). We will show that the first two cases are very unlikely to occur with
respect to the final case.

In the following two lemmas we show that it is unlikely for the random walk to be close to
its boundary at time (1 — ¢)k.

Lemma 5.1. Suppose that t = 0(«/%) such that t — g = Q2(|gk|) and (t — gr) — o0 as
k — oo. Let ¢ € (0, 1) be such that (3.1) is satisfied, and choose x; > 0 small enough such

that
1 — ex __ < &2 (5.7)
P\72a =9 '

holds. Let v = g(1—g)k + xevk. There exists a constant C, € (0, 00) such that, for all
ee€(0,1),

. K32 P(Sk € dt; S—eyx < vek; Tg > k) Xe
lim sup =
k—soo Lg(R)U(t — gr) dr
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Proof. Define
81, = gk — a(e)|gxl, (5.8)

and note that

P(Sk € dt; S—e)k < Vek; Tg > k)
SPSa—e < vers o > (1 —8)k) sup P(Sgr € dt; Tg]-:- > ¢k | Sop = v).

VE[g(1—¢)k» Ve k]

For v = o(+v/k), (5.1) yields
P(Ser € dt; Tg;’g >c¢ck | So = v) N U(t — gl_c‘:e)
dr V27 (¢k)3/2

uniformly in v = o(+v/k) and t = o(+/k). On the other hand, if v = ©(+/k) then (5.3) yields

P(Se € dt; TgZG > ¢k | So =v) \/?E( : )U(t _ glis)
dr o T (k)3

Vv —g)

(v—g,f,g)z)

—ot —
(v gk,g)exp< Yok

unif0~rmly nv = @(«/%) and t = 0(\/%). We observe that e < 1 for all x > 0, and
E(—=St,) € (0, 00) since the increments of the random walk have finite variance. Moreover,
due to (5.5) and (5.6), there exists a constant c; € (0, o) such that

Ut —g,)
sup P(Sgx € dr; Tyr > ek | So =v) < c1(veg — glis T/zg P
VE[g(1—e)k Ve k] € (ek)

Due to assumption (3.1), we have (g(1—gx — g,:fg) < 2a(e)|gk]l = 0(«/%). Also, as U(-) is
nondecreasing and (5.5) holds, there exists a constant ¢ € (0, 1) such that

Ut — g ,) < cal +a(e)U (= gr).
Consequently, there exists a ¢3 € (0, 0o) such that

P(Sgr € dt; Tg]-::g >ck | So =v) Ut — gi)

sup =< C3x8T.
VElg(1—e)ks Ve k] dr &3/2k

Finally, since (2.2) and (2.3) hold with Lg(-) a slowly varying function,

P(Sa-ek < vexs g > (1 —)k) =P(Sti—e)k < Ve | 7o > (1 — &)k)P(rg > (1 — &)k)
2(1 —¢) /(1 —e)k
[2 &2 Lg(k)

Multiplying the final two expressions yields the result. U

Next we prove a similar result as Lemma 5.1, but where 1 = O k).
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Lemma 5.2. Suppose that t = = Ok) such that t > gk. Let e € (0, 1) be such that (3.1)
holds, and choose x. small enough such that (5.7) is satisfied. Define gk o as in (5.8) and let
Ve k = 8&(1—e)k + xek. There exists a constant Cy € (0, 00) such that, for alle € (0, 1),

Jim sup 1372 P(Sk € dt; S—e)k < vers Tg > k) - Xe
koo Lg(k)yre="*/C0) dr - /-9

Proof. The proof is similar to the proof of Lemma 5.1, but in this case we have to consider
the asymptotics for t = © (k). Note that

P(Sk € dt; Si—e)k < Vek; Tg > k)
< P(Sa—ex < ver; tg > (1 —e)k) sup P(Sgx € drt; Tg; >c¢ck | So = v).

VE[g(1—e)k> Ve k]

For v = o(+v/k), (5.2) yields

P(S € di: Tpy > ek | So =) 2 s )V(v — g,jg)(t . t—g.)?
~ _ — - —_ X e —
dr VT g T e S

uniformly in r = @ (v/k) and v = o(+v/k). Note that e < 1 for all x > 0 and g,ig = o(Vk).
Since V (-) is nondecreasing and satisfies (5.5), we find that there exists a c¢1 € (0, 0o) such that

N . VO gl (1 =g )°
P —E(=Sr)— 5t — g )exp<_—’)
velga—ep: Vekl ¥ T O (k)32 k.e ek
<o 2ok te 2 o (1—e)?
¢ xpl == Jexpl —————
= e P\ Tor ) TP\ T ek

Xe 12
<cC 3/2kte o) 2k

On the other hand, if v = © (v/k) then (5.3) yields

P(Sgr € drt; Tg;r >ck | So = v)
dt

1 (v — 1) (v+1—2g)?
N V2mek (exp <_ 2ek ) - <_ 2¢k ))
1 (v—1)? (v + 1)
T ook (eXp (_ 2ek ) TP (_ 2ok ))
uniformly in t = ©(+v/k) and v = @ (k). Using a Taylor expansion, we obtain
(sw(-5) e(-55))
2¢k 2¢k
v 12 vt vt
“or(-3 - ) (o0(7) -3
conl-5)62 ()
2k ek ek
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Therefore, there exists a ¢ € (0, 00) such that

1 ( ( (v—r)z) ( (v+t)2)) o e ( z2>
Su X — — X — C)—5>-1€X
vtz 2mek \ P\ 2ek P\ 2k o2 P\ Tk

We can conclude that there must exist a ¢3 € (0, oo) such that

IP)(Ssk € dr; Tg: > ek | So = v) X, t2
>up ; <3 texp( )
VE[Z(1-e)k> Ve k] dt 232k 2k

Again, since (2.2) and (2.3) hold with L, (-) a slowly varying function,

—x,2 2 Lok
H%&bﬂk51@mzg><1—ew>~(}—em(}——fi—)) 1

2(1— &) 7 /= ek
2 &2 Ly
mJ/T—¢ JVk =
Multiplying this with the previous expression then concludes the proof. U

The next two lemmas imply that it is unlikely for the random walk to be very far above the
boundary at time (1 — ¢)k.

Lemma 5.3. Supposethatt = o(Vk) such thatt—gr = Q(|gk|) and (t—gr) — occask — .
Let ¢ € (0, 1) be such that (3.1) is satisfied. Then there exist constants C3, C4 € (0, 00) such
that, for all € € (0, 1),
i k3?2 P(Sk € dt; Sa—epx > k& T4 > k)
im su
e’ Ly (U (1 — o) di

1 1
< C3(1 + C4a(€))ﬁ CXp(—m)

Proof. Let gi . be defined as in (5.8). Since t = o(vk), it follows from (5.3) that there
exists a ¢c; < oo such that, for every v = Q(«/Z),

P(Ser € dt; ngg > ¢k | So =v) Ut — g )

<
dr = JVek
Then it follows that
P(Sk € dt; Sq—eyx > Vk/e; tg > k)
dr

00 P(Sgr € drt; Tg+ >c¢ck | So =v)
< f P(S(1—ey € dv; o > (1 — g)k) ke

v=+k/e dr

Ut—g'.) k

< clg—kk’g]P’<S(1_5)k > g; T, > (1— e)k).

In view of (2.2),

X 1
]P’(S(l—a)k -~ \/; T, > (1 —8)k) ~ Pty > (1 —e?)k)exp(—g(1 _8))

L((l—s)k) ( 1 ) 5.9)
v =)k e(1—e))’ '
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where Lg(-) is slowly varying and, hence,

5 Lg((1—¢))
imsup ———— =
k—o00 Lg(k)
Due to (3.1) and (5.5),
Ut —g)
lim sup 2T Ske) =1+ a(e) limsup 18] <14 cra(e)
k— 00 U(t - gk) k—oo [ — 8k

for some constant ¢, € (0, 00), since we assume that ¢t — g = Q(|gk|). Therefore,
k32 k
lim sup (Sk edt; Sq—eyp >4/ 5 Tg > k)
koo Lg(R)U(t — gr) €

2 ! :
< \/;Cl(l + CZOl(g))ﬁ eXP<_g(l — 8)) :

Next we prove a similar result as in Lemma 5.3, but where ¢t = @(«/%).

Lemma 5.4. Suppose that t = O (Vk) such thatt > gi. Let ¢ € (0, 1) be such that (3.1)
holds. Then there exists a constant Cs5 € (0, o0) such that, for all ¢ € (0, 1),

k3/2 | \/% k
li Pl S, t; Sei1_ —:
e Ly(kyie/00) ( k (o > |/ =2 g > )

< Lexp(— ! >dt.
T Je(l—¢g) e(l—e¢)

Proof. The proof proceeds along the same lines as the proof of Lemma 5.3. Again, let g
be defined as in (5.8). Since t = Q(v/k) and (5.4), there exists a constant ¢; < oo such that,
for every v = Q(\/E),

P(Sgr € drt; Tg]-(‘r. >c¢ck | So = v)

C1
=
dr ek
and, hence,
P(S; e dr: S JE k k
(Sk (-ok > VK/&: Tg > k) __ci (S(l—s)k > \/j; T > (1 —8)k>-
dr «/ €

In view of (2.2), (5.9) again holds with L (-) a slowly varying function. That is, there exists a
constant ¢y € (0, 00) such that

3 Lg(k) __
P<S<1—s>k > \/; T > (1 _S)k) N T Xp( e(l —8))'

The result follows by combining these two expressions and noting that
k 1/2
li ——— < 0. U
e femin

Next we will prove Proposition 5.2.
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Proof of Proposition 5.2. 'We consider the position of the random walk at time (1 — &)k with
e € (0, 1). Specifically, fix e € (0, 1) such that (3.1) holds and, additionally,

l’ —_
a(e) < liminf — 2K

(5.10)
k—o00 |gk|

is satisfied. Note that the right-hand side is of order €2(1) due to our assumptions and, hence,
such a ¢ € (0, 1) satisfying (5.10) exists.

We will partition the event {S; € df; t, > k} into three disjoint events depending on the
position of the random walk at time (1 — e)k. Let vex = g1—e)x + xek, where x, > 0
is chosen small enough such that (5.7) is satisfied. Note that this choice of x, implies that

xe/+/e(1 —e) —> 0ase | 0, since

i Xg i —2log(1 — &3/2) 0
im ——— < lim =
el0 /e(1 —¢) £l0 &

Then
P(Sk € dr; tp > k) = P(Sk € di; S(i—e)x < Vek: Tg > k)

s
-I—]P)(Sk edr; Sa—epk € [Ugﬂk, gi|, T > k)
1k
+]P)<Sk €dt; Sq—ek >4/ =i g > k). (5.11)
&

We consider an upper and lower limiting bound of P(S; € df; 7, > k) as k — o0, and show

that they coincide as ¢ | 0. For readability of the proof, we consider the r = o(v/k) and
t = O (k) cases separately.

First, suppose that 1 = o(+/k), and we will derive an upper bound. Lemma 5.1 provides an
upper bound for the first term in (5.11), and Lemma 5.3 yields an upper bound for the third
term in (5.11). Recalling definition (5.8), we see that the second term in (5.11) can be bounded

by
Ik
]P(Sk e dr; S(]_g)k € |:v£,k, —:|; Ty > k)
&

Vk/e
:f P(Saq—ey € dv; 1o > (1 — &)k)
v

=Ve k

X P(Sk €dt; 1o > k| Sg—eyp = v 1g > (1 —€)k)

Vkie
< / P(S—ek € dv; 13 > (1 — &)k)P(Ser € dr; Tg]:L > ¢ck | Sop = v).
v €

=Ve k
Due to Proposition 5.1, it holds that uniformly in t = o(vk) and v = ©(Vk) as k — oo,

P(Sgr € drt; Tg: > ¢k | So =v)
dr

2 . Ut—gfov—gf _ et )2
= (o 2By ke ! gk’*fexp(‘(v gk’S)‘)'

Jek ek 2¢k



641

This yields
JkJe P(Sgr € dt; Tg+ >c¢ck | So =v)
/ P(S(1—ep € dv; 1o > (1 — e)k) ke
V=V¢ k dt
[2 . Ut—g)
= (1 +o0(1)P(z, > (1 — &)k),/ —E(—S7,) ———
g T Ty ok

k/av_gljs ( (v_glj_a)z
x[ —exXpl —————
v

P(S(1—e\k 1-— .
— o ) (St—ene € dv | 7g > (1 - )k)

=Ve k

First, due to (2.3) and the fact that L, (-) is slowly varying,

P(rg>(1—e)k)_(1+o(1))[ g(d = £)k) =1+ ())\/> Le®) (5.12)

v —e)k T (1 =8k
Second, note that due to (5.5) and (3.1),
Ut —g'.)
lim supi =1+ a(e) lim sup 18| <14 cja(e) forsomec; € (0, c0)

koo U — gk) k—oo [ —

(since t — gx = S2(|gk|)). Finally, invoking (2.2) yields
/‘\/mv—g;{'je ( (v—g;fg)2
exp|l ———————

v

)]P)(S(l_g)k e dv | Tg > (1 - S)k)

=vox €k 2¢ek
V=8 /T—% 21 _ 2
— (1 +o(1)) gzexp(—z— 8)zexp<—z—) dz
7= xg/\/ —& 8«/_ 2 2
2
< +o<1>)” E exp(—g—) dz

_\/? e(l—e)
V2 ko

We conclude that, for every ¢ € (0, 1),
i k3/2 ( ; \/E
1m sup Sy e dr; Sl_,ke[v ks —]; T >k)
koo Lg(OU(t — gr) (1= oy e

2 -
< \/;E(—STO)U + cra(e)).

Then this expression, together with invoking Lemma 5.1 for the first term in (5.11) and
Lemma 5.3 for the third term in (5.11), yields the upper bound

k3/2

lim su P(Sy € dt; 1, > k)
o Lo Ut —gi) 8

‘ - 2 .
< ﬁ\/;r:(—sm + \/;Im—smu + cra(e))
1

1
el —¢ eXp(_e(l — &)

+ C3(1 + Caa(e)) ) for every ¢ > 0.
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Letting ¢ | 0, we conclude that

k3/2

2 -
lim su P(Sy e dt; 1o > k) </ —E(-ST,). (5.13)
el Lo (U (7 — g0) s Vi b ok

The proof of the lower bound follows along similar lines. Define 8r.e = 8k T a(e)|gkl. In view
of (5.11), we bound it from below by the second term only. That is,

P(Sk € dt; to > k)

[k
> ]P)(Sk edr; Si—ep € |:Us,k, —:|; Ty > k)
&

JVk/e
> f P(S—epk € dv; 14 > (1 — £)k)P(Sgx € dt; Tgk— > ek | So = v)
v &

=Ve¢ k
2 -
= (1 +o(1)P(zg > (1 — S)k)\/;E(—STO)

/vk/e V= 8e (v —8,)’
X expl ——————
v ek 2ek

U(t—gk_,g)dt

Vek

)]P)(S(l_g)k cedv |ty > (1 —¢)k).

=Vg k

First, we observe that (5.12) holds for the lower bound. Second, note that due to (5.5) and (5.10),

Ut —g,)
lim inf 2T ke =1—-ae) hm inf 18|
k—oo U(t — gr) —o00 I — gk

€ (0, 00).
Finally, invoking (2.2) and using partial integration, we obtain

/Jk/s V= 8, (v — 8 )
expl —————
v ek 2ek

JI—& [UVea=o
8\/% Z:x‘g/«/l—&'

= (1+o0(1 % \/E L
= (o ))(Tep< 2 (1—e>) fxp(‘ZeZ(l—e))
p JT=8 [T )
y=xe/ET=8) '

We conclude that, for every ¢ € (0, 1),

)P(S(l_g)k e dv | Tg > (1 — S)k)

=Ve k

2.—72/2¢ dz

= {1 +o(D) e

o k32 P(Sk € dt; g > k)
lim inf
k—oo Lo(k)U(t — gr) dt

.
> ,/—]E(—STO)<1 — (e) lim inf —5¢! )
TT k—oo  — gk

G omims) - o o (=)
NVa\ed=o P\ T2e1-9 T—e P\72:2(1—¢)

1/ed/1—¢ )
—|—/ eV /2 dy).
y=xs/e(1—¢)
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We note that

1/es/1—
lim(Le_)‘g/zm_” - ;6_1/282(1_8) —l—[ e e/ dy) I
210\ /e(1 — ) T—¢ y=xe //E(=8) 2

and

lim(l—a(s)liminf |8 ):1.
£l0 k—oo t — gk

In conclusion,

. k32 P(Sk € dt; 74 > k) 2 .
lim inf > | =E(=Sg).
k—oo L, KU — gk) dr T

Note this coincides with the upper bound (5.13), proving the result in the 1 = o(+/k) case.
Next we consider the t = ©(+/k) case. An upper bound for the first and third terms in (5.11)
is given by Lemmas 5.2 and 5.4. The second term in (5.11) can again be bounded by

[k
]P(Sk e dr; S(l_g)k € |:v57k, —:|; Tg > k)
&

k/e
< / P(S(—eyx € dv; g > (1 — &)K)P(Ser € dr; Tg;r > ¢k | Sop = v).
v €

=Ve k
Due to Proposition 5.1, it holds that uniformly in = OWk) and v = O(Vk) as k — oo,
P(Sgr € drt; Tg;r >ck | So =v)

and, hence,

P(Sk € dt; S—eyx € [vek, vVE/el; T4 > k)
dt
P(z, > (1 —€)k)

N 2mek

V[ (v —1)? (v+1—2g7,)°
x f (eXp<_ ek ) —exp (_ ek ))
V=V¢ k

X P(St—eyx € dv | g > (1 — &)k).

= (1 +o(1))

Again, we find that (5.12) holds. Moreover, due to (2.2),

Vk/e — )2 41 —20F )2
/ (exp(— w=1) ) — exp(— wtr gk’g) ))P(S(l_g)k cdv |ty > (1 —¢)k)

=vek 2¢k 2¢k
1/V/e(1—e) _ — 5
= (1 +o(1)) (exp(_ (z—t/yT =)k )
z=xg [/ 1—¢ 2¢/(1 — &)

( (z+r/¢(1—e)k>2>> 20
—exp| — ze dz.
2¢/(1 —¢e)
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Applying Lemma A.1,

VkTe AV —2g7)?
/ (exp(— Sk ) - exp<— W= 2. ))P(S(I_E)k cdv |1 > (1—e)k)

_——— 2¢ek 2¢ek
00 . — 2
< (1 +o(1)) (exp(— G- /YA =98 )
7z=0 2e/(1 —¢)
( (Z—I—t/«/(l—e)k)z)) _a2p
—exp| — ze dz
2e/(1 —¢)

t
— (1 + 0(1)V2ry/s(1 — g)——e /2K,
Vk
We conclude that, for every ¢ € (0, 1),

k32 P(Sk € di; Su—epk € ek, VE/EL Te > k) _ |2

lims
lk_>£p Lo (kyte=12/2k) dr /1

Recalling (5.11) and invoking Lemmas 5.2 and 5.4, we derive, for every ¢ € (0, 1),

: k32 P(Sk € dr; T, > k)
lim sup >
k—oo Lg(k)te=t"/(20) dr

Xe 2 Cs 1
= Cza/a — F \/;Jr Je(d—o) eXp(_e(l — s))'

Letting ¢ | 0, we conclude that

_ K32 P(Sy € dt; T4 > k) 2
lim sup 5 <./ —. (5.14)
k— 00 Lg(k)te_’ /(2k) dr T

For the lower bound of the probability that {S; € dr; T, > k} occurs, we observe that

k
P(Sk € dr; T > k) > IP’(Sk edr; Sq—ep € I:v&k, \/jjl Tg > k)
&€

P(z, > (1 —e)k)
W 2mek

ke (v —1)2 (v+1—2g,)>
x / <6Xp<_ ek ) - eXp<_ 2ok ))
UV=V¢ k

X ]P)(S(l_g)k e dv | Tg > (1 — 8)k).

> (14 0(1))

Recall (5.12) and, moreover, due to (2.2),

Vk7e —1)? +1—2g0,)°
/ (exp(— w=1) ) — exp(— wtr gk’g) ))P(S(l_g)k cdv |ty > (1 —¢)k)

=vek 2¢k 2¢k
1/V/e(1—e) _ — 5
= (1 +o(1)) (exp(_ (z—t/yT =)k )
z=xg [/ 1—¢ 2¢/(1 — &)

( (z+r/¢(1—e)k>2>> 20
—exp| — ze dz.
2¢/(1 —¢e)
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Note that [x./+/1 — &, 1//e(1 — €)] = [0, 00]\ [0, x/+/1 — €]\ [1//e(1 — €), o0], and also
that it always holds that

(exp<_ (z—t// T = e_)k)2> B exp(_ (z+1t//d = _e)k)2)>
2¢/(1 —¢) 2¢/(1 —e)
- exp(_ (e =1/ = e)k)z)
- 2¢/(1 — &)

<1

for any ¢ € (0, 1). Then invoking Lemma A.1 yields

JkJe 2 — 207 2
/_ (exp(— @ k[) ) — exp(— (v +t28kgk’8) >>P(S(1—a)k €dv | 7 > (1 —e)k)

=Vg,k

26
xe//1—¢
> (1+o(1))<\/ Vel — &) — —fz/Zk—/ e~ 4z

z=0
—22/2
— ze dz
z=1/Je(l—e)
t
= (1+ 0(1))(\/27T\/8(1 - g)ﬁe—’z/zk — (1= e /20-0y e—1/8<1—8)).

Therefore, for every ¢ € (0, 1),

3/2

hkrgggf I (k)te—f2/(2’<) P(Sk € dt; T > k)

k32 k
> hkrgggf 7 (k)te—fz/(zk)P(Sk edt; Sq—epk € [vg,k, E] Tg > k)
-1
T T k—oo \/E Je(l —e)

i ! e—l/s(l—a))_
Vel —e)

We observe that as ¢ | 0, this expression tends to 4/2/m due to our choice of x, and, hence,

%372 \/j
hkrgloof Lo YT P(S; € dt; T > k) > —

Since this coincides with the upper bound in (5.14), the proposition follows uniformly for
t = O(Wk). O
5.2. Proof of Theorem 3.2

Recall that S,,, m > 1, denotes the reversed random walk defined in (4.1), and fm (+) the
corresponding density function at time m. Then

o0

IP’(rg>k|Sn:O):[ P(tg > k; Sy edu | S, =0)
u=g
lk o

T 500) Sy,

P(Sk € du; Ty > k) fui(u). (5.15)
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It may be clear from the above identity that one may use Proposition 5.2 to derive the main
result. Yet, Proposition 5.2 does not provide the asymptotic behavior for the complete interval
[—gk, 0oo], and we need to account for the behavior at its extremes, that is, for values within
o(|gx|) distance from the boundary and values that are beyond distance @(\/E). The next two
lemmas turn out to be useful in order to bound the behavior at these values.

Lemma 5.5. For every stopping time tg, irrespective of boundary (g;);en, there exist a ky € N
and constant ¢1 < 0o such that uniformly for all k > ko and for all x > g,

P(Sk € dx; 1o > k) - P(te > [k/2])
dx =« Vk '

In particular, if the boundary satisfies gi = o(~/i), there exists a constant ¢y < 00 such that

P(Sk € dx; 1o > k) - L (k)

dx T
Proof. Setm = |k/2|. Then
P(Sk € dx; 1 > k) - P(Sk € dx; 1o > m)
dx - dx
o© P(Sk—m € dx | So =
:/ (S € dy; 7g > m)okom € X [ 50 = 7)
Y=8m dx

o0
:/ P(Sm € dy; 7o > m) fr—m(x — y).
Y=8m

Assumption 2.1 implies that there exists a constant ¢3 < oo such that

3

sup fr—m(2) < ———
zeR k—m

Therefore,

P(Sk € dx; 1o > k) c3 x© c3
< P(S,, €edy; 1o >m Sﬁ—Pt > m).
dx - «/m y=8gm ( " Y 8 ) \/E ( § )

For the second assertion, note that due to (2.3) with L, (-) slowly varying,

2 Lgm) 2 Lg(k)
T Jmo Jmo

In the next lemma we quantify how likely the random walk staying above the moving
boundary is to have a position relatively close to the boundary.

P(zg > m) ~ = \/QIP’(tg > k). ]

Lemma 5.6. Suppose that x; = o(Vk) is such that x; = Q(gk|) and x — 00 as k — oo.
There exists a constant ¢ < 00 such that

L, (k)
P(Sk < gk + x15 7g > k) < ClxzkiT-
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Proof. Recall (5.8) for some fixed ¢ € (0, 1), and let m = | k/2]. Note that
P(Sk < gk + xx; T4 > k)

00 8k+Xk
:/ P(Sy € du; 1o > m) P(S;_;, € dv; Tg+ >k—m| So=u)
u=gm V=g k.e
P(Si_;, € dv; Tg+ >k—m| So=u)
k.e
< P(ry > m)xg sup : .
velgr.grtxkl. u=gm dv

Applying Lemma 5.5,

P(Sk_,; € dv; Tg;€>k—m|50=u)< ) e k—m
dv ~ Vk—m g,’; ~ 2

for some constant ¢, < oo. Taking its supremum over v € [gx, gk + xx]| yields

) k—m
ﬁp(fg > MNP\ T-@@)lgel+x0 > | =5 | )-

In view of (2.3) with L (-) slowly varying, it follows that there exists a c3 < o0 such that

P(Sk < gk + xk; 14 > k) <

P(t, >m) <c3 Ly®)
e T =S
Moreover, for constant boundaries it holds that, for some constants ¢4 < ¢5 < 00,
k—m U(a(e)lgr| + xi) Xk
P{ T_ > | —— < c4 < c5——,
( (o (&) grl+xr) \\ 2 J) Tk=m/2] - 5 \/Z

where the latter inequality follows from (5.5) and since x; = €2(|gx|). This concludes that
there exists a ¢; < oo such that

k k
P(Sk < g +xk; Tg > k) < ——2 L )kaS il 2 Le)

T YR e g ST 5

Next we prove our main result.

Proof of Theorem 3.2. As in the proof of Proposition 5.2, we will provide an appropriate
upper and lower bound of P(t; > k | S, = 0), and show that these behave identically in the
limit. Fix § € (0, 1) and recall (5.15), that is,

o0

Jn(0) Ju=g,
1/4

Let x; = |gr|if |gk| — o0 ask — oo,and xx = (n—k) /™ if g = O(1). For the upper bound,
we will partition the integration area into three intervals, namely [gx, g« +x%], [gx +6xk, & «/%],
and [§ Vk, o9].

For values close to the boundary, we observe the following. Assumption 2.1 implies that there
exists a constant ¢; € [0, oo) such that sup, g ﬁ,_k(x) < c1/+/n — k and, hence, applying
Lemma 5.6,

P(t, > k | S, =0) = P(Sk € du; T4 > k) fui(u).

/gk+5xk - c1
P(Sk € du; g > k) fr—i(u) < P(Sk € [gk» &k + Sxk]; T > k)

o 82x7 Lg(k)
— /n_k k3/2

for some ¢y < o0.
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Due to (2.1),
~A2mn ~ 2 (5.16)

J (0)

and, hence,

P(t, > k; S < gr + 8xx | S, =0) —520(M>
g s Ok = 8k k1 on=0)= %)
Note that this is at most of an order stated in (3.2) in all three cases. As § | 0, this term is
therefore negligible with respect to (3.2).
For values relatively far from the boundary, we observe that, due to Lemma 5.5, there exists
a constant ¢3 < 0o such that

o0
/ P(S € du; g > k) fu—i () < c3 Ls (k)P(S,,_k > 8vk).
u=8vk k

Applying Chebyshev’s inequality on S,_; with var(S,_x) = n — k yields
1 n—k

P(S,—i > 8vk) < -

Recalling (5.16), we observe that

1 Lo(k)n —k
P(t, > ki Sk > vk | Sp =0) = = ( p JE)
In all three cases this term is of strictly smaller order as k — oo than that stated in (3.2) and,
hence, is also negligible with respect to (3.2).
1*;0r values in [gr + dx, 8+/k], we will use Proposition 5.2. Using (5.5) and the fact that
e™" <1 forall x € R, Proposition 5.2 implies that uniformly for all u € [gx + §xi, § \/E],

P(S; € du; 7, > k) (k)
T =(+o (1»[ oz (= )

Therefore,

sk .
/ P(Sk € du; tg > k) fu—r(u)

=gk +8xx
<+ (1))\/> i(? (= 8k) fr—i ()
k3/ u=gr+oxy
¢ (k) ( n—k = 8k Sn—k [gk+axk sk D
= (14 o(1 \/7 vn —kE € , :
= W k3/2 n—k Jn—k Jn—k /n—k
Using the central limit theorem, we observe that as n — 00,
E(Sn—k_gk. Sn—k c [gk+5Xk sVk ])
Jn—k Jn—k Vn—k Jn—k
L= if gt = (/i — B
v V= — =o(v/n — k),
v=0 /27T 21 8k
> 1 8k —2)2 .
~ v — e dv ifgr = OWn —k),
v=(gc+dlg)/v/n—k V27 n—k
—8kk if gr =wWn—k), gr <O.
n —
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Adding the three terms corresponding to the three disjoint intervals shows that, for every 0 <
8 < 1, we have the upper bound

/ P(Sk € du; T4 > k) fui(u)

=8k
2 Lo(k
< +0(1))\/; kf’;iz) (n—k)

1
— if gr =o(Vn —k),
N 27 g
> 1 ( 8k ) ey .
X 9 — |V — e dv if gr =0OKn—k),
/vz(gk+8|gk|)/¢n—k V27 vn—k
_gkk if gr =wWn—k), gr <O.
n —

For the lower bound, Proposition 5.2 and (5.5) imply that uniformly in u € [gr + &xx, § Vkl,

P(Sk € du; t, > k) \/ELg(k) 522
” z (o)) — 55 —gre ™ ™.

Therefore, we obtain the lower bound

o0
/ P(Sk € du; tg > k) fu—ir(u)
U=gk

8v/k -
. / P(Sk € du; g > k) fi (1)

1=gk+06x
2 L,k
= (1= 0| 28 ke
/‘00 Lve_vz/zdv: ; if gr = o(v/n —k),
v=0 V21 V2
00 1 < 8k ) —v2/2 .
) v — e dv ifgr =0OKn—k),
x fv=<gk+6|gk|)/¢n—k V2r Vn—k
—8k X
ifgr=w — k),
— 8k (Vn —k)
gr < 0.

We observe that as § | O the lower and upper bound coincide. Since we have identity (5.15)
with (5.16), we conclude that (3.2) holds. ]

Appendix A. A useful integral identity

Lemma A.1. Foreveryc,d > 0,
/°° S exp RS exp =0’ exp 4o’ dy
d |
-2 % _E )
TN axay eXp( 2 l—l—d)
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Proof. First note that, for every a, b € R,

2 2 3/2 (a—by)//ab
/yexp —y—+X dy = —aexp _y_+X —a—ea/ZbZ/ e™"/2 ds.
2a 2a s

b b b

s=0

Therefore,

f“ e-.vz/z(ex (_(y—c>2>_ex (_<y+c>2>)d
yzoy p >d p 2d y

2
_ e—c2/2d /00 yexp(—y? 1 j;d> <e,Vc/d _ e—yc/d) dy
y=0

3/2 2
:e_"z/zd(—d ) Eexp(1 d C)JE

1+d) d 21+dd?
d 21
= Voo | —C _exp(-S——). O
e (1+d)3eXp( 21+d)
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