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Abstract
The properties of a dissipative system depend on the spectral density of the coupling to the
environment. Mostly, the dependence on the low-frequency behavior is in the focus of interest.
However, in order to avoid divergencies, it is also necessary to suppress the spectral density of
the coupling at high frequencies. Interestingly, the very existence of this cutoff may lead to a
mass renormalization which can have drastic consequences for the thermodynamic properties of
the dissipative system. Here, we explore the role which the cutoff in the spectral density of the
coupling plays for a free damped particle and we compare the effect of an algebraic cutoff with
that of a sharp cutoff.
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1. Introduction

In the study of dissipative systems the case of strictly Ohmic
damping plays a prominent role because it implies memory-
less damping. However, this model is the result of an idea-
lization which assumes that the density of the environmental
modes weighted by the coupling strength increases propor-
tional to the frequency even for arbitrarily large frequencies.
In realistic scenarios, this will not be the case and, on a more
formal level, it can give rise to divergencies. Therefore, one is
usually obliged to introduce a high-frequency cutoff in the
spectral density of the coupling. Often one can assume that
the cutoff represents the largest frequency scale in the pro-
blem and that the resulting memory time of the damping is
shorter than any time scale of interest.

While the cutoff in the spectral density of the coupling
usually only leads to quantitative changes of relatively little
physical interest, occasionally the presence of a cutoff can
make a qualitative difference. Here, we will consider such a
situation. The thermodynamic properties of a free damped
particle at low temperatures depend significantly on an
environment-induced renormalization of the particle’s mass.
In particular, there exists a regime, where the mass renor-
malization can be negative and thus reduces the mass of the

particle. When the renormalized mass becomes negative, one
observes anomalies like a negative specific heat [1]. Such
anomalies in the specific heat and in the entropy are of interest
in various contexts [2–8].

The mass renormalization alluded to here is due to the
suppression of the density of high-frequency environmental
modes and thus is a direct consequence of the very existence
of a cutoff in the spectral density of the coupling.

We will consider in this paper the specific heat of a free
Brownian particle subject to a linear environment where the
spectral density of the coupling at low frequencies follows a
general power law. At high frequencies we allow either for an
algebraic cutoff which in the simplest case will take the form
of a Drude cutoff or for a sharp cutoff where no environ-
mental modes are assumed to be present above a certain
cutoff frequency. It will become clear that these two cutoff
functions can lead to quantitatively quite different results. In
particular, we will find that for a sharp cutoff the appearance
of a negative specific heat cannot be inferred from the leading
low-temperature behavior.

Before embarking on our study, we need to say a few
words about the meaning of a negative specific heat which
usually should provoke worries about thermodynamic
instability. However, here we are referring to the specific heat
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of a system degree of freedom coupled to an environment. It
turns out that beyond weak coupling, the specific heat of a
dissipative quantum system is not uniquely defined [9]. Here,
we will base our considerations on the reduced partition
function

, (1)
S B

B
= + 


where S B+ is the partition function of the coupled ensemble
of system and bath while B refers to the partition function of
the bath alone. In the absence of any coupling between
system and bath, the reduced partition function clearly agrees
with the partition function of the system alone.

We can now employ standard relations of thermo-
dynamics to obtain any thermodynamic quantity from the
reduced partition function (1). The resulting quantities have a
clear physical significance as the difference between the
quantity of system and bath and the same quantity determined
for the bath alone. For the specific heat, we have [10]

C C C . (2)S B B= −+

While each of the terms, CS B+ and CB, has to be positive, their
difference can very well become negative and in fact it does
under appropriate circumstances. The physical reason is the
suppression of the bath density of states at low frequencies when
the system degree of freedom is coupled to it [11]. How strongly
the bath density of states will be suppressed depends directly on
the high-frequency cutoff of the spectral density of the coupling.

We start in section 2 by introducing general concepts
needed to describe the damped free particle. In particular, we
will introduce the spectral density of the coupling for the two
models with, on the one hand, an algebraic cutoff and, on the
other hand, a sharp cutoff. The corresponding spectral
damping functions will be deduced and their properties will
be presented. The section closes with a discussion of the mass
renormalization associated with the two models. This quantity
will play an important role for the thermodynamic anomalies
in the specific heat. Section 3 is devoted to the change of the
bath density of states when the free particle is coupled to it.
Special attention will be paid to the differences between the
two models for the cutoff. In section 4 we introduce the
reduced partition function of the damped free particle which
will constitute the basis of the calculation of the specific heat.
We will demonstrate how the specific heat can be expressed
either in terms of the spectral damping function or the change
in the bath density of states obtained in section 3. Sections 5
and 6 are devoted to the behavior of the specific heat at high
and low temperatures, respectively. We close by presenting
our conclusions in section 7.

2. Free Brownian particle subject to general linear
damping

2.1. Spectral density of the coupling

We assume that the free Brownian particle is moving in one
spatial dimension and is subject to a linear but otherwise

general damping mechanism. Its classical or quantum average
velocity then obeys the equation of motion

v t s t s v s˙ ( ) d ( ) ( ) 0. (3)
t∫ γ+ − =

−∞

Here, t( )γ is the damping kernel which in the following will
mostly appear in the form of its Laplace transform, the
spectral damping function zˆ ( )γ . All properties of the damped
free particle can be expressed in terms of the causal velocity
response function t( ) whose Laplace transform can
immediately be read off from (3) as

z
z z

ˆ ( )
1

ˆ ( )
. (4)

γ
=

+


The two terms in the denominator are associated with the
inertia term and the damping term, respectively.

Although in principle it is sufficient to specify the
spectral damping function zˆ ( )γ , it is useful to consider an
explicit model leading to (3). Doing so will allow to more
systematically define the damping mechanism and to give a
more physical interpretation of the results. A free damped
particle of mass M subject to linear damping can always be
modelled by a Hamiltonian in which the particle described by
its position Q and momentum P is coupled bilinearly to a set
of harmonic oscillators with masses mn and frequencies nω
described by their positions qn and momenta pn [12]

( )H
P

M

p

m

m
q Q

2 2 2
. (5)

n

n

n

n n
n

2

1

2 2
2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ω

= + + −
=

∞

In general, the coupling of a system to an environment will
lead to a potential renormalization for which we have
accounted here by choosing a translationally invariant
Hamiltonian. Although the masses mn and frequencies nω
give large freedom to choose a Hamiltonian, it turns out that
the only quantity of relevance for the properties of the free
damped particle is the spectral density of the coupling
[13, 14]

J m( )
2

( ). (6)
n

n n n

1

3∑ω π ω δ ω ω= −
=

∞

In particular, the spectral damping function can be obtained
from it according to

z
M

J z

z
ˆ ( )

2
d

( )
. (7)

0 2 2∫γ
π

ω ω
ω ω

=
+

∞

A property of the bath which will be of relevance later on is
its total mass

M m
J2

d
( )

. (8)
n

nbath

1
0 3∫∑

π
ω ω

ω
≡ =

=

∞ ∞

In the following, we will specify the damping mechanism
through its spectral density. We assume the spectral dis-
tribution of bath oscillators to be continuous and to follow a
power law at low frequencies

J M( ) . (9)
s

0
c

1⎛
⎝⎜

⎞
⎠⎟ω γω ω

ω
=

−

2



The exponent s thus specifies the low-frequency behavior.
The regimes s 1< and s 1> correspond to sub-Ohmic and
super-Ohmic damping, respectively, and s = 1 is the special
case of Ohmic damping.

To obviate divergences of spectral integrals for obser-
vables, the actual spectral density must fall off sufficiently
strong in the limit ω → ∞. This may be taken into account by
equipping J ( )0 ω with a cutoff function f ( )cω ω which
approaches unity in the limit 0cω ω → , and drops to zero
sufficiently fast as cω ω goes to infinity. Hence we put

J J f( ) ( ) ( ). (10)0 cω ω ω ω=

Without restriction of generality, the reference frequency cω
in J ( )0 ω is identified with the cutoff frequency in f ( )cω ω . In
the sequel, we consider both a smooth and a sharp cutoff of
the spectral bath coupling at high frequencies. For the sake of
simplicity, we use from now on units where

k 1.c B ω = = =

2.2. Spectral density with algebraic cutoff (model I)

To be specific, we choose for the case of a smooth cutoff the
algebraic function f x x( ) 1 (1 )p2= + , yielding

J
J

( )
( )

1 ( )
. (11)pac

0

c
2⎡⎣ ⎤⎦

ω
ω

ω ω
=

+

We will use the subscript ‘ac’ to indicate that a quantity is
taken for the algebraic cutoff. Occasionally, we omit the
subscript when the context permits it.

The frequency integral (7) with (11) is convergent for s in
the range

s p0 2 2 (12)< < +

and can be expressed in terms of hypergeometric functions.
The resulting expression with a convergent hypergeometric
series in the regime z 1∣ ∣ > is

( ) ( )

( )
z

s
z

z

z
B p F p z

ˆ ( )
sin

2
1

, 1, ; 1 ; .

(13)
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⎠
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π

γ
π
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−

+ − − +

−

−

Here, F2 1 denotes the hypergeometric function and the
function B x y( , ) is Euler’s beta function [15].

By use of a linear transformation, the second term in
equation (13) can be rewritten as a hypergeometric series
which is convergent in the regime z 1∣ ∣ < ,

( )

( )
z

z

z
s

p
B p

s s

s

z F p z

ˆ ( )
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2

2
1

2
,

2
2
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For integer p, the F2 1 function in (14) is a terminating
hypergeometric series
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The forms (13) and (14) or (15) allow us to easily read off the
behaviors of zˆ ( )γ for large and small arguments. These will be
needed in sections 5 and 6 to determine the specific heat at
high and low temperatures, respectively.

Under the tighter constraint

s p0 2 , (16)< <

the integral Jd ( )
0

∫ ω ω ω
∞

is consistently ultraviolet-con-
vergent. As a result, the leading contribution to zˆ ( )γ at high
frequencies, z 1≫ , is proportional to z1 ,

z
M

J

z

a

z
ˆ ( )

2
d

( ) 1
, (17)

0
∫γ

π
ω ω

ω
= =

∞

where for model I

( )
a s p

B p
( , )

,
. (18)

s s

ac
2 2γ

π
=

−

The z1 -term of zˆ ( )γ determines the high-temperature
behavior of the damped particle, as we shall see in section 5.

On the other hand, the low-temperature properties of the
free damped particle are determined by the low-frequency
characteristics of zˆ ( )γ . We obtain for z 1∣ ∣ ≪

( ) ( )z
z

pz z zˆ ( )
sin

1 , (19)
s

sac

1

2

2
ac ac

3γ γ μ λ= + + +
π

−

where the orders zs 3+ , z5, and higher are disregarded. We
have

( )
s p

p B p

s
( , )

2 , 1

2
, (20)

s s

ac
2 2μ γ

π
=

+ −

−
and

s p s p

pB
s

p
s

s

( , ) ( 2, )

2 2
1, 2

2
4

. (21)

ac ac

⎜ ⎟
⎛
⎝

⎞
⎠

λ μ

γ
π

= − −

=
− + −

−

The first term in (19), in which we have included the
leading cutoff dependence, describes frequency-dependent
damping. The second term adds to the inertial term z in the
denominator of zˆ ( ) . Its prefactor M Mμ Δ= can therefore
be interpreted as an effective change MΔ of the particle’s
mass relative to the bare mass M due to the coupling to the
environment. This mass renormalization term will be
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discussed in more detail in section 2.4. Finally, the last term
becomes relevant for low temperatures in the regime

s0 2< < at the particular damping strength for which
1μ = − , as we shall see.

In the limit s m2→ , where m is a positive integer, both
the first term and the term of order z m2 1− in the square bracket
of (15) become singular. The singularities cancel each other,
however, and a logarithmic term accrues. For the particular
cases s = 2 and s = 4 we have

( )
( )

z
z

z
p z

p z F p z

ˆ ( )
1

[ (1) ( ) 2 ln( )

( 1) 1, 1, 2 ; 2, 2; (22)

p2

2
3 2

2 ⎤⎦

γ γ
π

ψ ψ=
−

− −

+ − −

and

}( )

( )

( )

z
z

z p

z z p

z F p z

ˆ ( )
1

1

1

[2 ln( ) ( 1) (1) 1]

1 1, 1, 3 ; 2, 3; , (23)

p

p

2

2

2
4

3 2
2

⎧⎨⎩γ γ
π

ψ ψ

=
− −

+ + − − −

+ − −

respectively, where z( )ψ is the digamma function [15].

2.3. Spectral density with sharp cutoff (model II)

Concerning our study to which extent thermodynamic prop-
erties depend on the particular form chosen for the cutoff in
the spectral coupling, we contrast the smooth cutoff function
discussed in the previous section with a sharp cutoff function
f x x( ) (1 )Θ= − , where x( )Θ denotes the Heaviside step
function. Together with the spectral coupling (9) we have

( )J J( ) ( ) 1 , (24)sc 0 cω ω Θ ω ω= −

where the subscript ‘sc’ indicates the sharp cutoff. From now
on we set again 1cω = . The sharp cutoff in the spectral
density (24) is in striking contrast to the smooth cutoff in
equation (11).

For the spectral density (24), the frequency integral in the
expression (7) for the spectral damping function zˆ ( )γ can
again be expressed in terms of hypergeometric functions. In
the frequency regime z 1∣ ∣ > one finds

( )
z

F z

sz
ˆ ( )

2 1, ; 1 ;
. (25)

s s
2 1 2 2

2

γ γ
π

=
+ − −

Convergence of the hypergeometric series in the comple-
mentary regime z 1∣ ∣ < is obtained by virtue of a linear
transformation of the F2 1 function in equation (25), yielding

( )
( )

z
z

z
F z

s
ˆ ( )

sin

2 1, 1 ; 2 ;

2
. (26)

s

s

s s
1

2

2 1 2 2
2

γ γ γ
π

= +
− − −

−π

−

In the particular cases s = 1 and s = 3, the spectral damping
function reads

z s z

z s z z z

ˆ ( , 1)
2

arctan( ),

ˆ ( , 3)
2

2
arctan( ) , (27)2 ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

γ γ γ
π

γ γ
π

π

= = −

= = − −

respectively.
The asymptotic high-frequency expression of zˆ ( )γ may

be written in the form (17) with the coefficient

a s
s

( )
2

. (28)sc
γ

π
=

Similar to equation (19), the low-frequency expansion
may be expressed as

( )
z

z
z zˆ ( )

sin
, (29)

s

ssc

1

2

sc sc
3γ γ μ λ= + +

π

−

where terms of order z5 are disregarded. For model II, the
relative mass contribution μ and the prefactor of the z3-term
are

s
s

( )
2

( 2)
, (30)scμ γ

π
=

−

and

s s
s

( ) ( 2)
2

(4 )
. (31)sc scλ μ γ

π
= − − =

−

2.4. Mass renormalization

The linear term in z in equations (19) and (29) contributes to
the inertial term in the Laplace transform (4) of the velocity
response function. It thus leads to a mass renormalization
which will turn out to be of relevance for the thermodynamic
properties of the free damped particle. We distinguish the
regimes s 2< and s 2> and start our discussion with the
latter. Before, we remark though that the motion of a free
damped particle in the regime s 2> is non-ergodic so that
thermodynamic equilibrium is not necessarily being reached
in the long-time limit [16, 17].

In the parameter regime s 2> the linear term in z of zˆ ( )γ
is the leading one in (19) and (29) for z 1≪ . Together with

Figure 1. Mass renormalization μ as a function of the exponent s of
the spectral density of the coupling J ( )ω . The solid curve depicts
μ γ for an algebraic cutoff with p = 1 according to (20) while the
dashed curve refers to the sharp cutoff, i.e. the expression (30). The
two small circles indicate how the critical value of the damping
strength γ⋆ can be read off for s = 1. For the algebraic cutoff with
p = 1 one finds (1, 1)ac cγ ω=⋆ , while for the sharp cutoff

(1) ( 2)sc cγ π ω=⋆ .
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(7) and (8) one generally finds

M

M
ˆ (0) , (32)bathγ μ′ = =

where the prime denotes the derivative with respect to the
argument. The results (20) and (30) are special cases of the
general expression (32). For s 2> , the dressed mass
M (1 )μ+ is larger than the particle’s bare mass M, since μ
is always positive. The free particle can thus be viewed as
dressed by the bath oscillators. For s 2> , the appearance of
an effective mass is also known for the ballistic long-time
dynamics of the free damped particle [18].

The relative mass renormalization μ is depicted in
figure 1 as a function of the exponent s both for an algebraic
cutoff with p = 1 (solid line) and a sharp cutoff (dashed line).
For s 2> , i.e. in the right half of the diagram, we notice a
significant difference between the algebraic and the sharp
cutoff. In the first case, with increasing exponent s, the mass
renormalization goes through a minimum and diverges at the
upper limit of the allowed range (12) at p2 2+ . For the case
p = 1 presented in the figure, the divergence lies at s = 4. In
contrast, the mass renormalization for the sharp cutoff
decreases monotonically as s increases. We remark that
although for p = 1 the mass renormalization for an algebraic
cutoff always exceeds the one for the sharp cutoff, this is
generally not true for larger values of p.

For s 2⩽ , the integral (8) is infrared-divergent so that the
total mass of the bath oscillators is infinite. Hence the inter-
pretation just given for the relative mass contribution μ ceases
to hold. Nevertheless, the expressions (20), (30), and (32) can
be analytically continued to the regime s0 2< < . To show
this, we write J J J J( ) ( ) [ ( ) ( )]0 0ω ω ω ω= − − . For s 2< ,
substitution of the expression (9) for J ( )0 ω in (7) results in the
first term appearing in the series expressions (19) and (29).
With the residual contribution of J ( )ω , the integral expression
(7) is regular in linear order of z and yields zμ in this order.
Importantly, the mass contribution μ emerges negative

( ) ( )
M

J J

M M

M

2
d

0. (33)

0

0

3

bath bath,0

∫μ
π

ω
ω ω

ω
=

−

=
−

<

∞

The relation (33) unveils that Mμ− represents the total mass
of oscillators which is missing in the actual bath relative to the
reference bath without spectral cutoff [11, 19]. Hence μ is
negative in the range s0 2< < , as can also be seen from the
left half of figure 1. Again, we note significant differences
between the algebraic cutoff and the sharp cutoff. While the
first one goes through a minimum in the absolute value of μ,
for the latter the mass renormalization becomes the smallest
for s 0→ .

As can be expected, the situation where the particle’s
mass is renormalized to zero, i.e. where 1μ = − , is of special
physical significance. It is therefore convenient, to introduce
the critical damping strength γ⋆, where this point is reached,

as

1 1 , (34)μ γ
γ

+ = − ⋆

and thus

. (35)γ γ
μ

= −⋆

The two circles and the arrows pointing to the vertical axis in
figure 1 indicate, how the inverse of the critical value γ⋆ can
be read off for s = 1. The comparison of the algebraic cutoff
with p = 1 (solid curve) and the sharp cutoff (dashed curve)
indicates that for the latter, a larger damping strength is
required to drive the renormalized mass to zero. Explicit
expressions for the critical damping strength can be obtained
for our two models from the expressions (20) and (30) for the
relative mass contribution. For an algebraic cutoff (model I),
one obtains

( ) ( ) ( )
s p

p

p
( , ) 1

( )

1
. (36)s

s sac 2

2 2

γ π Γ
Γ Γ

= −
+ −

⋆

while for the sharp cutoff (model II) the critical damping
strength follows as

( )s( ) 1 . (37)s
sc 2

γ π= −⋆

The critical damping strength γ⋆ is plotted in figure 2
both for model I with cutoff parameters p = 1 and p = 2 (solid
curves) and for model II (dashed curve). We see that indeed
the critical damping strength for model II is generally larger
than for model I. For Ohmic damping, the critical damping
strength is typically of the order of the cutoff frequency and it
is therefore not surprising, that the cutoff influences the
thermodynamic quantities in a significant way. However,
when the exponent s approaches a value of 2 or, in the case of
an algebraic cutoff, approaches zero, the critical damping
strength can be much smaller than the cutoff frequency.

We finally allude again that the notion of a critical
damping strength γ⋆ becomes meaningless in the regime
s 2⩾ , since there the analytical continuation, inter alia of (36)
or (37), yields a negative value for γ⋆.

Figure 2. Critical damping strength γ⋆ as a function of the exponent
s in the regime s0 2< < . The two solid curves show acγ⋆ (model I)
for p = 1 (upper curve) and p=2 (lower curve) while the dashed line
depicts scγ⋆ (model II).
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3. Change of bath density of states

3.1. General considerations

There are two different views about the specific heat of an
open quantum system: (i) it can be viewed as specific heat of
the system modified by the coupling to the heat bath. (ii) It
can be regarded as the change in the specific heat of the bath
when the system degree of freedom is coupled to it as
represented in equation (2). In the latter view which will be
discussed in more detail in section 4, the specific heat of the
damped free particle can be expressed in terms of the change
of the density of states of the bath oscillators together with the
well-known expression for the specific heat of a harmonic
oscillator. The change in the oscillator density of states
(CODS) is defined as

( ) ( ¯ ) ( ), (38)
n

n

n

n

0 1

∑ ∑ξ ω δ ω ω δ ω ω= − − −
′=

∞

′
=

∞

where ¯ nω ′ are the eigenvalues of the coupled system-plus-bath
complex (5), while nω are the eigenfrequencies of the bath
oscillators in the absence of the system–bath coupling, i.e. the
frequencies appearing in the second term of the Hamiltonian
(5). In the absence of the system–reservoir coupling, the
CODS reduces for the model (5) to ( ) ( )ξ ω δ ω= . In the
continuum limit of the bath, the density ( )ξ ω becomes a
continuous function of the frequency ω.

The change of the oscillator density of states can be
expressed in terms of the velocity response function (4) as

( )
1

Im
ln ˆ ( i )

, (39)
⎡⎣ ⎤⎦

ξ ω
π

ω

ω
=

∂ −

∂



where Im denotes the imaginary part. In terms of the function

g ( )
Im ˜( )

Re ˜( )
, (40)ω ω γ ω

γ ω
= −

where ˜( ) ˆ ( i )γ ω γ ω= − is the spectral damping function in
Fourier space, the CODS ( )ξ ω takes the form

g

g
g( )

1 ( )

1 ( )

1 d

d
arctan[ ( )]. (41)

2
ξ ω

π
ω

ω π ω
ω= ′

+
=

With the second form, we directly see that the sum rule for the
change of the oscillator density of states reads

g g

d ( )

1
(arctan[ ( )] arctan[ (0)]). (42)

0
∫Σ ω ξ ω

π

≡

= ∞ −

∞

In section 4 we will see that this sum rule relates the specific
heat in the classical limit with its zero-temperature value.

We will now give expressions for the low-frequency
behavior of the change of the oscillator density of states
which pertain to both cutoffs discussed in the present paper.
In the subsequent two subsections, we will take a more
detailed look at each of the two models.

The leading terms of the low frequency series of g ( )ω are
found from its definition (40) together with equation (19) for

model I and equation (29) for model II as

g
s

( ) cot
2

1
. (43)s s2 4

⎜ ⎟
⎛
⎝

⎞
⎠ω π

μ
γ

ω Λ
γ

ω

= −

+ + −− −

For the models I and II we have, respectively

( )p 1 ,

. (44)

ac ac ac

sc sc

Λ λ μ
Λ λ

= − +
=

In the regime s0 2< < , the leading terms of the low-
frequency series of ( )ξ ω up to and including s3ω − are found
from (41) with (43) as

s
b c( )

2 1 1
.

(45)

s

n

N

n

n
s n1

0

1
(2 ) 2

1⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥∑ξ ω ω

π γ γ
ω ω= − − +−

=
⋆

+
−

Here, the upper limit of summation N1 is given by the largest
integer smaller than s1 1 (2 )+ − . Thus, the closer to 2 the
parameter s is, the more terms of the sum must be taken into
account.

The first three coefficients of the first term are

( )
( ) ( )

( )

b

b s

b s

sin ,

sin sin ,

[1 2 cos( )]sin , (46)

s

s

s

0
2

2

1
2

2

2
4

2

π

π

=

=

= +

π

π

π

and the coefficient c is

( )
c

s(4 )sin
. (47)

s2
2

π
Λ
γ

= −
− π

For the models I and II, Λ is given by (44).
The leading term proportional to s1ω − of the series (45) is

positive for γ γ< ⋆ and negative for γ γ> ⋆. At critical
damping, γ γ= ⋆, the first term in the square brackets in (45)
vanishes, so that the leading term for critical damping is given
by

c( ) (48)s3ξ ω ω= ⋆ −

with

( )
c

s(4 )sin
. (49)

s2
2

π
λ
γ

= −
− π

⋆

The ratio λ γ in c⋆ does not depend on the damping strength
for both models, as we can see from (21) and (31).

In the Ohmic case, the n = 2 term merges with the last
term in the series (45) for ( )ξ ω to the curvature contribution at

0ω = . With (46) and (47), we find

( )
1 1 1 1 3 1 1

. (50)
3

2
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ξ ω

π γ γ π
Λ
γ γ γ

ω= − − + −⋆ ⋆

Consider finally the regime s 2> . Now, the low-fre-
quency expression analogous to (45) with terms of order up to
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and including s 1ω − reads

s
d

f

( )
2

1
. (51)

s

n

N

n

n
s n

3

0

1
( 2) 2

2⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

∑ξ ω ω
π

γ
μ

ω ω

= − −

×
+

+

−

=

+
−

The upper limit of summation is given by the largest integer
smaller than s2 ( 2)− and the coefficients read

( )
( )

d

d

d

1

2 cot

3 cot 1, (52)

s

s

0

1 2

2
2

2

=

=

= −

π

π

and

f
s

(1 )
. (53)

2π
γΛ

μ
= −

+

For super-Ohmic damping with s = 3, the n = 2 term in
(51) again merges with the last term to the curvature con-
tribution at 0ω = . With the expressions (52) and (53) we
then find

( )
(1 )

3 (1 )

(1 )
. (54)

2

3
2ξ ω γ

π μ
γ
π

γ Λ μ
μ

ω= −
+

+ − +
+

3.2. Model I

We now turn to a more specific discussion of the change of
the oscillator density of states for the case of an algebraic
cutoff. With the expression (14) for zˆ ( )γ , the function g ( )ω
for model I is found to read

( )

( )g
s

p

s
B p

s s

F p

( ) cot
2

1
1

2

(2 )
1

2
,

2

1 , 1 ; 2 ; . (55)

s p

s s s

2 2

2
2 1 2 2

2

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ω π
γ

ω ω

π

ω ω

= − + +

−
−

+ −

× − − − −

−

−

The function g ( )ω is a smooth function of ω in the range
0 ω⩽ < ∞. It goes to infinity both in the limit ω → ∞ for all
s 0> , and in the limit 0ω → for s 2⩾ , whereas
g ( 0) cot( )s

2
ω π= = for s 2< . Hence the sum rule (42) reads

s
s

s( ) 1
2

(2 ). (56)⎜ ⎟
⎛
⎝

⎞
⎠Σ Θ= − −

The low-frequency expansion of the CODS ( )ξ ω in the
regime s0 2< < follows from the expressions (45), (46),
and (47) together with (44), (20) and (21). In the first term in
(45), the form of the cutoff enters only through the critical
damping strength acγ⋆. The leading term n = 0 in the sum is

positive for acγ γ< ⋆ and changes its sign at the critical

damping strength acγ⋆. The coupling of the system degree of
freedom to the heat bath thus leads to a suppression of the
oscillator density if the damping exceeds acγ⋆. The coefficient c

in the second term in (45) takes the form

c

s

p s

p s

sin
2 (4 )

1 1

2 2
. (57)

ac

2

ac

ac

⎜ ⎟
⎛
⎝

⎞
⎠ ⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

π

π γ γ

γ

= − −

+ + −

⋆

⋆

It is positive for ¯γ γ< and negative for ¯γ γ> , where
p s p s¯ (4 ) [( 1)(2 )]acγ γ= − − −⋆ .

For critical damping, acγ γ= ⋆, the coefficient c⋆ in the
expression (48) follows from (57) as

( )
c s p

p s

s p
( , )

sin 2 2

( , )
. (58)

s

ac

2
2

acπ γ
= + −

π
⋆

⋆

This coefficient is always positive since the parameters s and
p have to satisfy the condition (12). In particular, for Ohmic
damping with a Drude cutoff, s = 1 and p = 1, we have

c (1, 1)
3

. (59)ac π
=⋆

The CODS ( )ξ ω is shown for s = 1 and p = 1 in figure 3(a). In
this particular case, in which 1acγ =⋆ , the low frequency
expression (50) takes the form

( )
1 1 3 1

. (60)
3

3
2

⎡
⎣⎢

⎤
⎦⎥ξ ω

π
γ

γ
γ γ

γ
ω= − + + −

This expression describes the low-frequency behavior of the
curves in figure 3(a). While (0)ξ changes its sign at the
critical damping strength, the curvature at 0ω = changes

Figure 3. The change of the oscillator density of states is shown for
an Ohmic environment (a) with an algebraic cutoff with p = 1 and
(b) with a sharp cutoff. The dashed, solid, and dashed–dotted curves
correspond to 0.2, 1,γ γ =⋆ and 5, respectively. In panel (b), the
arrows indicate the positions of the delta function in (62).
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already at the smaller value 0.322 ...γ ≈ Correspondingly, the
curve for γ = 0.2 has a negative curvature at ω = 0 while the
curves for γ = 1 and 5 have positive curvature.

For later reference, we note that at low frequencies the
change of the oscillator density of states for super-Ohmic
damping with s = 3 and an algebraic cutoff with p = 2 follows
from (54) as

( )
2

(2 )

48 12 2

(2 )
. (61)ac

2 3

3
2ξ ω γ

π γ
γ γ γ

π γ
ω= −

+
+ + +

+

3.3. Model II

For the spectral density of the coupling with a sharp cutoff
(24), the CODS ( )ξ ω is a continuous function of ω in the
range 0 1ω⩽ < . For 1ω > , the real part of the spectral
damping function ˜( )γ ω vanishes. Hence the density ( )ξ ω is
zero in this frequency range, except at a particular frequency
ω Ω= , where the density ( )ξ ω is singular. We thus have

( ) ( ) ( ), (62)1ξ ω ξ ω δ ω Ω= + −

where ( )1ξ ω is the smooth change of the oscillator density of
states in the frequency range 0 1ω⩽ < ,

g

g
( )

1 ( )

1 ( )
(1 ). (63)1 2

ξ ω
π

ω
ω

Θ ω= ′
+

−

Employing the expression (26) for zˆ ( )γ , the function g ( )ω for
0 1ω⩽ < reads

( )

g
s

s
F

( ) cot
2

1

2

(2 )
1, 1 ; 2 ; . (64)

s

s s s

2

2
2 1 2 2

2

⎜ ⎟
⎛
⎝

⎞
⎠ω π

γ
ω

π
ω ω

= − +

−
−

− −

−

−

With this particular form, the sum rule for the partial density
( )1ξ ω is found as

s
s

s s( )
2

(2 ) ( 2). (65)1Σ Θ Θ= − − − −

We see from the general expression (41) with (40) that
the frequency 1Ω > , at which the function ( )ξ ω is singular,
is a zero of the function

N s

s

F
s s

( , ) Im ˜( )

2
1,

2
; 1

2
;

1

. (66)
2 1 2

⎛
⎝⎜

⎞
⎠⎟

ω ω γ ω

ω γ
π

ω
ω

≡ −

= −
+

In the particular cases s = 1 and s = 3 there holds

N

N

( , 1)
2

arcoth( ),

( , 3) 1
2 2

arcoth( ). (67)2⎜ ⎟⎛
⎝

⎞
⎠

ω ω γ
π

ω

ω ω γ
π

γ
π

ω ω

= −

= + −

The singular term in (62) contributes unity to the inte-
grated change of the oscillator density of states. Hence the
sum rule for the total change of the density of bath oscillators

(62) is

s s
s

s( ) ( ) 1 1
2

(2 ), (68)1 ⎜ ⎟
⎛
⎝

⎞
⎠Σ Σ Θ= + = − −

which is in full agreement with the corresponding expression
(56) of model I.

The explicit expression for the low-frequency expansion
of the change of the oscillator density (45) for model II fol-
lows from (46) and (47) together with (44), (30) and (31). As
for model I, the leading term n = 0 in the expression (45) is
positive for γ γ< ⋆ and negative for γ γ> ⋆. The coefficient c
does not depend on γ at all and is found to read

( )c s c s( ) ( )
2

sin . (69)s
sc sc 2

2
2π

= = − π⋆

While the first term in (45) for both models depends only
on the form of the cutoff through the critical damping strength
γ⋆, the coefficient c⋆ in the expression (48) behaves quali-
tatively different for the two models. The coefficient cac

⋆ of
model I given in (58) is generally positive, whereas the
coefficient csc

⋆ of model II is generally negative.
The CODS ( )ξ ω for model II is shown in figure 3(b) for

Ohmic damping, s = 1. In this case, the critical damping
strength is 2scγ π=⋆ , and the expression (50) takes the form

( )
1 1 1

1 1 1 1
. (70)

sc

sc
*

sc

3

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

ξ ω
π γ γ

π γ γ γ
ω

= −

− + −

⋆

⋆

In contrast to the expression (60) for the algebraic cutoff, the
curvature at small frequencies is negative for arbitrary
damping strength γ. The different characteristics of ( )ξ ω at
low frequencies displayed in figures 3(a) and (b) are
reproduced by the expressions (60) and (70).

The difference in curvature of the function ( )ξ ω at zero
frequency in models I and II also prevails for super-Ohmic
damping with s = 3, as is clearly visible in figure 4. The
qualitative difference between model I (solid curve) and
model II (dashed curve) in figure 4 can be understood from
the leading terms of the low-frequency series of ( )ξ ω for s = 3

Figure 4. The change of the oscillator density of states is shown for a
super-Ohmic environment with s = 3 and cγ ω= with an algebraic
cutoff with p = 2 (solid curve) and with a sharp cutoff (dashed
curve). The arrow indicates the position of the delta function in (62).
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given in (54). The low-frequency expansion of the change of
the oscillator density of states for model I is given in (61). For
model II, we obtain from (54) together with (30), (31) and
(44)

( )

( )
2

6 12

( 2 )
. (71)

sc

2
2

3
2

ξ ω γ
π γ

γ
π π γ

π γ
ω

= −
+

−
+ −

+

Importantly, the different sign of the curvature in models I
and II displayed in (61) and (71), respectively, holds for
general damping strength γ.

4. Reduced partition function and specific heat

Within the present paper, we determine thermodynamic
quantities of open systems on the basis of the reduced parti-
tion function (1). For a free particle, the partition function is
only well defined if the particle is confined to a finite region.

In the absence of an environmental coupling, we can
evaluate the partition function of a particle confined to a one-
dimensional infinite square well of width L and inner potential
V 00 = . The corresponding eigenenergies are given by
E E nn g

2= with E ML2g
2 2π= so that the partition function

reads

( )

E

T
nexp

1

2
0, e 1 . (72)

n

E T

0

1

g 2

3
g

⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦

∑

ϑ

= −

= −

=

∞

−



Here, x(0, )3ϑ is a Jacobi theta function [15]. In the
temperature regime

T E cE , (73)0 g> =

where c is a positive number sufficiently large so that for T
above E0 the discreteness of the energy eigenstates may be
disregarded, the sum in the partition function can be turned
into an integral. We thus arrive at the classical partition
function of the undamped free particle

( )T

E
x x

T

E
d exp

4
. (74)0,cl

g 0

2

g
∫ π= − =

∞

This result depends only on the combination TL2 and
therefore is valid even for very low temperatures provided
the particle is constrained to a sufficiently large region. How
the confinement to a finite region influences the thermo-
dynamic properties at very low temperatures, can for example
be seen by studying a damped particle in a weakly confining
harmonic potential [20].

For a damped particle, the partition function is aug-
mented by quantum fluctuations due to the bath coupling. The
accessory part may be written as an infinite Matsubara pro-
duct [12] which, under the condition (73), does not depend on
the width L of the square well. The resulting reduced partition

function reads

( )
T

E
T E

4 ˆ
, , (75)

n

n

n ng 1

0∏π ν
ν γ ν

=
+

>
=

∞



in which Tn2nν π= is a bosonic Matsubara frequency. The
subsequent thermodynamic analysis is based on the expres-
sion (75).

The specific heat follows from the reduced partition
function by

C
T

T
T

ln( )
. (76)2⎜ ⎟⎛

⎝
⎞
⎠= ∂

∂
∂

∂


Based on the Matsubara representation (75), one finds

C y
1

2
( ) (77)

n

n

1

∑ ν= +
=

∞

with the function [19]

( )( ) ( )
( ) ( )

y ( )
ˆ ˆ

ˆ

ˆ

ˆ
, (78)

2 2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ν

γ ν νγ ν
ν γ ν

ν γ ν

ν γ ν
=

− ′
+

−
″

+

where the prime denotes again the derivative.
The Matsubara series (77) is advantageous for moderate-

to-high temperatures. From it we can immediately infer that C
tends to 1 2 as T → ∞. Regrettably, it is badly converging at
low temperatures. In the latter regime, it is pertinent to per-
form a Poisson resummation of the series (77) by virtue of the
periodically continued δ-function:

( )T( ): exp i (79)
n

n∑δ τ ν τ=
=−∞

∞

into the form

C
y

T
y

T
n

T
y

1

2

(0)

2

1

2
d ( )

1
d cos ( ). (80)

n

0

1
0

⎜ ⎟
⎛
⎝

⎞
⎠

∫

∫∑
π

ν ν

π
ν ν ν

= − +

+

∞

=

∞ ∞

Since the antiderivative

[ ]( ) ( )
( )

Y ( )
ˆ ˆ

ˆ
. (81)ν

ν γ ν νγ ν
ν γ ν

=
− ′

+

of the function y ( )ν vanishes at the boundaries 0ν = and
ν = ∞, the first integral in (80) is strictly zero. In addition, the
trigonometric function in the second integral of (80) is
increasingly oscillating as T 0→ . Hence the second integral
approaches zero in this limit. Thus the specific heat (80) can
be expressed in the form

C C
T

n
T

y
1

d cos ( ), (82)
n

0

1
0

⎜ ⎟
⎛
⎝

⎞
⎠∫∑

π
ν ν ν= +

=

∞ ∞

where

C
y1

2
(0)
2

(83)0 = −

is the specific heat at zero temperature. We find from (78)
both with the form (19) and the form (29) for the spectral
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damping function the limiting expression

y s s(0) (2 ) (2 ). (84)Θ= − −

The second term in (82) describes the temperature depen-
dence of the specific heat and can serve to obtain low-
temperature expansions.

A more physical interpretation of the specific heat for a
damped system can be given in terms of the change ( )ξ ω of
the oscillator density of states caused by the coupling of the
system to the heat bath [11], which has been discussed in
section 3. Under the condition (16) the Matsubara sum (77)
can be rewritten as the frequency integral

[ ]C C

C C

1

2
d ( ) ( ) 1 ,

d ( ) ( ). (85)

0
ho

0
0

ho

∫
∫

ω ξ ω ω

ω ξ ω ω

= + −

= +

∞

∞

Here,

C
T T

( )
2 sinh( 2 )

(86)ho

2⎛
⎝⎜

⎞
⎠⎟ω ω

ω
=

is the specific heat of a single harmonic oscillator with
frequency ω. Since in the high-temperature limit, Cho tends to
one, the first term on the right-hand side of the first line of
(85) represents the classical value of the specific heat. On the
other hand, in the low-temperature limit, Cho tends to zero,
thus confirming that C0 is the specific heat at zero
temperature. By comparing the first and the second line, we
find that the specific heat in the zero-temperature limit

C
1

2
(87)0 Σ= −

is related to its classical value by the integrated CODS Σ
introduced in (42).

With the explicit form (56) for the sum rule Σ, the
expression (87) in fact coincides with the former result (83)
with (84). In any event, the resulting expression for the spe-
cific heat at zero temperature is

C

s
s

s

1

2
for 2,

1

2
for 2.

(88)0

⎧
⎨
⎪⎪

⎩
⎪⎪

=

− ⩽

>

In the regime s 2⩽ , C0 increases linearly with the exponent s
from a value of 1 2− in the extreme sub-Ohmic regime to the
classical value of 1 2 which is reached for s = 2.

The expressions for the specific heat given in (85) differ
from the expression which can be derived from the formula
for the free energy given by Ford et al [21, 22] for the damped
harmonic oscillator. The reason lies in the nonvanishing
specific heat of the free damped particle at zero temperature.

Figure 5 gives an overview of typical variations of the
specific heat of a damped free particle as a function of tem-
perature. In order to emphasize that the represented data are
only valid as long as the condition (73) is satisfied, i.e. pro-
vided that TL2 is sufficiently large, we denote the leftmost
value on the temperature axis by 0+. The three curves
represent a sub-Ohmic case (s = 0.3), the Ohmic case (s = 1)

and a super-Ohmic case (s = 3) from the lower to the upper
curve. In all cases, a sharp cutoff (model II) has been
employed.

As our previous analysis has shown, all three curves lead
from a zero-temperature value of the specific heat given by
(88) to the classical value k 2B . The Ohmic case is a particular
case because it leads to a vanishing specific heat in the zero-
temperature limit independently of any confinement condition
for the particle. In the sub-Ohmic case, the specific heat at low
temperatures tends towards a negative value.

In contrast, for super-Ohmic damping with s 2> , which
includes the case s = 3 represented in figure 5, at low tem-
peratures the classical value of the specific heat is approached
again. This phenomenon of reentrant classicality is due to the
small density of bath oscillators at low frequencies [19]. In
figure 6 the reentrant classicality for the super-Ohmic case
s = 3 is shown both for model I and model II. The dip in the
specific heat due to quantum effects is considerably larger in
the dashed curve belonging to model II compared with the
solid curve pertaining to model I. The discriminative char-
acteristics in figure 6 is due to the drastically different
behaviors of the CODS ( )ξ ω of these models shown in

Figure 5. The specific heat (77) of a free damped particle is
displayed as a function of temperature for spectral densities of the
coupling (24) with a sharp cutoff. The label 0+ on the temperature
axis indicates that the curves are only valid for k T EB 0> . The
exponent s increases from the lower to the upper curve as s 0.3, 1,=
and 3. For the two smaller values of s, the critical damping strength

scγ γ= ⋆ is chosen while for s = 3 the damping strength is set to γ = 1.

Figure 6. The specific heat is shown for super-Ohmic damping s = 3
with an algebraic cutoff with p = 2 (solid curve) and a sharp cutoff
(dashed curve). The damping strength for both curves is γ = 1. The
dashed curve is a magnified form of the topmost curve in figure 5.
We see that the dip in the specific heat is notably larger for model II
compared with model I.
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figure 4. It should be remarked, that the dip for both models
gets deeper, as the parameter γ is increased, while the char-
acteristics of reentrant classicality is preserved.

As far as the two lower curves in figure 5 belonging to
the range s0 2< < are concerned, their dips get progres-
sively deeper, as the damping strength γ is increased beyond
γ⋆ [19]. This feature is due to the negative sign of the leading
term in the expansion (45) in the regime γ γ> ⋆.

The overall structure discussed so far only depends on
the exponent s of the spectral density of the coupling and is
thus independent of the cutoff. The cutoff becomes relevant
though at finite temperatures. Accessible to a analytical ana-
lysis are the leading quantum corrections at high temperatures
which we will discuss in section 5 and the low-temperature
expansion which will be the subject of section 6. The low-
temperature behavior is particularly interesting because for
sufficiently strong coupling of the free particle to its envir-
onment, the specific heat at finite temperatures can fall even
below its zero-temperature value.

5. Quantum corrections at high temperatures

The specific heat at temperatures T , cγ ω≫ is determined by
the behavior of the Laplace transform zˆ ( )γ of the damping
kernel in the regime z 1∣ ∣ ≫ , which is given in equation (17).
In the high-temperature regime, the Matsubara sum (77) is
dominated by the second term in (78). As the damping kernel
decays like z1 for all exponents s in the range (16), the
leading quantum correction at high temperatures then goes
like the square of the inverse temperature.

C
a

T

1

2 12

1
. (89)

2
= −

The coefficient a is given in (18) for model I and in (28) for
model II.

The universal T1 2 tail is proportional to the damping
strength γ and, after reinserting the constants previously set to
one, the cutoff frequency cω . The amplitude functions
a s p( , )ac γ for model I and a s( )sc γ for model II are plotted in
figure 7. The U-shaped form for model I (displayed for p = 1

and p = 2) possesses a minimum at s = p and divergencies at
the edges s = 0 and s p2= . For a given algebraic cutoff
function characterized by p, quantum effects can depend
significantly on the value of the exponent s. They are weakest
for s = p.

When, on the other hand, s is kept fixed, the function
a s p( , )ac decreases with increasing parameter p. Thus, shar-
pening the cutoff function in the spectral density of the
coupling (6) in model I reduces the quantum effects while the
temperature is kept fixed at a large value.

For the sharpest possible cutoff function, i.e. our
model II, the amplitude asc decreases monotonically as s1
with increasing exponent s. Although, the sharp cutoff does in
general not lead to the smallest high-temperature quantum
corrections, it nevertheless fits the general picture that sharper
cutoffs in the spectral density of the coupling tend to lead to
weaker quantum corrections.

6. Low-temperature behavior

We finally study the low temperature regime where T pro-
vides the smallest frequency scale, i.e. T , cγ ω≪ . As men-
tioned before, for a particle confined to a finite spatial region,
our results are constrained by the condition (73) and are thus
not valid down to zero temperature. However, by choosing
the confining region sufficiently large, the domain of validity
can be extended down to any arbitrarily low non-zero tem-
perature. The low-temperature expansions for the specific
heat given in this section have to be understood in this sense.

The leading low-temperature correction to the specific
heat is obtained from the leading low-frequency term in the
change of the oscillator density of states ( )ξ ω discussed in
section 3.1. In the regime s0 2< < , the leading contribution
to the CODS ( )ξ ω is found to be proportional to s1ω − . From
the expression for the specific heat in the second line of (85),
we obtain the leading low-temperature behavior of the spe-
cific heat as

( )

C
s s

s s T

1

2

2 1 1

sin (4 ) (3 ) . (90)s s2
2

2

⎛
⎝⎜

⎞
⎠⎟π γ γ

Γ ζ

= − + − −

× − −π

⋆

−

Here, ζ denotes the Riemann zeta function [15]. The
expansion (90) depends mainly on the low-frequency
dependence of the spectral density of the coupling. Its
dependence on the form of the cutoff enters only via the
critical damping strength γ⋆.

The leading low-temperature correction to the specific
heat increases with decreasing damping strength γ. Conse-
quently, a reduction of the environmental coupling leads to a
more rapid approach to the classical regime as temperature is
increased. This behavior is consistent with the fact that in the
absence of any spatial confinement, the environmental cou-
pling provides the mechanism to render a free particle
quantum mechanical [1, 9, 19].

Figure 7. The amplitude functions a s p( , )ac for algebraic cutoffs
characterized by exponents p = 1 and p = 2 (solid curves) and the
amplitude function a s( )sc for sharp cutoff (dashed curve) appearing
in the high-temperature formula (89) are shown as a function of the
exponent s.
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With increasing damping strength, eventually the critical
damping strength γ⋆ will be reached where the dressed mass
M (1 )μ+ vanishes. According to (45), the leading term of

( )ξ ω then changes sign and the leading low-temperature
correction results in a decrease of the specific heat with
increasing temperature. In figure 8(a), we show the low-
temperature behavior of the specific heat for Ohmic dissipa-
tion with an algebraic cutoff with p = 1. The damping strength
in figure 8(a) increases from the upper to the lower curve,
clearly demonstrating the change in the sign of the leading
term in the CODS ( )ξ ω at the critical damping strength
represented by the second curve from the top.

Interestingly, the low-temperature behavior for a sharp
cutoff shown in figure 8(b) is qualitatively different. While we
see again how the leading term in (45) changes its sign when
the critical damping strength is reached at the lowest curve, a
negative specific heat can be obtained even for damping
strengths below the critical damping strength. However, the
specific heat falls below its zero-temperature value only above
a certain finite temperature.

This difference in behavior of the specific heat for
algebraic and sharp cutoff can be traced back to the coeffi-
cient c in the expansion (45). This coefficient dominates the
low-temperature behavior of the specific heat at the critical

damping strength γ γ= ⋆, where the first term in (45) van-
ishes. The specific heat then reads

C
s

c s s T
1

2
(6 ) (5 ) , (91)s4Γ ζ= − + − −⋆ −

where the coefficient c⋆ is given in (58) for model I and in
(69) for model II. Recalling the discussion at the end of
section 3.3, the leading thermal contribution for critical
damping γ γ= ⋆ is generally positive for model I and
generally negative for model II. For a sharp cutoff, the
absolute value of the coefficient c can be large enough, even
for undercritical damping γ γ< ⋆, to force the specific heat
below zero as can be seen in figure 8(b).

In the regime s 2> , we had seen from (88) that at zero
temperature, the specific heat takes it classical value. Upon
using the expression (51) for the change of the oscillator
density of states ( )ξ ω , we find that the leading contribution to
the specific heat at low temperatures is

C s s s T
1

2
( 2)

(1 )
( ) ( 1) . (92)s 2γ

π μ
Γ ζ= − −

+
− −

Interestingly, details of the cutoff in the spectral density of the
coupling J ( )ω only enter via the mass renormalization μ. The
leading thermal contribution in (92) is always negative,
thereby ensuring that the specific heat never exceeds its
classical value.

7. Conclusions

The thermodynamic properties of a damped quantum system
depend on the spectral density of the coupling, in particular its
low-frequency behavior and the high-frequency cutoff.
Choosing a rather general spectral density of the form (10),
we have seen for the specific heat of the free damped particle,
that the exponent s characterizing the low-frequency proper-
ties of the environmental coupling is omnipresent. Never-
theless, also the existence of the high-frequency cutoff and its
detailed form are of relevance.

First of all, the negative mass renormalization in the
regime s0 2< < is a consequence of the mere existence of a
high-frequency cutoff. In this sense, the possibility for the
specific heat to fall below its zero-temperature value con-
stitutes an effect of the cutoff. Typically, this requires that
damping strength and cutoff frequency are of the same order
which makes the appearance of cutoff effects likely. How-
ever, as we have seen in figure 2, there exist parameter ranges
where even relatively weak damping can lead to a decrease of
the specific heat at low temperatures.

A qualitative difference between the two types of cutoffs
considered here, i.e. the algebraic cutoff (11) and the sharp
cutoff (24), can be found in the change of the oscillator
density of states when the system degree of freedom is cou-
pled to the bath. At low frequencies, the curvature of the
CODS is always negative for a sharp cutoff while it is positive
for an algebraic cutoff in the regime where the specific heat
becomes negative.

Figure 8. The specific heat at low temperatures where negative
values can occur is shown for Ohmic damping with (a) an algebraic
cutoff with p = 1 and (b) a sharp cutoff. In the upper panel, the
damping strength 0.9, 1, 1.1cγ ω = , and 1.2 increases from the
upper to the lower curve. The second value represents the critical
damping strength acγ γ= ⋆. In the lower panel, the damping strength
takes the values 1.2, 1.3, 1.4cγ ω = , and 2π from the upper to the
lower curve. The last choice corresponds to scγ γ= ⋆. We see that

already for values scγ γ< ⋆ the specific heat can become negative at
finite temperatures.
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Quantitative differences appear in the details of the
relevant quantities, e.g. the expressions for the mass renor-
malization or the critical damping strength. While the general
form of the expressions for the two types of cutoff are similar,
important differences are due to the fact that for a given
algebraic cutoff, the allowed values of the low-frequency
exponent s are limited by the conditions (12) or (16). As a
consequence, the mass renormalization and the amplitude of
the high-temperature quantum corrections for the algebraic
cutoff are nonmonotonic and divergent at s p2= . In contrast,
the sharp cutoff is sufficiently strong to allow for arbitrary
values of s. The corresponding mass renormalization and the
quantum corrections of order T1 2 vanish in the limit of large
exponents s.

Finally, we have seen in the discussion of the leading
low-temperature corrections that while the critical damping
strength typically determines whether the specific heat can fall
below its zero-temperature value, this is not always the case.
For the sharp cutoff, the results shown in figure 8(b)
demonstrate that a negative specific heat in the Ohmic case
can appear even before the critical damping strength is
reached.
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