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Abstract

The quantum Hamiltonian generates in time a family of evolution operators.
Continuity of this family holds within any choice of representation and, in
particular, for the Weyl propagator, even though its simplest semiclassical
approximation may develop caustic singularities. The phase jumps of the
Weyl propagator across caustics have not been previously determined. The
semiclassical approximation relies on individual classical trajectories together
with their neighbouring tangent map. Based on the latter, one defines
a continuous family of unitary tangent propagators, with an exact Weyl
representation that is close to the full semiclassical approximation in an
appropriate neighbourhood. The phase increment of the semiclassical Weyl
propagator, as a caustic is crossed, is derived from the facts that the
corresponding family of tangent operators belong to the metaplectic group
and that the products of the tangent propagators are obtained from Gaussian
integrals. The Weyl representation of the metaplectic group is presented here,
with the correct phases determined within an intrinsic ambiguity for the overall
sign. The elements that fully determine the phase increment across a particular
caustic are then analysed.
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1. Introduction

The construction of a path integral for the Weyl propagator [1, 2], that is, the evolution
operator, U = exp(—itﬁ /h), in the Weyl representation, makes no restriction on the form
of the Hamiltonian that generates the continuous evolution of a quantum system. Except
for possible minor modifications due to ordering, the Weyl symbol, H (x), for the quantum
Hamiltonian, H , is identified with its classical counterpart, H (x), where {x = (p, q)} is the
2N-dimensional classical phase space, R*V. There is no need for the classical Hamiltonian to be
derived from a Lagrangian, so that the path integral may just as easily be constructed for e.g. the
Kerr Hamiltonian [3-5], H (x) = (ap® + bq?)?, as for the usual form, H (x) = p>/2m+V (q).

A classical trajectory coincides with a stationary phase of the Weyl path integrand, just
as with Feynman path integrals in the position representation. Thus, one obtains semiclassical
(SC) approximations for the full path integral as a superposition of a few contributing classical
trajectories. The main difference is that here the relevant trajectory is prescribed by a kind
of boundary condition on the centre, x = (x* + x7)/2, of its pair of endpoints, x~ and x*,
rather than by the pair of end-positions (q~, q*) [2, 6]. In both the Weyl and the position
representations, contributing trajectories may coalesce, with the passage of time, or with
continuous change in the boundary condition. At these caustics, the SC approximation has a
singularity. In passing a caustic, SC approximations generally change their phase by umr /2,
where u is known as the Maslov index [7, 8]. If H (x) = p?/2m + V (q), then, in the position
representation, as was shown by Arnol’d [9], u coincides with the Morse index [10]. A more
general geometrical phase space treatment of the Maslov index for periodic orbits is presented
in[11, 12].

The SC approximation becomes exact in the limit where the Hamiltonian is quadratic
in the phase space variables. Classically, such a Hamiltonian generates a (linear) symplectic
transformation between the endpoints of a classical trajectory: x~ + x* = Mx~, where
M is a symplectic matrix. The symplectic subgroup of classical canonical transformations,
Sp(2N), characterized by M, corresponds to the metaplectic subgroup, Mp(2N), of general
quantum unitary transformations, Uy, that is, the group of metaplectic operators [13-20].
The amplitude of the Weyl propagator for a metaplectic operator is constant throughout phase
space, but it has a true caustic singularity at an instant when the SC form of the Weyl propagator
must be replaced by a Dirac delta-function.

The action of a Weyl propagator on other operators involves phase space integrals.
Therefore, in the general SC scenario where the region of integration may encompass different
Maslov phases, it is crucial that these be correctly evaluated. Indeed, such switches of phase can
be more important than the possibly integrable SC singularities at the caustics themselves, as
occurs with the initial value or final value algorithms recently proposed in [21]. Furthermore,
there are applications where SC super propagators for Wigner functions [22, 23] are specified
by products of Weyl propagators, each of which may traverse its own caustics [21, 24], so that
it is essential to determine the correct Maslov phases in all cases. The purpose of the present
paper is to establish the general connections of SC Weyl propagators (and of their Fourier
transforms) through their caustics.

In order to establish possible phase changes for caustic traversals, one needs to focus on the
tangent map for the full canonical transformation in the neighbourhood of a given trajectory. In
other words, one must study the symplectic approximation to the full canonical transformation
between the neighbourhoods of the endpoints of a classical trajectory: §x~ +— dxT = My dx~,
where the symplectic matrix for the transformations is labelled by the centre, x = (x*+x7)/2,
of the main trajectory. This is an essential ingredient of the SC approximation of the Weyl
propagator, U (x). Furthermore, one can also construct an exact metaplectic tangent operator,
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ﬁMx, represented by the Weyl symbol Uy, (X'), i.e. the tangent Weyl propagator, based on
the same symplectic matrix, M. Just as the tangent map is close to the full canonical
transformation in the neighbourhood of its endpoints, we can define a small neighbourhood
3%, to be measured from the centre, X, and then we have Uy, (8X') ~ Usc(8xX'). 3tis important
to emphasize that this is a purely local approximation and that different arguments of the Weyl
propagator (i.e. choices of the centre, x) are related to different trajectories with different
linearized maps, so that the quantum tangent propagator is constructed entirely from a local
classical map. Hence, one can investigate the possible phase jumps of the SC approximation of
the Weyl propagator by analysing, instead, the behaviour of the exact symbol for the tangent
propagator.

The tangent Weyl propagators belong to the metaplectic group. The difficulty is that,
even though Sp(2N) and Mp(2N) are isomorphic in the neighbourhood of the identity, the
correspondence M +— l7M is not one to one: There is a double covering of the quantum group,
i.e. a pair of metaplectic operators and, hence, a pair of metaplectic Weyl propagators for each
M: UM = —Uy Ui In particular, one should note that important particular symplectic matrices,
suchas M = I, the identity matrix, and M = —I, the reflection at the origin, correspond to
pairs of metaplectic operators, even though only one of these is commonly employed. Since
they differ only by an overall sign, the choice of different sheets of a metaplectic operator has
no essential effect on how it acts on wave functions and this action completely cancels out for
Heisenberg operator evolution: A > U'A U. Nonetheless, the choice of sheet is essential for
SC applications and it lies in the focus of this paper, but we shall distinguish the sheet in the
notation for ﬁM only where it is essential.

The notion of crossing a caustic needs to be carefully dissected in terms of corresponding
families of classical maps and quantum operators. The quantum Hamiltonian generates a
continuous one-parameter family of evolution operators, U, corresponding semiclassically to
a family of canonical transformations, each of which may, in turn, be decomposed into its
individual classical trajectories. In the neighbourhood of each of these trajectories, one can
then define a family of tangent symplectic maps, M, and hence, a continuous one-parameter
family of tangent metaplectic operators: UM # Such a family does not form a subgroup of
the metaplectic operators, because it is not closed with respect to multiplication, but the
product rule for each pair of sequential time intervals is satisfied. For #; + 7, = ¢, one has
the exact product UM, UM, = UM , correspondmg to symplectic matrices, which also satisfy
M, M;, = M,, even though neither (M;)? nor (UM )2 need belong to their respective family.

Continuity of the classical family of symplectic transformations entails the continuity of
the family of tangent operators, but this crucial point will be masked by caustics in any given
representation. A caustic of the tangent Weyl propagator occurs for the same matrix M, as for
the SC approximation of the full evolution operator U,, but it is a true singularity, at which
the Weyl symbol becomes a §-function [18]. The fact that there is only a pair of metaplectic
sheets, corresponding to the choice of a w-phase (i.e. an overall sign) for the Weyl propagator,
does not prevent a possible phase change of £ /2 across a caustic. However, it will be shown
that it is only the overall sign that needs to be determined by the history of each trajectory,
because otherwise factors of i for tangent propagators can be inferred from the dynamical
properties of the symplectic matrix M,.

3 One should recall that the Weyl representation is invariant with respect to phase space translations, so that the
change of origin in the argument, X' > (§x' = X’ — x), of the SC approximation to U (x') is purely classical.

4 Strictly speaking, one should define My ;) rather than M, following the previous notation, because the centre,
x(t), of a given trajectory with fixed initial condition is itself time dependent. Indeed, one also deals with caustics as
the centre x is varied while the time is fixed, but one needs to consider only one-parameter families of metaplectic
operators, so this has been labelled as ¢ throughout this paper.
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Fortunately, the caustics of different representations occur for different values of the trace
of M; and thus at different parameter values ¢. This allows for swapping representations, where
the continuity in a ¢-interval for one representation supplies the sign change at the caustic of
the other. An alternative method to evaluate the overall sign of the propagator beyond a
caustic is based on the exact product for sequential time intervals. These can be chosen so that
both propagators lie in the causticless neighbourhood, which guarantees that the generalized
Gaussian integral for their product, which lies beyond the caustic, supplies the correct sign.

Nontrivial phase changes may in principle also occur for the product of finite metaplectic
operators, or for their product with translation (Heisenberg) operators, or reflection (parity)
operators. The specification of these phases is important for the SC treatment of operator and
super operator evolutions, such as in [21]. The case of parity operators demands special care
because they have been defined with different phases in different contexts, namely the basis
operator for the Weyl representation differs from the operators belonging to the metaplectic
group that we consider here.

After a review of basic classical formulae for the Weyl propagators involving symmetric
matrices and generating functions in section 2, the Weyl representation of metaplectic operators
and its Fourier transform, the chord representation, are presented in section 3. The choices
which are made here for the overall phases, that were omitted in [2], are justified by the general
consistency of the propagators on switching representation (section 4) on the one hand, and
from their products (sections 5 and 6) on the other.

Given the elegance with which the double sheeted topology of the metaplectic group is
here seen to be rendered within the Weyl representation, our aim is to provide a pragmatic
method for determining the phase increment across each caustic, regardless of the metaplectic
sheet. This is clearly described in the concluding section 7. A didactic appendix has been added
to illustrate the theory in the quintessential example of products of harmonic oscillations. A
second appendix relates the double phase space scenario for symplectic transformations to the
Maslov index in the geometrical framework developed by Arnol’d [9].

2. Classical ingredients

The centre generating function, S(x), implicitly defines a canonical transformation, x~ +— x*.
This is achieved by a finite version of Hamilton’s equations, that is, defining the chord,
E=x1 —x~, we have
oS + 0S
= —, —-q =&, =——, 2.1
3a Q" —q =§, 2.1

ap
0 -1
J= (1 0 > (2.2)
in terms of (p, q) blocks, that is, the standard symplectic matrix in Hamilton’s equations. The
endpoints are given by

as _
EZ_J&’ or p+_p =£p

where

§
+ _
X _x:|:2. 2.3)

For the canonical transformation generated by a Hamiltonian during a short time period, we
thus have S, (x) = —tH(x) + O(#3), where the third order correction is given in [2].

The tangent map for the canonical transformation near a trajectory centred on x =
(xT +x7)/2is 8x~ > SxT = M,Sx . It has the centre generating function corresponding to
the symplectic matrix M

Sm, (6x) = 6x - Bidx, 2.4)



where By is the (symmetric) Hessian matrix for the full generating function evaluated at x.
Henceforth, the origin will be shifted so that x = x. Indeed, a symmetric matrix B defines the
Cayley parametrization of a symplectic matrix M [2], and hence the symplectic transformation
xt =Mx", by

M= I+JB)"'(I-JB), (2.5)
with the inverse

JB=I+M)"'I-M). (2.6)
One should recall the fundamental symplectic property [25],

M'JM =], 2.7)

where M’ is the transpose of M.

It is important to note that any 2N-dimensional symmetric matrix, B, defines a symplectic
transformation through (2.1), unless JB has an eigenvalue —1, whereas the condition (2.7) for
the symplectic matrix M itself can only be verified a posteriori. The eigenvalues of JB must
come in pairs, £y, just as the eigenvalues of JH, which determine the symplectic flow for
the Hamiltonian, H(x) = x - Hx/2. They correspond to the same eigenvectors for which M
has a pair of eigenvalues (A, A~!). Again, the fact that the matrix B is real demands that any
complex eigenvalues come in complex conjugate pairs (see e.g. [25]). Notwithstanding that
det(B) = det(JB), one should keep in mind that the eigenvalues of B are necessarily real,
even if those of JB need not be.

For N = 1, the transformation can be classified by det(B), that is, for detB > 0 the
transformation is elliptic, for —1 < det(B) < 0 it is simply hyperbolic and for det(B) < —1
hyperbolic with reflection. One should note that det(B) = det(JB) = tr[(JB)?]/2. The
alternative classification of symplectic transformations in terms of
1 — det(B)

1 +det(B)’

or of det(B), is illustrated in figure 1. The classification for N = 2 according to the invariants
of JB is given in [26] and, for larger-dimensional phase spaces, a similarity transformation
can always reduce the matrix JB, just as the symplectic matrix M, into two-dimensional or
four-dimensional blocks [25, 27].

A continuous transition between elliptic and hyperbolic transformations may pass through
the identity, but, in general the boundary between them lies along the phase space shears, for
which the normal form will be Cayley-parametrized by

b 0 0 0
B—><O O),JB—><b 0), (2.9)

for some real parameter b, such that b = 0 for the identity. This is a parabolic transformation,
such that its symplectic matrix has the form of a Jordan block:

1 0
M — <_2b 1) . (2.10)

The breakdown of the Cayley parametrization (2.5), such that det(B) — oo, for a
one-parameter family of transformations, if N = 1, is specified by the limiting matrix,

-1 2
M—>(O _1>, (2.11)
so that the family of symplectic transformations goes through a shear with a reflection through
the origin. This is the generic form for a caustic, i.e. for a single degree of freedom we have

tr(M) = 2 2.8)
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Figure 1. Classification of elliptic and hyperbolic symplectic motion for a single degree
of freedom in terms of tr(M) or det(B).

tr(M) = —2, or equivalently, det(I + M) = 0. But there is only one eigendirection, unless
the parameter & = 0 in (2.11), in which case the transformation reduces to a reflection at the
origin.

The neighbourhood of a caustic can be neatly treated with the aid of the complementary
Cayley parametrization [2, 19],

M=—(1-JB)"'I+JB), 2.12)
with its inverse:

JB=—-1I-M)"'d+M). (2.13)
From (2.5) and (2.12) one obtains the explicit expression for the new Cayley matrix as

B=-JB'J=J'B'J. (2.14)

Thus, B! and B are related by a similarity transformation and can be diagonalized
simultaneously, so that B and B have the same signature and their determinants have the
same sign. It follows that det(ﬁ) — 0 at a caustic, which allows for the caustic to be described
by its normal form

= (b 0\ & (00
B—>(O 0>,JB—><Z7 0), (2.15)
such that b = 0 for a pure reflection. Thus, det(B) is small near the identity and diverges

near the reflection, whereas the situation for det(B) is the reverse. Just as the Cayley matrix B
specifies a quadratic centre generating function,

Sm(§) = 1&- B¢ (2.16)

is the chord generating function for a symplectic transformation [2], such that x = J aS /o0&
and again xT=x+ &/2. Thus, whereas S(x) becomes singular at a reflection, because all the
chords then have the same centre, S (&) becomes singular for a uniform translation, for which
all centres have the same chord.



One should note that, since the eigenvalues of both JB and JB come in pairs of opposite
sign, it is generally true that tr(JB) = tr(JB) = 0. Furthermore, one obtains from (2.6) and
(2.13) that the eigenvalues for JB and JB are related by % = —A~!. Hence, det(B) and det(B)
change signs simultaneously at the boundary between hyperbolic and elliptic transformations,
so that the classification in figure 1 also holds for B, provided that one interchanges 0 <> oo.
If N = 1, both signatures o (B) = £2 and o (B) = £2 for an elliptic transformation, whereas
o = 0 for both parametrizations in the case of a hyperbolic transformation.

3. Metaplectic operators in the Weyl and the chord representations

For the present purpose, the most appropriate way to consider the Weyl representation of an
operator A, i.e. its centre symbol or Weyl symbol, is

Ax) = 2V tr(RLA), (3.1)

where Ry is the quantum operator corresponding to a reflection through the phase space point
x [2, 28, 29]. Within a translation, this is just the symplectic transformation with M = —I,
B=0, though its main Cayley matrix B has a singular limit. It is important to note that such
an operator is only defined within an overall phase, but in all standard definitions, one imposes
that (Ry)? = 1.
The metaplectic operator, corresponding to the symplectic transformation x* = Mx™~ and
Cayley matrix B, has as its Weyl symbol the Weyl propagator,
N

+ [det(X + M)]!/?
which was derived in [2] only within a phase. Thus, it should be noted that both amplitudes
have here been specified by the square root of a determinant, rather than that of its modulus.
There will then be a factor of i, if the determinant is negative. In other words, the duplicity
of the metaplectic sheet coincides with that of the Riemann sheet for the square root, as shall
be verified later on. The (%) signs which distinguish the pair of sheets are kept as a reminder
that either choice can result for a metaplectic operator labelled by the same M, depending on
its previous evolution®.

One should keep in mind that for general motions the only difference between this
tangent propagator and the approximate SC Weyl propagator, corresponding to a nonlinear
transformation, is that the action of the former is obtained as the homogeneous second order
approximation to the full action S(x). (It follows that the amplitude of the tangent propagator
is constant.) In other words, (2.4) may either be interpreted as the local phase of the SC
propagator, or the exact phase of the tangent propagator. Thus, in the neighbourhood of the
origin, which corresponds to the midpoint of a trajectory for the full nonlinear motion, one
can identify the overall sign of both propagators.

The alternative forms for the determinantal amplitudes are immediately interpreted with
the aid of the transformations between midpoints and endpoints:

x=1T+M)x~ or x~ = I+ JB)x, (3.3)

Up(x) = exp(}%x Bx) :i:[det(I—i—JB)]l/zexp( X Bx> (3.2)

whereas

x=1T+M x* or x* =1 —-JB)x. 3.4)

3 Other representations of the > metaplectic operators, such as the usual position propagator, are also exact in their SC
form. One can identify M +— UM in all cases, but the special appeal of the present phase space representations is that
they are specified by invariants of the full corresponding symplectic matrix, M.
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Thus, the Jacobians for these transformations are
det(I £ JB) =2V det@+ M)~ =2V det@+ M~ H~!, (3.5)

which also allows for the expression of the amplitude in terms of det(I — JB), as in [2]. In the
present text, the choice of sign within the determinant in the LHS of (3.5) is never altered in
order to avoid any confusion with the issue of determining the overall Maslov phases.

Any continuous family of symplectic transformations corresponds to a continuous family
of metaplectic operators. If these are represented by their Weyl symbol, then the latter must
also be continuous, except at the caustics, where det(B) — oo. Recalling that the Weyl
representation of the operator Tis just the constant, /(x) = 1, it follows that all the metaplectic
operators that are continuously connected to T are correctly described by the (4) sign in (3.2).
It will be verified further along that the pair of metaplectic sheets is correctly accounted for,
including caustic traversals, by the square roots of these determinants, without taking their
modulus.

The Weyl propagator for the harmonic oscillator (N = 1), driven by the Hamiltonian
H(x) = (w/2)(p* + ¢*), provides an illuminating example. After a time ¢, the Cayley matrix
for this typical elliptic propagator will be B(r) = — tan(wt/2)I, so that the full Weyl propagator
is

U, (x) = i tan(wt /2) (p* + qZ)} ) (3.6)

1
cos(wr2) P [ h
One should note the simple form taken by the square root in the amplitude of (3.2). The
Maslov theory in the next section will confirm that the change of phase across the caustic is
just that shown in (3.6), in which the sign ambiguity is fully accounted for by adding an even
or odd factor of 27 to the cosine phase. So there is a minus sign as the boundary |wt| = 7 is
crossed, coinciding with the sign of the cosine. This signifies a change of metaplectic sheet.
At wt = 27, one obtains —7, that is, U (x) = —1 and it is only after a second rotation in phase
space that the identity operator is regained. In the absence of the history of the evolution,
the (£) sign is undetermined, but our general concerns are the particular phase jumps for
particular caustic transitions. Products of metaplectic operators for the harmonic oscillator are
discussed in appendix A.

The Cayley matrix for the harmonic oscillator becomes singular for wt = 7, when the
transformation is just a reflection. The correct corresponding Weyl propagator is a Dirac delta-
function, which is indeed singular. In general, a continuous family of metaplectic operators
has a singular Weyl representation as det(I + M) — 0. If N = 1, this is equivalent to
tr(M) +2 — 0.

In contrast, for the inverted harmonic oscillator, H(x) = (A/2)(p* — ¢*), the Weyl
propagator is

i
U, (x) = — tanh(At/2) (p* — qz)} . (3.7

1
cosh(A/2) eXp[ h
In the case of such a quadratic hyperbolic Hamiltonian, there is no caustic singularity.

Here, we have portrayed the propagators as continuously connected to 1, whereas those in
the neighbourhood of —71 would all have a negative sign. The hyperbolic transformations with
reflection (see figure 1) cannot be reached continuously through the action of a hyperbolic
Hamiltonian. Even so, to complete the types of symplectic transformation portrayed in figure 1,
one may add the continuous family of operators (for ¢ positive or negative):

U(x) = — i coth(r1/2)(p* — qz)] ) (3.8)

i
sinh(A7/2) CXP[_ h



However, it should be noted that the corresponding hyperbolic transformations with reflection

are continuously obtained from the reflection, for whichM = —I'and B = 0, while they cannot

be reached directly from I without traversing a caustic. For this reason the phase presented in

(3.8) anticipates the theory in the following sections. One should note that typical metaplectic

operators for elliptic and hyperbolic transformations are simply obtained from these examples,

owing to the invariance of the Weyl representation with respect to symplectic transformations.
The chord representation of an operator A, i.e. its chord symbol, is

A®) = (T A), (3.9)

where 7} is a Heisenberg operator, that is, the unitary operator corresponding to a phase space
translation by the vector &. (It is referred to in various ways throughout the literature, but here
we follow the notation in [2].) This is the conjugate representation to the Weyl representation,
so that the chord propagator corresponding to the same metaplectic operator and, hence,
the same classical symplectic matrix, M, can be evaluated through the symplectic Fourier
transforms (see e.g. [2]),

~ 1 i
U = DL /dx exp<ﬁx A ’;‘) U(x), (3.10)

1 i 3
U(x) = W/d’;‘exp<ﬁ§/\x> U, @3.11)

where we recall that the wedge product x N &€ = & - Jx.
To obtain the metaplectic chord propagator, one takes the Fourier transform of the complex
Gaussian form of the Weyl propagator (3.2)

~ dx i

— 1/2 —(x- —-xX-
Um(§) = £[det(I+ JB)] / Qv eXp[h(X Bx —x Jé’)]

[det(I + JB)]'/? i ~ )
=t— ——&-B e]. 3.12
derBy 2 OP\ gt BEFI (3-12)
The increment in phase is given by the signature o (B) of the 2N-dimensional matrix B as

@:%o(B):%(N—N,), (3.13)

where N_ is the number of negative eigenvalues of B.
_ In order to express the chord propagator (3.12) in terms of the alternative Cayley matrix,
B, defined by (2.13), we make use of (2.14) to obtain

det(I+ JB) = det(I + JB) det(B) . (3.14)

The modulus of the determinant of B appearing in (3.12) can be replaced by B itself by
noting tha~t arg[det(B)] = m[N_(mod 2)]. Part of the phase ® can thus be incorporated into
det(I+ JB)'/2, leading to®

NN .
Om(§) = £(—1)N-/2 (%) [det(I + JB)]'/? exp(—;—hé : ﬁs)

.N . ~

The remaining part of ® shows up as a sign where | N_ /2| denotes the largest integer smaller
or equal to N_ /2. Both forms of the amplitude can also be interpreted in terms of the relation
between the endpoint and the chord:

E=[M-1Ilx~ or x~ = [JB—IJ&. (3.16)
© Note that this corrects the sign of the exponent in (6.39) of [2].
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These considerations show that, in practice, the increment in phase (3.13) resulting from
the Fourier transform is just added onto the overall pre-existing phase in the Weyl representation
(i.e. zero, in a causticless neighbourhood of the identity), so as to determine the overall phase
in (3.15).

For example, one may perform directly the symplectic Fourier integral on (3.6) for the
harmonic oscillator. The overall sign for the Weyl propagator is (+) for wt < m, so the choice
of sign for the chord propagator will correspond to the phase (7 /4)o (B) = — (7 /2)wt/|wt],
which leads to

i
i cot(wt/2)(,” + £, | (3.17)

_ i
U = = Gt P [

Likewise, the Fourier transform for the inverted oscillator (3.7) leads to the chord propagator:

i coth(rt/2)(§,” — &%) (3.18)

. 1
U®) = 3Gz &P [4h

whereas the reflected hyperbolic chord propagator, obtained from (3.8), becomes

Ui(§) = L anh(/2) (6, - e,f)} : (3.19)

IR N exp[
2 cosh(Art/2) 4h

Here, one should remark that both the oscillator, for wt — 7, and the reflected hyperbolic
family for A — 0 correspond to a reflection about the origin, but this operator does not have
the same phase as the operator Ry employed in the definition of the Weyl representation.
Indeed, the chord symbol of the standard reflection is Ry(§) = 27V, so that one should
distinguish the present metaplectic reflection as R, = i Ry (i.e. R,(§) = (2i)~"), which
satisfies (Ié;)2 = (—l)NT. This subtle phase distinction has surely been anticipated in other
contexts (e.g. in [30]), but it is for manipulations in the Weyl representation that it is of crucial
importance.

Returning to the full expression for the metaplectic chord propagator (3.15), one realizes
that the limit B — 0 must specify the metaplectic reflection, :I:I%. Indeed, all operators that
are continuously connected to such a reflection will preserve the same overall sign and the
boundary of this region is only reached as one of the eigenvalues of B reaches the value +1.
Thus there is no caustic for the chord representation as an eigenvalue of B goes through zero,
even though there may be a switch of type (elliptic<>hyperbolic, if N = 1). In the previous
examples, one thus verifies that the transition between the chord propagator for the harmonic
oscillator (as wt — ) and the hyperbolic with reflection (as At — 0) is smooth. Furthermore,
all chord propagators within a causticless neighbourhood of the reflection, 1% corresponding
to the phase  of the harmonic oscillator, share the overall phase —m /2.

This scenario is just the complement of that previously observed for the Weyl
representation, in which all operators that are continuously connected to the identity must
share the same overall sign. In other words, the continuous group of metaplectic operators is
represented with a cut in the Weyl representation that includes the reflection, while its cut in
the chord representation includes the identity. Each representation is smooth along the other’s
singularity. This is the basis of the Maslov method of phase determination in the following
section.

The alternative approach to determine the Maslov phases is to rely on products of
metaplectic operators. At the passage of a one-parameter family of tangent operators through
the singularity of its Weyl representation, an operator, characterized by large | det(B)| or small
| det(f%) |, is multiplied by an operator close to the identity, i.e. with small | det(B)|. Thus, the
determination of the final overall sign should be included in the problem of establishing the
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overall phase for the product of any pair of metaplectic operators. This is obtained from the
product rule in the Weyl representation for arbitrary pairs of operators [2], A = AA;:
dx,dx; 2i
[A2A1]1(x) = [ ——5A2(%)A1 (X)) exp| — (%2 —X) - J(x; —X) | . (3.20)
(h) h
In the case of metaplectic operators, each Weyl propagator is a complex Gaussian, so that
(3.20) is a 4N-dimensional Gaussian integral. This is reduced to a 2N-dimensional integral
in the limiting case where either B = 0 or B = 0, for one of the factors (i.e. it is either a
translation or a reflection). These special cases are considered in section 5.

4. Generalized Maslov method for the overall sign of the propagator

Continuity of the family of tangent operators (corresponding to the neighbourhood of a
trajectory with a given initial value) implies the continuity of the family of tangent Weyl
propagators in a causticless neighbourhood of the identity operator. Hence, the overall sign of
the SC approximation to the full Weyl propagator must be preserved in this region, regardless
of the type of symplectic transformation (hyperbolic or elliptic, if N = 1): a transition between
these two types within this neighbourhood, at a tangent propagator characterized by (2.9), does
not alter the overall sign.

This scenario is in marked contrast to the chord propagator in this same region, which
has its caustic for those transformations exactly characterized by (2.9). The change of phase
across this boundary is then evaluated by the procedure followed in the previous section, that
is, by performing the Fourier transform from the Weyl propagator. This is a generalization of
the Maslov method [7] that has already been tacitly employed to obtain the change of sign for
the harmonic oscillator (3.17) att = 0.’

The same method can now be employed to explore the possible change of phase within
the Weyl representation across its caustic, characterized by (2.15). What then is the result
of reversing the Fourier transformation, so as to return to the tangent Weyl propagator from
the chord propagator? There is certainly no change if no caustic has been crossed, since this
procedure may be continuously connected to the simple task of performing and then reversing
the same Fourier transformation. In terms of Gaussian integrals, this general conclusion follows
from the important result in section 2, that both Cayley matrices for a given transformation
M, i.e. B and B, have the same signature.

Let us now consider a one-parameter family of tangent operators, which evolves from an
original operator, characterized by (M, B, ﬁ) with a signature 6 (B) = o (ﬁ) =2(N—N_),to
a new operator, characterized by (M/, B/, B'), with o (B') = o (B') = 2(N — N). If a single
Weyl caustic is crossed, the continuity of this operator evolution is still maintained within the
chord representation, so that there is no change of the overall phase of the chord propagator.
The Weyl propagator will then acquire a phase factor exp(i®) which depends only on the
phases arising from the two Fourier integrals as in (3.12). With (3.13) and noting that the
exponents of the Weyl propagator and the chord propagator have different signs, one obtains

T , b4 ,
©=lo®B)—o®)]= N ~N). “.1)

There is no phase increment if N = N_. Alternatively, ® need not equal vz (with integer
v), if the evolution has changed the type of the transformation, being that the square roots in
the amplitudes may be imaginary. This is just the case if M denotes an elliptic transformation
7 In the double phase space scenario for SC approximations, the evolution operator corresponds to a Lagrangian
surface expressed in terms of the conjugate centre or chord coordinates [23]. Thus, one obtains complete equivalence

to switching between positions and momenta in ordinary phase space.
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(harmonic oscillator (3.6)), whereas M’ becomes a reflected hyperbolic transformation (3.8),
though both transformations are smoothly connected in the chord representation.

In general, the sign of the determinant in the final Weyl propagator (3.2) already picks up
the signatures for the pair of Fourier transformations, so as to specify the phase of the Weyl
propagator within . That is, using (3.14) and its reverse, as well as continuity of the chord
propagator, one obtains

arg[det(I + JB')] = arg[det(I + JB)] — arg[det(B')]
= arg[det(I + JB)] — arg[det(B)] + arg[det(B')], “4.2)
so that the phase increment due to the determinant is just

arg[det(B’)] — arg[det(B)] = %[(NL — N_)(mod 2)]. “4.3)

Comparing with (4.1), one verifies that full knowledge of the signatures o (B) and o (B')
only distinguishes the final (£) sign. In this way, the postulation of the Weyl and the chord
representations of metaplectic propagators in terms of determinants without moduli in (3.2)
and (3.15) is justified: the determinants automatically account for the correct phase changes
across caustics, within an overall sign, which is then specified by (4.1).

Finally, one should note that the overall phase increment for crossing a caustic in the
conjugate chord representation, for a continuous evolution that crosses no Weyl caustic, is
obtained in perfect symmetry to the above results.

5. Product with a translation or a reflection

Operators that correspond to translations or reflections through a point in phase space are
the building blocks of the chord and the Weyl representation respectively [2, 28, 29]. Just as
the metaplectic operators, they can also be exactly rendered by SC formulae. Furthermore, the
combination of translations and reflections form the quantum affine group, which, together with
the metaplectic group, integrate the inhomogeneous metaplectic group [18], corresponding
to the (classical) inhomogeneous symplectic group. The generating functions for these
transformations add a linear term to the quadratic generating functions of the (homogeneous)
symplectic transformations that we have so far considered [2].

Let us first consider the product of a metaplectic operator Ui, represented by U (x)
according to (3.2) with the unitary (Heisenberg) translation operator,

f]; = exp <%§ /\it) , sothat Ti(x) = exp (%E A x) , (5.1

which includes 7Ty (x) = I(x) = 1. Assuming that ﬁl is in the neighbourhood of T for which
the overall sign is positive, then, according to (3.20), the product transformation is given by

Ue(x) = +[det@ + g2 [ 2 oL (5.2)
§%) = ! N TP\RT ) '

where

D =x-Bix; +x5 - JE+2x; - Jx; — 2% - Jx — 2x - Jx;. (5.3)
The integral over X; is just a Dirac §-function,

Xm
— 1/2

Ug(x) = [det( + JB))] / T

x (2 h)*N§(2x; — 2x + &) exp [%(xl -Bix; —2x - Jxl)} , (5.4)
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so that the result is the inhomogeneous metaplectic transformation,

Ug(x) = £[det(I + JB)]"/? exp [%((X —§/2)-Bi(x—§/2) +x- Jé')] ; (5.5

that corresponds to the inhomogeneous symplectic transformation generated by the centre
generating function,
Se(x) = (x—§/2) - Bi(x—§/2) +x- J§, (5.6)

through equations (2.1), while holding the translation chord, &, as a fixed parameter. One notes
that no new phase appears in the integral over the §-function, that is, the overall sign of U, (x)
is preserved. In the limit, § — 0, i.e. for the product with the identity operator, it is verified
that [/ - U;]1(x) = U (x).

The product of a metaplectic operator with the reflection, R, through the phase space
point y also simplifies, because

Ry(x) = (rh)N8(x — y) (5.7
in the Weyl representation [2]. Inserting this into (3.20) then leads to

Uy (x) = £[det(I + JB)]"? exp(—%y . Jx) / exp[ih(xl Bixp —2x; - J(y — x)i| )
(5.8)

The integral has the same form as the Fourier transform of a complex Gaussian in the 2N-
dimensional phase space (3.12) which led to the chord propagator in section 3. So this again
leads to a metaplectic operator with its Weyl symbol:

dX]
(w )N

Uy (x) = +iV[det(I + JB,)]"/2 exp(—%Sy(X)) , (5.9)
where
Sy(x) = (x—y) - Bi(x—y) +2-Jx (5.10)

is the centre generating function for the corresponding inhomogeneous symplectic
transformation specified by (2.1). In the case of a reflection through the origin (i.e. a parity
operator), y = 0 and (5.9) will be just the homogeneous metaplectic operator specified by
—B,, i.e. the product propagator adopts the Cayley matrix of the original chord propagator.

The factor i¥ in (5.9) may seem strange, since it does not fit in with the phases in (3.2).
If one chooses U (x) for a harmonic oscillator, the product may be matched to just a further
rotation in phase space by 7 /2, so that presumably (5.9) should be of the form (3.6). Thus,
one should recall the conclusion in section 3 that the appropriate reflection included in the
metaplectic group is not Ry, but the operator I@; = i VRy. For the product of this metaplectic
reflection with a general metaplectic operator, the factor of iV is indeed cancelled in the
corresponding expression to (5.9). In applications where the product arises because evolution
acts on an operator specified by its Weyl symbol, this extra factor must be included, because
the reflection operator implied will then indeed be Ry, rather than ﬁ;

In practice, the phase increment due to the product by Ry is just

@:%G(Bl)zg(z\f—m,), (5.11)

where N;_ is the number of negative eigenvalues of B;. This determines the (£) sign and it is
exactly the same phase increment as previously obtained in passing from the Weyl propagator
to the chord propagator in section 3.

For the sake of brevity, we note that in the chord representation products of translations or
reflections with metaplectic operators are just Fourier transforms of (5.5) and (5.9). Basically,
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the corresponding Cayley matrices for factors and their products are given by (2.14). Here
again, one must carefully choose between Ry and R, depending on the context: their chord
symbols are Dirac §-functions with different phase factors.

6. Products of metaplectic transformations

We now consider general products of pairs of arbitrary metaplectic transformations, U = 0,0,
corresponding to symplectic transformations, such that M = M,M, parametrized by Cayley
matrices, By and B,, according to (2 5), so that both factors take on the form (3.2). For
simplicity, we shall assume that both U, 1 and U2 have overall positive signs. Inserting these
ingredients into the product rule (3.20) then leads to

12 12 dx,dx; i
U(x) = [detT + JBy)]/“[det(I + JB>)] exp| =P (X, x1,Xx2) |, (6.1)
(mrh)2N h
where
D(x, X1, X2) =X1 - Bix; +x2 - Boxo + 2x - Jx; — 2x5 - Jx — 2x - Jxg (6.2)

is a homogeneous quadratic form in its 6N variables, or an inhomogeneous quadratic form
in the 4N variables (x;, Xp) if we fix the centre x where the full propagator is evaluated.
It is shown in [2] that, upon obtaining x;(x) and X, (x) from the conditions, d®/dx; = 0
and 09 /9x, = 0, the resulting quadratic form in X is just the centre generating function for
the product transformation, that is, ®(x, x;(x), X»(x)) = S(x) = x - Bx, corresponding to
M = M;,;M,. Adopting this stationary point of (X;, X,) as the origin then leads to

12 12 i dx,dx;, i
U(x) = [det+ JBy)]/“[detd + JB,)] '~ exp ﬁx - Bx / ETE exp ﬁGD(O, X,%2) |,
(6.3)

so that our task is to determine the amplitude and phase for the 4N-dimensional complex
Gaussian integral in (6.3).

One must evaluate the determinant of the 4N-dimensional matrix [B — J], where one
defines the symmetric block matrices:

(B 0 _ (0 J
B= (0 B2) and J = (—J 0) . (6.4)
The phase increment is then
N_
@:%o(B—J):n(N—7>, (6.5)

where N_ is the number of negative eigenvalues. In the limit B — 0, one is left with —dJ, which
has 2N eigenvalues +1 and 2N eigenvalues —1, so that det(B —J) = 1 and o (B —J) = 0.
This confirms a basic assumption for previous results in this paper: there is no overall change
of sign for the product transformation, as long as the matrix B can be treated as a small
perturbation of J. Indeed, for a continuous one-parameter family of matrices B, it is only at
det(B — J) = 0, as an eigenvalue vanishes, that there may occur an overall change of phase,
unless either of the matrices B; becomes singular.

Just as in the Fourier transform between the Weyl and the chord propagators in section 3,
the phase of the determinant of the relevant quadratic form already captures part of the
information supplied by its signature, i.e. arg[det(B — J)] = 7 [N_(mod 2)]. The block form
of the 4N-dimensional determinant allows for the simplification:

_ N =J B\ _
det(B —J) = (=1) det<B2 J)_A, (6.6)

14



where we define,
A =det(I+ JBJB;) = det(I+ JBJB,). 6.7)

Further understanding of the 2N-dimensional matrix with this determinant is gained by
returning to the interpretation of the amplitude of the Weyl propagators in terms of the
matrix (3.3) between the midpoint and the endpoint of the classical trajectory. For the product
transformation with symplectic matrices M = M,M,, we then have

5A+M) = (I+JBy) "I+ JBJB)IA+JB)) " (6.8)

The alternative form of (6.7) arises similarly from the inverse product transformation to (6.8),
ie. M~! =M, 'M, ! is related to

FA+MT) = A= JB)" A+ JBJBy) (I~ JB2) ™. (6.9)
Hence, the amplitude of the Weyl propagator for the product operator follows from
22N det(I + M) ™! = det(I + JB,) det(I+ JB;)A~'. (6.10)

The conclusion is that the product of a pair of metaplectic operators in the Weyl
representation (3.2) results in a Weyl propagator of exactly the same form, but expressed
in terms of the Cayley matrix for the combined symplectic transformation. The indeterminacy
of the overall sign in the square root of the determinantal amplitude can be lifted only by
evaluating the phase ® in (6.5). In the case of a continuous one-parameter family of product
transformations, i.e. a one-parameter family of double matrices B (or, in the simplest case, a
one-parameter family of matrices B, with the other matrix held fixed) a possible change of
the overall phase of the product only arises if there is a change of sign of det(B — J) = A.
But, according to (6.8), this event entails a change of sign for the final det(I + M), itself. So
there is no change of phase unless the combined symplectic transformation crosses a caustic.

It i is often the case that U2 can be identified with a member of a family U, fort = 1,
while U,:O =T ; for instance, the symplectic Hamiltonian flow: M = exp[tJH], where H
is the Hamiltonian matrix. Here, [71 is an arbitrary passive metaplectic operator. Then, if
det(M;M; —I) # 0 from ¢ = O until ¢ = t,, the phase increment for a product can be obtained
from the difference of signatures of 2N-dimensional matrices (4.1). In the change of Cayley
matrices B — B’ in section 4, B should here be replaced by B, and B’ is the Cayley matrix
related by (2.5) to M = M;M;.

The advantage of this alternative approach relying on continuity is that it only deals
with 2N-dimensional matrices. In the case of the chord representation, even the products
of metaplectic operators can be considered within a 2N-dimensional integral, because of
its simpler product rule. The deduction of the double sheet structure of metaplectic operators
has previously been achieved by Littlejohn [18] within the position representation and for the
chord representation (with different notation) by de Gosson [19]. Our object here is not merely
to show how the group of metaplectic transformations is represented by Weyl symbols, but
above all to determine the phase increment in each specific case.

It may happen that A and hence det(B — J) has a double root for a family of operator
products. An important instance of this occurs if the commutator [JB,, JB;] = 0. This
includes the case where M = (M,)2, or where M; and M, are generated by the same
quadratic Hamiltonian. Then JB; and JB; can be simultaneously diagonalized, such that )\ik)
and )\g‘) are their eigenvalues for the common kth eigenvector of both these matrices. Hence,
the caustic condition for the product transformation, A = 0, reduces to )Lgk))ugk) = —1. This
condition allows for elliptic transformations, but not direct hyperbolic transformations, for
which || < 1. On the other hand, —)L;k) will also be a pair of simultaneous eigenvalues, so
that A has a double root. The change of phase at the caustic is then an integral multiple of 7,
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which is consistent with the need for a product of elliptic transformations to remain elliptic,
i.e. there can be no transition to hyperbolic with reflection.

An example of a single null eigenvalue occurs at the caustic of a family of products of
elliptic with hyperbolic transformations:

10 10
Bl:“’(o 1>’B2:7’<0 —1)

1 0
I+ JB, JB2=( +O7"” 1_yw>. 6.11)

Thus, defining the one-parameter family of transformations either by the parameter y or by
the parameter w, there will be a single null eigenvalue, i.e. single zero of A, at yow = 1 and

another one at yw = —1. The symplectic matrices corresponding to (6.11) are
1 -0 20 1 1+y2 =2y
M‘_1+w2<—2w 1—602)’M2_1—y2<—2)/ 1+y2) 12
For the caustic condition yw = 1, one obtains
4 1 1)
I+M_m(_y _1>, (6.13)

so that det(I+ M) = tr(M) 4+ 2 = 0, but M is not a reflection. One can check that det(I+ M)
does change its sign as the product parameter y w passes the value 1, which leads to a transition
of the type of symplectic transformation for the product.

In all cases, full account must be taken of continuity for the proper family of tangent
propagators. Indeed, one or both of the factor families may cross a caustic, without any
effect on the overall phase of the product. An important instance is the fidelity, or Loschmidt
echo operator treated in [21], such that the product of finite evolutions remains close to the
identity operator. Continuity of the product operator constrains the continuity of its Weyl
representation, in spite of any possible discontinuities in the phase of the factor propagators.
This may considerably simplify the practical calculations. The way that the phase jumps
cancel for the particular example of a product of harmonic oscillator evolutions is analysed in
appendix A.

It should be remarked that the SC propagator for Wigner functions may be considered as
a special case of a compound propagator resulting from the product of evolution operators.
This has the peculiarity that the dominant classical trajectory is precisely on a caustic, so that
a higher uniform approximation has been developed, for which the phases were previously
analysed [22, 24]. In contrast, the mixed propagator presented in [23] avoids the caustic, so
that its tangent propagator for short times is given by (3.2) with a positive sign. It is shown in
[21] that there are important applications where the caustic disappears within an integration,
so that one needs only to worry about the phase increment, which is the focus of the present
study.

7. Conclusions

Notwithstanding the theoretical interest in the way that the Weyl symbol renders the double
sheeted metaplectic group, practical use of this phase space representation requires clear rules
for phase increments. Indeed, one should not need to be reminded about the abstract topology
of this group when evolving quantum operators in the semiclassical (SC) approximation. The
difficulty lies in the crossing of caustics, either as time changes (while the argument of the Weyl
propagator is fixed), or for different arguments of the same Weyl propagator. In both cases, the
phase increment coincides with that of the appropriate family of metaplectic operators, each
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of which corresponds to a definite classical trajectory. Fortunately, one can indeed summarize
the conclusions in a nutshell.

(i) Continuity of the family of metaplectic operators, corresponding to the family of tangent
maps neighbouring each classical trajectory, guarantees that there will be no SC phase
jump, unless a caustic is crossed. This even holds for compound trajectories that are
pieced together to form super propagators for Wigner functions, or for SC evaluations
of the quantum fidelity. No matter how many caustics may have been traversed by the
factor operators, one only needs to worry about phase jumps if the product propagator has
crossed a caustic. In a causticless neighbourhood of the origin, the sign for the tangent
propagators in (3.2) is positive.

(ii) For each caustic traversal of the Weyl propagator (compound or not), one needs a sample
of the classical Cayley matrix for a pair of arbitrary instants before and after this SC
singularity is met. This is supplied either by the quadratic approximation of the centre
action (i.e. the centre generating function (2.4)) or by the relation to the (linearized)
symplectic transformation (2.6). Then the phase jump is obtained by the difference in the
signature between these Cayley matrices (4.1). It turns out that the amplitude of the Weyl
propagators, in terms of a determinant without a modulus in (3.2), already provides the
correct factor of i that may arise beyond the caustic. However, the overall sign (and thus
the full phase) requires the calculation of the signatures of the Cayley matrices.

Examples of these rules for products of propagators corresponding to (exactly metaplectic)
harmonic oscillators with different frequencies are discussed in appendix A.

The symmetry between Weyl propagators and their Fourier transform leads to similar
phase recipes for chord propagators. They are an equally valuable source of super operators
for which one must determine the precise phase. The phase jump upon crossing a caustic is
obtained by simply replacing B and B in (4.1) by —B and —B'.
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Appendix A. Product of two oscillations

Let us consider the product of evolution operators for a pair of harmonic oscillators (N = 1),
described by the Weyl propagators (3.6). It should be recalled that these may be considered
as tangent propagators for general nonquadratic Hamiltonians, such that the corresponding
classical tangent maps are both elliptic. The simplifying assumption here is that both maps
can be diagonalized simultaneously. Conveniently one keeps a common time, ¢, as a single
parameter for the product, while the frequency w, may differ from w;, even with respect to its
sign, denoting a different sense of oscillation. The Weyl propagator for the product is then

exp [—+ tan (2321) X2] [ dxpdx;
cos (4-1) cos (%1) (T h)?

U (x) = exp [%(QIXIZ + Q%)% + 2%, - Jxl)i| (A.D)
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Figure A1. Overall sign for a product of harmonic oscillations: A negative sign arises
within the blue (black) squares and within the red (dark grey) triangles, due to the sign
of the product of the initial cosines or the crossing of a caustic, respectively. Together
these generate a negative sign for the product propagator in_the interior of the light
grey stripes. The dashed lines correspond to the unit operator /, while all points on the
dash-dotted lines correspond to —1.

where
it
Q; = —tan (%’) . (A2)

The exponent in the above integral is just the quadratic form determined by the symmetric
matrix, B — J, for which following (6.6)

2 o8 (#51)
detB—J)=A=(QQ2,— 1) = - — (A.3)
cos (%1) cos (%1)
while the characteristic equation,
det(B—J — A = [(Q1 — 1) (2 — A1) — 11> =0, (A4)
has double roots:
1
Q +Q Q -2\ |’
xiz——‘; 2:|:|:1+(—12 2)} : (A.5)

Hence, there are two alternatives for the overall change of phase increment (6.5):

() ©@ =0if Q2 < 1.
(i) ©® = £ if Q1 > 1.

The simplest case is that of a product of forward oscillations (w; and w, > 0) such that
neither has individually reached the caustic at w;t = 7, but (w; + w>)t > 7. This is just case
(i), so that, if both w;t ~ 7, then U; (x) ~ —1.

For the Loschmidt echo, the returning motion is specified by w, &~ —wj, so that
Qy ~ —Qi. For short times, both cos(w;t/2) > 0, so that (R, < 0, which is case (i).
There is no new phase and we obtain U, (x) &~ 1. If one now allows w; to be slightly larger
than 7, though still |wyf| < m, then ; > 0 and 22,2, > 1, which is case (ii) and hence
® = m. But this exactly cancels the phase coming from cos(w;7/2) < 0, so that the overall
sign of the propagator remains positive, just as for small times, that is, U, (x) =~ 1. Finally, if
one allows both oscillators for the Loschmidt echo to pass their caustic, we are back in case
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(i) since £21£2; < 0. But now both amplitudes, cos(w;t/2) < 0, as long as |(w; + wy)t| < 7,
so the overall sign is still positive and, once again, U, (x) ~ 1.

The special simplicity of the harmonic oscillator allows for an appealing though untypical
synthesis of these results, due to the identification of the previous conditions with the sign of
A'?in (A.3):

(i) cos (%r)cos (2t) > 0; then the sign coming from the integration is a minus if
cos (24221) < 0, but this converts |cos (%tﬂ into cos (2522¢).
(ii) cos (%t) cos (%t) < 0; then the integration sign is negative if cos (%t) > 0, which
converts cos (%t) cos (%t) < O into \cos (%t) cos (%t) |
In all cases the amplitude will be cos (Wt) without any sign ambiguity, as portrayed in
figure Al. One should be warned that this is a very special case: in general, one cannot evaluate
the final phase without keeping detailed track of the initial phases and the phase increment!
For a Loschmidt echo, the product of oscillations as a function of time will define a vector
in figure Al that grows from the origin, nearly parallel to the dashed line. Thus, it will be
a long time before it finally leaves the white strip and changes its sign. In contrast, the pair
of oscillations in the same sense, that were first considered, runs in the direction of the other
diagonal, so that the sign changes repeatedly as ¢ increases.

Appendix B. Caustics in double phase space

The chord, § = (§,, &,) can be interpreted as an auxiliary conjugate variable of the centre, X,
in the phase space, R?", but it is often more illuminating to consider their Cartesian product,
forming a space R*'. In this case, it is preferable to define the canonical conjugate of x as
y = J&§ = (=£,, &), so as to preserve symplectic structures. These conjugate spaces can then
be interpreted as a double phase space, where x formally plays the role of the position ¢, and
y replaces the momentum p [2, 31, 32]. The variables

xt=x+lf=xF1ly (B.1)

are alternative coordinates for the double phase space, except for a single change of sign. The
crucial point is that each symplectic transformation, x~ + x™ = Mx~, which is uniquely
determined by a real symmetric matrix B according to (2.5) and (2.6), specifies a unique
Lagrangian plane®:

y =J& =2Bx. (B.2)

This follows immediately from (2.1) and (2.4), so that the manifold of all symplectic
transformations in R?V is identified with the manifold of Lagrangian planes in R*N. (This
is called the Lagrangian Grassmannian A (2N) [9].) More generally, a (nonlinear) canonical
transformation, x~ > x™, still specifies a Lagrangian surface in R*N [31, 33], obtained from
its (local) generating function by (2.1).

A parametrized curve in a Lagrangian surface defines a one-parameter family of
Lagrangian planes, i.e. the tangent plane to the surface for each value of the parameter. For
discrete values of the parameter, the projection of this tangent plane onto a given Lagrangian
plane (say y = 0) may be a subspace of codimension-k, that is, a caustic. Generally, an
arbitrary deformation of the curve allows for k = 1. The Maslov index for a curve segment is
the number of positive passages through codimension-1 caustics. (The two-sidedness of the
caustic and the exact sense of a positive traversal is discussed in [9].)

8 A subspace with half the dimension of phase space, such that v A v' = 0, for any pair of vectors v and v’ in this
plane.



In the present case, the one-parameter family of Lagrangian planes corresponding to a
one-parameter family of symplectic transformations is not naturally derived from a general
Lagrangian surface. Nonetheless, one can view the caustics for the semiclassical Weyl
propagator as projection singularities of Lagrangian planes within the double phase space,
R*V. Indeed, the condition detB = oo, or equivalently detB = 0, that was seen to define a
caustic in section 2, is precisely the condition for a singular projection onto the plane, y = 0.
In the case of N = 1, which has been the main focus of this text, the general points on the
boundary between elliptic and hyperbolic transformations are characterized by the normal
form matrix B in (2.15). This describes in R* a plane which projects singularly as a line
onto the horizontal plane y = 0. This is a standard codimension-1 caustic and the Maslov
index has an increment of 1, on its traversal, so that the phase change is & /2, in the usual
semiclassical fashion [7, 9], in agreement with the previous discussion in this paper.

The difficulty with this approach is to avoid higher caustics for families of Lagrangian
planes that are not constructed as tangent to a given nonlinear Lagrangian surface. In the
paradigmatic case of a family of harmonic oscillations, the caustic is indeed of codimension-2
at the reflection through the origin. Then B = 0, which corresponds in R* to a vertical plane
that projects onto a single point on y = 0 and it makes no sense to deform this natural path.
Thus, it would be necessary to generalize the Maslov—Arnold theory to traversals of higher
order caustics in order to describe the semiclassical phases for Weyl propagators within the
context of double phase space.

Closed curves and their quantization play an important part in the Maslov—Arnold theory.
They may arise in the context of unitary transformations, e.g. for multiples of the period of
a harmonic oscillation, but the quantization of closed curves plays a special role only for
stationary properties, related to the time-independent Hamilton—Jacobi equation, rather than
time evolution [7-9].

A pure state density operator can be associated semiclassically with a Lagrangian surface
in R*, which is a product of a pair of Lagrangian surfaces in R?", such that each is spanned
by x* and x~ [31, 33]. The latter are the usual quantized tori in the Maslov—Arnold theory.
The Weyl representation of such density operators are pure state Wigner functions, whose
quantization was described by Berry [34]. Nothing is to be gained by doubling the size of
phase space to describe quantization conditions, if each of the factor tori is already quantized.
Nonetheless, it should be noted that pure states evolving in dissipative open Markovian systems
have also been described by Lagrangian surfaces that gradually lose their product structure.
The quantization of such double tori in R*V [32] is guaranteed by the fact that the initial
product tori are quantized, together with the canonical invariance for the motion generated by
the appropriate double Hamiltonian.

The Morse index describes the semiclassical phase increments at caustics of usual position
propagators, for an evolution generated by simple Hamiltonians, H (x) = p?/2m+V (q). This
is generalized by Arnol’d [9] for arbitrary Hamiltonians, by relating the time-dependent
trajectory in R?" to a path along a Lagrangian surface in R?*? (by adding time and energy as
coordinates) and hence calculating the Maslov index. In the present context this would amount
to the construction of a surface in R*¥+2, Considering that a curve in R*" already has the same
Maslov index as the curve on this surface, there seems to be no advantage to make a further
phase space expansion in the present setting.
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