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ABSTRACT: This study evaluates the classifications of atmospheric circulation patterns collected in the COST733 database
(COST733cat) in terms of their ability to stratify daily surface temperature and precipitation in 12 domains covering the whole
of Europe. The classifications differ in the classification methods used, in the number of types, the variable(s) classified, the
number of days in a sequence that are classified and in whether the classification is based on year-round or seasonal data.
Several classification methods that perform fairly well are identified; they include a simple k-means clustering, a k-means
clustering preceded by hierarchical cluster analysis, Litynski’s method, and a classification based on circulation prototypes.
On the other hand, there are a couple of classification methods that do not provide a good stratification of temperature
and precipitation: orthogonally and obliquely rotated principal component analysis in a T-mode, Lund’s correlation method,
Kirchhofer’s sums-of-squares method, and Erpicum’s method. Some methods tend to perform better on large domains, while
others tend to perform better on smaller domains; however, the sensitivity of most classification methods to the domain size
appears to be small. Several methods exhibit a geographical dependence of their performance, e.g. the method based on
circulation prototypes tends to perform better in the northern domains, while Jenkinson–Collison and Erpicum’s methods
perform better in the southern domains. Classifications of 4-day sequences are usually better in stratifying surface temperature
than ordinary instantaneous classifications; the opposite is true for precipitation. Adding a mid-tropospheric variable (500
hPa heights or 1000/500 hPa thickness) to sea level pressure as a classified variable improves the skill of classifications in
stratifying temperature.

1. Introduction

1.1. General issues

Classifications of atmospheric circulation patterns (also
referred to as synoptic classifications) are useful tools
for handling an immense and boundless continuum of
individual instantaneous circulation patterns. Classifica-
tions simplify the physical reality by identifying a small
number of representative patterns (types) to which the
instantaneous patterns are assigned (Huth et al., 2008).
One of the goals of synoptic classifications is to aid in the
description of effects the atmospheric circulation has on
surface climate, which is considered the main task of syn-
optic climatology (e.g. Yarnal, 1993; Barry and Carleton,
2001; Yarnal et al., 2001). Therefore, it is important to
evaluate if, and to what extent, the classifications are able
to describe surface weather, climate and environmental
variables. Numerous studies on the relationships between
circulation types and surface climate and environment
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have been published, from those published several decades
ago (e.g. Paegle, 1974; Yarnal, 1985; Yarnal et al., 1988;
O’Hare and Sweeney, 1993) to recent ones, which are
further referenced in this study. The range of climate
and environmental variables, for which the classifications
are evaluated, is quite wide although most studies deal
with temperature and precipitation (e.g. Kostopoulou
and Jones, 2007; Nishiyama et al., 2007; Lorenzo et al.,
2008; Jones and Lister, 2009; Schuenemann et al., 2009;
Casado et al., 2010; Tveito, 2010; Brisson et al., 2011;
Küttel et al., 2011; Raziei et al., 2012 to name just a
few recent examples) including extremes (Cassano et al.,
2006; Jacobeit et al., 2009; Maraun et al., 2011) and
diurnal cycles (Twardosz, 2010). Many other climatic and
environmental characteristics have, nevertheless, been
investigated as well: wind and wind storms (Cassano
et al., 2006; Leckebusch et al., 2008; Donat et al., 2010),
droughts (Vicente-Serrano and López-Moreno, 2006;
Fleig et al., 2010), floods (Dayan et al., 2012), snowfall
and avalanches (Esteban et al., 2005; Bednorz, 2008; Gar-
cía et al., 2009), lightning activity (Pineda et al., 2010),
atmospheric pollutants and dust transport (Demuzere
et al., 2009, 2011; Lykoudis et al., 2010; Stefan et al.,



2711

2010; Dayan et al., 2012; Gaetani et al., 2016; Beck
et al., 2014), forest fires (Kassomenos, 2010; Rasilla
et al., 2010), storm surges (Ullmann and Monbaliu, 2010;
Rasilla and García-Codrón, 2016), potato yields (Sepp
and Saue, 2012) and many others.

The strength of the link between the circulation types and
surface environment can be quantified by a variety of cri-
teria and statistical approaches. They include testing for
the equality of the mean values between individual types
(Kostopoulou and Jones, 2007), correlations between sea-
sonal frequencies of types and seasonal means of climate
variables (Anagnostopoulou et al., 2008) and approaches
quantifying and testing the (dis)similarity of statistical dis-
tributions conditioned by circulation types, such as the
analysis of variance (Jiang et al., 2005), Brier skill score
(Schiemann and Frei, 2010), Kruskal–Wallis test (Fer-
nau and Samson, 1990), 𝜒2-test (Makra et al., 2006), the
Mann–Whitney test (Fernau and Samson, 1990), and the
Kolmogorov–Smirnov test (Huth, 2010; Tveito, 2010).
Several statistical criteria have been designed directly to
quantify the separability between individual types; some
of them are listed in Beck and Philipp (2010).

It is necessary to distinguish between the terms ‘circula-
tion pattern’ and ‘circulation type’, which are sometimes
confused. A circulation pattern describes the atmospheric
circulation at any given moment in time (e.g. at a time of a
synoptic measurement, a daily mean, a monthly mean); it
is essentially a synoptic map. On the other hand, a circula-
tion type is a product of classification; it is a group (cluster)
of individual instantaneous patterns, and it is also a pat-
tern (map) that represents all the individual patterns (maps)
classified with this type (usually as their mean, median or
centroid).

In this article, we also make a clear distinction between
the terms ‘classification’ and ‘classification method’.
While a classification method is a mathematical (or
another) algorithm to identify types and to assign indi-
vidual circulation patterns to the types, a classification is
the resulting grouping of individual patterns into types.
As such, it can be seen as a specific realization of a clas-
sification method for a particular data set and a particular
setting of the parameters of the method. Therefore, a
single classification method may produce many individual
classifications, depending on the input data used and
method’s parameters chosen.

It is important to know how the choice of the classi-
fication method and its parameters affects the ability of
the resulting classification to stratify (sort) the surface cli-
mate variable of interest, such as temperature and pre-
cipitation. No such systematic study has been performed;
the few studies known to the authors have only exam-
ined single aspects of classifications. For example, Kidson
(1997) found that the choice of pressure level affects the
stratification of surface climate elements in New Zealand
only weakly and that classifications based on multiple
levels do not outperform those based on a single level.
Beck and Philipp (2010), Huth (2010), Schiemann and
Frei (2010), and Tveito (2010) examined the effect of the
method choice and of the number of types on various

aspects of stratification of the surface temperature and pre-
cipitation for a previous version of the COST733 classifi-
cation database (COST733cat v1.2).

1.2. Context within the COST733 Action

This study is a part of a special issue devoted to the results
of the international research activity conducted under the
umbrella of the COST (European Cooperation in Science
and Technology) Action 733 ‘Harmonisation and Appli-
cations of Weather Types Classifications for European
Regions’. More information on the COST733 Action can
be found in the review paper by Huth et al. (2008) and
the preface to the special issue in Physics and Chemistry
of the Earth by Huth et al. (2010). Central to this activ-
ity, and described elsewhere in this special issue (Philipp
et al., 2016) as well as previous studies (Philipp et al.,
2010), is a database of a large number of circulation (syn-
optic) classifications for 12 domains covering Europe. The
classifications have been created by 18 different classifi-
cation methods, following a unified methodology, and are
based on a unified data set. This provides a unique oppor-
tunity for intercomparisons of various classification meth-
ods as well as of various settings of the methods. This
study concentrates on one particular aspect of synoptic
classifications from the COST733 database (referred to as
‘COST733cat’ below) that is essential in synoptic clima-
tological studies: the ability of classifications to stratify
the values of surface climate variables, namely tempera-
ture and precipitation. The approach adopted in COST733
was that classifications have not been tailored to specific
applications; rather, their utility in different applications is
being evaluated a posteriori. For examples of such evalua-
tions, an interested reader may consult other papers in this
special issue or Huth et al. (2010). Specifically, the utility
of classifications from COST733 in various environmen-
tal applications was examined and compared by Fleig et al.
(2010), Kassomenos (2010), Lykoudis et al. (2010), Stefan
et al. (2010), and Trigo et al. (2016).

This study evaluates classifications from version 2.0 of
the COST733cat database (Philipp et al., 2016). The indi-
vidual classifications differ from each other in the methods
used, the variable(s) used for classification, the number of
types, the seasonality of definition (i.e. whether the types
are defined for the whole year or separately for individual
seasons), and sequencing (i.e. how many sequential daily
patterns are used as input for the classification). The
database therefore provides an outstanding opportunity
to study the consequences of the choice of classification
methods and their settings on the properties of classi-
fications and, in the case of this study, on stratification
of surface climate elements. Thanks to its geographical
extent, the high number of methods included and a range
of settings covered, results found are easy to generalize.

We note that the COST733cat database does not allow
us to fully assess one of the important aspects of classifica-
tions, viz. the size of the domain over which the circulation
patterns are classified, mainly because the domains defined
in COST733 have similar sizes and have little, if any, spa-
tial overlaps. It is therefore covered only marginally in this
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Figure 1. Domains (D00–D11) and stations used in the analysis.

article. A deeper insight into the effects of the domain size
on the quality of classifications is provided elsewhere in
this issue by Beck et al. (2016).

In short, the current study aims to assess the synoptic-
climatological applicability of the circulation classifi-
cations assembled in version 2.0 of the COST733cat
database, i.e. to determine how well they stratify surface
weather (climate) conditions in Europe. Specifically, the
effect of the selection of the classification method and its
parameters is examined. To this end, several statistical cri-
teria and climate data sets are employed.

2. Data and methods

The analysis covers the period of 1961–2000. Winter
(December–February) and summer (June–August) sea-
sons are analysed separately.

2.1. Classifications

The COST733cat database, version 2.0 (hereafter referred
to simply as ‘COST733cat’), contains 423 classifica-
tions for each of the 12 domains, which are displayed in
Figure 1. One domain (D00) covers almost the entire
area of Europe together with adjacent parts of the
North-Eastern Atlantic Ocean, while the other domains
(D01–D11) cover individual European regions, usually
with mutual overlaps. All the classifications (except the
subjective ones) are based on data from the ERA-40
reanalysis (Uppala et al., 2005). The methods are grouped
into families according to the basic features of the
classification algorithm: subjective (not included in
our evaluation; see below), threshold-based, principal
component analysis-based, leader algorithm-based, and
optimization. A method based on the random partition of
data is also included for comparison. The classifications
differ from each other in (1) the classification method, (2)
input variables [whether only sea level pressure (SLP) is

used for classification or SLP plus additional variable(s)],
(3) whether individual daily patterns or 4-day sequences
of daily patterns are classified, (4) seasonality (whether
one classification is defined for the whole year or sep-
arate classifications are defined for individual seasons),
and (5) the number of types (classifications with the
numbers of types as close to 9, 18, and 27 as possible
were formed). For more details on the classifications
and the software used to calculate them, please refer to
Philipp et al. (2016).

All the 423 classifications available in the database
are evaluated, but only a subset is further analysed. We
omit four groups of classifications from further consider-
ation. (1) Subjective classifications and their objectivised
versions are omitted because they have just one real-
ization, which precludes them from comparisons about
the number of types, sequencing, additional variables,
seasonality of the definition, etc. (altogether seven clas-
sifications). (2) Classifications not calculated by the
COST733 software (which were typically produced by
individual authors before the COST733 software was
made available) are omitted because they are either iden-
tical to one of classifications produced by the COST733
software or differ marginally from the latter because of
rounding errors; also, they cannot be used for assess-
ing the sensitivity to sequencing, additional classified
variables, etc. (altogether 41 classifications). (3) The
objective weather classification method after Dittmann
et al. (1995) is omitted because it uses, as the only method
in the database, many input variables for its definition
even in its basic version; this precludes a fair comparison
with all other methods, which are based on SLP only
in their basic version (altogether seven classifications).
(4) The self-organizing maps method is omitted because
its outputs were identical to the Sandra method (SAN)
(one classification).

Hence, 367 classifications enter the ‘competition’. A
brief summary of the methods evaluated in this study
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Table 1. Overview of classifications used.

Family Abbreviation Method Number of
classifications

Numbers
of types

Sequences
of days

Input
variables

Annual/
seasonal
definition

Threshold GWT Grosswetter types
(prototype
classification)

3 10, 18, 26 1 SLP A

JCT Jenkinson–Collison
(Lamb)

3 10, 18, 26 1 SLP A

LIT Litynski 3 9, 18, 27 1 SLP A
PCA KRZ Kruizinga 30 8, 18, 27 1, 4 SLP, SLP+Z5,

SLP+TH, SLP+V5,
SLP+Z5+TH+V5

A

PXE Principal
components’
extreme score

30 8, 18, 27 1, 4 SLP, SLP+Z5,
SLP+TH, SLP+V5,
SLP+Z5+TH+V5

A

PCT Obliquely rotated
PCA in a T-mode

30 9, 18, 27 1, 4 SLP, SLP+Z5,
SLP+TH, SLP+V5,
SLP+Z5+TH+V5

A

PTT Orthogonally rotated
PCA in a T-mode

30 9, 18, 27 1, 4 SLP, SLP+Z5,
SLP+TH, SLP+V5,
SLP+Z5+TH+V5

A

Leader LND Lund (correlation) 30 9, 18, 27 1, 4 SLP, SLP+Z5,
SLP+TH, SLP+V5,
SLP+Z5+TH+V5

A

KIR Kirchhofer
(sums-of-squares)

3 9, 18, 27 1 SLP A

ERP Erpicum 35 9, 18, 27 1, 4 SLP, SLP+Z5,
SLP+TH, SLP+V5,
SLP+Z5+TH+V5

A, S

Optimization CKM k-means clustering 35 9, 18, 27 1, 4 SLP, SLP+Z5,
SLP+TH, SLP+V5,
SLP+Z5+TH+V5

A, S

CAP k-means clustering
preceded by
hierarchical
clustering

35 9, 18, 27 1, 4 SLP, SLP+Z5,
SLP+TH, SLP+V5,
SLP+Z5+TH+V5

A, S

PXK k-means clustering
with extreme
principal component
scores as seeds

30 9, 18, 27 1, 4 SLP, SLP+Z5,
SLP+TH, SLP+V5,
SLP+Z5+TH+V5

A

SAN Simulated annealing
(SANDRA)

35 9, 18, 27 1, 4 SLP, SLP+Z5,
SLP+TH, SLP+V5,
SLP+Z5+TH+V5

A, S

Random RAC Random medoid
classification

35 9, 18, 27 1, 4 SLP, SLP+Z5,
SLP+TH, SLP+V5,
SLP+Z5+TH+V5

A, S

More information on methods and individual classifications can be found in Philipp et al. (2016). Input variables: sea level pressure (SLP), 500 hPa
heights (Z5), 1000/500 hPa thickness (TH), 500 hPa vorticity (V5).

is provided in Table 1 along with their abbreviations,
brief descriptions, and available settings. Four methods
have three realizations (i.e. result in three different clas-
sifications) for three different numbers of types (GWT,
JCT, LIT, KIR). Six methods have 30 realizations (for
all possible combinations of three numbers of types, two
sequence lengths, and five sets of variables: KRZ, PXE,
PCT, PTT, LND, PXK), while five other methods have 35
realizations (same as for the previous group plus a seasonal
definition for all five sets of variables with a single number
of types and without sequencing: ERP, CKM, CAP,
SAN, RAC).

The presence of rare (or even not occurring at all, i.e.
empty) types may potentially adversely affect the results
of the analysis. Also, the infrequent types cannot be con-
sidered typical representative patterns, going, therefore,
against the goal of synoptic classifications, viz. to find
representative, typical, recurring patterns. We therefore
omit classes with ten and fewer days in a particular season
(the term ‘infrequent types’ is used for the omitted types
in the text below). As a result, the numbers of types in
a classification that we analyse may differ from the real
numbers of types. We illustrate this issue using the num-
bers of omitted types for 15 classification methods with
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Table 2. Numbers of types with population of ten or fewer days for classifications with SLP as the input field, 27 theoretical types,
without sequencing, and using the annual definition.

No. of types D00 D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 D11

Winter
Method
GWT 26 1 0 0 0 0 0 0 0 0 0 0 0
JCT 26 1 0 7 1 1 0 7 1 0 0 1 6
LIT 27 0 0 0 0 0 0 0 0 0 0 0 0
KRZ 27 0 0 0 0 0 0 0 0 0 0 0 3
PXE 27 9 16 12 13 9 12 12 11 14 7 11 6
PCT 27 4 3 5 8 7 9 9 10 11 9 9 15
PTT 27 16 19 19 16 17 21 21 19 18 19 20 20
LND 27 3 1 1 1 0 0 1 0 1 2 1 1
KIR 27 0 0 0 0 0 0 0 0 0 0 0 0
ERP 27 11 7 9 9 5 7 8 7 7 7 7 11
CKM 27 0 0 0 2 0 2 5 1 1 0 2 4
CAP 27 0 0 0 0 0 0 0 0 0 0 0 4
PXK 27 10 16 13 13 9 13 12 11 14 8 12 5
SAN 27 1 0 0 0 0 0 0 0 0 0 0 5
RAC 27 1 0 1 0 0 0 0 0 0 1 1 4

Summer
Method
GWT 26 5 0 0 0 0 0 0 0 0 1 0 16
JCT 26 0 0 2 0 0 1 17 0 1 7 15 19
LIT 27 0 0 0 0 0 0 0 0 0 0 0 0
KRZ 27 2 0 0 0 0 0 1 0 0 1 1 7
PXE 27 9 16 11 13 9 12 12 11 14 7 11 10
PCT 27 17 3 10 14 6 14 13 14 18 18 16 20
PTT 27 19 16 13 16 19 15 16 16 14 21 19 24
LND 27 5 0 0 0 0 0 1 0 1 7 2 19
KIR 27 1 0 0 0 0 0 0 0 0 3 2 9
ERP 27 16 15 19 16 13 12 17 16 16 12 14 15
CKM 27 15 11 12 14 8 13 17 15 14 15 16 20
CAP 27 13 5 7 6 4 5 5 8 10 12 11 17
PXK 27 8 16 11 13 9 12 12 11 14 9 11 12
SAN 27 14 6 5 7 4 7 6 8 9 12 12 18
RAC 27 13 5 4 6 5 7 6 9 12 15 11 14

The original number of types is also shown in the second column.

about 27 types, SLP as the only input variable, without
sequencing, and using the annual definition, both for
winter and summer (Table 2). One can see that (1) several
methods are prone to producing fairly high numbers of
infrequent types (e.g. PTT, PCT, PXE, PXK, ERP), i.e.
they either exhibit a strong seasonality in the frequency of
types or produce very small or even empty types; (2) the
tendency to a larger number of empty types (i.e. to fewer
types that occur with a non-zero frequency) is stronger
in summer; and (3) the tendency to a larger number of
empty types is particularly strong in domain D11 (eastern
Mediterranean).

2.2. Temperature and precipitation data

Two databases of surface temperature and precipitation
were used: station data taken from the database of the
European Climate Assessment and Dataset (ECA&D)
project (Klok and Klein Tank, 2009) and gridded data
from the ERA-40 reanalysis (Uppala et al., 2005). These
databases allow daily precipitation totals to be evaluated
in both ECA&D and ERA-40. Daily maximum and

minimum temperatures are analysed in ECA&D while
daily mean temperatures are analysed in ERA-40.

We retrieved data from 122 stations with daily surface
maximum and minimum temperature series and 120
stations with daily precipitation series from the ECA&D
database. Stations with complete time series were selected
for the analysis. The locations of the stations are shown
in Figure 1. For the evaluation of each domain, only data
from stations within that domain are used. The number of
stations in each domain is given in Table 3. Note that the
domains overlap, and thus, some stations are included in
more than one domain.

Daily 1200 UTC data for 2 m temperature and precipi-
tation were extracted from the gridded ERA-40 reanalysis
data set (Uppala et al., 2005). For the large domain (D00),
a spatial resolution of 2∘ (latitudinal) by 3∘ (longitudinal)
was chosen whereas a 1∘ × 1∘ resolution was selected
for the smaller domains (D01–D11). Only gridpoints
over land were used in the analyses (see last column in
Table 3 for the number of gridpoints available in each
domain).
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Table 3. Numbers of stations and gridpoints (over land) within
each domain.

Domain
number

Region No. of
stations

No. of
gridpoints

00 Europe 121 (120) 330
01 Iceland 4 50
02 Western Scandinavia 16 175
03 Northeastern Europe 11 (12) 469
04 British Isles 18 100
05 Baltic Sea 21 (22) 269
06 Alps 25 138
07 Central Europe 42 256
08 Eastern Europe 24 319
09 Western Mediterranean 15 212
10 Central Mediterranean 33 (32) 206
11 Eastern Mediterranean 9 (7) 275

Numbers in parentheses indicate stations with precipitation data if dif-
ferent from the numbers of stations with temperature data.

2.3. Evaluation metrics

The synoptic-climatological applicability of circulation
classifications is assessed by three different metrics, which
were selected from a wide range of possibilities: explained
variance (EV), Kolmogorov–Smirnov statistic (KS), and
pseudo-F statistic (PSF). The station data were subjected
to the evaluation using the EV and KS metrics, while the
EV and PSF metrics were applied to reanalysis data.

EV is calculated as

EV = 1 −

K∑

j=1

n∑

i=1

(
yji − yj

)2

n∑

i=1

(
yi − y

)2

(1)

where K is the number of classes (circulation types), n is
the number of observations, y is the overall mean, and yj is
the mean for class j. The EV index can reach values from
0 to 1; 0 means no skill to stratify climatic data into types,
whereas 1 means that there is no within-type variability
(the data within every circulation type are uniform). The
value of the EV index depends on the number of classes;
the higher the number of classes, the better the division of
data into these classes.

The PSF, according to Calinski and Harabasz (1974), is
calculated as

PSF =

K∑

j=1

(
yj − y

)2∕ (K − 1)

K∑

j=1

n∑

i=1

(
yji − yj

)2 ∕ (n − K)

(2)

where K denotes the number of circulation types and n
the number of observations, y is the mean overall observa-
tions, and yj is the mean for class j. Increasing PSF values
indicate larger variability between classes and/or less vari-
ability within classes, pointing to a better separability of
classes.

The evaluation by the KS statistic follows the description
in Huth (2010). Here, we repeat it in brief. For each circula-
tion type in each classification and at each station, the con-
ditional empirical probability distribution function (PDF)
of a given element (maximum or minimum temperature)
is constructed. It is then compared, using the two-sample
Kolmogorov–Smirnov test, with the PDF at that station
for the rest of data, i.e. for all days except those classified
with the given type. This ensures that the two samples for
which PDFs are compared are independent, which would
not be the case if we conducted the comparison against the
distribution of all data. It is important to note that the KS
test reflects a whole PDF, not only the mean value; thanks
to it, a type connected with a narrow temperature (pre-
cipitation) distribution around the long-term mean may be
seen as having temperature different from the overall con-
ditions, which would not be possible if, e.g. the standard
t-test for the equality of means was employed. We employ
the 5% significance level for the KS test. The rejection of
the test indicates that values of the climate element (tem-
perature or precipitation) under a particular type are well
separated from the values in the rest of data; if the test is not
rejected, the climate variable under a particular type does
not significantly differ from the rest of the data. The num-
bers of rejections of the KS test are counted over individual
types for each classification at each station. The larger the
number of rejections, the better the stratification of surface
temperature by the particular classification at a given sta-
tion. The percentage of rejections is then calculated at each
station; it serves as a basis for subsequent evaluations.

2.4. Averaging and ranking

Each of the evaluation criteria (EV, KS, PSF) produces
values of its metrics at every site (station or gridpoint)
for each classification. Separate evaluations (i.e. rankings)
are constructed for each evaluation criterion. The values
of the metrics are ranked at each station. The ranks are
calculated so that the best method ranks first, i.e. the
classification with the lowest KS statistic, or the highest
EV, or the highest value of PSF is ranked first. The ranks
are then averaged over sites located inside each of the 12
domains, thereby providing a domain mean rank for each
classification. Finally, the domain mean ranks are ranked.

As a result, each classification in every domain and for
every evaluation metric is assigned a rank between 1 and
423. It is worth stressing here again that the ranks are
attributed to all the 423 classifications in the COST733cat
database, i.e. the ranks of the classifications range from 1
(best) to 423 (worst), but only 367 of them are evaluated
and compared.

One could argue that areal averaging of ranks, and not
directly of the values of metrics, may not be optimum
because it may exaggerate real differences for the mod-
erately performing classifications, while underrating them
for the outliers (the best and worst performing ones). How-
ever, in fact, the two approaches lead only to little differ-
ences in the results (not shown), which do not affect the
conclusions.
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Figure 2. Comparison of performance of classifications with different number of types (approximately 9 vs approximately 18 in top four graphs and
approximately 18 vs approximately 27 in bottom four graphs). Displayed are the percentages of classifications for which the lower number of types
has the lower rank, i.e. values over (below) 50 indicate that the classifications with a lower (higher) number of types are more frequently better
according to a given criterion. Mean differences in ranks (for details see text) between the classifications with approximately 9 and 18 types (left four
graphs) and approximately 18 and 27 types (right four graphs). Separate graphs are shown for the EV criterion on ECA&D data, EV criterion on
ERA-40 data, KS criterion on ECA&D data, and PSF criterion on ERA-40 data. Each cluster of bars corresponds to one spatial domain (D00–D11).
The bars describe (from left to right, for ECA&D data) maximum temperature in winter (light blue), minimum temperature in winter (dark blue),
precipitation in winter (green), maximum temperature in summer (red), minimum temperature in summer (light pink), and precipitation in summer
(olive). For the ERA-40 data, the bars describe mean temperature in winter (blue) and mean temperature in summer (pink) instead of maximum and

minimum temperatures.

3. Effect of the number of types

Before evaluating classification methods themselves, we
concentrate on the effect the number of types has on the
synoptic-climatological quality of classifications. Unlike
effects of all other options, the effect of the number of types
(and, consequently, of sample sizes in the types) is inherent
to the individual evaluation criteria. The criteria are con-
structed so that they prefer either small numbers of types
(implying large sample sizes) or large numbers of types
(implying small sample sizes). For example, in the KS test,
the difference between the two PDFs necessary to become
statistically significant gets smaller with increasing sizes
of the samples compared. As a consequence, the KS cri-
terion favours classifications with small numbers of types;
this behaviour was documented and discussed for the pre-
vious version of the COST733cat database by Huth (2010).
The PSF criterion behaves in the same way, while the EV
criterion behaves in the opposite way, preferring small type
sizes to large type sizes, i.e. preferring large numbers of
types to small numbers of types.

The effect of the number of types is examined on the
classifications based on SLP only, without sequencing,

for the annual definition. For each criterion, each domain,
and each climate variable, one pair of classifications with
approximately 9 and 18 types and one pair of classifica-
tions with approximately 18 and 27 types were formed.
The pairs, for which the classification with a lower number
of types has a lower rank, i.e. it exhibits a better separation
according to the given criterion, are counted. The percent-
age of these counts is displayed in Figure 2. The percent-
age values above (below) 50 indicate a tendency towards a
higher (lower) number of types being better separated, the
tendency being stronger for the percentage values being
closer to 100 (0).

The prevalence of the change in synoptic-climatological
applicability in one direction (whether improvement or
deterioration) is larger for smaller numbers of types (9 vs
18); this seems natural because the relative change in the
number of types as well as in their average size is then
also larger. The expected sign of differences prevails in
all cases; only for the KS and PSF criteria in summer in
domains D00 and D11, the percentage values are close
to 50, indicating that the numbers of improvements and
deteriorations are close to each other. We may speculate
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Figure 2. Continued

about the cause. In D11 (Eastern Mediterranean), many
classifications have large numbers of empty or infrequent
types in summer, resulting in the real numbers of types
being much lower than their theoretical numbers; the
differences are then frequently calculated between classi-
fications with similar real numbers of types. Domain D00
(whole Europe) is the largest one. The results may indi-
cate that the low number of types (about nine) may be
insufficient to capture the variability of surface climate in
summer. The EV criterion tells us that the smaller num-
ber of types is worse anyway and is not able to make the
distinction that in D00, in summer, the classifications with
small numbers of types worsen even more.

Another observation is that the KS criterion is the least
sensitive to the number of types. The differences tend to
be lower in summer, although not in all domains. This
appears to reflect the fact that the effect of atmospheric
circulation on surface climate is generally weaker in
summer. There is no systematic difference between vari-
ables: the effect of the number of types is similar for both
temperatures and precipitation. We observe no apparent
difference between the two data sets (ECA&D vs ERA-40
for the EV criterion) either.

4. Comparison of classification methods

To compare the performance of individual classification
methods, the effect of the number of types, as well as of

other parameters of classifications, must be eliminated. For
the comparison, similar to the analysis of the effect of the
number of types in Section 3, we choose only ‘basic’ clas-
sifications, i.e. those based on SLP, without sequencing,
and for the annual definition. The way the classifications
are ranked is illustrated in Table 4, showing an example
for the KS criterion for maximum temperature in winter in
domain D00. The overall ranks of the classifications (i.e.
numbers from 1–423; second to fourth row in Table 4)
are ranked separately for the classifications with approxi-
mately 9, 18, and 27 types (fifth to seventh row in Table 4).
The sum of these ranks is calculated over the three num-
bers of types (eighth row in Table 4), and the sums are
eventually ranked (last row). The final rank is free of the
effects of the number of types, and it represents an overall
synoptic-climatological performance of the given method
for the given climate variable over a given domain for a
particular evaluation criterion.

The same ranking procedure is applied to all variables
in all domains for both winter and summer and for all
the evaluation criteria. The result for the KS criterion is
displayed in ‘abacus-like’ diagrams in Figure 3. Obvi-
ously, the spread of ranks is large for most methods, which
are among the best for some variables and/or domains,
while being among the worst for other variables and/or
domains. Nevertheless, some methods tend to be better
overall (the symbols cluster in the left part of the graph;
e.g. SAN, CAP, CKM, LIT, and GWT in winter; PXK and
CKM in summer), whereas some methods tend to be worse
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Table 4. An example of the ranking procedure for the evaluation of classification methods: maximum temperature, winter, KS
criterion, domain D00, classifications of SLP only, without sequencing, annual definition.

Classification GWT JCT LIT KRZ PXE PCT PTT LND KIR ERP CKM CAP PXK SAN RAC

Rank among all
classifications

9 types 169 229 325 212 147 184 254 243 323 308 142 113 187 81 82

18 types 260 262 259 274 302 315 398 385 408 299 277 293 336 245 338
27 types 330 397 381 362 373 341 403 388 423 399 305 365 344 335 340

Rank 9 types 6 10 15 9 5 7 12 11 14 13 4 3 8 1 2
18 types 3 4 2 5 9 10 14 13 15 8 6 7 11 1 12
27 types 2 12 10 7 9 5 14 11 15 13 1 8 6 3 4

Sum of ranks 11 26 27 21 23 22 40 35 44 34 11 18 25 5 18
Final rank 2.5 10 11 6 8 7 14 13 15 12 2.5 4.5 9 1 4.5

Ranks among all classifications are shown for each classification method in the upper part of the table for classifications with approximately 9, 18,
and 27 types. They are ranked for each number of types separately; these ranks are displayed in rows 5–7. Sums of the latter ranks are calculated
(row 8), resulting in final ranking (last row).
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Figure 3. Ranking of classification methods (in rows), KS criterion, DJF (left), and JJA (right). Maximum temperature shown in upward triangles,
minimum temperature in downward triangles, precipitation in circles. Colour coding of domains (D00–D11) is the same as in Figure 1 and is shown
on the right-hand side of the figure; in general, domains with cool and wet (warm and dry) climate are denoted by cold (warm) colours. The large
domain (D00) is denoted by larger symbols. The black cross denotes the average of all ranks. Note that the symbols may overlap, and hence, some

of them may remain hidden.

(symbols clustering in the right part of the graph; e.g.
ERP, LND, PCT in winter; KIR and PTT in summer) than
others. Also, a different performance between winter and
summer may be noted.

Is there a difference in the performance of the classi-
fication methods between the climate variables or from
one domain to another? These questions are hard to
answer based on the graphs in Figure 3; an aggregation of
information is needed. Therefore, we averaged the ranks
in Figure 3 over the variables to produce the dependence
of the performance on domains; the result is shown in
Figure 4 for all evaluation criteria and both seasons.
Analogously, the ranks were averaged over the domains,
resulting in the dependence of the performance on the
climate variables; this is displayed in Figure 5.

There is no apparent general geographical dependence of
rankings (e.g. north vs south, west vs east) for any method;
the specific behaviour usually appears for one season or

one criterion only and therefore cannot be generalized.
For example, the GWT method in summer performs bet-
ter in the cool and wet (northwestern) domains (bluish and
greenish colours in Figure 4) than in warm and dry (south-
eastern) domains (reddish colours) according to the KS cri-
terion, but this behaviour does not repeat for other criteria
and in winter. Perhaps only the JCT method tends to per-
form consistently better in the southeastern domains than
in the northwestern domains. However, several methods
suggest they are sensitive to the size of the domain; they
differ in their performance between the large domain (D00;
large brown symbols) and the other smaller domains. Most
striking is this difference for LIT, which is among the lead-
ing methods for small domains in both seasons for all the
criteria but performs much worse on the large domain. A
similar behaviour is observed for KIR and GWT. Both the
LIT and GWT methods are based on the similarity of cir-
culation patterns with structures of a domain-scale, which
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Figure 4. Dependence of the performance of the classification methods (in rows) on the domain. Averages of ranks over variables are displayed by
coloured crosses (for colour coding see Figure 3; D00 denoted by a larger brown cross; the average rank for each method in black). Season, criterion,

and data set indicated on the top of each graph.

are too large in the large domain to be able to account for
local climate peculiarities. The opposite behaviour, i.e. a
better performance for the large domain, is seen for PXE
and PXK in winter and for JCT in summer.

Some of the methods differ in their performance for
temperature on one side and precipitation on the other
(Figure 5). LIT, KRZ, PCT, and KIR are better in char-
acterizing temperature for most criteria in both seasons,
while JCT, PXE, PXK, CKM, and RAC are more suitable
for stratifying precipitation. We may hypothesize that the
latter methods capture more detailed structures relevant for
precipitation, whereas the former methods tend to capture
larger-scale features more relevant for temperature.

The varied performance of the methods in different
domains and for different climate variables suggests that
no method can be identified as the best (the same hold-
ing for the worst) and that a single ranking would have
a limited information value. Nevertheless, in the end,
we decided to provide the final ranking of the methods
as it may provide general guidelines on their synoptic-
climatological applicability. Table 5 displays the ranking
of the ranks averaged both over domains and climate vari-
ables (this is denoted by black crosses in Figures 3 and 4)

separately for individual criteria and seasons. The methods
that perform well are highlighted in red and pink, while the
inferior methods are in blue. Several methods are inferior
in both seasons; JCT, PTT, KIR, and ERP do not appear
among the top six methods according to any criterion in
either season. On the other hand, only LIT is among the
top six methods in all the eight cases. A further four meth-
ods, viz. GWT, KRZ, CAP, and SAN, perform very well
(they are among the top six) in one season while perform-
ing moderately in the other season. There is a considerable
seasonal difference in the performance of several methods
and, in addition, a marked difference among the evalua-
tion criteria. In particular, the rankings according to the
KS criterion tend to differ from the other two criteria; this
is very strongly pronounced for the PCT, LND, and CKM
methods in summer. A general explanation for the different
performance of different criteria is that each classification
method uses a specific similarity metric, and if this simi-
larity metric corresponds well to (or is even identical to)
one of the criteria, the performance of the method accord-
ing to this criterion is naturally improved. For example, if
we used a criterion based on the Euclidean distance, the
methods using Euclidean distance to define types (such
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Figure 4. Continued

as cluster analysis) would be favoured. It is worth not-
ing that, unlike the evaluation criterion, the evaluation
database affects the results rather marginally: differences
in the ranks between the ECA&D and ERA-40 data sets
for the EV criterion are very small, not exceeding three.
Another interesting feature is a different performance of
the LND and KIR methods, which are very similar in their
algorithm, differing in the (dis)similarity measure used:
LND uses correlation, while KIR uses root-mean-square
difference, the latter being further refined by also taking
into account the similarity in smaller scales. This refine-
ment appears, however, to lead paradoxically to a deterio-
ration of the ability to stratify surface climate elements. We
can also see that sophisticated methods are not a guaran-
tee of good synoptic-climatological applicability. The sim-
plest possible method, RAC, consisting in the assignment
of datapoints to randomly selected centroids on a shortest
distance basis, performs better than several other methods
intentionally designed for the classification of circulation
patterns.

The total rank in Table 5 should be interpreted with cau-
tion. The bottom methods (PTT, ERP, KIR, JCT, PCT) are
not recommendable for synoptic-climatological analyses,
although they may work well under some circumstances.
On the other hand, the methods that ended up on the top in

our ‘competition’, i.e. LIT, CAP, PXK, SAN, and GWT,
are likely to work well on many occasions, but their per-
formance varies from season to season, from one climate
variable to another, and also regionally. Therefore, the
presence of the method on the top of the ranking list does
not secure its excellent performance in all circumstances.
One must carefully select the method according to the
goals of a particular study and its settings, and, ideally, one
should use multiple methods and multiple criteria for their
evaluation in order to obtain unbiased and generalisable
results.

5. Effect of sequencing

To determine the effect of sequencing, classifications
based on 4-day sequences are compared with those
without sequencing. Surface variables (temperature and
precipitation) are attributed to the last day of a 4-day
sequence, i.e. the surface climate elements are stratified
by a classification based on the circulation the same
day and three preceding days. To quantify the effect of
sequencing, the pairs of classifications that only differ in
sequencing and have all the same other attributes (number
of types, input variables, seasonality) are formed and
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Figure 5. Dependence of the performance of the classification methods (in rows) on the climate variable. Averages of ranks over domains are
displayed by coloured symbols: upward triangle, maximum temperature; downward triangle, minimum temperature; right-pointing triangle, mean

temperature; circle, precipitation. Season, criterion, and data set indicated on the top of each graph.

those for which the 4-day sequence has a lower rank (is
better) than its non-sequential counterpart are counted.
The percentage of such pairs of classifications is reported
in Table 6 as an indicator of an improvement because of
sequencing. Values exceeding (below) 50 indicate that
sequencing leads to an improvement (deterioration) for a
majority of classification pairs. In addition, the effect of
sequencing is quantified by subtracting the ranks of the
two classifications (4-day sequence minus non-sequential)
in each pair. A negative difference indicates a lower
rank for the sequential classification and, hence, an
improvement because of the introduction of sequencing.
The differences in ranks are then averaged for the overall
classification pairs for each domain, climate variable,
and criterion. Whether the difference is significantly
different from zero is finally tested by the non-parametric

Wilcoxon signed-rank test; the significance is denoted by
bold types (italics) in Table 6 for significant improvements
(deteriorations) because of sequencing.

One can see that in winter: (1) sequencing improves
stratification by circulation classifications for temperature
(with a few exceptions) but deteriorates it for precipita-
tion. In other words, precipitation is determined mainly
by instantaneous circulation conditions, whereas for
temperature, the circulation on previous days is also
important. (2) The improvement is larger (without any
exception) for minimum temperature than for maximum
temperature. In other words, the circulation on preced-
ing days is more important for determining nighttime
(minimum) temperature. (3) The improvement for tem-
perature is largest, and the deterioration for precipitation
is smallest, for the large domain. This suggests that the
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Table 5. Rankings of classification methods for the two seasons and four criteria (s – stations, i.e. ECA&D database; E – ERA-40
reanalysis).

latoTAJJFJD

KS EV-s EV-E PSF KS EV-s EV-E PSF

GWT 2 5 6 7 7 9 9 7 5
JCT 8 12 12 13 12 10 11 10 12
LIT 3 3 3 4 4 3 6 6 1
KRZ 7 8 8.5 9 8 6 3 3 6
PXE 11 11 11 6 5 5 5 2 8
PCT 14 9 10 11 13 2 2 4 11
PTT 10 15 15 15 15 15 15 15 15
LND 15 6 8.5 10 11 4 4 5 9
KIR 9 14 14 14 14 12 12 12 13
ERP 13 13 13 12 10 13 14 14 14
CKM 1 4 4 5 1 14 13 13 7
CAP 5 1 1 1 3 7 7 8 2
PXK 12 10 7 2.5

2.5
2 1 1 1 3

SAN 4 2 2 9 8 8 9 4
RAC 6 7 5 8 6 11 10 11 10

Colour coding is used to emphasize the best and worst performing methods for each criterion and season (red – top three; pink – 4th–6th;
blue – bottom three; pale blue – 10th–12th). The final ranking in the rightmost column was obtained by ranking the ranks averaged over the eight
columns (two seasons times four criteria).

circulation features on preceding days that are relevant for
determining temperature tend to be remote from the site
where the temperature is recorded, and a large domain is
more likely to comprehend them than smaller domains.
(4) The only domain where the sequencing deteriorates
results for maximum as well as mean temperature is the
northwestern-most domain, D01, covering Iceland. It is
the high cyclonic activity in this domain, connected with
a low persistence of circulation, that is a likely reason for
such behaviour.

In summer, the positive effect of sequencing on tem-
perature tends to be weaker. For maximum temperature,
the statistically significant improvements are rather scarce,
whereas deteriorations are much more frequent, some of
them being significant, especially for the EV criterion. The
negative effect of sequencing on precipitation is strong,
though not as strong as in winter according to the EV and
PSF criteria. Similar to winter, the improvement for both
temperature variables tends to be largest and deterioration
for precipitation smallest for the large domain (D00).

6. Effect of the selection of classified variables

The next question to answer is whether the inclusion
of 500 hPa geopotential height, thickness of the layer
between 1000 and 500 hPa, representing mean tempera-
ture in the lower troposphere, and vorticity at 500 hPa
among the classified variables in addition to SLP improves
the specification of temperature and precipitation. Anal-
ogous to the previous section, the effect of including
additional input variables is quantified by counting pairs
of classifications differing only in the input variables
(SLP plus (an) additional variable(s) minus SLP only), the
other attributes (number of types, sequencing, seasonal-
ity) being equal, for which the additional input variable
results in an improvement (i.e. lower rank). Also, statistical

significance of the mean difference in ranks is calculated
in a way analogous to the previous section.

Results are shown in Table 7 only for the KS criterion in
order to save space. Results for the other criteria are qual-
itatively similar. The discussion starts with winter. There
is a prevalent significant improvement in stratification
of both temperature variables because of the addition of
500 hPa heights as well as 1000/500 hPa thickness. Smaller
improvements, some of which fall below the significance
level, are found in central Europe and the Baltic area (D05,
D06, and D07); the British Isles (D04) is the only domain
where no significant improvements appear. The addition of
heights leads to the strongest improvement for temperature
in southern and southeastern Europe (domains D08–D11).
The response to adding height or thickness is more varied
for precipitation; there is a tendency towards significant
improvements in southern and southeastern Europe (D08,
D10, D11, and to a smaller extent, also D09). The improve-
ments caused by adding height tend to be larger than those
caused by adding thickness. Vorticity at 500 hPa does not
contribute to the synoptic-climatological applicability of
classifications: only one of 36 cases shows a significant
improvement by adding vorticity, while almost a half of
the cases show significant deterioration.

In summer, the improvements of the stratification of
temperature caused by adding height and thickness are
stronger in the southern part of Europe (D08–D11) where
the improvement is larger than in winter and stronger for
minimum temperature than for maximum temperature.
Adding heights leads to the deterioration, mostly signifi-
cant, for precipitation in northern and northwestern Europe
(D01–D05), whereas improvements, though mostly
insignificant, appear in central, southern, and southeast-
ern Europe (D06–D11). Adding thickness leads to less
improvement and more deterioration for precipitation than
adding height. Vorticity in summer brings an improvement
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Table 6. Effect of sequencing for winter (top) and summer (bottom).

TX TAVG TN RR

KS EV-s EV-E PSF KS EV-s KS EV-s EV-E PSF

Domain DJF
00 90 98 97 99 93 100 43 4 0 1
01 46 18 26 25 65 75 22 1 0 0
02 72 79 75 72 85 93 8 0 0 1
03 68 68 90 86 75 90 8 0 0 0
04 50 45 70 67 81 96 13 0 0 0
05 58 38 58 56 74 74 13 0 0 0
06 69 38 61 59 75 79 10 1 0 0
07 68 61 79 76 72 92 15 0 0 0
08 70 61 58 58 81 87 15 3 0 0
09 55 31 96 96 85 99 19 2 2 2
10 62 45 75 74 81 93 13 1 0 0
11 56 12 86 85 67 41 17 1 0 1
Domain DJF
00 85 81 79 84 90 90 31 12 3 4
01 35 30 31 32 64 88 11 0 0 0
02 61 47 61 61 82 98 9 0 0 0
03 49 39 46 45 56 60 13 1 0 0
04 47 43 70 67 80 98 6 0 0 0
05 45 45 57 55 68 82 14 0 0 0
06 37 22 41 40 65 75 7 0 0 0
07 48 28 55 55 70 86 5 0 0 0
08 50 30 44 40 57 58 10 1 1 1
09 38 17 45 46 77 82 14 2 4 3
10 55 30 41 40 65 67 10 0 0 0
11 34 24 28 30 65 59 11 7 2 2

Displayed are percentages of classifications for which the sequencing results in an improvement (i.e. classifications of 4-day sequences have a lower
rank than classifications without sequencing). Values over (below) 50 indicate a prevailing improvement (deterioration) in synoptic-climatological
applicability caused by sequencing. The entries for which differences in ranks between the classifications of 4-day sequences and classifications
without sequencing are significantly different from zero according to the Wilcoxon signed-rank test are marked in bold (italics) for the improvement
(deterioration). TX, maximum temperature; TN, minimum temperature; TAVG, daily mean temperature; RR, precipitation amount.

in most domains for temperature and in several domains
for precipitation (though mostly insignificant).

The change in performance caused by simultaneously
adding all the three extra variables in both seasons reflects
the changes because of single input variables. For both
temperatures, improvements are observed in general, with
the exception of D04 (and D01 in summer), while mostly
deterioration or little effect is observed for precipitation,
with the exception of southeastern and southern Europe
(D08–D11).

In an attempt to generalize, we may claim that the
addition of more input variables into classification is most
beneficial in southeastern Europe, whereas it results in
lesser improvements or even a prevalent deterioration in
the most maritime domains (D01, D04, D05). Vorticity
has much smaller potential to improve the stratification of
climate variables than mid-tropospheric heights and lower
tropospheric thickness.

7. Effect of seasonality

Here, the classifications defined separately for four sea-
sons (seasonal definition) are compared with those defined
for the whole year (annual definition). The effect of
the seasonality is quantified analogously to the previous

sections. It is worth mentioning that the number of avail-
able pairs of classifications is lower than in the previous
two comparisons because the seasonally defined classifica-
tions were constructed for five classification methods only,
for a single number of types (seven in each season), and
for instantaneous fields, i.e. not for 4-day sequences (cf.
Table 1, symbols ‘A’ and ‘S’ in the last column). Conse-
quently, the confidence intervals around the mean differ-
ences in ranks are much wider, which results in a lower sig-
nificance for differences of the same magnitude. Another
issue to point out is the fact that all seasonal classifica-
tions are designed to have seven types. They are, how-
ever, compared with the annual classifications with the
designed number of types of nine, which is the lowest num-
ber of types available. In view of a bias introduced by the
unequal number of types in the compared classifications,
the results should be treated with caution since a part of
the improvement, if there is any, may be attributable to a
lower number of types, not to the different definition of
classifications.

The effect of the seasonality of the definition for the KS
criterion is displayed in Table 8. The seasonal definition
is better than the annual definition in almost all cases
(all domains, all three climate variables, both seasons),
although the effect is not significant many times. Only five
entries (all in summer) indicate deterioration.



2724

Table 7. Effect of the selection of classified variables: winter (top) and summer (bottom) for the KS criterion only.

DJF SLP+HGT SLP+TH SLP+VOR SLP+HGT+TH+VOR

Domain TX TN RR TX TN RR TX TN RR TX TN RR

00 74 74 76 71 76 76 44 33 42 67 65 65
01 62 65 53 61 79 45 44 56 39 64 76 41
02 62 68 61 61 70 39 39 41 47 65 74 50
03 82 73 77 65 61 52 32 29 45 70 73 56
04 52 44 52 62 52 52 39 45 48 47 50 50
05 73 74 47 64 56 38 35 27 29 64 71 35
06 70 70 62 62 65 65 50 39 55 79 77 56
07 61 65 55 53 68 39 33 33 48 73 76 53
08 77 88 62 76 80 65 35 36 35 74 77 59
09 80 58 65 62 59 58 61 30 45 88 76 58
10 77 83 68 61 76 58 44 33 47 85 80 79
11 73 76 82 76 73 76 55 42 41 85 70 67

JJA SLP+HGT SLP+TH SLP+VOR SLP+HGT+TH+VOR

Domain TX TN RR TX TN RR TX TN RR TX TN RR

00 68 70 55 62 71 50 45 53 47 67 79 58
01 39 71 27 26 58 15 39 55 23 39 67 9
02 59 76 23 58 71 11 68 70 61 82 86 11
03 67 73 36 56 73 33 80 74 41 88 88 21
04 56 68 24 45 73 8 35 42 56 56 77 27
05 76 82 27 53 74 21 74 64 44 86 89 18
06 85 94 62 76 92 35 74 71 55 89 95 56
07 82 95 56 77 88 50 73 61 64 89 94 53
08 82 89 55 80 91 42 73 53 56 94 91 67
09 73 89 97 77 89 85 55 55 70 65 82 97
10 97 92 61 92 95 53 77 65 55 95 95 74
11 83 80 71 79 80 61 58 52 53 85 88 73

Shown are the percentages of classifications for which the additional variable (HGT= 500 hPa height, TH= 1000/500 hPa thickness, VOR= 500 hPa
vorticity) results in an improvement relative to the classification based on SLP only. Otherwise analogous to Table 6.

Table 8. Effects of the seasonality of the definition of classifica-
tions for the KS criterion.

Domain Winter Summer

TX TN RR TX TN RR

00 76 88 84 92 68 96
01 72 76 52 84 72 92
02 80 72 64 84 64 84
03 52 60 88 44 52 64
04 76 68 72 80 80 64
05 64 60 72 68 60 60
06 68 72 88 48 32 60
07 72 84 72 64 76 76
08 76 84 68 68 72 76
09 72 68 96 80 84 56
10 52 68 76 84 76 80
11 72 76 48 52 16 48

Shown are the percentages of classifications for which the seasonal
definition results in an improvement relative to the annual definition.
Otherwise as in Table 6.

8. Conclusions

This study provides an evaluation of the database of classi-
fications of circulation patterns, reported by Philipp et al.
(2016), in terms of their ability to stratify surface tempera-
ture and precipitation on a daily basis – i.e. in terms of their
synoptic-climatological applicability. It is worth saying

that analogous conclusions for other climatic and environ-
mental variables may be different. The main conclusions
can be summarized in the following points.

The most general statement is that the synoptic-
climatological applicability of classification methods
considerably varies among climate variables (maximum
temperature, minimum temperature, precipitation), across
domains, and between seasons.

A strong sensitivity of the synoptic-climatological appli-
cability, whatever criterion is used to its quantification,
to the number of types, which was reported earlier on a
much smaller set of classifications and domains, has been
confirmed.

Some classifications contain types that are empty or
infrequent in one of the seasons; such types are excluded
from the evaluation. To be more specific, the types with
the frequency of ten or fewer days in the analysed period
are excluded. The unequal numbers of the types that
are retained in the analysis (i.e. their frequency exceeds
the threshold of 10 days) affect the results because the
performance of a classification depends on the real number
of types. This contamination of results is stronger in sum-
mer than in winter because empty and infrequent types are
more common in summer.

Nevertheless, several well-performing methods can
be identified. These include CKM (simple k-means
clustering), CAP (k-means clustering preceded by
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hierarchical cluster analysis), LIT (Litynski’s method),
and GWT (prototype classification).

Several methods must be used with great caution because
their synoptic-climatological applicability appears to be
inferior on many occasions (but they, of course, can have
other positive properties for which they may be useful in
other applications). They include PCT (obliquely rotated
PCA), PTT (orthogonally rotated PCA), LND (Lund’s
correlation method), KIR (Kirchhofer’s sums-of-squares
method), and ERP (Erpicum’s method).

The performance of methods does not manifest con-
siderable differences among climate variables for which
the methods are evaluated. In other words, there is no
method that would be particularly suitable (or, conversely,
unsuitable) just for one of the climate variables. Only LIT
in summer seems to be more applicable to temperature
than precipitation, but it is questionable whether this fact
can be generalized.

There are hints of systematic differences in the synoptic-
climatological applicability of the methods between the
large (D00) and smaller (other) domains: GWT, LIT, KIR,
and CKM perform relatively better on smaller domains,
whereas JCT (Jenkinson–Collison), PXE (principal com-
ponent’s extreme scores), PCT, and to some extent also
PXK (k-means clustering with extreme principal compo-
nent scores as seeds) perform better on the large domain.

In summer, there is a tendency for several classifica-
tion methods to display a geographical dependence of their
synoptic-climatological applicability: JCT and ERP per-
form better in the southern domains, while GWT, KIR,
and PXK perform worse there; GWT performs better in
the northern domains, whereas JCT, PXE, and ERP tend
to perform worse there. In winter, no such regional depen-
dency of performance is noticed.

No similarities in behaviour can be found for classi-
fications coming from the same family; in other words,
the nature of the classification algorithm is only a weak
driver for a classification’s synoptic-climatological
performance.

Classifications of 4-day sequences are usually better
in stratifying surface temperature than ordinary instanta-
neous classifications; the opposite is true for precipitation.
The improvement of temperature stratification because
of sequencing is larger in winter than in summer. This
has a clear interpretation: temperature in mid latitudes is
governed by processes, whether advective or radiative, on
relatively longer time-scales than precipitation; and the
temporal scale of these processes is longer in winter when
advective processes are stronger than radiative ones.

It is beneficial to use mid-tropospheric height or thick-
ness as a classified variable in addition to SLP if one
wishes to stratify temperature. The improvement because
of the additional variable appears to increase with the
continentality of the location. Adding mid-tropospheric
vorticity to SLP as a classified variable provides some
benefit in stratifying temperature in summer only. SLP
seems to be sufficient for stratification of precipitation
as the improvements caused by the additional classified
variables are infrequent.
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