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Abstract

Negative entropy has been known in Casimir systems for some time. For example, it can occur
between parallel metallic plates modeled by a realistic Drude permittivity. Less well known is
that negative entropy can occur purely geometrically, say between a perfectly conducting
sphere and a conducting plate. The latter effect is most pronounced in the dipole
approximation, which is reliable when the size of the sphere is small compared to the
separation between the sphere and the plate. Therefore, here we examine cases where negative
entropy can occur between two electrically and magnetically polarizable nanoparticles or
atoms, which need not be isotropic, and between such a small object and a conducting plate.
Negative entropy can occur even between two perfectly conducting spheres, between two
electrically polarizable nanoparticles if there is sufficient anisotropy, between a perfectly
conducting sphere and a Drude sphere, and between a sufficiently anisotropic electrically
polarizable nanoparticle and a transverse magnetic conducting plate.
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1. Introduction

For more than a decade there has been a controversy surround-
ing entropy in the Casimir effect. This is most famously cen-
tered around the issue of how to describe a real metal, in
particular, the permittivity at zero frequency. The latter de-
termines the temperature corrections to the free energy, and
hence the entropy. The Drude model, and general thermody-
namic and electrodynamic arguments, suggest that the trans-
verse electric (TE) reflection coefficient at zero frequency for a
good, but imperfect metal, should vanish, while an ideal metal,
or one described by the plasma model (which ignores dissipa-
tion) has this zero frequency reflection coefficient equal unity.
Taken at face value, the first, more realistic scenario, means that
the entropy would not vanish at zero temperature, in violation
of the Nernst heat theorem, and the third law of thermodynam-
ics. However, subsequent careful calculations showed that at
very low temperature the free energy vanishes quadratically

in the temperature, thus forcing the entropy to vanish at zero
temperature. However, there would persist a region at low
temperature in which the entropy would be negative. This was
not thought to be a problem, since the Casimir free energy does
does not describe the entire system of the Casimir apparatus,
whose total entropy must necessarily be positive. However, the
physical basis for the negative entropy region remains myste-
rious. For discussions of these effects see [1-7] and references
therein.

More recently, negative entropy has been discovered in
purely geometrical settings [8]. Thus, in considering the
free energy between a perfectly conducting plate and a per-
fectly conducting sphere, it was found that when the distance
between the plate and the sphere is sufficiently small, the
room-temperature entropy turns negative, and that the effect
is enhanced for smaller spheres. For a very small sphere, the
free energy and entropy are well-matched by a dipole approx-
imation [9, 10].
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The previous discussion suggests that this phenomenon
should be studied in a systematic way. In this paper we consider
the retarded Casimir—Polder interactions [11] between a
small object, such as a nanosphere or nanoparticle, possessing
anisotropic electric and magnetic polarizabilities, and a
conducting plate, and we analyze the contributions to the free
energy and entropy for the TE and TM (transverse magnetic)
polarizations of the conducting plate. The case of a small
perfectly conducting sphere above a plate is recovered by
setting the electric polarizability, o, equal to a’, where a is the
radius of the sphere, and the magnetic polarizability, 8, equal to
—a® /2. We also examine the free energy and entropy between
two such anisotropically polarizable nanoparticles. We find
negative entropy not only as an interplay between TE and TM
polarizations in the plate, but even between a purely electrically
polarizable nanoparticle and the TM polarization of the plate,
provided the nanoparticle is sufficiently anisotropic. The
previous negative entropy results are verified, and we show that
even between electrically polarizable nanoparticles, negative
entropy occurs when the product of the temperature with the
separation is sufficiently small, provided the nanoparticles are
sufficiently anisotropic. The interaction between two identical
isotropic small spheres modeled as perfect conductors gives
a negative entropy region, but not when they are described
by the Drude model (no magnetic polarizability); but the
interaction between an isotropic perfectly conducting sphere
and an isotropic Drude sphere gives negative entropy. For room
temperature, the typical distance at which negative entropy
occurs is below a few microns.

Negative entropy between an electrically polarizable atom
and a conducting plate was discussed in the isotropic case sev-
eral years ago [12], and the extension to a isotropic mag-
netically polarizable atom was sketched in [13]. The ef-
fects of atomic anisotropy and of the different polarizations
of the conducting plate were not considered there. The zero-
temperature Casimir—Polder interaction between atoms having
both isotropic electric and magnetic polarizabilities was stud-
ied by Feinberg and Sucher [14], while the temperature depen-
dence for isotropic atoms interacting only through their electric
polarizability was first obtained by McLachlan [15, 16]. Bar-
ton performed the generalization for the magnetic polarizabil-
ity at finite temperature [17]. Haakh et al more recently dis-
cussed the magnetic Casimir—Polder interaction for real atoms

[18]. The anisotropic case at zero temperature for the elec-
trical Casimir—Polder interaction was first given by Craig and
Power [19, 20]. Forces between compact objects, which could
include nanoparticles in the dipolar limit, have been considered
by many authors, for example in [21-24], but less attention has
been given to the equilibrium thermodynamics of such objects
interacting.

In this paper we consider anisotropic small objects, with
the symmetry axis of the objects coinciding with the direction
between them or the normal to the plate, with both electric and
magnetic polarizability. Because we are interested in matters
of principle, we work in the static approximation, so both polar-
izabilities are regarded as constant, whereas most real atoms
have very small, and complicated, magnetic polarizabilities.
We also are not concerned here with the fact that achieving

large anisotropies is likely to be difficult for real atoms [25],
because it may be much more feasible to achieve the necessary
anisotropies with nanoparticles, such as conducting needles.

We will work entirely in the dipole approximation for the
nanoparticles, which is sufficient for large enough distances;
for short distances higher multipoles become important [26,
27]. We also ignore any possibility of temperature dependence
of the polarizabilities.

We use natural units 7 =c=kg =1, and Heaviside—
Lorentz units for electrical quantities, except that polariz-
abilites are expressed in conventional Gaussian units.

2. Casimir—Polder free energy between a
nanoparticle and a conducting plate

We start by considering an anisotropic electrically and
magnetically polarizable nanoparticle a distance Z above a
perfectly conducting plate. We can take as our starting point
the multiple scattering formula for the interaction free energy
between two bodies [28]

1 1
Fio =3 Trin(1 — ToTFTTS) + 3 Trin(1 — ToTY T TY)
1
-3 Trin(1 + ®,TE®,TY), (1)

where I'y is the free electric Green’s dyadic,

To(r, 1) = (VV — 1V3)Go(Ir — 1)),
L
Go(R) = ——, )
TT

in terms of the imaginary frequency ¢. The auxiliary Green’s
dyadic is

B, — —év « To. 3)

Tf ’2M are the electric and magnetic scattering operators for
the two interacting bodies. Unfortunately, the EM cross term
(the third term in equation (1)) in general does not factor
into separate parts referring to each body; TZM refer to the
whole system. The trace (denoted Tr) includes an integral
(at zero temperature) or a sum (for positive temperature) over
frequencies, and an integral over spatial coordinates, as well as
a sum over matrix indices. When the sum over only the latter
is intended, we will denote that trace by tr.

For the case of a tiny object, it suffices to use the single-
scattering approximation, and replace the scattering operator
by the potential

Tf = VE =47as(r — R),
TV = VM = 4785(r — R), )

for a nanoparticle at position R with electric (magnetic) polar-
izability tensors a (3). The approximation being made here
is that the nanoparticle is a small object, and it is adequate to
ignore higher multipoles. That is justified if a, a characteris-
tic size of the particle, is small compared with the separation,
a K Z. Therefore, since at least one of our bodies is a nanopar-
ticle, it suffices to expand the logarithms in equation (1) and



retain only the first term. Then we are left with the following
formula for the Casimir—Polder free energy between a polar-
izable nanoparticle and a conducting plate,

Fop = —2nTr (aFOTpFO + ,6<I>0Tp'1>0) . ®)

Here T, is the purely electric scattering operator for the con-
ducting plate, which is immediately written in terms of the
Green’s operator I for a perfectly conducting plate,

TT, [y =T —TY. (6)

2.1. « polarization of nanopatrticle

It is well-known [29] that the Green’s dyadic for a perfectly
conducting plate lying in the z = O plane is for z > 0 given by
the image construction

T —=Ty(,r)=—-Tor, v —227)-1-272), ()

where the free Green’s dyadic is given by equation (2).
Explicitly, the latter can be written as [30]

To(r.¥) = ~lu(c B — RRu(lg B S
R=r-r, ®)
in terms of the polynomials
u(x)=1+x+x2, v(x) = 3+ 3x +x°. )

Let us first consider zero temperature. Then, if we ignore
the frequency dependence of o, we integrate over imaginary
frequency, and we immediately obtain the famous Casimir—
Polder result [11]

EE /Oo d¢tree- (T = T)(R, R) T
= — o —_ . = ——
w S 0 8w Z*
For nonzero T, we replace the integral by a sum,
— =T , 11
/_oo w2 (b

and replace the frequency by the Matsubara frequency [31]

L — &y =2nmT. (12)

We assume the principal axis of the nanoparticle aligns with
the direction normal to the plate,

a = diag(a,, oy, o), (13)

and define the anisotropy y =« /a;. ¥y > 1 means that the
nanoparticle is mostly polarizable in the direction parallel
(transverse) to the plate, while y <« 1 means the nanoparticle
is mostly polarizable in the direction normal to the plate. Then
the free energy is easily obtained:

Frp =g Z4f(y .

1
Froy = 2 [A+9)(1 =33, +7y%0]] 5 coth 2 (14)

(the normalization is chosen so that f(1,0) = 1), where
y = 4nZT, Z being the distance between the nanoparticle
and the plate. The entropy is

0 3a, 0
SE = ——FE = = 15
np 8T np ZZ'; a f(y y) ( )
so we define the scaled entropy by
d
sy y) = 9). (16)
y
For large y this entropy approaches a constant,
1
sy~ p(L+y) y > oo, a7
while for small y,
sy, y) ~ —(1 —27)y’ +0(). (18)

540

The entropy vanishes at 7 = 0, and then starts off negative for
small y when y > 1/2. In particular, even for an isotropic,
solely electrically polarizable, nanoparticle, where y = 1, the
entropy is negative for a certain region in y, as discovered
in [12] The behavior of the entropy with y is illustrated in
figure 1. For an isotropic nanoparticle, the negative entropy
region occurs for 4w ZT < 2.971 69, or at temperature 300 K,
for distances less than 2 pm.

Most Casimir experiments are performed at room
temperature. Therefore, it might be better to present the
entropy in the form

s, y),  (19)

E _ 3% 3% <
Sip = — GrT)5(y. ). S(r.y) =y
which in view of equation (18) makes explicit that the entropy
tends to a finite value as Z — 0. This version of the entropy

for the isotropic case is plotted in figure 2.

2.2. E and H polarizations of plate

To understand this phenomenon better, let us break up the
polarization states of the conducting plate. For this purpose,
it is convenient to use the 2 + 1-dimensional breakup of the
Green’s dyadic. Following the formalism in [25], we find that
the free Green’s dyadic has the form ((dk,) = d%k})

I, r,)_/ (dk)

, 1 ,
1kJ_-(r—r n E+H / —K|z—7'|
a2t ( )z 2)5 e ;

(20)
which readily leads to the representation for the free energy
for the nanoparticle-plate system

—2KZ

((E—H)(Z, Z)] ,

(21)
where k% = k% +¢2. Here the TE and TM polarization tensors
are, after averaging over the directions of k| ,

¢? 2

E=—1L, H=ZL+ K — )22

5 (22)
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Figure 1. Scaled entropy s between a purely electrically polarizable nanoparticle and a conducting plate, as a function of the product of the
temperature times the distance from the plate. The different curves (bottom to top for large ZT') are for anisotropies y = 0 (blue), 1/2 (red),

1 (yellow), 2 (green).
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Figure 2. Rescaled entropy s for fixed temperature as a function of the distance of an isotropic atom from the plate. The entropy tends to a
finite negative value for small distances, has a positive maximum, and then decreases to zero from above for large distances.

Performing the elementary integrals and sums, we get for the
TE contribution to the free energy

FE =2 foty)
E = T gyga B V)
3
v a1 y
,y)=y-=—=0d;| zcoth= |, 23
Je(y, ) J/lzy(zco 2) (23)
and to the entropy
SE = FE = 2y sk ) = o fe ()
E = aTE—ZZ3E)/,y, EJ/,y—ayEy,y.
(24)
For large y, sg goes to zero exponentially,
Y 2 —y
SE( y) ~ =5y (r=3e y> 1 (25)

while for small y,

3
Y 5
Se(y,y) ~—y=—+0 ,
EV.Y) Y360 o)
The transverse electric contribution to the entropy, sg, is always
negative. On the other hand, sy = s —s is positive for large y,

y< L (26)

Ty > 1 (27)
M T Y
but can change sign for small y,
G~ 2 (1= <l 09
MWW T s "7 2Y) TS

So sy can change sign for y > 2; the total entropy s, in
equation (18), can change sign for y > 1/2. These features
are illustrated in figures 3 and 4.
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Figure 3. The entropy between an electrically polarizable nanoparticle and a conducting wall. The solid curves are the total entropy, the
short-dashed curves are for the TM plate contribution, and the long-dashed curves are for TE. Referring to the ordering for large 7 Z, the
inner set of curves (black) are for y = 0, the next set (red) is for y = 1/2, where the negative total entropy region starts to appear, the third
set (blue) is for y = 1, and the outer set (magenta) is for y = 2.
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Figure 4. This illustrates that even for a solely electrically polarizable nanoparticle Sy can turn negative for y > 2. The inner set of curves
(black) are for y = 1, and the outer curves (red) are for y = 10. Again the total entropy is given by the solid curves, sg by the long-dashed
curves, and sy by the short-dashed curves.

Note that there is no difference between a perfectly Thenthe Green’sdyadic appearing there can be written in terms
conducting plate and one represented by the ideal Drude model,  of the polarization operators for the plate as
which differs from the former only by the exclusion of the TE
m = 0 mode. This is because this term does not contribute to

FE orto SE. ®)-T, ®(Z, Z):/dz/dz”
2.3. B polarization of nanoparticle « / (dk.) —lV x (E +H)(Z Z/)ie—KIZ—Z’I
Qm)r\ ¢ T2

Now we turn to the magnetic polarizability of the nanoparticle,

that is, the evaluation of the second term in equation (5). Again, 'iz(E —H)(, "8
from [25], all we need is the scattering operator for the ¢
i 1 p
conducting plate, ) <_?VU < V' x _1) oIl
dk)) . oo 1 )
T,(r,r) = (—l;e"‘”'—‘ 4 —(E = H)(z, 2)8(z)eF . 1 1 oy
(2m) ¢ : —EV” x (E+H)(Z", Z)2—e_"‘z —2h). (30)
K

(29)
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Figure 5. The entropy s££(y, y) for two anisotropic purely electrically polarizable nanoparticles with separation Z and temperature 7.
When y = y;y, > 1 the entropy can be negative. The curves, bottom to top for large ZT are for y = 0 (blue), 1 (red), 2 (yellow),

respectively.
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Figure 6. Entropy of two identical isotropic nanoparticles (y, = yg = 1) for different values of the ratio » = f/«. Starting from highest to
lowest curves on the left, the entropy is given for r = 1 (purple), 0 (green), —1/8 (yellow), —1/2 (red), —2 (blue). What is plotted in this

and the following figures is s, where the entropy is § = [(«})?/Z°]s.

The intermediate wave operator here annihilates the following
Green’s dyadic except on the plate:

1 "
<—FV” x V" x —1) eV x (E+H)

1
2

2K

v?— 1) eIV x (E+H)

= gza(z”)v” x (E +H). (31)
Now we integrate by parts and use the identities [32]
V' x (E-H)(Z,Z)x V' =—¢*(E—H), (320a)
E(z.7) - E(Z.7") = =Bz, 2).
H(z, 2) - H(E', 2") = —¢*H(z, 2,
E(z,2) -H(Z',Z") =0. (32b)

In this way we find the magnetic Green’s dyadic appearing in
the formula for the magnetic part of the Casimir—Polder energy
(5) to be

(dk)
(2m)?

which is just the negative of the corresponding expression
for the electric Green’s dyadic seen in equation (21). Thus
the expression for the magnetic polarizability contribution is
obtained from the free energy for the electric polarizability by
the replacement &« — —/3, and the total free energy for the
nanoparticle-plate system is given by

(E—H)(Z, Z)e 7,

T, ®0(Z,2) = — (33)

X tr [(a —8)-(E—H)(Z, Z)]%e‘“. (34)



Figure 7. Here the identical nanoparticles have equal values of o, =
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B., and yz = 1, but different values of the electric anisotropy. Reading

from bottom to top on the right, we have y, = 0 (green), 1 (yellow), 2 (red), 4 (blue), respectively.
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Figure 8. Here the identical nanoparticles have equal electric and magnetic polarizabilities, and equal anisotropies, which, starting from the
bottom on the right, have the values y = 0 (green), 1 (yellow), 2 (red), 4 (blue), respectively.

This simple relation between the electric and magnetic
polarizability contributions was noted in [13]. In particular,
for the interesting case of a conducting sphere, the previous
results apply, except multiplied by a factor of 3/2. In that case,
the limiting value of the entropy is

4
S(T) ~ _E(naT)3’ 4 ZT < 1. (35)

3. Casimir—Polder interaction between two
nanoparticles

Let us now consider two nanoparticles, one located at the origin
and one at R = (0,0, Z). Let the nanoparticles have both
static electric and magnetic polarizabilities «;, 3;, i = 1, 2.
We will again suppose the nanoparticles to be anisotropic,
but, for simplicity, having their principal axes aligned with

the direction connecting the two nanoparticles:

B; = diag(B. BL. B).  (36)

The methodology is very similar to that explained in the
previous section.

p i i
«a; = diag(a’, o', a;),

3.1. Electric polarizability

We start with the interaction between two electrically polariz-
able nanoparticles. The free energy is
T o0
FEE = -3 Z trfdra; - To(R) -4, - To(R)], (37)

m=—00

where the free Green’s dyadic is given in equation (2). In view
of equation (8), in terms of the polynomials (9), a simple cal-
culation yields (y = 47 ZT)

EE _

= — 38
4nZ7 (38)

alal f(y,y),
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Figure 9. The case of two identical conducting spheres where o, = —28,, with electrical isotropy, but magnetic anisotropy ys = 0 (yellow),

1 (red), 2 (blue), reading from top to bottom.
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Figure 10. The case of two identical conducting nanoparticles where o, = —28,, with magnetic isotropy, but electric anisotropy y, = 0

(blue), 1 (red), 2 (yellow), reading from top to bottom in the middle.

normalized to the zero-temperature Casimir—Polder energy so even in the pure electric case there is a region of negative

[11], where entropy for y > 1. This is illustrated in figure 5.
y 1 The coupling of two magnetic polarizabilities is given
fy,y) = 7 |:4(1 — yoy + Zyzayz) +2y <1 — y0y by precisely the same formulas, except for the replacement
3 1 1 1 =P
+ Zyzaf — Zﬁai + Ey“a;})k coth % (39)
3.2. EM cross term

= ] = i i i . . . .
Here y = y1y», where y; = &) /o The entropy is For the ‘interference’ term between the magnetic polarization

of one nanoparticle and the electric polarization of the other,

1,2
SEE = B;—%%SEE (y,y), sEE(y,y) = aif(y, y). (40) we compute the free energy from the third term in equation (1),
y
1
EM - —— . . .

The asymptotic limits are F = P ul{®o - dmay - o - 4w By]+ (1 ©2).  (42)
or 24y This is easily worked out using the following simple form of

sEE(Y, y) ~ 3 y>1, (41a)  the ® operator [33]:

1 Cm -

S ~ s =y s vy <L @D RoR) = — SR x (146, 2)e” @, Z = [R|. 43)
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Figure 11. Two identical nanoparticles with g, =
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—a; /2, appropriate for a conducting sphere, isotropic magnetically, but with electric

anisotropies y, = 0.6 (magenta), 0.743 (dashed blue), 0.8 (short dashed red), 1 (black), shown from top to bottom.
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Figure 12. Interaction entropy between a small perfectly conducting nanoparticle, for which 3, =

4nTZ

—%al , and a Drude nanoparticle with the

same electric polarizability and no magnetic polarizability, a; = a1, 8, = 0. The electric anisotropies of the two nanoparticles are assumed
equal, while the perfectly conducting nanoparticle is assumed to have no magnetic anisotropy. The curves, top to bottom, are for anisotropy
Ve = 0.8 (green), 0.91 (purple), 0.95 (yellow), 1.0 (blue), and 1.1 (red), respectively.

The result for the free energy is

FEM = = ar z7 =57 @B +Bral)g(y), (44)

which is normalized to the familiar zero temperature result
[14], where

1
2q2 3 4
= h. 4
g(y) = 14(y8 -0+ ya) coth . (45)
The entropy is
7 ag(y)
S = —Zp@iprrpral)s™, STy = =5 @6)

This is always negative, vanishes exponentially fast for large
v, and also vanishes rapidly for small y,

yS

7056

EM _, _

(47)

3.3. General results

We can present the total entropy for two nanoparticles having
both electric and magnetic polarizabilities as follows,

S = —¢ [23alals™ (vlya. ) + 2361 B2 E (g vi . v)
— (! B2yavi + Bllvsv)s™ ], (48)
where sEE and s are given by equations (40) and (46),

respectively. For small y, the leading behavior of the entropy is

’;
Y-
= SoRsl%® a? (1= vy + BLB2(L— viv)]
y
* Soa0Re L G Ty + BB G+ Ty )

+ 5 B2yavp + Blelyyva) + O ()] (49)
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Figure 13. Interaction entropy between a small perfectly conducting nanoparticle, for which 3,

4

nZT

-1

3, and a Drude nanoparticle with the

same electric polarizability and no magnetic polarizability, a; = a, 3, = 0. Now it is assumed that the nanoparticles are electrically
isotropic. The dependence on the magnetic anisotropy of the first nanoparticle is shown. Reading from top to bottom the magnetic
anisotropies are y; = 0.5 (green), 0.66 (purple), 0.8 (yellow), 1 (blue), 1.1 (red).

Table 1. The table shows when a negative entropy region can occur, in different situations. Here E refers to an electrically polarizable
particle, M a magnetically polarizable particle, PC means a perfectly conducting particle or plate, D means an object described by the Drude
model. TE and TM refer to the transverse electric and transverse magnetic contributions to a perfectly conducting plate. The electric
(magnetic) anisotropy is defined by y, = «, /o, (yg = B1/B.). Analogous results can be obtained for other cases by electromagnetic

duality.

Nanoparticle/nanoparticle
or nanoparticle/plate

Negative entropy?

E/E

E/M

PC/PC

PC/D

E/TE plate
E/TM plate
E/PC or D plate

S < 0 occurs for y, > 1

S < 0 always

S < Ofory, >0.74 or yg > 0.54
S < Ofory, > 091 oryz > 0.66
S < 0 always

S <O0fory, >2

S <Ofory, >1/2

In figures 6-11 we present graphs of the entropy for
the case of identical nanoparticles, for simplicity, o! =a?,
ﬂ; = 22 y; = y(f, yé = yé. In figure 6 we show the entropy
for isotropic nanoparticles with different ratios of magnetic
to electric polarizabilities; negative entropy appears when the
ratio is smaller than about —1/8. This is a nonperturbative
effect, because the leading power of y* for small y has a
vanishing coefficient in this case, and the y> term has a positive
coefficient—see equation (49). (The radius of convergence of
the series expansions for the free energy is |y| = 2x.) Thus,
perfectly conducting spheres, for which the ratio of magnetic
to electric polarizabilities is —1/2, exhibit S < 0.

In figure 7 we examine the case of equal z components of
the electric and magnetic polarizabilities, but when only the
electric polarizability is anisotropic. Negative entropy occurs
when y, > 1, which we see perturbatively from equation (49).

In figure 8 we consider the nanoparticles as having equal
polarizabilities and equal anisotropies. Again, as seen pertur-
batively, the boundary value for negative entropy is y = 1.

The case of a conducting sphere has f=—o/2. We
examine this situation in figure 9, for different magnetic

anisotropies, and in figure 10, for different electric
anisotropies. In this case the leading term in equation (49)
vanishes at ¥ =1, so the appearance of negative entropy
for y < 1 is nonperturbative. In fact, the boundary
values for the two cases are yg=0.5436 and y, =0.7427,
respectively.  For the latter case, this is illustrated in
figure 11.

An interesting case is the interaction of a perfectly
conducting nanoparticle with a Drude nanoparticle, by which
we mean that the latter has vanishing magnetic polarizability.
In figure 12 we consider the electric anisotropies to be the
same, while in figure 13 we show how the entropy changes
as we vary the anisotropy of the magnetic polarizability of
the perfectly conducting sphere. For isotropic spheres there is
always a region of negative entropy.

4. Conclusions

In this paper we have studied purely geometrical aspects of
the entropy that arise from the Casimir-Polder interaction,



either between a polarizable nanoparticle and a conducting
plate, or between two polarizable nanoparticles. In all cases,
the entropy vanishes at T = 0, so the issues mentioned in
the Introduction concerning the violation of the Nernst heat
theorem do not appear in the Casimir-Polder regime. We
consider the simplified long distance regime where we may
regard both the electric and magnetic polarizabilities of the
nanoparticles as constant in frequency. Thus, throughout we
are assuming that the separations Z are large compared to the
size of the nanoparticles, a. This same restriction justifies
the use of the dipole approximation for the nanoparticles. It
has been known for some time that negative entropy can occur
between a purely electrically polarizable isotropic nanoparticle
and a perfectly conducting plate. Here we consider both
electric and magnetic polarization for both the nanoparticle
and the plate. Negative entropy frequently arises, but requires
interplay between electric and magnetic polarizations, or
anisotropy, in that the polarizability of the nanoparticles must
be different in different directions. Interestingly, although
in some cases the negative entropy is already contained
in the leading low-temperature expansion of the entropy,
in other cases negative entropy is a nonperturbative effect,
not contained in the leading behavior of the coefficients
of the low temperature expansion. What we observe here
extends what has been found in calculations of the entropy
between a finite sphere and a plate. We summarize our
findings in table 1, which, we again emphasize, refer to the
dipole approximation, appropriate in the long-distance regime,
Z > a. Surprisingly, perhaps, negative entropy is a nearly
ubiquitous phenomenon: Negative entropy typically occurs
when a polarizable nanoparticle is close to another such particle
or to a conducting plate. This is not a thermodynamic problem
because we are considering only the interaction entropy, not
the total entropy of the system. Nevertheless, it is an intriguing
effect, deserving deeper understanding.

For confrontation with future experiments, the static
approximation for the polarizabilites would have to be
removed, a simple task in our general formalism. We are
not aware of any present experiments concerning Casimir
energies between nanoparticles and surfaces, but we hope this
investigation will spur efforts in that direction.
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