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ABSTRACT: In order to examine correspondence between different methods for circulation type classification, a dataset
of classification catalogs for 12 different European regions has been created using a specially developed software package.
Twenty-seven basic automatic classification methods have been applied in several variants to different input datasets
describing atmospheric circulation. Together with six manual classifications a total of 33 methods are available for inter-
comparison.

Pattern correlation, frequency time-series correlation and the adjusted Rand index have been used for comparison. Highly
significant correspondence has been detected only for two clustering techniques while the remaining classification methods
show surprisingly low similarity. A Monte-Carlo test with 1000 classifications of randomly defined types even shows that
most of the methods are not more similar among each other than any arbitrarily chosen types.

The predominant dissimilarity between the methods is interpreted to be a result of a lack of inherent structures of the
input data. Only simulated annealing clustering and self-organizing maps get nearly identical results because they can
optimally fit the partitioning to the outer shape of the data cloud in the phase space. Also methods based on pre-defined
types come to very different results because small changes in the definition of thresholds may lead to large differences in
the partitioning.

It is concluded that because of the missing inner structure of the data there is no clear statistical reason to prefer any
of the examined methods. For practice in synoptic climatology this means that finding a suited classification for a certain
purpose may require a broad comparison of methods. The software package cost733class for development, comparison and
evaluation of classifications which was developed and used in this study is available at http://cost733.geo.uni-augsburg.de

to facilitate this task.
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1. Introduction

Weather and circulation type classifications are a well-
established tool for many applications in synoptic cli-
matology, ranging from support for weather forecasting
to climate model validation or downscaling (Huth et al.,
2008). The most prominent ones are the Lamb classifi-
cation for the British Isles and the Hess and Brezowsky
classification for Central Europe. However, because of
the availability of high computing capacities the number
of eligible methods for classification has grown consid-
erably and is still increasing (e.g. Jolliffe and Philipp,
2010), while the differences between the classification
results of the various methods remain somewhat neb-
ulous. Thus, a question of major concern in synoptic
climatology is whether it makes a difference to choose
a certain classification method in favour of another or
whether the differences are marginal. In practice, different
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classifications are commonly compared by visual inspec-
tion of the similarity between the spatial mean circulation
type patterns. However, several authors have addressed
the question on the diversity of classification results
produced by different methods using statistical meth-
ods. For example, Huth (1996) compared five meth-
ods detecting distinct differences between them, while
Jones et al. (1993) compared the Lamb and an auto-
mated approach and found large accordance; and Stehlik
and Bérdossy (2003) compared manual with automated
classifications and found them not to be independent.
Seemingly, the very basic question of whether differ-
ent classification methods lead to considerably different
classification results when applied to atmospheric circu-
lation data, and how large this difference might be, has
been not definitely answered yet and remains for further
clarification. A main reason for this might be that no
considerably large set of classification methods has been
compared systematically until now, for different regions
and for different method configuration parameters such
as number of types or input variables. However, this task
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has been addressed within the recently finished COST
Action 733 ‘Harmonisation and Applications of Weather
Type Classifications for European Regions’.

Within the framework of this COST Action, the
attempt was made to collect and create a large num-
ber of different circulation type classifications in order
to compare them and to achieve indications of the differ-
ences and usability of the classification results, which are
recorded by the classification catalogs, i.e. the nominally
scaled time series of type numbers or names representing
the compressed information on atmospheric states.

Thus, a dataset of classification catalogs, called
cost733cat, has been compiled by an open source
software package called cost733class that has been devel-
oped especially for easily creating, comparing and eval-
uating classifications in several variants. The software
can be controlled by command line arguments concern-
ing input data, classification methods and configuration
variants, which made it possible to establish a rather large
sample of classification catalogs for comparison.

In contrast to an early version of the cost733cat dataset
(cost733cat-1.2) which has been described in Philipp
et al. (2010), the successor (cost733cat-2.0) allows for
a more systematic comparison of methods by includ-
ing additional classification configuration variants. Thus,
seasonal- versus full-year classifications can be compared
as well as single-day- versus 4-day-sequence classifica-
tions and the usage of additional circulation variables.
The present state of the collection (cost733cat-2.1) finally
includes additional methods: the Lamb (1972) weather
types, hierarchical cluster analysis and Gaussian mixture
models, leading to a total of 33 different methods or
algorithms, and may be considered as rather complete.
This comprehensive data base now allows a systematic
examination of classification methods and puts conclu-
sions about diversity of the catalogs on a more solid
basis.

Concerning the type of classification methods, several
categories may be discerned. Above all, they can be cat-
egorized into weather type classifications which account
for several climate (or weather) variables at once for cre-
ating classes of atmospheric states and pure circulation
type classifications including only circulation variables
such as air pressure or derivatives thereof or large-scale
wind components.

Furthermore, a distinction can be made between the
environment-to-circulation approach and the circulation-
to-environment approach in synoptic climatology as
defined by Yarnal (1993). For the former, the range of
values of a target variable, like precipitation or temper-
ature, is divided into categories (often two, one below
and one above average) for which the average circulation
patterns are generated by compositing. In contrast, the
circulation-to-environment approach only considers cir-
culation variables for determining classes and the target
variable is addressed afterwards. The latter is generally
suited for a broad bandwidth of applications and not spe-
cialized for a certain target variable at a certain location.

Finally there are hybrid methods where circulation and
target variables are classified together.

Although the developed software is able to produce all
of these kinds, in the present study only general circula-
tion type classifications (according to the circulation-to-
classification approach) are examined because the work
in COST action 733 had a broad bandwidth of application
fields for the classifications in mind Huth er al. (2008).

Conceptionally, two major principles of circulation
type classification methods may be discerned: meth-
ods working on pre-defined types and methods produc-
ing derived types. The former are based on the idea
to distinguish between large-scale zonal, meridional or
cyclonic/anticyclonic flow which is the main synoptic
controlling factor for the mid-latitude climate. The first
group defines the types subjectively and assigns manually
the elements to these types, called manual classifications
(MAN). The second group uses numeric thresholds for
type definition and automates the step of assigning the
elements, called threshold-based methods (THR). The
other methods do not use pre-defined types but try to find
structures within the input data and to derive correspond-
ing types. The first group doing so are methods based
on principal component analysis (PCA). A second group
uses the so-called leader algorithm (LDR), which is a
cost-effective technique for data mining concerning com-
puter capacity (also known as correlation-based methods,
Yarnal, 1993), while the third group uses iterative algo-
rithms for finding optimized partitionings concerning low
within-type variance (OPT). The fourth technique tries
to explain the empirical distribution of the attributes of
the elements by a mixture model of several distributions,
each representing a different process or class (MIX).
Finally and only for the sake of statistical comparisons,
a group of methods based on random processes can be
established (RAN).

Of course there is no reason, why methods of the
groups with pre-defined types (MAN, THR) should
come to the same results as methods for data mining
(PCA, LDR, OPT, MIX). However, within the groups
of methods for pre-defined types, it may be assumed
that there is at least some correspondence as they
are commonly based on similar concepts of synoptic
climatology defining the types according to the main
directions of large-scale flow. Accordingly, the data
mining methods may come to similar derived types if
they are able to find the dominant structures of the data
distribution.

This paper introduces the dataset of classification cat-
alogs cost733cat derived by application of the mentioned
method groups and evaluates their similarity in order
to prove these assumptions. The article is structured as
follows: After a brief introduction of the available clas-
sification methods and the software in Section 2, the
input dataset and the classification configuration variants
are described in Section 3. Then Section 4 intro-
duces three different metrics to describe correspondence
between classifications, while Section 5 presents the
comparison results leading to conclusions in Section 6.
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Table 1. Classification methods in the cost733cat dataset: the listing includes commonly used names of the methods, abbreviations
used within this paper, the dataset version when the referring method was included, the methodological group (see below for
abbreviations) and the key references.

Number Classification name Abbreviation Version  Group Key reference

1 Hess-Brezowsky Grosswetterlagen GWL 1.0 SUB Hess and Brezowsky, 1952

2 Lamb LMB 2.1 SUB Lamb, 1972; Jones et al., 1993
3 Peczely PEC 1.0 SUB Peczely, 1957

4 Perret PER 1.0 SUB Perret, 1987

5 Schueepp SUE 1.0 SUB Schueepp, 1979

6 ZAMG ZMG 1.0 SUB Lauscher, 1985

7 Grosswettertypes GWT 1.0 THR Beck, 2000; Beck et al., 2007
8 Jenkinson—Collison classification JCT 1.0 THR Jenkinson and Collison, 1977
9 Litynski LIT 1.0 THR Litynski, 1969

10 Objektive Wetterlagenklassifikation WLK 1.0 THR Dittmann et al., 1995

11 Kruizinga KRZ 1.0 PCA Kruizinga, 1979

12 Principal components extreme scores PXE 1.0 PCA Esteban er al., 2005

13 T-mode PCA obliquely rotated PCT 1.0 PCA Huth, 1993

14 T-mode PCA orthogonally rotated PTT 2.0 PCA Philipp, 2009

15 Lund LND 1.0 LDR Lund, 1963

16 Kirchhofer KIR 1.0 LDR Kirchhofer, 1974; Blair, 1998
17 Erpicum ERP 1.0 LDR Erpicum et al., 2008

18 Ward’s method HWD 2.1 HCA Murtagh, 1985; Ward, 1963
19 Single Linkage HSL 2.1 HCA Murtagh, 1985

20 Complete Linkage HCL 2.1 HCA Murtagh, 1985

21 Average Linkage HAL 2.1 HCA Murtagh, 1985

22 Mc Quitty’s Method HMQ 2.1 HCA Murtagh, 1985; McQuitty, 1966
23 Median method HMD 2.1 HCA Murtagh, 1985

24 Centroid method HCN 2.1 HCA Murtagh, 1985

25 k-means (random start partitions) KMN 2.1 OPT Murtagh, 1985

26 k-means (Ward’s start partition) CAP 2.0 OPT Yarnal, 1993

27 k-means (PXE start partition) PXK 1.0 OPT Esteban et al., 2005

28 k-means (differing start partitions) CKM 1.0 OPT Enke and Spekat, 1997

29 k-means (most differing start partitions) DKM 2.0 OPT Enke and Spekat, 1997

30 k-medoids KMD 2.1 OPT Kaufman and Rousseeuw, 1990
31 Self-organizing feature maps SOM 1.0 OPT Michaelides et al., 2007

32 Simulated annealing (SANDRA) SAN 1.0 OPT Philipp et al., 2007

33 Gaussian mixture model MXG 2.1 MIX Hartigan, 1975

34 Random classification RDM 2.1 RAN For description see text

35 Random medoid classification RAM 2.0 RAN For description see text

The methodological groups cover subjective methods (SUB, the only group not produced by the software), threshold-based methods (THR),
methods based on principal component analysis (PCA), leader algorithms (LDR), hierarchical cluster analysis (HCA), optimization algorithms
(OPT), mixture models (MIX) and methods based on random processes (RAN) which are available for comparison purposes.

2. Classification methods and software references given in Table 1. However, in order to get

. . i iefl ibe th h i
In order to achieve a reference set of widely used clas- an overview we briefly describe the method groups in

sification catalogs six manual classifications have been
compiled into the collection. The 27 remaining methods
have been programmed as subroutines within the software
package cost733class, in order to apply it to the same
input datasets and use the same classification parameters
(in particular the numbers of types) where possible. In
this way the differences among classification results may
be ascribed to the classification algorithms itself and not
to different ways they are used. The classification method
can be chosen by a command line argument for the soft-
ware including the abbreviation in Table 1 which feeds
any input data configuration into the respective routine for
classification. At the time of writing, 27 automated clas-
sification methods are implemented including the most
often used techniques (Huth er al., 2008). The detailed
description of all methods is beyond the scope of this
article. For this purpose we direct the reader to the key

summary as mentioned in column group of Table 1.

2.1. Manual classifications (MAN)

In order to compare the automated classifications with
established classifications, six manual catalogs have been
included into the dataset (Table 1). As manual classi-
fications are not modifiable, e.g. concerning the data
pre-processing, the region or the number of types (k here-
after) as it is the case for automated classifications, their
comparability is limited to some degree. Additionally
there are differences concerning so-called unclassifiable
days which usually do not exist for automated meth-
ods or differences concerning the period covered by the
original catalogs. Thus, the Hess and Brezowsky, 1952
classification, e.g. consists of 29 Grofswetterlagen (which
may be pooled to 10 Grofwettertypen) and 1 class for
undetermined cases. It covers the period 1881 to present
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Figure 1. Spatial domains used for classification with automated classification methods in COST action 733 in Lambert equal area map projection.

and could therefore be included into the collection with-
out modification. In contrast, the Lamb, 1972 catalog
originally ends in 1997. This required a completion,
which has been achieved by assigning all days not classi-
fied originally, by the minimum Euclidean distance to the
sea level pressure (SP hereafter) patterns of the 26 types
for the domain D04 (Great Britain, see Figure 1). This
procedure, however, is only reasonable when omitting the
class for undetermined cases. Further, for comparison, it
is possible to pool the original 26 Lamb (1972) types to
8 directional types, 1 cyclonic and 1 anticyclonic type,
leading to 10 types, or to 8 directional cyclonic and 8
directional anticyclonic types besides pure cyclonic and
pure anticyclonic types, leading to 18 types. In contrast, a
pooling to around 18 types seems less reasonable for the
Hess and Brezowsky (1952) catalog, because it is less
systematic. The other catalogs of Peczely (1957); Per-
ret (1987); Schueepp (1979) and Lauscher (1985) have
been adopted without modification. However, it is hard
to relate the input data used for classification, to one of
the datasets used in this study, concerning not only the
circulation variable but also the region. Therefore, we
treat them as a kind of general classification and com-
pare them to all variants if only the number of types is
approximately the same. Thus, the manual catalogs are
generally less comparable than the automated methods.
However, owing to their importance, they are included
in the collection as reference.

2.2. Threshold-based classifications (THR)

The first group of automated classification methods is
based on the concept of subjectively pre-defined types
as it is done for the manual classifications. However, the

assignment of cases to the classes is done objectively and
automated by using threshold values for certain indices
discriminating types from each other. Often three indices
are used and they are often divided into three states (low,
intermediate and high) leading to originally 33 =27 types.
Variants with lower numbers of types (often 9 and 18
types are described) are derived by using fewer indices
or fewer states. The indices themselves often represent
large-scale flow directions (zonal and meridional) and
vorticity (or high/low central pressure) and are derived
from one single circulation map, where SP is most often
used. The latter is the reason why these methods are not
applicable for multi-parameter datasets, i.e. when circula-
tion maps from two or more levels or variables should be
classified together. However, a very special classification
method is the WLK method of Dittmann ez al. (1995),
where the input variables are prescribed to be wind com-
ponents and in the original form even a moisture param-
eter. Because it is not possible to apply this method, e.g.
using SP alone, it is also not directly comparable to other
classifications. However as with the manual classifica-
tions it is included in the dataset, keeping its special role
in mind.

2.3. Classifications based on principal component
analysis (PCA)

PCA (or empirical orthogonal functions) can be utilized
for discrete classification either in T-mode or in S-mode;
the former finding typical patterns (scores) and describing
the degree of realization by loadings which can be divided
in classes. In contrast, the latter finds typical modes of
temporal variability (scores) in the data field which are
realized at certain locations to a lesser or larger degree



as described by the loadings. In this case the scores are
used as classification index. Additionally they can differ
by the type of rotation. Thus, the PCT method uses
oblique rotation while the PTT uses the orthogonal
VARIMAX rotation (both in T-mode) and KRZ (S-mode)
uses no rotation at all while PXE (also S-mode) uses
VARIMAX again.

2.4. Classifications based on the leader algorithm
(LDR)

The leader algorithm is a predecessor of clustering algo-
rithms, developed for low compute capacities Murtagh,
1985. Methods based on this algorithm are also known
as ‘correlation-based methods’ (e.g. Yarnal et al., 2001;
Barry and Carleton 2001); however, the principle of find-
ing groups can be applied for other distance/similarity
metrics too, not only for correlation coefficients. Thus,
following Murtagh (1985), the term ‘leader algorithm’ is
preferred. The idea is to find representative key patterns
for each type (i.e. the leader) by counting the number
of elements with the similarity to the potential key pat-
tern exceeding a certain threshold. The first key pattern
is the one with the leading number of similar elements,
the second key pattern is the one with the highest number
after removing the elements similar to the first, and so on.
After finding the key patterns, all elements are assigned
to their most similar key pattern. No further optimization
is done. Although modern computer capacities allow for
exhaustive iterations for optimizing, the leader algorithm
is still used today. Besides using the correlation coeffi-
cient as similarity metric (method of Lund, 1963), other
ones are also used, e.g. the so-called Kirchhofer score,
taking similarity in all parts of the map into account
(Kirchhofer, 1974; Blair, 1998), or a pressure gradient
metric (Erpicum et al., 2008).

2.5.

Another wide spread group of classification methods are
the clustering algorithms or, more precisely, algorithms
for cluster analysis. The first subgroup consists of hier-
archical clustering algorithms, i.e. in a hierarchy of pro-
cedure steps, the two most similar clusters are combined,
where at the beginning each element is located separately
in its own cluster. At the step where only k clusters are
left the procedure is stopped. As with the leader algo-
rithm no further optimization is done. In this group, only
agglomerative (and not divisive) algorithms are included
from the routine of Murtagh (1985) which differ just by
the kind of similarity metric used to find the pair of clus-
ters to combine at each step.

Hierarchical cluster analysis (HCA)

2.6. Algorithms for optimizing partitions (OPT)

The second group of clustering algorithms works non-
hierarchically, i.e. existing groups may be split up again
during the procedure in order to further reduce within-
type variance and reach an optimal partitioning. Because
there is no other way to find the globally optimal
partitioning of a sample of elements except of trying all
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possible combinations, which is computationally impos-
sible for usual sample sizes, several approaches have
been developed. Besides variants of the k-means algo-
rithm (often differing only by the starting partition), also
heuristics for optimization, like simulated annealing or
self-organizing feature maps are included in this group.

2.7. Mixture models (MIX)

Very different from the methods before is the concept of
mixture models. The idea behind this clustering technique
is to describe the distribution of the elements in the
multidimensional phase space (as defined by the number
of attributes of the objects) as an overlay or mixture
of k-multidimensional Gaussian distributions, where k
is the number of types. The optimal assignment of the
objects to the k types is estimated iteratively using
an expectation—maximization (EM) algorithm. Thus, the
optimization is not for minimal within-type variance (as it
is the idea for the clustering algorithms mentioned above)
but for optimal fit to the distributions.

2.8.

Two kinds of randomized classification algorithms are
introduced to be able to compare the rational classifi-
cation methods mentioned above with those which are
products of random processes. The first method RDM
defines the catalog number of all objects as a random
number retrieved by a random number generator. The
second method RAM (random medoid) introduces some
structure into the classification scheme, as only the key
element of each class is selected by random from the sam-
ple of objects to classify. Thus for each type one object is
selected by random and all remaining objects are assigned
to this key element by the minimum Euclidean distance.
This method is used in Section 5.3 to generate samples
for Monte-Carlo simulations.

Randomized classifications (RAN)

3. Input data and classification variants

For all automated classification methods daily (12 UTC)
ERAA40 circulation data fields (Uppala et al., 2005) have
been used. The period covered by this dataset extends
from September 1957 to August 2002. In order to assess
regional variations when comparing the catalogs, subsets
for 12 different spatial domains over Europe have been
extracted, which differ by location and extent, as shown
in Figure 1. While the large domain D00 includes all of
Europe at a resolution of 2° x 3°, the smaller, regional
domains DO1 to D11 are resolved at 1° x 1°.

Furthermore, all methods are, in additional variants,
applied to different atmospheric variables and their com-
binations, shown in Table 2, where possible.

While, as basic variants, all methods are carried out
using solely SP (in Table 2) fields, additional variables
are used either alone, in case of the 500-hPa geopo-
tential height (Z5), or in combination with SP: i.e. SP
together with Z5, together with thickness between 500
and 850 hPa (T5) and with vorticity of the 500 hPa field
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Table 2. Variable combinations used as input data for automated
classification methods.

Abbreviation Description
SP Sea level pressure
75 Geopotential height of the 500 hPa

level
SP-7Z5 SP and Z5 combined
SP-K5 SP and thickness between 500 and
850 hPa geopotential height
SP-Y5 SP and vorticity at the 500 hPa level
SP-Z5-Y5-K5 SP, Z5, Y5 and K5 combined

(YS), resulting in three additional variants. Finally, one
variant includes all five variables for classification (SP-
75-Y5-T5) together. The combinations of the input vari-
ables together with the abbreviations used further on are
listed in Table 2. In order to classify more than one vari-
able field, the grid points of additional fields are treated
just as additional attributes for each time step. However,
as the physical units of the variables differ, this leads
to a bias when calculating similarity metrics such as the
Euclidean distance. Therefore, each field is normalized
separately for each variable when combining two or more
variables. A very special case, concerning the input data
is the WLK classification, using originally wind compo-
nents and geopotential height of two levels as well as
humidity. In order to make it comparable to pure cir-
culation type classification the humidity component can
be avoided; however, the wind components remain as
an incompatible speciality. Nevertheless, it is compared
to classifications using the standard input variables men-
tioned above, keeping this exception in mind.

As the differences between methods may depend also
on the number of types, all methods have been configured
for 9, 18 and 27 types where possible. In some cases these
numbers can be realized only approximately, leading to
discrepancies of 2 at the maximum from the intended
numbers mostly. However, in other cases like for the
PXE or the PXK classification Esteban et al. (2005), it is
not possible to produce classifications exceeding a certain
number of types, as some classes stay empty.

All classifications are carried out on a daily basis for
the ERA40 period 1st of September 1957 until 31st of
August 2002. However besides the standard full-year
classifications (YR), seasonal classifications (SE), i.e.
using subsets for Winter (December, January, Febru-
ary), Spring (March, April, May), Summer (June, July,
August) and Autumn (September, October, November)
have been performed. In order to make these seasonal
classifications comparable to the full-year classifications
concerning the number of types, only seven types are
created in each season, leading to a total of 28 which
is close to the number of types realized for most of the
classification methods in the standard variant (27).

Another time-related configuration variant relates to
using not only single-day fields but also sequences of
fields, i.e. each element is not only described by the
atmospheric state of the actual day, but also by the fields

of the three preceding days. Such a procedure has been
found to be useful for applications dealing with persistent
variables, as for example air temperature Philipp (2009).
The construction of field sequences is done automatically
by the software for any given sequence length, where a
sequence length of 4 days (S04) has been chosen as an
alternative to single-day classifications (SO1).

A further way of integrating variance in time into one
time step is to use a low-pass filter with Gaussian weights
for a window of length 11 (F11). Finally a commonly
used way of compressing and reweighting information
of the input data is PCA in S-mode. For determination
of the number of PCs to retain, the fraction of 90% of
explained variance is chosen (P90), leading, e.g. to three
PCs for the full-year SP data of domain DO07.

Calculating the total number of possible classification
variant combinations leads to 27 automated methods x
12 domains x 3 numbers of types x 6 input data variable
combinations x 2 seasonal variants x 2 sequential
variants x 2 filter variants x 2 PCA variants =93 312
possibilities. In order to avoid this multitude of variants
which have to be compared, we chose one standard
variant as reference and changed only one parameter at
a time for the estimation of its effect. This standard or
reference variant is defined to use SP of domain D07
(Central Europe, see Figure 1) and the number of types
k =27. Further it is applied on full-year, single-day, raw
data which are not filtered and not compressed by PCA.

4. Comparison metrics

4.1.

The first and sometimes the most important feature for
characterizing a circulation type classification is the spa-
tial pressure pattern of the types. Commonly it is created
by calculating the mean pattern (or composite) of all ele-
ments of the referring type, often called centroid, a term
derived from cluster analysis, denoting the centre of the
cloud of elements in the multidimensional phase space.
Those mean patterns are frequently used to compare clas-
sifications, as done, e.g. by Crane and Barry (1988) for
comparing the Kirchhofer types of an observational
dataset with those of model output data, by Michelangeli
et al. (1995) to determine similarity for the evaluation
of robustness in cluster analyses or by Beck (2012) to
compare the spatial structures of the circulation types
with comparable weekly frequency distributions. Further,
many authors compare their centroid patterns with those
already documented in literature in order to confirm their
results (e.g. Plaut and Simonnet, 2001). Therefore, the
correspondence of the classifications according to pattern
similarity in cost733cat is examined.

In order to quantify the correspondence of the spatial
patterns of two classifications, the minimum Pearson cor-
relation coefficient of the most similar pairs of patterns
is used. To determine this metric, in a first step the most
similar pairs of types are defined: among all possible
pattern correlation coefficients, the highest defines the

Comparison of circulation patterns



first and most similar pair of patterns. Among the remain-
ing patterns, again the highest correlation coefficient
defines the second pair, and so on, until all patterns of
the first classification are assigned to their counterparts
in the second classification. If there are more types in the
first than in the second classification, the remaining types
of the first classification are additionally assigned to the
most similar patterns of the second classification. The rea-
son to define the minimum of these selected correlation
coefficients as a measure for similarity between the whole
of the two classifications is that an overall similarity can
only be declared if all pairs match significantly.

In order to check significance of the correlation coeffi-
cients between the centroid maps, spatial autocorrelation
must be taken into account. As there is no indepen-
dence of the circulation data in space, the number of
cases (grid points) of the two samples (maps) is not
suitable to determine the degrees of freedom of the corre-
lation coefficient between the two. Instead, the adequate
degrees of freedom must be determined depending on the
auto-covariances, associated with the number and struc-
ture of the highs and lows in the maps. For a more
detailed discussion see Legendre (1993), who provides a
FORTRAN routine accounting for spatial autocorrelation
in significance tests following the method of Dutilleul
(1993). For the present study, significance of the simi-
larity between two classifications is assumed if all pairs
mentioned above are significantly correlated at least on
the 0.1 alpha level.

An example for achieving this metric is given in
Table 3. Although there are several very high and sig-
nificant correlation coefficients between pairs of patterns,
this cannot be observed for all patterns. Thus for pattern
pair 25, the p-value of 0.1588 indicates a high probabil-
ity to make an error when assuming that the r =0.6891
is different from zero, owing to high autocorrelation that
reduces the degrees of freedom from df = 382 grid points
to df =3.5413.

4.2.  Comparison of frequency time series

Another important characteristic of classifications is the
variability over time, which may be described by the
annual frequency of each type within the study period.
Accordingly, correspondence between classifications can
also be described by correlation coefficients between the
type-specific frequency time series. An overall metric for
similarity is therefore achieved in the same manner as
done for the spatial patterns above, but replacing pattern
correlation by frequency time-series correlation. In order
to account for temporal autocorrelation, when estimating
the significance of the correlation coefficients, the degree
of freedom is reduced according to the effective sample
size Werner (2002) as shown in the example in Table 4.

4.3.

Besides using circulation patterns or frequency time
series of the types for inter-comparison, there are metrics
based on the classification catalogs directly. Steinley

Comparison of partitionings
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Table 3. Example of defining pattern similarity between Hess
and Brezowsky and Lamb weather types using SP in

domain 07.
Number Pair r df p-value
1 02-25 0.9878 5.6558 0.0000
2 16-01 0.9812 5.1054 0.0001
3 06-23 0.9798 4.9789 0.0001
4 13-08 0.9772 4.6208 0.0003
5 03-26 0.9753 4.8858 0.0002
6 28-22 0.9717 2.6192 0.0126
7 07-07 0.9589 5.3116 0.0005
8 05-14 0.9507 6.4986 0.0002
9 01-15 0.9472 7.0132 0.0001
10 24-12 0.9451 3.3292 0.0109
11 29-18 0.9428 3.4541 0.0102
12 22-03 0.9371 5.2899 0.0014
13 26-21 0.9367 1.9184 0.0741
14 20-11 0.9297 4.8800 0.0029
15 08-16 0.9278 5.5544 0.0015
16 14-05 0.9126 6.4385 0.0011
17 25-20 0.9120 3.1126 0.0281
18 27-19 0.9104 2.3270 0.0671
19 18-04 0.8912 5.2245 0.0059
20 10-06 0.8722 14.7166 0.0000
21 15-02 0.8643 6.0767 0.0053
22 12-09 0.7930 3.4827 0.0831
23 17-17 0.7706 8.4273 0.0074
24 30-24 0.7631 9.0364 0.0062
25 04-13 0.6891 3.5413 0.1588
26 23-10 0.6127 9.7657 0.0365
27 09-06 0.7535 11.7500 0.0021
28 11-10 0.5773 10.3074 0.0459
29 19-03 0.9266 5.0609 0.0025
30 21-11 0.9224 5.1332 0.0028

Twenty-six Lamb weather types are assigned to the 26 most similar
Hess and Brezowsky types according to the maximum correlation
coefficient . The remaining Hess and Brezowsky types are additionally
assigned to the most similar Lamb types. Among these is the lowest
correlation coefficient (pair 28) which defines the overall pattern
similarity metric for these two classifications with r =0.5773 (bold
number in column “r”’) which is significant on the 0.05 alpha level (p-
value 0.0459). However, because of high spatial autocorrelation, the
p-value for pair 25 (bold number in column “p-value”) leads to the
final result that similarity cannot be assumed for all pairs on the 0.1
alpha level.

(2004) suggested the Rand (1971) index adjusted by
Hubert and Arabie (1985) as the most appropriate metric
for describing similarity between two classifications. The
idea behind the Rand index is to count how many
pairs of objects (days) are together in one class in both
classifications (called quantity a) and how many are in
two different classes in both classifications (quantity d).
The sum of this degree of correspondence is then scaled
to vary between O (no correspondence) and 1 (identity),
by this sum plus the number of pairs of objects together
in one class in the first classification but separated in the
second (quantity b) and vice versa (quantity c):

_ a+d
T a+b+c+d

However, as any two classifications show some corre-
spondence by chance, the Rand index has to be adjusted

RI (1)
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Table 4. Example of defining time-series similarity between
Hess and Brezowsky and Lamb weather types using SP in

domain 07.
Number Pair r df Alpha level
1 30-01 0.5017 28.8102 0.0100
2 20-11 0.5011 45.0000 0.0100
3 01-07 0.4903 45.0000 0.0100
4 14-03 0.4798 41.5691 0.0100
5 10-14 0.4615 38.7367 0.0100
6 08-21 0.4059 44.8910 0.0100
7 29-04 0.4017 43.8358 0.0100
8 13-17 0.3998 45.0000 0.0100
9 03-18 0.3909 38.7462 0.0100
10 05-23 0.3768 36.6750 0.0100
11 06-20 0.3723 45.0000 0.0100
12 02-15 0.3581 40.0639 0.0500
13 24-13 0.3523 447714 0.0100
14 28-12 0.3513 45.0000 0.0100
15 04-26 0.3501 45.0000 0.0100
16 22-02 0.3424 45.0000 0.0100
17 15-10 0.3133 45.0000 0.0500
18 09-05 0.3024 43.7891 0.0500
19 27-16 0.2848 40.5995 0.1000
20 26-24 0.2307 45.0000 0.1000
21 12-22 0.1914 40.0628 1.0000
22 07-09 0.1443 45.0000 1.0000
23 11-06 0.1264 41.6326 1.0000
24 16-08 0.0945 39.9222 1.0000
25 17-19 0.0904 39.9569 1.0000
26 23-25 0.0493 37.2295 1.0000
27 18-01 0.2348 44.6181 1.0000
28 19-13 0.3091 43.7114 0.0500
29 21-18 0.2243 37.8046 1.0000
30 25-13 0.2552 43.8292 0.1000

Twenty-six Lamb weather types are assigned to the 26 most similar
Hess and Brezowsky types according to the maximum correlation
coefficient r. The remaining Hess and Brezowsky types are additionally
assigned to the most similar Lamb types. The lowest correlation
coefficient (pair 26) which defines the overall time-series similarity
metric for these two classifications with r =0.0493 (bold number in
column “r”) is not significant on the 0.05 alpha level (bold number in
column “Alpha level”, tested with confidence intervals). The number of
degrees of freedom is partially reduced for several pairs from originally
df =45 (n —1) to a minimum of df =28.81 (pair 1) according to
temporal autocorrelation. The last column shows the alpha level on
which a correlation r#0 can be assumed. Overall, a significant
similarity between these two classifications cannot be assumed.

to be O if the correspondence is as high as expected
by chance. Among several other variants the adjustment
method of Hubert and Arabie (1985) has been accepted
to be the correct one Steinley (2004):

ARIga

<I§> (a+d)—[(a+b)a+c)+(c+d)(b+d)]

2
(Z) —[a+b)a+c)+(c+d)b+d)]

@)
On the basis of Monte-Carlo simulations with vary-

ing contingency tables for examination of the prop-
erties of the ARIy,s, Steinley (2004) suggested that

an ARIgs > 0.90 reflects excellent correspondence, an
ARIya > 0.80 good correspondence, an ARIygp > 0.65
moderate correspondence and an ARIys < 0.65 poor cor-
respondence. Further, a Monte-Carlo method for testing
the significance of an ARIgs value being higher than
a certain level is suggested by Steinley (2004) which
has been programmed within the cost733class software.
Among 1000 perturbed contingency tables, reflecting the
observed level of overlap of the two partitions to com-
pare, the number of the corresponding ARIpga values
exceeding a certain value is counted (for details see Stein-
ley 2004). This number reflects the likelihood that the
certain ARIya value is reached by chance. Thus, it is pos-
sible to test the null hypothesis that the observed ARIya
is equal to a certain reference value, in particular the
values given above indicating the correspondence to be
excellent, good, moderate or poor.

However these levels of correspondence are proposed
for a very general rating. Although they give a rough
idea about what to expect, e.g. that poor correspondence
might indicate almost independence and excellent corre-
spondence almost identity, a concrete reference is miss-
ing. For example, it would be helpful to test an observed
ARIya exceeding ARIga values resulting from a random
process. In particular, a considerable observed ARIya
value should exceed a percentile threshold (depending
on the level of significance) from reference ARIya values
resulting from the comparison of randomly defined cir-
culation types which can be created by the RAM method
introduced in Section 2.8. Therefore, a Monte-Carlo sim-
ulation is implemented generating 1000 RAM classifi-
cations (see Section 2.8) for each classification variant.
The distribution of the resulting reference ARIy, val-
ues of all combinations of the 1000 classifications then
allows to test whether any observed ARIya value is sig-
nificantly higher than those based on the random process.
If an observed ARIy value does not exceed the 95th per-
centile of this reference distribution we can assume with
a likelihood of 95% that it is not different to the RAM-
ARIya values (null hypothesis), whereas an exceedance
indicates a significantly higher ARIy value (alternative
hypothesis).

5. Correspondence among classification methods

In order to evaluate the similarity of classifications
achieved by the 33 different methods and algorithms, the
resulting catalogs have been compared among each other
using the standard configuration described in Section
3. As this configuration is fixed for all automated
methods concerning numbers of types, input data and
pre-processing, the differences should emerge purely
as a function of the classification algorithm. The only
exceptions are the manual methods, where no clear
definition of the space domain and the input data is
available and those methods which cannot be applied to
the number of types of 27 as well as WLK which includes
special input data.
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Figure 2. Comparison of classification methods by minimum centroid pattern correlation coefficients of most similar pairs of types. Upper left
triangular part of matrix: standard configuration defined in Section 3, lower right triangular part of matrix: average over all configuration variants
as listed in Table 5. Shading denotes correlation strength from r = 0 (white) to r = 1.0 dark grey, stars in the upper left half denote significance
level (one for alpha level 0.1, two for 0.05, three for 0.01). Crosses mark combinations where one of the classification methods is not applicable.

Figures 2—4 show the comparison metrics based on
pattern correlations, frequency time-series correlations
and the adjusted Rand index, for the pairwise comparison
of all 33 classification methods. In each figure the upper
left triangular part shows the values for the standard con-
figuration (Section 3). Furthermore, in order to exclude
interpretation errors based on an unfortunate selection of
classification configuration parameters, the comparison is
extended to the other classification variants. For all these
variants in all domains the average similarity metric for
each pair of classification methods is calculated and dis-
played in the lower right triangular part of Figures 2—4.

The maximum number of variants used for averaging
includes classifications for the 12 domains, each applied
for the 12 variants listed in Table 5, leading to 144
cases. However, as, e.g. some manual classifications are
invariant, the minimum number is 1, while the threshold
methods using only one gridded input field can be

applied in 60 variants. Thus these mean values differ
concerning the underlying sample size. Nevertheless they
are reflecting the central tendency of correspondence and
are therefore shown additionally in Figures 2—4. Over all,
the three metrics for describing similarity show somewhat
different results.

5.1

For pattern similarity within the standard configuration
(Figure 2, upper left triangular part) some high correlation
coefficients are reached, several of them are significant.
A salient feature can be observed for the manual methods
PER, SUE and ZMG, for the PCA method PXE and
for its related optimization method PXK (see Table 1
for abbreviations): they show relatively high pattern
similarity with most of the other methods even though
the latter only partly shows similarity among each other.
The reason for this discrepancy can be determined to be

Pattern similarity
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Figure 3. Comparison of classification methods by frequency time-series correlation coefficients. Upper left triangular part of matrix: standard
configuration defined in Section 3. Lower right triangular part of matrix: average over all configuration variants as listed in Table 5. Shading
and crosses as in Figure 2. Stars in the upper left half denote significance level (one for alpha level 0.1, two for 0.05 and three for 0.01).

the different numbers of types realized by the methods.
Thus PXE effectively has only 16 types because types
17-27 are empty. Further, in the group of manual
methods GWL has 30 types, LMB 26, PER 31, SUE
40 and ZMG even 43 types instead of the 27 types of
the standard configuration. Since this metric selects the
weakest correlation coefficient among the most similar
pairs of patterns, the reason for these high metrics is
apparently the larger flexibility to find a higher minimum
correlation when the numbers of types are unequal.
This artificial effect seems to be so strong, that this
metric should actually not be referred to if unequal
numbers of types exist. Moreover, this points out the
risk of misinterpretation when comparing patterns for
determining similarity of classifications since spatial
patterns appear to show high similarity just by chance.
In contrast, no such artefact is evident for the rest of
the automated methods which all have the exact number
of 27 types (except of the PXK method which has

also only 16 types because it is directly derived from
PXE). Apart from that some correspondence can be
noticed within the group of manual methods (e.g. between
GWL and LMB) although statistically not significant and
significantly for the threshold-based methods LIT and
KRZ. Also among some optimization methods similarity
can be observed, significantly for SAN with SOM, two
advanced clustering methods, and between both to KMN,
the k-means clustering procedure initialized by random
starting partitions. Other combinations show only low and
insignificant similarities.

The more or less same pattern, although on a lower
level due to smoothing effects, can be observed for the
average pattern similarity over all configuration variants
(Figure 2, lower right triangular part). Noteworthy cor-
respondence remains for the manual classifications with
high numbers of classes for the same artificial reason
as explained above. Apart from that, JCT shows some
resemblance to GWT and LIT (method group THR)
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Figure 4. Comparison of partitionings of classifications methods by the adjusted Rand index. Upper left triangular part of matrix: using the

standard configuration defined in Section 3. Lower right triangular part of matrix: average over all configuration variants as listed in Table 5.

Shading and crosses as in Figure 2. Stars in the upper left half denote correspondence level: one for ARIps > 0.65 (moderate), two for ARIjs >0.8
(good) and three for ARIga > 0.9 (excellent), tested for significance on the 0.05 alpha level.

and within the group of optimization methods there are
slightly increased values also for the other configurations,
the highest being 0.49 for SOM and SAN.

5.2. Frequency time series

The matrix of the minimum correlation coefficients
between the most similar frequency time series of the
types for the standard configuration (upper left triangular
part of Figure 3) shows generally low, however also
some significant coefficients. This metric seems to be less
distorted by different numbers of types than the pattern-
correlation-metric, since the manual methods show less
similarity to other methods any more. However, as is
apparent for method PXE and, although weaker, for
PXK, the effect still exists. Further, a noticeable frequent
and partially significant correspondence exists among
several of the optimization methods, except of the CKM,
DKM and KMD methods. However, when looking at

the average values (Figure 3, lower right triangular part),
only the similarity between SOM and SAN is strong and
systematic enough to persist (0.39).

5.3. Adjusted Rand index

Finally Figure 4 shows the adjusted Rand index. Look-
ing at the upper left triangular part for the standard
configuration, the most striking difference to the other
metrics is that no artificial similarity is displayed any
more for PXE and other methods, which demonstrates the
robustness of this metric concerning differing numbers
of types. Apart from that, the overall level of similar-
ity is again distinctively low. Slightly increased sim-
ilarity is indicated among the threshold (THR) based,
PCA-based methods and the leader (LDR) algorithms.
Also, among the hierarchical clustering methods (HCA)
some little correspondence can be observed (except for
the single linkage method HSL) as well as between
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Table 5. Classification variants.

Number Variant Code

1 Reference: raw SP data and K =27 types K27_YR_S01_F00_POO_SP

2 As #1 but K= 18 types K18 YR _S01_F00_POO_SP

3 As 1 but K=9 types K09 _YR _S01_F00_P0OO_SP

4 As #1 but 500 hPa height instead of SP K27_YR_S01_F00_P00_z5

5 As #1 but SP and Z5 K27_YR_S01_F00_P00_SP-z5
6 As #1 but SP and vorticity at 500 hPa K27_YR_S01_F00_PO0_SP-Y5
7 As #1 but SP and thickness 500—850 hPa K27_YR_S01_F00_P0OO_SP-K5
8 As #1 plus 500 hPa vorticity and thickness K27_YR_S01_F00_P00_SP-Z5-Y5-K5
9 As #1 but 4 day sequences K27_YR_S04_F00_P00_SP

10 As #1 but with 11 pt. low-pass filter K27_YR_S01_F11 P0OO0_SP

11 As #1 but with PCA data compression K27_YR_S01_F00_P90_SP

12 As #1 but separately for the four seasons K27_SE_S01_F11_P00_SP

HCA and OPT methods, although on a nearly negligi-
ble level. Only the ARIy values within the optimization
group are higher than 0.33, except of PXK. However,
again, the only similarity exceeding better than poor
correspondence with confidence, exists between SAN
and SOM (good correspondence with ARIgs =0.89).
Further, some, although poor, similarity can be stated
between the HWD hierarchical clustering method and
the non-hierarchical methods, explainable because the
HWD is the only hierarchical method aimed to reduce
within-type variance. No explanation can be found for the
slightly increased, but also poor correspondence between
LND and GWT (ARIga =0.35) and LND and PCT
(ARIga =0.35 again).

The maximum mean adjusted Rand index (lower right
triangular part of Figure 4) is 0.70, now indicating
only moderate correspondence between SAN and SOM.
The second and third highest values are 0.55 and 0.53
between KMN and SAN and SOM, denoting poor
correspondence. All other average values are below 0.40.

In summary, it can be stated that unexpected low
correspondence between the classification methods is
observed in general. Even the optimization methods
which are related very closely show only low similarity
with the only exception of SAN and SOM. Of course
it should not be expected that classifications with pre-
defined types (method groups MAN and THR) working
with main directions of advection, are similar to those
methods where the types emerge during the classification
process itself (PCA, LDR, OPT and MIX). However, the
markedly low similarity within these two conceptional
groups of methods is surprising. Hence, this finding gives
rise to the question of whether the classification methods
show significantly more correspondence in defining or
detecting structures in the datasets than any randomly
defined partitioning of the data. Therefore the Monte-
Carlo test as described in Section 4 is applied to the
standard configuration as well to all other variants.

Figure 5 illustrates the Monte-Carlo test for the stan-
dard configuration. It shows the kernel density estimate of
the Rand index values among 1000 RAM catalogs (solid
curve) compared with the Rand index values among
the deliberate methods (histogram). Unexpectedly, the

location of the distribution of the Rand index for
the deliberate methods appears to be distinctly shifted
towards lower values compared to the RAM classifica-
tions. Only a minority (30 of 528) of the observed ARIya
values exceed the 95th percentile of the RAM-ARIyp
distribution (which is 0.28), indicating that they differ
significantly. They are all from the method groups HCA
and OPT with the only exception of GWT-LND. This
means, apart from the similarity between some of the
optimization methods, that the deliberate methods do not
have more in common than the classifications based on
randomly chosen types.

The phenomenon of RAM showing even more corre-
spondence than other classifications in Figure 5 can be
explained by the use of one and the same distance metric
(Euclidean Distance) in all RAM classifications, while
the observed ARIya values include those where methods
using different distance metrics are compared. However,
this does not indicate that this test is ill-conditioned due to
the RAM-ARI distribution being biased towards too high
values. If a high ARIys value would be caused by using
the same distance metric alone, then all pairs of methods
having the distance metric in common should be distinc-
tively more similar than the RAM catalogs, which is not
the case. Therefore, differences in the conception of the
classification methods must be the reason for the distinct
dissimilarities.

Again, this result is not only true for the standard
classification configuration. As shown in Figure 6 the
correspondence among the deliberate classification meth-
ods (light grey boxes in Figure 6) is in no case generally
higher than the correspondence among the randomized
classifications) dark grey boxes in Figure 6).

Even those data pre-processing procedures reducing
the detail level (or noise) of the data (e.g. the PCA
pre-processing), do not lead to systematically stronger
resemblance between the catalogs. The only configu-
ration variant resulting in considerably strong similar-
ity among catalogs is the seasonal classification (line
27_SE_SO1_SP in Figure 6). Probably the reduced sam-
ple size for classifications applied separately to the
four seasons gives less scope for different partitionings.
The same is true for the second noticeable variant, the
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Figure 5. Distribution of adjusted Rand index values comparing deliberate classification methods (histogram, left axis) and classifications with

randomly chosen circulation types (kernel density estimate curve, right axis) for the standard configuration. Grey boxes indicate the thresholds

for moderate correspondence with ARIga > 0.65 (light grey), good correspondence with ARIga > 0.80 (intermediate grey) and excellent

correspondence with ARIjga>0.90 (dark grey). All values ARIga <0.65 denote poor correspondence. The dashed vertical line indicates the
95th percentile of the RAM-ARIya values.

classifications with nine types (and less pronounced the
classifications with 18 types). Apparently the smaller
number of types leads to a higher chance for overlap-
ping partitions. However, only outliers reach noteworthy
similarity and the vast majority of cases fall below an
ARIya < 0.65. All pairs of methods showing at least
in one case moderate correspondence (ARIga 0.65) are
listed and ranked in Table 6. The number of cases consists
of 12 spatial domains times 12 configuration variants,
thus no combination shows moderate or better correspon-
dence in the half of the cases (maximum of 63 out of
144 cases); however, SAN and SOM are distinctively
more often (in 63 cases) similar than all others (below
27 cases). The methods of all pairs in the list are either
from the group of optimization methods (OPT) or from
the group of hierarchical clustering methods (HCA). It
is noteworthy that hierarchical clustering methods show
similarity only within the method group and not to non-
hierarchical methods and vice versa. No other classifi-
cations show any noteworthy correspondence among all
variants.

As a side note it can be observed that the distri-
bution of the ARIys values of the RAM comparisons
seems to justify the definition of Steinley (2004) calling

ARIya values below 0.65 poor. In only one configuration
variant (nine types) the RAM similarities exceed this
threshold.

6. Discussion and conclusions

A comprehensive dataset of classification catalogs for 12
European domains has been compiled using a specially
developed open source software package. The dataset and
software allow the hitherto largest systematic comparison
of synoptic classification algorithms and their configura-
tion variants. Correspondence between the classification
methods is examined by using fixed input datasets and
only varying the classification algorithm. This is done for
12 different classification configuration variants and for
12 different spatial domains. Metrics reflecting the sim-
ilarity between the circulation type patterns, the annual
type frequency time series and the partitioning, by means
of the adjusted Rand index, are used. Significance tests
for the latter allow for exact stratification into poor, mod-
erate, good or excellent correspondence between a pair of
classification catalogs and to compare them to randomly
chosen types.
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Figure 6. Adjusted Rand index values (abscissa) comparing the different classification methods with each other separately for the classification

configurations (ordinate) as listed in Table 5. Light grey box plots include the values comparing deliberate methods for all 12 spatial domains.

Dark grey box plots represent the ARIya values for 1000 RAM classifications for all 12 spatial domains respectively. The maximum extension

of the box-plot whiskers has been increased from 1.5 to 2 times the inter-quartile distance in order to reduce the number of outliers. Black
vertical lines show the 95th percentile of the RAM-ARIy, distributions.

Surprisingly, there is nearly no considerable corre-
lation between the methods and algorithms except for
some hierarchical clustering methods (HCA) and except
for the optimization methods (OPT). In case of HCA
methods, the similarity is mainly due to very unequally
large groups, which largely reduces the usefulness of
the resulting catalogs. However, at least the methods
of the OPT group, which differ in most cases only
concerning the starting partition, should by definition
come to same result. However, the nature of the k-means

algorithm to stop in local minima of the optimization
function leads often only to moderate or even poor corre-
spondence. The only exception is the simulated annealing
clustering (SAN) and the self-organizing map (SOM)
approach, both are computationally very extensive algo-
rithms designed to skip local minima and approach to the
global optimum of the function minimizing within-type
variance. Their correspondence reaches good similar-
ity in individual variants and averages ARIys =0.7
(moderate similarity), while k-means with random



Table 6. Pairs of methods showing noteworthy correspondence
(ARIga > 0.65) ranked by the number of cases out of 12
domains times 12 classification configuration variants. All other
pairs show poor correspondence (ARIpga < 0.65). Note that all
these cases are the same as the outliers with ARIga > 0.65 in

Figure 6.
pair of methods cases of ARI> 0.65
SOM-SAN 63
KMN-SAN 26
DKM-SAN 22
KMN-SOM 21
KMN-CAP 15
DKM-SOM 15
CAP-SAN 15
KMN-DKM 14
DKM-CAP 13
CAP-SOM 13
CKM-DKM 10
HSL-HCN 9
CKM-SAN 9
CKM-CAP 8
HAL-HCN 6
KMN-CKM 5
CKM-SOM 5
KMN-KMD 1
KMD-SOM 1
KMD-SAN 1
HSL-HMD 1
HSL-HAL 1
HMD-HCN 1
CKM-KMD 1
CAP-KMD 1

starting partitions (KMN) shows an even poor average
correspondence to both of them. In terms of cases
exceeding an ARIga =0.65, SOM and SAN count 63
times moderate or better correspondence, while KMN
and DKM count 26 and 22 times noteworthy similarity
to SAN, out of 144 cases. All others correspond
only seldom and are on average independent of one
another (average ARIgs < 0.4). Moreover, except of the
mentioned cases, the similarity of the vast majority of
pairs of methods is not significantly higher than that
of classifications based on randomly defined circulation
types.

In a further comparison experiment (not shown) very
low similarity between classifications has also been found
if the algorithm is fixed and only the data input and pre-
processing is varied. Thus, if, e.g. the SP input data are
either complemented or replaced by geopotential height
of the 500 hPa level (Z5), the same method comes to very
different classification results with Rand index values on
a comparable low level as shown above.

Thus, the main message from this study is that almost
all classification methods, applied for classification of
circulation data, come to extremely different results.

In order to find reasons for this overall low level of
similarity it is useful to look at the structure of the
input data used for classification. Figure 7 shows the
16436 days as dots in a scatter plot which is spanned by

2687

the x and y axis representing the scores of the first and
second principal component of the SP data for domain
D07 (Central Europe).

Looking at the upper panel of Figure 7 it might become
clear why there is such a low level of correspondence
between the methods: obviously there is no evidence
of an inner structure of the data. Beside the centre of
the cloud (the climatological mean) there are neither any
areas of increased point density, indicating locations of
preferred types nor areas of decreased density suggesting
a border between two adjacent types. This explains
why all data mining methods will fail to detect the
same clusters of preferred occurrences of cases, simply
because they are absent (see also Christiansen, 2002,
2007; Stephenson et al., 2004; Philipp et al., 2007 or
Fereday et al., 2008).

However, this cannot explain why a few of the
hierarchical and a few of the non-hierarchical clustering
methods show some correspondence at all. In case of
the non-hierarchical clustering methods the explanation
is the so-called snow-balling effect, i.e. if there is no
structure in the dataset non-hierarchical cluster analysis
tends to produce one large type and very small remaining
types. In case of the single linkage algorithm (HSL) this
leads, e.g. for the standard configuration to a size of
16408 days for the first class and type sizes of 2 or 1
for all the remaining types. It is clear that if any other
method shows such a behaviour that the overlap between
partitions is large which is accounted for by the similarity
metrics. Thus, the hierarchical clustering methods achieve
similar results but they are obviously not useful for
applications in synoptic climatology, when applied to
datasets as done in this study (note that hierarchical
clustering has successfully been applied to a sample
of other meteorological variables, e.g. by Kalkstein
et al., 1987). However the snow-balling effect cannot
explain the similarity of the non-hierarchical methods. As
illustrated in the lower panel of Figure 7 the type sizes
are generally rather equally distributed, which is also the
case for application in higher dimensional phase spaces.
This means that some feature of the input data should
exist determining a more or less similar partitioning.

Looking at the shape of the point cloud in Figure 7
(upper panel) it becomes apparent that it is not a strict
circular shape but, e.g. covers a larger area on the
left half of the plot (quadrants II and III) compared
to the right half (quadrants I and IV). Accordingly the
marginal distributions are both positively skewed (the
PC 1 score distribution only slightly). For algorithms
trying to minimize within-type variance, such irregular-
ities of the shape and distribution constrain the position
of boundaries between the types. This is demonstrated
in Figure 8 where the artificially deformed point cloud
shows extreme irregularities in shape and therefore a
clear constraint for classification. In this case all meth-
ods from the OPT group will come to closely related
results.

In reality, these irregularities are distinctively smaller
and only those algorithms which are able to find highly
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(b)

Figure 7. Scatter plot of sea level pressure data in domain DO7 for all 16436 days (points). The position of each point in this two-dimensional

phase space is defined by the scores of the first two principal components (PCs) of the data. Upper panel: point cloud distribution supplemented

by marginal kernel density distributions (filled curves, scaled to maximum density of both). Lower panel: the same data but classified by
non-hierarchical cluster analysis of the scores for 27 types. Classification of each point is indicated by grey scales and boundary lines.

optimized solutions show noteworthy correspondence.
Actually this is the case for SAN and SOM, both are
designed to overcome local minima in the optimization
function, while e.g. the k-means algorithm often con-
verges within local minima and is therefore unable to fit
the partitioning to the irregularities in the shape of the
cloud.

Another question is why the methods using pre-defined
types are so dissimilar. A possible answer may be also
the missing inner and weak outer structure of the point
cloud. If we think of the type definition as the draw-
ing of a boundary plane between the types in a very
dense multidimensional point cloud, then small changes
in the position and orientation of the plane will result in a
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Figure 8. Illustration of type definition constraint by the shape of the data point cloud: scatter plot of artificially transformed sea level pressure
data (scores of PC 1 of Figure 7 scaled by 0.3) classified by non-hierarchical cluster analysis using three (upper panel) and nine classes (lower
panel). Classification of each point is indicated by grey scales and boundary lines.

relatively large change in the population of the types.
Thus if, e.g. there is no clear preference of westerly type
situations in the data and if the transitions to neighboured
situations (into all directions of the multidimensional
space) are smooth and seamless, high diversity between

the referring types of two classifications based on slightly
different type definitions may occur. Further, different
threshold metrics are used by the threshold-based meth-
ods, like correlation coefficients to prototype patterns in
GWT, wind directions and pressure in WLK, gradients
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in JCT and so on. This would lead to small differences
if the areas of the boundaries between two types would
be clear and sparsely populated. However in a dataset
without such structures the opposite is the case.

Thus, the generally observed low similarity can be
explained by the low degree of structure in the datasets,
leading to the question of whether it is suitable in
synoptic climatology to apply classification methods on
such datasets at all or in other words whether such
datasets are classifiable. The opinion of the authors to this
question is clearly ‘yes’, every sample may be classified
or partitioned. Classification methods generally help to
reduce the complexity of datasets and are indispensable
for finding systematic relations, regardless of whether the
data show structure or not. It is always useful to focus
parts of a sample (i.e. circulation types in this case) rather
than to always consider only the whole of a collective
of objects. Thus any classification as shown above may
be used in a descriptive way. However this should be
done without the expectation that any definition of the
types has, from the statistical point of view, a higher
justification than others. This point of view indeed may
lead to a change of paradigm concerning the role of
circulation type classifications in synoptic climatology.

Nevertheless, any classification may be useful even
though it will be independent from others. On the one
hand this is true for applications where the precise
partition decision itself may not be the most critical
process. For example, if the main flow direction and
its impact, e.g. for air pollution, is in the focus, it is
less relevant how many categories include this direction
and how they look like in detail. Instead, the most
important outcome would be to identify the overall
weather situation with impact on the target variable
represented by the categories. On the other hand, the
large diversity of classification catalogs may offer an
increased probability to find a well-suited classification
also for applications where the detail matters, e.g. for
precipitation analysis. For this purpose the cost733class
software package which was used in this study offers
the opportunity to develop and evaluate specialized
classification catalogs for all kind of synoptic analysis.
In addition to the catalog dataset it is available at
http://cost733.geo.uni-augsburg.de.
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