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I. INTRODUCTION

The non-vanishing ground-state energy of the harmonic
oscillator within a quantum description provides a prominent
example of the consequences of the Heisenberg uncertainty
relation. However, this ground-state energy is not directly
accessible. In the quantum theory of the electromagnetic
field, where the field modes can be thought of as harmonic
oscillators, the infinite number of modes even leads to an in-
finite ground-state energy. This infinite energy is usually
removed from mathematical expressions by so-called normal
ordering, where in an operator product the creation operators
a† are moved to the left and the annihilation operators a are
moved to the right, without accounting for the commutation
relation between a† and a. On the level of a single harmonic
oscillator of frequency x, normal ordering amounts to
replacing the Hamiltonian

H ¼ �hx a†aþ 1

2

� �
¼ �hx

2
a†aþ aa†ð Þ (1)

by

H ¼ �hxa†a: (2)

The expectation value of the normal-ordered Hamiltonian in
the ground state is zero.

The situation changes when boundary conditions are
imposed. For the electromagnetic field, one can imagine
placing mirrors into space. Then, the ground-state energy or
vacuum energy, as it is usually called in the context of a field
theory, will take on a different, albeit still infinite, value.
However, one can ask how the vacuum energy changes
when the boundaries are modified. A well-defined question
is how this energy changes when two infinite parallel mirrors
are put into space. Changing their distance will lead to a
change in vacuum energy, or equivalently, the presence of
the electromagnetic field even in its ground state will result
in a nonzero force between the two mirrors. In 1948, Casimir
showed that the force F between two parallel ideal mirrors at
distance L at zero temperature is given by1

F3D ¼
p2�hc

240

A

L4
: (3)

Remarkably, apart from the distance between the mirrors
and their surface area A, the Casimir force, as it has been
called since then, depends only on physical constants,
namely the Planck constant �h and the speed of light c. For a
distance L¼ 1 lm, the resulting pressure on the mirrors is
p¼ 1.3 mPa.

A few years after the prediction by Casimir, the first
experiments aimed at its experimental verification took
place.2,3 During the next three decades, more Casimir force
measurements between two parallel plates or a plate and a
spherical surface followed, employing different methods and
materials.4–13 Further insights into the historical context are
given in Refs. 14 and 15 as well as in Ref. 16, where the first
sixty years of the Casimir effect have been concisely
reviewed.

During the past two decades, modern measurement techni-
ques such as precise torsion pendula, atomic force micros-
copy, and micro-electro-mechanical oscillators have been
developed, which allow for new precise Casimir force meas-
urements. Starting with the experiments by Lamoreaux17 and
Mohideen,18 the Casimir effect has experienced an enormous
increase in experimental activities19–33 as well as in theoreti-
cal developments. Taking into account material properties,
geometry, temperature, and the surface state in modern cal-
culations is essential for obtaining reliable theoretical predic-
tions to be compared with Casimir force measurements. For
a detailed discussion of recent developments, we refer the
reader to the collection of papers in Ref. 34 and the textbook
by Bordag et al.,35 as well as to the resource letters by
Lamoreaux36 and Milton,37 which can serve as a guide to the
literature.

The traditional way to calculate the Casimir force (3) con-
sists in calculating the ground-state energy for all modes of
the electromagnetic field between two parallel ideal plane
mirrors. In order to handle the divergence of the vacuum
energy, an appropriate high-frequency cutoff procedure is
employed. Despite its formal character, this approach fol-
lowing Casimir’s original paper1 is mostly taught and
described in textbooks, e.g., Ref. 38. Of course, there are
many other methods. Those already presented in this journal
are based, e.g., on the calculation of the vacuum radiation
pressure39 or on mode spectrum calculations for the force in
one dimension.40
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In research, various complementary methods have been
developed, such as the image method,41 which can also be
used to evaluate van der Waals forces,42,43 vacuum radiation
pressure calculations,44 or, more recently, the worldline
approach,45 while multiple scattering techniques have been a
valuable tool in the context of Casimir physics for many
years. For example, Balian and Duplantier used the tech-
nique to derive the Casimir energy for a sphere.46 The gen-
eral formula to calculate the Casimir effect that we will
derive here involves the logarithm of the determinant of the
scattering matrix. Such formulas appear already in early cal-
culations of van der Waals and Casimir interactions.47,48

Their appearance can be traced back to the Lippmann-
Schwinger formulation of scattering theory.49 More recently,
they have been rediscovered using quantum optical scatter-
ing methods,44,50 the T-operator approach,51 the Krein for-
mula,52 and fluctuating-current scattering theory;53 see also
the short review by Milton in Ref. 54.

Here, we want to propose the use of the scattering theory
applied to a one-dimensional field theory44 as an alternative
to the traditional way of teaching the Casimir effect.
Reducing the dimension of the problem presents the advant-
age of avoiding the necessity to analyze all electromagnetic
modes between the two mirrors, which unnecessarily com-
plicates the problem. One-dimensional models have already
been used in the past to highlight certain aspects of the
Casimir effect.55,56

Of course, in one dimension, the distance dependence will
differ from the A/L4 behavior of the Casimir force (3) in
three dimensions. A simple dimensional argument allows us
to deduce the distance dependence of the force if only one
space dimension is considered. As one cannot define a sur-
face in one dimension, the surface drops out of the numerator
and the Casimir force must scale as 1/L2. In the prefactor, �hc
will be retained for dimensional reasons, while the numerical
prefactor will turn out to be different.

It should be realized that the three-dimensional infinitely
large plate-plate configuration underlying expression (3) for
the Casimir force refers to a very particular geometry that is
never realized in experiments. In fact, in modern experi-
ments, the Casimir force is usually measured between a
sphere and a plate, thereby avoiding misalignment.6 A nota-
ble exception is the experiment described in Ref. 57, where
the force was measured between two finite parallel plates.

Deriving the Casimir effect within a scattering theory, as
we will do in the following, presents several pedagogical
advantages.

First, students who have taken a first course in quantum
mechanics are acquainted with one-dimensional scattering
problems. The scattering at a potential barrier, to name but
one example, is a standard exercise. While the formal scat-
tering approach is often not taught, it represents a natural
extension of such standard problems. The techniques
acquired in this context can be useful in other areas of
modern physics such as mesoscopic physics,58 where the
Landauer-B€uttiker theory59 of the conductance constitutes
one example.

Second, the formal high-frequency regularization men-
tioned above is avoided. Already Casimir had remarked in
this respect: “The physical meaning is obvious: for very
short waves (X-rays, e.g.) our plate is hardly an obstacle at
all and therefore the zero point energy of these waves will
not be influenced by the position of this plate.”1 A method
taking into account the physics at high frequencies is

certainly preferable. Furthermore, the scattering approach
allows one to identify the contribution to the vacuum energy
depending on the distance between the two mirrors in a natu-
ral way. It thereby clarifies the meaning of the Casimir
energy.

Third, the scattering approach has proven to be of great
value in the theoretical treatment of the Casimir effect. It can
be used to deal, for example, with real mirrors described by
a dielectric function and non-planar geometries. The calcula-
tion presented here therefore gives insight into methods used
in present-day research on the Casimir effect.

With this motivation for a scattering approach to the
Casimir effect in mind, the following section reviews some
basic aspects of scattering theory that will be needed in what
follows. In Sec. III, we apply this theory to obtain the change
of the vacuum energy due to the presence of scatterers in one
dimension. For two scatterers, the vacuum energy shift can
be decomposed into terms due to the individual scatterers
and a term depending on the distance between the two scat-
terers. The latter term is the Casimir energy, which is deter-
mined in Sec. IV. The distance dependence of the Casimir
energy implies a force, which we derive in Sec. V for the
one-dimensional case. We conclude in Sec. VI by sketching
how the approach can be generalized to three dimensions
and geometries of practical interest. In Sec. VII, we have
added three problems, which might be instructive for
students.

II. SCATTERING THEORY

We first review the basic properties of scattering theory in
one spatial dimension. To this end, we assume that there
exists a scattering region of finite extent, depicted in Fig.
1(a) by the gray area. In the regions to the left and to the
right of the scattering region, plane waves provide an appro-
priate solution. Their amplitudes are a6 and b6, with the
index 6 indicating right- and left-going waves, and a and b
indicating the region to the left and to the right, respectively.

The scattering matrix S relates the ingoing waves charac-
terized by the amplitudes aþ and b� to the outgoing waves
with amplitudes a� and bþ:

bþ

a�

� �
¼ S

aþ

b�

� �
: (4)

The scattering matrix as well as the amplitudes will in general
depend on the wave number k. For the sake of simplicity, we
will not make this dependence explicit in most equations.

In the context of the Casimir effect, the scattering matrix
will describe a mirror, with the diagonal and non-diagonal

Fig. 1. Notation for the one-dimensional scattering problem where the gray

area indicates a finite scattering region. (a) Here a and b refer respectively to

the regions left and right of the scatterer. The superscripts þ and � indicate

right- and left-going fields, respectively. (b) Reflection and transmission

amplitudes are denoted by r and t for fields coming from the left and by �r
and �t for fields coming from the right.
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matrix elements referring to transmission and reflection
processes, respectively. Accordingly, we choose the follow-
ing notation for the scattering matrix:

S ¼ t �r
r �t

� �
; (5)

where the scattering amplitudes visualized in Fig. 1(b) are
not necessarily the same on both sides of the scatterer. This
distinction leaves the possibility open that the mirror behaves
differently for modes arriving from the left or the right. It
should be kept in mind that r; �r and t;�t are reflection and
transmission amplitudes, respectively, and therefore in gen-
eral complex numbers. To avoid confusion, we note that
here we follow the convention used in quantum field theory,
which differs from the one commonly employed in meso-
scopic physics. There, the vector on the left-hand side of
Eq. (4) is chosen as (a�, bþ), which has as a consequence
that the transmission amplitudes appear as off-diagonal
elements and not on the diagonal as in Eq. (5).

Current conservation requires the scattering matrix to be
unitary:

S†S ¼ 1: (6)

As a consequence, the matrix elements have to obey the
three conditions

jtj2 þ jrj2 ¼ j�tj2 þ j�rj2 ¼ 1; (7)

r�t� þ t�r� ¼ 0; (8)

where the star indicates complex conjugation. For later use,
we note that because of the unitarity relations, the determi-
nant of the scattering matrix can be expressed solely in terms
of the transmission coefficients:

det Sð Þ ¼ t
�t�
¼

�t

t�
: (9)

A simple example of a scattering matrix is given by

S ¼ 1þ r r
r 1þ r

� �
; (10)

with the complex reflection coefficient

r ¼ g

2ik � g
; (11)

where g is a constant. With increasing wave number k, the
scatterer turns from perfectly reflecting into almost perfectly
transmitting. (The first two problems given in Sec. VII dem-
onstrate how this specific scattering matrix can be obtained
in the contexts of single-particle quantum mechanics and of
electromagnetic transmission lines.)

In order to determine the Casimir force in a one-
dimensional field theory, we need to describe a system com-
posed of two scatterers and to account for the propagation of
the waves in between them. As a first step, we explain how the
combined effect of two scatterers can be obtained for the setup
shown in Fig. 2. The propagation between the two scatterers
will be incorporated at a later stage without any difficulties.

For the description of a combined scattering process, it is
convenient to consider the transfer matrix T, which relates

the waves on the left-hand side to those on the right-hand
side of the scatterer according to

bþ

b�

� �
¼ T

aþ

a�

� �
: (12)

In this way, the combined scattering properties of two or
more scatterers in series can easily be calculated.

As both Eq. (4) and Eq. (12) are linear equations for the
coefficients a6 and b6, it is straightforward to convert the
scattering matrix into the corresponding transfer matrix and
vice versa. One finds

T ¼ 1

S22

det Sð Þ S12

�S21 1

� �
(13)

and

S ¼ 1

T22

det Tð Þ T12

�T21 1

!
: (14)

If S1 and S2 are given, we can now employ Eq. (13) to obtain
the corresponding transfer matrices T1 and T2. The transfer
matrices allow us to express the effect of the scatterers in se-
ries by means of a single transfer matrix T ¼ T2T1, from
which we obtain the effective scattering matrix S for the two
scatterers seen from the outside. Its matrix elements
expressed in terms of the reflection and transmission ampli-
tudes of the single scatterers read

S ¼

t1t2

1� �r1r2

�r2 þ
�r1t2�t2

1� �r1r2

r1 þ
r2t1�t1

1� �r1r2

�t1�t2

1� �r1r2

0
BBB@

1
CCCA: (15)

Expanding each of the denominators as a geometric series,
one can convince oneself that all possible scattering proc-
esses, including an arbitrary number of back-and-forth scat-
terings between the two scatterers, are contained in this
scattering matrix.

Expressing the determinant of the scattering matrix (15) in
terms of the transmission coefficients by means of Eq. (9),
one finds

det Sð Þ ¼ t1

�t�1

t2

�t�2

1� �r�1r�2
1� �r1r2

: (16)

The first two factors refer to the transmission through a sin-
gle scatterer, while the third factor accounts for all multiple
reflections between the two scatterers. Making use of Eq. (9)
once more yields

Fig. 2. Setup containing two scatterers with scattering matrices S1 and S2.

The wave amplitudes in the left and right regions are denoted by a6 and c6,

respectively, while b6 refer to the wave amplitudes between the two

scatterers.
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det Sð Þ ¼ det S1ð Þdet S2ð Þ
1� �r�1r�2
1� �r1r2

: (17)

A slightly generalized version of this relation will allow us
to isolate the distance-dependent part of the vacuum energy
(see Sec. IV).

III. INFLUENCE OF SCATTERERS ON THE

VACUUM ENERGY

So far, we have not addressed the question of why the
Casimir effect can be approached by means of scattering
matrices at all. Therefore, we now consider the change of the
vacuum energy when a scatterer is inserted into our one-
dimensional field. Later we will think of this single scatterer
in terms of two scatterers representing the two mirrors, as
indicated in the lower part of Fig. 3. However, we know
already that the two scatterers can be described by a single
scattering matrix and thus be viewed from the outside as a
single effective scatterer. Hence, for the moment, it is suffi-
cient to consider a single scattering matrix S.

We imagine the scatterer sitting in the middle of a one-
dimensional space of length L. Eventually we will take the
limit L ! 1, and then the result will be independent of
which boundary conditions are imposed. For convenience,
we choose periodic boundary conditions, as indicated in the
upper part of Fig. 3. The scatterer is characterized by a
scattering matrix S or, equivalently, a transfer matrix T. The
periodic boundary condition can then be expressed as

TTL
aþ

a�

� �
¼ aþ

a�

� �
; (18)

where

TL ¼ eikL 0

0 e�ikL

� �
(19)

is the transfer matrix describing free propagation of a wave
with positive wave number k moving to the right in the first
and to the left in the second component. From Eq. (18), we
obtain the eigenvalue condition for the waves in the presence
of a scatterer,

exp �ik6Lð Þ ¼ tþ �t

2
6

tþ �tð Þ2

4
� det Sð Þ

� �1=2

; (20)

where the scattering matrix is a function of k.
In view of the linear dispersion relation

x ¼ ck (21)

for the field modes of frequency x and wave number k, the
vacuum energy is given by

Evac ¼
X

n

�hc

2
kþn þ k�n
� �

; (22)

where the sum runs over all modes. From Eq. (20), we find

kþn þ k�n ¼ 2
2pn

L þ Dkþn þ Dk�n : (23)

The first term refers to the case without scatterers, and corre-
sponds to the sum of the wave numbers 2pn=L of a pair of
left- or right-moving modes. The second and third terms are
due to the presence of the scatterer and according to Eq. (20)
are given by

Dkþn þ Dk�n ¼ i
1

L ln det Sð Þ½ �: (24)

Note that the determinant of the scattering matrix according
to the unitarity condition (6) has modulus 1. Therefore, the
logarithm is purely imaginary, and the shift of the wave
numbers turns out to be real, as it should.

The scatterer thus induces a shift in the vacuum energy of

DEvac ¼
�hc

2

X
n

Dkþn þ Dk�n
� �

¼ �hc

2

ð1
0

dk
L
2p

iln det Sð Þ½ �
L

¼ i�hc

4p

ð1
0

dk ln det Sð Þ½ �: (25)

In going to the second line, we have made use of the fact that
according to Eq. (23) the difference in wave number between
subsequent unperturbed modes amounts to 2p=L. In the limit
L ! 1 the sum in the first line can then be interpreted as a
Riemann sum representing the integral in the second line.

IV. CASIMIR ENERGY FOR TWO SCATTERERS

If we place two scatterers into the one-dimensional field
as depicted in Fig. 3, we can make use of Eq. (25) to obtain
the change in the vacuum energy. We only need to determine
the determinant of the scattering matrix describing the two
scatterers at a distance L from each other. The total transfer
matrix

T ¼ T�1
L T2TLT1; (26)

which should be read from right to left, then contains four
contributions: The transfer matrix T1 of the first scatterer,
the transfer matrix for free propagation according to
Eq. (19) with L replaced by L, the transfer matrix T2 of the
second scatterer, and finally the inverse of the transfer ma-
trix TL. The role of the last factor becomes clear by insert-
ing the transfer matrix (26) into the eigenvalue condition
(18) and realizing that T�1

L TL ¼ TL�L. The original system
of length L now consists of two parts, of length L � L and
of length L. The last transfer matrix in Eq. (26) thus
ensures that the overall length of the system remains con-
stant even though a scattering region of length L has been
inserted.

Fig. 3. A scatterer placed in a one-dimensional space of length L is dis-

cussed in Sec. III. The dotted line indicates the use of periodic boundary

conditions. In Sec. IV, the scatterer will be replaced by two scatterers sepa-

rated by a distance L, as indicated in the lower part of the figure.
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Performing the matrix multiplications, we find

det Sð Þ ¼ det S1ð Þdet S2ð Þ � r1�r2 exp �2ikLð Þ
1� �r1r2 exp 2ikLð Þ : (27)

Recalling Eq. (17), we expect that the determinant can be
factored. By means of the relations (8) and (9), we obtain
from Eq. (27) the factorization of the determinant of the
scattering matrix,

det Sð Þ ¼ det S1ð Þdet S2ð Þ
1� �r1r2 exp 2ikLð Þ

� ��
1� �r1r2 exp 2ikLð Þ : (28)

This decomposition is physically quite significant because it
implies that the change of the vacuum energy (25) due to
placing mirrors into the field consists of three parts:

DEvac ¼ DEð1Þvac þ DEð2Þvac þ DEvacðLÞ: (29)

The first two contributions to the determinant (28) of the
scattering matrix and to the vacuum energy (29) arise due to
a single mirror, and they are therefore independent of L. In
contrast, the third contribution depends on the distance L
because the coherent field between the two mirrors is sensi-
tive to their distance. Therefore, the third term yields the
Casimir energy. The last factor in Eq. (28) is a pure phase
factor, so that the Casimir energy can be expressed as

DEvac Lð Þ ¼ �hc

2p
Im

ð1
0

dkln 1� �r1r2 exp 2ikLð Þ
� �

: (30)

The argument of the logarithm has a simple interpretation in
terms of one round-trip between the two scatterers consisting
of a reflection at scatterer 1, a propagation over a distance L,
a reflection at scatterer 2, and finally another propagation
over a distance L in order to return back to scatterer 1.
Recalling the notation introduced in Fig. 1(b), one immedi-
ately sees that the force depends only on the inner reflection
coefficients �r1 and r2 of the two-scatterer setup.

V. CASIMIR FORCE IN ONE DIMENSION

The Casimir force is obtained from the distance-
dependent part (30) of the change of the vacuum energy
induced by the two scatterers, specifically as the derivative
with respect to their distance L:

F ¼ � dDEvac Lð Þ
dL

¼ �hc

p
Re

ð1
0

dk k
�r1r2 exp 2ikLð Þ

1� �r1r2 exp 2ikLð Þ

" #
: (31)

In order to evaluate the Casimir force, it is convenient to rotate
the axis of integration from the positive real to the positive
imaginary axis. This step is common in the evaluation of the
Casimir force, including the more general cases.60–62 Excluding
the special case of amplifying media, causality ensures that the
integrand has no poles in the upper complex half-plane. This
can be explicitly verified by considering the scattering matrix
(10) with the reflection coefficient (11). Furthermore, because
of the exponential function in the numerator, the integrand van-
ishes at infinity in the upper complex half-plane. Therefore, we
can apply the residue theorem to turn the integration contour.
Replacing the wave number k by ix/2L, one obtains

F ¼ � �hc

4pL2

ð1
0

dx x
�r1 xð Þr2 xð Þexp �xð Þ

1� �r1 xð Þr2 xð Þexp �xð Þ : (32)

Noting that the exponential in the numerator of Eq. (32)
cuts off the integrand, we can obtain the limit of perfect
reflectors, r1 ¼ �r2 ¼ �1. The integral can be evaluated by
first expressing the integrand in terms of a geometric series
and performing a resummation after having integrated each
term. We thus arrive at the Casimir force for perfect reflec-
tors in one dimension:

F1D ¼ �
�hcp
24L2

: (33)

The sign implies an attractive force between the scatterers.
The force scales indeed as 1/L2, as expected from the dimen-
sional argument presented in the introduction, with the same
dependence on fundamental constants �h and c but a different
numerical prefactor. This result has been obtained for one-
dimensional models in various contexts.63–66

VI. OUTLOOK

The calculations presented here can be generalized to
three-dimensional space involving the full electromagnetic
field enclosed between two plane parallel mirrors. Then, the
scattering on the mirror can still be described by a 2� 2 scat-
tering matrix relating the two outgoing fields to the two
incoming ones. However, now the electromagnetic field is
characterized by its frequency, transverse wave vector, and
polarization. From the symmetry with respect to time trans-
lations and transverse space translations, it follows that these
quantities are preserved throughout the scattering process.
Therefore, the expression (25) for the shift in the vacuum
energy still holds, provided an integration over the transverse
wave vector and a summation over the two polarizations is
added. In this way, the scattering approach leads to the origi-
nal result (3) by Casimir.

In an arbitrary static configuration with two scatterers in
vacuum, the Casimir energy can still be written in the form
of Eq. (25). This includes, e.g., the experimentally relevant
cases of a sphere in front of a plate17,18,20,22,24,26–28,30–32 and
structured surfaces.21,25,29,33 However, in general, plane
waves will no longer be adapted to the geometry of the prob-
lem. The scattering processes now can lead to changes of the
transverse wave vector and to a coupling between polariza-
tions, resulting in high-dimensional scattering matrices of a
complex structure.

Besides the geometry, the comparison with experimental
results requires one to account also for material proper-
ties61,62,67 and nonzero temperature T.61,62,68–70 The former
enter into the elements of the scattering matrix,60 while the
latter can be accounted for by replacing the vacuum energy
�hx=2 with the Planck factor15 ð�hx=2Þcothð�hx=kBTÞ.

Therefore, a calculation taking all these aspects into account
can become rather challenging and numerically demanding.

VII. SUGGESTED PROBLEMS

1. Derive the scattering matrix (10) with the reflection coef-
ficient (11) for a delta-like scattering potential

V0 xð Þ ¼ �h2g

2m
d xð Þ: (34)
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Depending on the level of knowledge of quantum
mechanics, different approaches can be chosen, e.g.: (1)
Start from the textbook expression for the complex reflec-
tion coefficient of a rectangular potential barrier of height
V0 and width a. Take the limit V0 ! 1, a ! 0 while
keeping V0a ¼ �h2g=2m constant to obtain Eq. (11).
Derive the remaining matrix elements of the scattering
matrix by exploiting the symmetry of the problem and the
unitarity of the scattering matrix. Compare your result
with Eq. (10). (2) Start from the boundary conditions at
the delta-like potential to obtain relations between the
coefficients of the wave functions on both sides of the
scatterer (cf. Fig. 1). Rearrange the equations so that you
can read off the scattering matrix.

2. Consider an infinite LC transmission line with inductance
�L and conductance �C per unit length. At x¼ 0, the two
conductors of the transmission line are connected by an
inductance L. Determine the reflection coefficient and
prove that it can be brought into the form of Eq. (11). The
symmetry of the problem and the requirement of unitarity
allow one to arrive at the full scattering matrix (10).

3. Convince yourself that the scattering matrix (15) accounts
for all possible scattering processes involving two scatter-
ers. Hint: Make use of a geometric series.
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