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Abstract This contribution investigates the relationship be-
tween the large-scale atmospheric circulation and interannual
variations of the standardized precipitation index (SPI) in
Central Europe. To this end, circulation types (CT) have been
derived from a variety of circulation type classifications
(CTC) applied to daily sea level pressure (SLP) data and mean
circulation indices of vorticity (V), zonality (Z) and
meridionality (M) have been calculated. Occurrence frequen-
cies of CTs and circulation indices have been utilized as
predictors within multiple regression models (MRM) for the
estimation of gridded 3-month SPI values over Central Eu-
rope, for the period 1950 to 2010. CTC-based MRMs used in
the analyses comprise variants concerning the basic method
for CT classification, the number of CTs, the size and location
of the spatial domain used for CTCs and the exclusive use of
CT frequencies or the combined use of CT frequencies and
mean circulation indices as predictors. Adequate MRM pre-
dictor combinations have been identified by applying stepwise
multiple regression analyses within a resampling framework.
The performance (robustness) of the resulting MRMs has
been quantified based on a leave-one-out cross-validation
procedure applying several skill scores. Furthermore, the rel-
ative importance of individual predictors has been estimated
for each MRM. From these analyses, it can be stated that
model skill is improved by (i) the consideration of vorticity
characteristics within CTCs, (ii) a relatively small size of the
spatial domain to which CTCs are applied and (iii) the inclu-
sion of mean circulation indices. However, model skill ex-
hibits distinct variations between seasons and regions. Where-
as promising skill can be stated for the western and

northwestern parts of the Central European domain, only
unsatisfactory skill is reached in the more continental regions
and particularly during summer. Thus, it can be concluded that
the presented approaches feature the potential for the down-
scaling of Central European drought index variations from the
large-scale circulation, at least for some regions. Further im-
provements of CTC-based approaches may be expected from
the optimization of CTCs for explaining the SPI, e.g. via the
inclusion of additional variables in the classification
procedure.

1 Introduction

Droughts are an important feature of Central European cli-
mate, having wide-ranging significant impacts on natural and
socio economic systems. With respect to the drought event in
2003 affecting large parts of Europe, for example Fink et al.
(2004) documented the adverse effects on agriculture, forestry
and energy production—just to name a few highly relevant
points.

A general definition of drought in a meteorological sense is
the deficiency in precipitation compared to long-term average
conditions (Hayes et al. 2011). However, depending on which
aspects of droughts are primarily considered, varying drought
definitions incorporating different meteorological, agricultur-
al, hydrological or socioeconomic parameters have been de-
veloped (e.g. Heim 2000, Heim 2002, Keyantash and Dracup
2002). Focusing on the meteorological component of
droughts, from the varying precipitation based indices that
have been defined for the quantification of drought events
(e.g. Keyantash and Dracup 2002), the standardized precipi-
tation index SPI (McKee et al. 1993, McKee et al. 1995) has
preferably been used in recent years in numerous studies.
Most recently, the utilization of the SPI has been further
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fostered by the decision of the WMO to recommend the SPI
for characterising meteorological drought by national meteo-
rological and hydrological services around the world (Hayes
et al. 2011). The spatiotemporal variability and the spatial
coherence of droughts in Europe has been analysed, based
on station or gridded SPI data, for example by Lloyd-Hughes
and Saunders (2002), Bordi et al. (2007), Bordi et al. (2009),
Santos et al. (2010), Hannaford et al. (2011) and Lloyd-
Hughes and Saunders (2002). Applications of the SPI to the
output of general circulation models (GCMs) and regional
climate models (RCMs) have been presented for example by
Loukas et al. (2007), Sienz et al. (2007), Burke and Brown
(2008), Vasiliades et al. (2009), Bonsal et al. (2012), Heinrich
and Gobiet (2012) and Sienz et al. (2012).

The SPI is solely based on precipitation data. Drought
variability as captured by the SPI is therefore closely linked
to large-scale atmospheric circulation features that essentially
govern precipitation. Analysing and quantifying the relation-
ships between SPI and atmospheric circulation is essential to
improve the understanding of the development of drought
events and their interannual and longer-term variations in
frequency and intensity. Furthermore, once reliable
quantitative assessments of the linkage between circulation
and drought are acquired, this offers the opportunity to derive
statistical transfer functions for downscaling of potential
future drought dynamics on the basis of GCM scenarios.

Varying approaches have been used to investigate the rela-
tionships between atmospheric circulation variability and
droughts in general and the SPI in particular. Based on the
SPI, Bordi et al. (2007) characterised atmospheric circulation
conditions during extremely dry/wet periods in Sicily via the
calculation of respective anomaly maps for the 500 hPa
geopotential height field. Bothe et al. (2010) determined char-
acteristic patterns of geopotential height and zonal wind for
dryness/wetness on the Tibetan plateau by regression analysis.
Lopez-Moreno and Vicente-Serrano (2008) analysed the ef-
fect of positive and negative phases of the North-Atlantic
Oscillation (NAO) on droughts in Europe. Vicente-Serrano
and Lopez-Moreno (2006) and Raziei et al. (2012) related
occurrence frequencies of circulation types (CTs), resulting
from different circulation type classifications (CTCs), to SPI
variations in Spain and Iran respectively. Both studies docu-
ment a distinct relationship between variations in frequencies
of CTs and SPI. In addition, CTCs as tool for describing and
analysing the atmospheric circulation (e.g. Huth et al. 2008,
Philipp et al. 2010) have been used in several other—non-SPI-
based—studies for investigating the influence of large-scale
circulation on drought. Stahl and Demuth (1999) pointed out
the relevance of subjectively derived Grosswetterlagen (Hess
and Brezowsky 1952, Gerstengarbe et al. 1999) for
streamflow droughts in southern Germany. Using likewise
the Grosswetterlagen classification, Trnka et al. (2009)
analysed the influence of CTs on soil moisture in the Czech

Republic and Pongracz et al. (2003) investigated the linkage
between variations in CT frequencies and time series of the
Palmer Drought Severity Index (PDSI) in Hungary. Fleig et al.
(2010) compared several CTCs concerning their ability to
capture hydrological drought events in northwestern Europe
and Fleig et al. (2011) linked an objective version of the Hess-
Brezowsky Grosswetterlagen (James 2007) to regional hydro-
logical drought indices in northwestern Europe. An objective
version of the Lamb weather types (Lamb 1972, Jenkinson
and Collison 1977) was applied by Garcia-Herrera et al.
(2007) to characterise atmospheric circulation conditions dur-
ing a prolonged drought episode in the Iberian peninsula. Tran
et al. (2002) developed a CTC utilizing self organizing maps
(SOM) and related the resulting CTs to the occurrence of wet
and dry conditions in Bulgaria. Pongracz et al. (1999) used
principal component analysis with subsequent non-
hierarchical k-means clustering to derive CTs for the analysis
of time series of a modified PDSI in Nebraska (USA).

The above-mentioned studies substantiate distinct linkages
between drought and large-scale atmospheric circulation in
general and CTs in particular, pointing out the suitability of
CTCs to capture circulation characteristics relevant for the
spatiotemporal variability of droughts. However, so far, there
have been no systematic attempts to determine CTCs that,
among themultitude of classificationmethods, are particularly
suited to capture drought variability in different regions.

Against the background of the current state of research
outlined above, the main objectives of the present study are:

– to analyse the quantitative relationships between CTs and
interannual SPI variations in Central Europe in the period
1950 to 2010,

– to establish statistical models for the estimation of gridded
SPI values from occurrence frequencies of CTs derived
from varying CTCs and

– to identify the most suitable approaches for the statistical
downscaling of possible future SPI variations

Recent analyses have shown that the relevance of circula-
tion type classifications for surface climate strongly varies
depending on the general classification approach and—partly
even more distinctly—the specific configuration settings,
concerning for example the number of types or the size of
the spatial domain (e.g. Beck and Philipp 2010, Beck et al.
2013, Beck et al. 2014).

Consequently different variants of CTCs comprising vari-
ous approaches and configuration settings are employed in
statistical models that are developed for linking frequency
changes of CTs to time series of gridded SPI bymultiple linear
regression analyses. The skill of the resulting models is eval-
uated in order to allow for their quantitative comparison. In
this way, the most suitable approaches for investigating
circulation-drought relationships—which in future studies
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may be utilized for the statistical downscaling of possible
future SPI variations - are determined. Although summer
droughts are in general most relevant in Central Europe,
droughts may appear and may have strong impact in the other
seasons as well. Therefore, analyses are run for representative
months from all four 3-month seasons. Focusing on the me-
teorological aspects of drought, from the available multiple
SPI time scales the 3-month variant is used in this study.

In Section 2, the data sets and the methodological ap-
proaches for circulation type classification and for relating
CTs to SPI by multiple linear regression analyses are intro-
duced. Section 3 illustrates the main results. Finally, discus-
sion and conclusions follow in Section 4.

2 Data and methods

2.1 Gridded drought index data

The SPI considers only monthly precipitation data and is
based on the standardized probabilities for certain precipita-
tion amounts that are estimated from long-term observed
precipitation data. Due to the fact that monthly precipitation
most often is not normally distributed the calculation of the
SPI involves the fitting of an adequate theoretical distribution
to the precipitation data and the subsequent equiprobability
transformation to the standard normal distribution (McKee
et al. 1993). Resulting SPI values are negative for dry and
positive for wet conditions. Table 1 gives the SPI value
intervals and the event probabilities for different SPI
categories.

Gridded SPI data are retrieved from the data set provided
by the CliSAP-Integrated Climate Data Center (ICDC) at the
University of Hamburg (Sienz et al. 2012). This SPI data set is
based on the European Climate and Data Assessment
(ECA&D), E-OBS gridded data set Version 4.0 (Haylock
et al. 2008) with a 0.5° by 0.5° horizontal resolution. It covers
the region 11W to 60 E and 35 N to 72 N, with 0.5° resolution
in both directions and is available for the period January 1951
to December 2010 in monthly resolution for the time scales 1,

3, 6, 9, 12, 24 and 48 months. Sienz et al. (2012) modify the
SPI calculation according toMcKee et al. (1993) by fitting the
Weibull distribution instead of the gamma distribution to the
precipitation data. As Sienz et al. (2012) show, this leads to
more reliable estimates of extremely dry and wet conditions
(see Sienz et al. (2012) for further details on the calculation
and the characteristics of the improved SPI). Although the
most common utilization of the SPI is to describe extreme
drought events, it can in general be used to quantify dry and as
well wet conditions of varying strength.

Focusing on Central Europe and on meteorological aspects
of dryness/wetness, SPI data calculated for the time scale of
3 months within the region 5.5 E to 16 E and 46.5 N to 55 N
are selected for the present analyses. To consider all seasons of
the year, 3-month SPI data for February, May, August and
November are used.

2.2 Circulation data and circulation type classifications

For the determination of CTs via the different classification
approaches described below, 2.5° by 2.5° gridded daily 12
UTC sea level pressure (SLP) data from the NCEP/NCAR
reanalysis 1 data archive (Kalnay et al. 1996) for the period
covered by SPI data, 1951 to 2010, have been used.

Daily CTs have been derived applying several variants of
two different classification methods to the SLP data using the
cost733class classification software (Philipp et al. 2010,
2014). In more detail, the two selected CTCs are:

The so-called Grosswettertypes (GWT) or Prototype clas-
sification (Beck et al. 2007) that arranges cases (daily SLP
fields) into classes (circulation types) according to the main
direction of the large-scale flow and the cyclonicity. To this
end, spatial correlation coefficients between daily SLP fields
and three prototypical flow patterns representing idealized
zonal (westerly), meridional (northerly) and cyclonic flow
conditions respectively are calculated (denoted as coefficients
of zonality (Z), meridionality (M), and vorticity (V) hereinaf-
ter). Circulation types are then defined as particular ideal
combinations of these coefficients (see Table 2). Finally, each
daily SLP field is assigned to one circulation type according to
the following criteria: (1) a maximum absolute value of V
leads to a pure cyclonic (positive sign) or anticyclonic (nega-
tive sign) type respectively; (2) remaining cases (daily SLP
fields) are assigned to the most similar (in terms of the min-
imum Euclidean distance of the respective Z and M coeffi-
cients) directional circulation type; directional types may fur-
ther be subdivided according to (3) the sign of the V coeffi-
cient into cyclonic (positive sign) and anticyclonic (negative
sign) subtypes or according to (4) values of the standardized V
coefficient into cyclonic (standardized V>0.42), indifferent
(−0.42≤standardized V≤0.42) and anticyclonic (standardized
V<− 0.42) subtypes. Depending on how many criteria are
considered, varying numbers of classes (circulation types)

Table 1 Definition of the standardized precipitation index (SPI). SPI
intervals, category labels and event probabilities

SPI value SPI category Probability [%]

SPI≥2 Extremely wet 2.3

2>SPI≥1.5 Severely wet 4.4

1.5>SPI≥1 Moderately wet 9.2

1>SPI>−1 Normal 68.2

−1≥SPI>−1.5 Moderately dry 9.2

−1.5≥SPI>−2 Severely dry 4.4

SPI≤−2 Extremely dry 2.3
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result from the classification scheme. For the analyses pre-
sented here, three variants comprising 10, 18 and 27 circula-
tion types, respectively, have been developed. An overview of

the classification scheme and the three resulting variants of the
GWT classification used in this contribution is given in
Table 2. Exemplary SLP composites for circulation types

Table 2 Overview of classification criteria and resulting circulation
types for variants of the Grosswettertypes (GWT) classification (Beck
et al. 2007) comprising 10, 18 and 27 circulation types respectively. Pure
cyclonic/anticyclonic circulation types are denoted by letters L (low
pressure), H (high pressure) and I (indifferent) respectively. Acronyms
for directional circulation types include information on flow direction
(W=west, N=north, E=east, S=south; and derived combinations) and on
cyclonicity (c=cyclonic, i=indifferent, a=anticyclonic; note that the

definition of c and a differs between the 18 and 27 type variants of the
classification scheme). Z, M, V denote the zonality, meridionality and
vorticity coefficients respectively (see text for further explanation); SV is
the standardized vorticity coefficient and d is the euclidean distance
between an object (daily SLP field f) to classify and a certain main
directional type in the two-dimensional feature space spanned by the
respective Z and M coefficients (e.g. d(W)=SQRT((Zf-ZW)**2+(Mf-
MW)**2))

10 Types 18 Types 27 Types
Central low/high
pressure types

Criteria (1)

Vf=max(Zf, Mf, Vf) Vf>0 L L SVf>0.42 L

−0.42≤SVf≤0.42 I

Vf=max(Zf, Mf, Vf) Vf<0 H H SVf<−0.42 H

Main directional types
(ideal combinations
of Z andM
coefficients)

Cyclonic/anticyclonic
subtypes

Cyclonic/indifferent/
anticyclonic subtypes

Criteria (1) Criteria (2) Criteria
(3)

Criteria (4)

Vf>0.0 Wc SVf>0.42 Wc

Vf≠max(Zf, Mf, Vf) d(W)=min(d(W),…,
d(SW))

W (ZW=1.0,MW=0.0) −0.42≤SVf≤0.42 Wi

Vf<0.0 Wa SVf<−0.42 Wa

Vf>0.0 NWc SVf>0.42 NWc

Vf≠max(Zf, Mf, Vf) d(NW)=min(d(W),…,
d(SW))

NW (ZNW=0.7,
MNW=0.7)

−0.42≤SVf≤0.42 NWi

Vf<0.0 NWa SVf<−0.42 NWa

Vf>0.0 Nc SVf>0.42 Nc

Vf≠max(Zf, Mf, Vf) d(N)=min(d(W),…,
d(SW))

N (ZN=1.0,MN=0.0) −0.42≤SVf≤0.42 Ni

Vf<0.0 Na SVf<−0.42 Na

Vf>0.0 NEc SVf>0.42 NEc

Vf≠max(Zf, Mf, Vf) d(NE)=min(d(W),…,
d(SW))

NE (ZNE=−0.7,
MNE=0.7)

−0.42≤SVf≤0.42 NEi

Vf<0.0 NEa SVf<−0.42 NEa

Vf>0.0 Ec SVf>0.42 Ec

Vf≠max(Zf, Mf, Vf) d(E)=min(d(W),…,
d(SW))

E (ZE=−1.0, ME=0.0) −0.42≤SVf≤0.42 Ei

Vf<0.0 Ea SVf<−0.42 Ea

Vf>0.0 SEc SVf>0.42 SEc

Vf≠max(Zf, Mf, Vf) d(SE)=min(d(W),…,
d(SW))

SE (ZSE=−0.7,
MSE=−0.7)

−0.42≤SVf≤0.42 SEi

Vf<0.0 SEa SVf<−0.42 SEa

Vf>0.0 Sc SVf>0.42 Sc

Vf≠max(Zf, Mf, Vf) d(S)=min(d(W),…,
d(SW))

S (ZS=0.0, MS=−1.0) −0.42≤SVf≤0.42 Si

Vf<0.0 Sa SVf<−0.42 Sa

Vf>0.0 SWc SVf>0.42 SWc

Vf≠max(Z, M, V) d(SW)=min(d(W),…,
d(SW))

SW (ZSW=0.7,
MSW=−0.7)

−0.42≤SVf≤0.42 SWi

Vf<0.0 SWa SVf<−0.42 SWa
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resulting from the basic classification into 10 types are
displayed in Fig. 1.

The second classification approach is based on the non-
hierarchical k-means clustering algorithm (e.g. Hartigan
1975). For the variant used here, the most dissimilar cases
(daily SLP fields) included in the data set are used to deter-
mine the initial starting partition, as suggested by Enke and
Spekat (1997) and provided in a corrected form by Philipp
et al. (2010). In iterative steps, it is then evaluated for each
object (daily SLP field) whether it already is in the most
similar cluster (in terms of the Euclidean distance between
the object and the respective cluster centroid) or whether it has

to be assigned to another—nearer—cluster (which in turn
leads to a modification of the respective cluster centroids).
This iterative process is stopped when all objects are assigned
to their nearest cluster and further re-assignments lead to no
further improvement (in terms of reduction of the within-
cluster variances). In accordance to the GWT classification,
this k-means classification based on highly differentiated
starting partitions (DKM) has also been run for 10, 18 and
27 classes (circulation types).

The GWT and DKM classifications used in this investiga-
tions have been selected from the large pool of available CTCs
(e.g. Huth et al. 2008, Philipp et al. 2010, Philipp et al. 2014),

Fig. 1 SLP (hPa) composites for
10 circulation types resulting
from the GWT classification
applied to daily SLP (1950–2010)
for the domain 13° W–34.5°
E/37°–64.5°N
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because previous studies (e.g. Beck and Philipp 2010, Huth
2010, Schiemann and Frei 2010) have shown that in many
cases threshold based classifications (e.g. GWTclassification)
and classifications based on optimisation algorithms (e.g.
DKM classification) are most appropriate to resolve precipi-
tation variations in central parts of Europe.

It has furthermore been shown (e.g. Beck and Philipp 2010,
Huth 2010) that the number of classes (CTs) has distinct
effects on the discriminative power (synoptic skill) of circu-
lation type classifications for surface climate data, with—in
most cases—synoptic skill increasing with the number of CTs.
Whereas the DKM classification may provide any number of
CTs, the GWT classification is applicable only for a limited
number of types. Therefore—in order to keep results compa-
rable—both CTCs have been run for 10, 18 and 27 CTs.

The effect of domain size on the synoptic skill of
CTCs has recently been reported by Beck et al. (2013).
Besides the general finding that the use of smaller
spatial domains appears to be more appropriate to cap-
ture precipitation variations, Beck et al. (2013) also
detected distinct spatial variability in optimal domain
size. Not yet analysed in detail is the relevance of the
exact location of the domain, either centered over the

target location or not. Taking into account these points,
CTCs have been applied to spatial domains of varying
size and location for the present study. In detail, eight
domain sizes have been defined. The smallest domain
ranges over 15° in west–east and over 10° in north–
south direction, the largest domain spans 85° in west–
east and 45° in north–south direction. Such sequences
of domains have been defined for 25 locations over
Central Europe. An overview of sizes and locations of
the spatial domains is given in Fig. 2.

Summing up over all CTC variants, finally 1,200 CTCs
have been generated. All classification variants have been
produced using the cost733class software package (Philipp
et al. 2010, Philipp et al. 2014) that has been developed within
the framework of the COST Action 733 “Harmonisation and
Applications of Weather Type Classifications for European
Regions” (see e.g. Huth et al. 2010 for an overview).

2.3 Multiple linear regression models

For each of the 318 grid cells over land within the domain 5.5
E to 16 E and 46.5 N to 55N, 3-month SPI values are modeled
via multiple linear regression analysis (MRA), using different
combinations of subsets of the following set of potential
predictors.

Firstly, occurrence frequencies (number of days
assigned to a specific CT) are calculated for each CT
resulting from the varying CTCs for 3-month periods
corresponding to the 3-month SPI data. Time series of
CT frequencies are thus available for the two classifica-
tion methods GWT and DKM, for three different num-
bers of types, for four 3-month episodes, and for eight
domain sizes at 25 locations. Secondly, 3-monthly mean
circulation indices of zonality, meridionality and
cyclonicity are calculated from respective daily values
that are determined by the GWT classification (see
Section 2.2). These variables may be considered as
proxies for within-type characterist ics of CTs,
concerning the above-mentioned circulation characteris-
tics—however, averaged over all CTs.
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Fig. 2 Sizes and locations of spatial domains used for deriving circula-
tion type classifications (CTCs). Dots indicate 25 central points of spatial
domains. As examples solid and dashed rectangles depict eight varying
domain sizes centered on 5.75° E/50.75° N (bold black dot) and 8.25°
E/45.75° N (bold grey dot) respectively

Table 3 Minimum, mean and maximum values of different skill scores (see text for explanation) determined for the 10% best performing (according to
MSSS) multiple regression models for the estimation of gridded 3-month SPI from large-scale circulation

February May August November

Min Mean Max Min Mean Max Min Mean Max Min Mean Max

R2 0.14 0.53 0.76 0.12 0.46 0.78 0.08 0.39 0.72 0.16 0.43 0.69

MSSS 0.13 0.53 0.76 0.10 0.46 0.78 0.08 0.38 0.72 0.15 0.43 0.68

HSSdry −0.06 0.41 0.76 −0.11 0.37 0.77 −0.13 0.32 0.73 −0.13 0.33 0.73

HSSwet −0.06 0.41 0.72 −0.08 0.38 0.80 −0.17 0.31 0.75 −0.16 0.30 0.80
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For each model, CT frequencies from one CTC var-
iant are uti lized as potential predictors, either

exclusively or in combination with the three circulation
indices. Thereby, both CT frequencies and circulation

Table 4 Percentage occurrences of different configuration settings of
circulation type classifications (classification method—CM, number of
types—NT, size - DS and location—DL of the domain) and multiple
regression models (potential predictors—PP, number of predictors—NP)
determined for the 10 % best performing (according to MSSS) multiple
regression models for the estimation of gridded 3-month SPI from large-
scale circulation. GWT and DKM refer to the classification methods

described in Section 2.2. GD and LD denote domains centered over
10.75° E/50.75° N and centered as close as possible to the target location
respectively (see Section 2.2). CT and CTCI indicate potential predictor
sets comprising only circulation type frequencies (CT) or circulation type
frequencies and additional monthly circulation indices (CTCI). Numbers
in italics indicate percentages that together add up to more than 50% of
the respective configuration category

CM NT DS DL PP NP

GWT DKM 10 18 27 1 2 3 4 5 6 7 8 GD LD CT CTCI 1 2 3 4 5 6 7

February 68 32 3 32 65 11 16 17 19 14 14 7 2 48 52 44 56 0 1 22 40 27 9 1

May 42 58 13 24 63 18 23 20 16 8 6 6 3 51 49 32 68 0 6 22 34 25 11 2

August 54 46 20 33 47 11 40 20 11 6 6 4 2 58 42 17 83 1 22 42 24 8 3 1

November 68 32 10 28 62 37 25 19 10 3 2 2 2 53 47 26 74 0 7 22 46 21 3 1
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Fig. 3 Spatial distribution of the
Mean Square Skill Score (MSSS)
of the best performing multiple
regression model for each grid
cell in February, May, August and
November
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indices, are either derived for a domain centered on
10.75 E/50.75 N or for a domain centered on the grid
point which is closest to the location of the predictand
SPI series. Hence, for each predictand variable (SPI
series at a specific grid location), 192 different potential
predictor combinations can be defined (2 classification
methods×3 numbers of types×2 domain locations×8
domain sizes×2 variants including or excluding monthly
mean circulation indices). To avoid the influence of
trends in the data on the model skill, the linear trend
has been removed from all predictor and predictand
time series.

Analysing the relationship between CTs/circulation indices
and SPI via MRA involves several steps which are further
detailed below.

In order to find adequate sets of predictor variables,
firstly stepwise MRA is applied to 100 random sam-
ples of 40 years each (thus leaving 20 years unused).

These random samples have been defined once and
are used for the predictor screening for all models.
Model selection in stepwise MRA in each case is
based on the Akaike information criterion (AIC)
(Akaike 1974).

Based on the results of the 100 explorative stepwise
MRA runs, the most frequent number of predictor var-
iables and as well the most often chosen predictor
variables are determined. Thereby, only those models
are considered for which the basic assumptions under-
lying the MRA are fulfilled. These assumptions are in
particular normality, homoscedasticity and independence
of residuals which have been tested using the Shapiro-
Wilk test (e.g. Royston 1982), the Breusch-Pagan test
(e.g. Krämer and Sonnberger 1986) and the Durbin-
Watson test (e.g. Krämer and Sonnberger 1986), respec-
tively. For rejection of the null hypothesis, the signifi-
cance level alpha has been set to 0.05 for all three tests.
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Fig. 4 Spatial distribution of the
Heidke Skill Score estimated for
the combined SPI event
categories severely and extremely
dry (HSSdry) of the best
performing (in terms of MSSS)
multiple regression model for
each grid cell in February, May,
August and November
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Furthermore, in case of dependence between the predic-
tors—i.e. significant (for alpha=0.01) correlations be-
tween predictors—only the one predictor variable show-
ing the highest correlation coefficient to the predictand
is kept, while the others are removed from the set of
potential predictors.

As a result of the screening procedure, a reduced set of
predictors is defined for each of the 192 MRA settings at each
of the 318 SPI grid locations. These fixed combinations of
predictors are used in subsequent analyses without further
rearrangements.

Utilizing the previously specified predictor variables,
MRA is applied to predictand and predictor data for the
whole period from 1951 to 2010. Based on these
MRAs, the importance of each CT or circulation index
for SPI variability is estimated for each MRA. For this
purpose, the relative importance metric LMG (referring
to author names Lindeman, Merenda and Gold) as

proposed by Lindeman et al. (1980) has been calculated
according to Grömping (2007). LMG decomposes the
explained variance of each model and provides esti-
mates of the percentage contributions from the different
predictor variables.

Finally, a leave-one-out cross-validation procedure
has been performed to achieve reliable evidence of the
robustness of the different models. To this end, linear
multiple regression models (MRM) using the screened
predictor variables have been constructed for calibration
periods, each comprising all but 1 year of the period
1951–2010. Thus, advancing from 1951 to 2010 SPI
values for each year are modeled by applying the
MRM fitted to the remainder of all years to predictor
data for the omitted year.

For quantifying the skill of the different MRMs, several
metrics have been estimated on the basis of the observed and
the modeled SPI series.

6 10 12 14 16

48
50

52
54

HSSwet − Feb

Lon

La
t

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

6 10 12 14 16

48
50

52
54

HSSwet − May

Lon

La
t

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

6 10 12 14 16

48
50

52
54

HSSwet − Aug

Lon

La
t

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

6 10 12 14 16

48
50

52
54

HSSwet − Nov

Lon

La
t

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

8 8

8 8

Fig. 5 Spatial distribution of the
Heidke Skill Score estimated for
the combined SPI event
categories severely and extremely
wet (HSSwet) of the best
performing (in terms of MSSS)
multiple regression model for
each grid cell in February, May,
August and November
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From the range of accuracy measures that may be used for
the comparison of observed and modeled series of continuous
variables (e.g. Wilks 2006), the squared Pearson correlation
coefficient (R2) between observed and modeled SPI series and
the mean square skill score (MSSS, Murphy 1988) have been
calculated.

MSSS is based on the mean squared error (MSE)
estimated for the model and for the climatological ref-
erence, respectively:

MSSS ¼ 1−
MSE

MSEClim

With

MSE ¼ 1

N

X

i¼1

N

yi−aið Þ2

and

MSEClim ¼ 1

N

X

i¼1

N

ā−ai
� �2

Thereby N is the number of cases, yi is the modeled value
for case i, ai is the respective observed value and a is the mean
over all ai. MSSS values less than or equal 0 imply a model
quality worse or equal to climatology, while a maximum
MSSS value of 1 indicates a perfect model.

To take into account the particular relevance of pronounced
dry and wet events, the ability of the models to reproduce such
events has been checked by applying the Heidke skill score
(HSS). HSS has been calculated according to Wilks (2006) as

HSS ¼ 2 ad−bcð Þ
aþ cð Þ cþ dð Þ þ aþ bð Þ bþ dð Þ
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Fig. 6 Time series of observed and modeled 3-month SPI time series for
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Thereby a is the number of observed events that are cor-
rectly modeled (hits), b is the number of modeled events that
are not observed (false alarms), c is the number of events that
are observed but not modeled (misses), and d is the number of
non-events in both observation and model (correct negative).
HSS values<0 indicate no skill while a value of 1 implies a
perfect model. HSS has been estimated separately for two SPI
event categories (see Table 1), defined by an SPI<−1.0 (mod-
erately to extremely dry, HSSdry) or an SPI>1.0 (moderately
to extremely wet, HSSwet), respectively.

3 Results

According to the main purpose of this study—the determina-
tion of CTC-based regression models that are best suited to
capture the relevant links between the atmospheric circulation
and drought index variations—the presentation of results fo-
cuses on a selection of those models that perform best in terms
of model skill. For each grid cell, the 20 best performing
multiple regression models have been selected from the 192
available models according to the MSSS, estimated on the

basis of the leave-one-out cross-validation. This selection of
the roughly 10% best models for each grid cell leads to model
“ensembles” which establish the basis for depicting the main
characteristics of model configurations that are most suitable
for estimating 3-month SPI from the large-scale atmospheric
circulation.

3.1 Overall skill of best performing models

Minimum, mean and maximum values, respectively, of the
skill scores (see Section 2.3) estimated over all SPI grid cells
are given in Table 3.

A first remarkable finding from Table 3 is that the values
for R2 and MSSS are almost equal. This points to the fact that
both, the unconditional—or overall or systematic—bias (dif-
ference between the model mean and the observation mean)
and the conditional bias (correlation coefficient minus the
ratio of the variances of model and observation) of the models
are very small (see Murphy 1988 concerning the decomposi-
tion of the MSSS). Thus, instead of R2 and MSSS, mainly
MSSS is further discussed in the following.

Highest and least mean skill in terms ofMSSS is reached in
February and August, respectively while May and November
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exhibit intermediate mean values of MSSS in general.
This points to the fact that the influence of the large-
scale circulation on precipitation is most pronounced in
winter. On the other hand, interseasonal differences de-
crease for the maximum and minimum MSSS values out
of all single grid cells, indicating that in each month
there are at least some grid cells for which very low or
rather high skill is reached. Maximum MSSS (and R2)
in all months reaches values between 0.68 and 0.78,
implying amounts of SPI variance explained by the
respective models of up to 78 %. Minimum values of
MSSS—although being rather low—remain positive in
all cases, thus indicating at least slightly better skill
than climatology for all grid cells.

HSSdry and HSSwet focusing on the ability of the
models to capture negative and positive SPI deviations,
respectively, indicate higher mean skill in February and
May compared to August and November. Maximum
values of both HSS variants exceed 0.7 in all months.
Together with negative minimum values appearing in all
months and for both HSS variants, this indicates a
distinct variation in the ability of the models to repro-
duce dry and wet anomalies, respectively.

3.2 Preferred configuration settings of best performing
models

Besides the overall skill of the best performing models,
it is of interest in how far these models show preferred
configuration settings concerning the underlying CTCs
and the multiple regression analyses. Table 4 depicts
the appearance (given as percentages) of various con-
figuration settings in the selected best performing
MRMs.

With respect to the general classification method, it be-
comes apparent that—with the exception of May—the GWT
classification appears more frequent than the DKM classifica-
tion. Most probably this is due to the fact that the GWT
classification variants comprising 18 and 27 types, respective-
ly, explicitly differentiate between cyclonic and anticyclonic
CTs.

The spatial distribution of GWT/DKM preference (not
shown) exhibits no interpretable structures.

In the majority of cases, CTCs comprising 18 or 27 CTs are
included in the best performing models. This predominance is
least obvious in August. It is also the only month for which
some—however, only hardly detectable—spatial patterns of
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preferred CT numbers, with less types in the west/northwest
of the domain, can be seen (not shown).

CTCs applied to smaller domains are more frequently
chosen in the best performing models than CTCs applied to
larger spatial domains. This preponderance is less distinct in
February which is in accordance with findings from Beck
et al. (2013). However, again, no clearly structured spatial
patterns concerning the preferred domain size become obvi-
ous (not shown).

With respect to the location of the domain relative to the
target grid cell, no clear-cut preferences can be deduced from
Table 4. This is also true for the respective spatial distribution
(not shown). Obviously, shifts in the location of the domain—
at least within the range studied here—are not as relevant as
variations in the size of the domain.

A far more distinct difference in percentage occurrences
becomes obvious with respect to the preferred sets of potential
predictors utilized in the best performing models. Clearly, the
majority of the best performing models relies on sets of
predictors that include mean indices for zonality,
meridionality and vorticity in addition to occurrence frequen-
cies of circulation types. This appears most pronounced in
August and least pronounced in February. These seasonal

differences may be explained by the larger amount of climatic
within-type variability in summer that in turn is partly due to
corresponding variations in circulation characteristics,
reflected in the presently used circulation indices (Beck et al.
2007). Again, no interpretable respective spatial patterns
occur.

Finally, the selected best performing models may be
partitioned with respect to the number of predictors that are
chosen for the final model. In this regard, it can be stated that
the majority of models comprises between three and five
predictors. Fewest predictors are used in August. The respec-
tive spatial distributions (not shown) exhibit a tendency to-
wards a decrease in the number of predictors from the north-
west to the southeast of the Central European domain.

3.3 Spatial variations in model skill

In addition to variations in model skill between months,
distinct differences in skill are obvious between different
locations. The spatial distribution of skill in terms of MSSS
of the best performing model approach for each grid cell is
depicted in Figs. 3, 4 and 5 illustrate spatial variations of
HSSdry and HSSwet, respectively. Time series of observed
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and modeled 3-month SPI (best performing model, mean over
the 20 best models and respective range ±1.5 times the stan-
dard deviation) for selected grid cells are shown in Figs. 6, 7, 8
and 9.

Starting with spatial variations in MSSS (Fig. 3), a pro-
nounced decrease in skill can be stated from the western/
northwestern parts to the eastern/southeastern parts of the
Central European domain, explicable by the decreasing expo-
sure to synoptic-scale cyclonic systems towards the more
continental regions. The general spatial gradient in skill is
visible in all months, but appears most pronounced in Febru-
ary and least distinct in November. Main features of the spatial
variations detected for MSSS are as well discernible for
HSSdry (Fig. 4) and HSSwet (Fig. 5).

These patterns of spatial variations in model skill also show
up from time series plots in Figs. 6,7, 8 and 9. Grid cells for
which time series are presented have been selected in order to
represent the northwestern, the northeastern, the southeastern
and the southwestern regions of the Central European domain
featuring distinctly varying model skill.

Notably high skill (in terms ofMSSS above 0.6 for the best
model) is observed in all months for the northwestern grid cell
and as well for the northeastern grid cell in February and for
the southwestern grid cell in May. Distinctly low skill with
values of MSSS (for the best model) less than or equal 0.3, on

the other hand, is apparent for the southeastern grid cell in
May and August. Connected with higher/lower skill of the
best model for different grid cells, respective less/more varia-
tions among the ensemble of the 20 best models (indicated by
the grey shaded intervals around the ensemble mean) can be
stated.

A further remarkable finding is illustrated in Figs. 6, 7,
8 and 9. In all cases shown in these figures, those SPI
series that have been determined by averaging the
modeled series resulting from the 20 best models (ensem-
ble mean) reach considerably higher skill (in terms of
MSSS) than the modeled SPI series from the best
performing model. This increase in skill, when using the
ensemble mean instead of the best single model, can (with
only a few exceptions) also be stated for the skill scores
HSSdry and HSSwet (see Figs. 6, 7, 8 and 9) and in
general as well (not shown) for the majority of Central
European grid cells used in this study.

With respect to the reproduction of dry and wet anomalies
beyond SPI values of −1/+1, Figs. 6, 7, 8 and 9 depict that,
while the timing of most of these events is quite well captured
by the models, their amplitudes—in particular those of the
more severe events—are often underestimated, particularly
for those grid cells and months also exhibiting low skill in
terms of MSSS.

Table 5 Frequencies of appearance of circulation types and mean circu-
lation indices as leading predictors (Pred 1 to Pred 4) in the best GWT
based multiple regression models for 3-month SPI at each grid cell and
respective mean relative importance (explained variation in %) estimates.

Only those 14 circulation types and mean circulation indices appearing
most often as a leading predictor in the best models are shown. Numbers
in italics indicate the two highest values in each row

Cyclonic types Anticyclonic types Indifferent types Indices

Wc SWc NWc NEc L Na NEa Ea H Wi NWi Si V Z

Frequency of appearance

Feb Pred 1 197 6 16 1 2 5 64 11 6 2 1

Pred 2-4 82 74 97 14 17 14 57 5 83 40 59 47 54 46

May Pred 1 51 1 5 16 18 23 4 55 25 3 1 60 21

Pred 2-4 110 41 41 38 65 51 44 66 46 24 13 18 57 38

Aug Pred 1 12 6 7 9 8 8 18 11 18 2 194

Pred 2-4 79 28 62 42 50 29 34 58 66 21 13 4 21 14

Nov Pred 1 35 2 48 12 5 1 1 6 36 4 141 1

Pred 2-4 139 23 97 26 58 37 16 17 39 116 13 29 68 11

Mean relative importance

Feb Pred 1 33.0 21.5 25.6 20.3 15.1 15.7 28.0 21.3 17.0 32.0 18.0

Pred 2-4 12.7 9.2 10.5 8.3 9.7 3.5 9.5 4.2 8.8 11.3 9.7 9.4 10.2 11.1

May Pred 1 22.8 17.5 16.0 15.6 24.4 17.8 16.1 21.2 17.4 26.1 14.2 21.5 22.3

Pred 2-4 11.3 11.2 10.8 7.8 11.1 10.1 12.0 10.8 9.1 10.1 9.8 9.0 11.7 12.1

Aug Pred 1 18.6 20.0 23.3 16.7 20.7 16.3 17.6 18.2 19.9 13.9 31.1

Pred 2-4 9.6 8.7 9.8 8.1 8.8 10.0 8.5 9.7 10.4 7.9 10.0 7.4 6.9 8.1

Nov Pred 1 20.5 22.1 21.6 19.9 17.9 12.1 12.6 19.9 20.7 15.7 23.0 14.7

Pred 2-4 11.2 9.5 11.2 11.4 11.1 8.9 8.9 8.7 10.2 10.9 7.9 9.6 11.9 13.3
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3.4 Relative importance of predictors

Finally, the most relevant predictors used in the MRMs and
respective estimates of their relative importance are depicted
in Table 5 and in Figs. 10, 11, 12 and 13.

For the 14 predictors (circulation types and mean
circulation indices) appearing most often among the four
leading predictors in the best MRM of each grid cell,
Table 5 summarizes frequencies of appearance among
the four leading predictors and gives estimates of their
respective mean relative importance (explained vari-
ance). Figures 10, 11, 12 and 13 show estimates of
the relative importance of the leading predictor in the
best performing (according to MSSS) MRM for each
grid cell, as amounts of explained variance (in percent)
that can be attributed to the respective predictor.

Two points concerning the presentation of relative impor-
tance of leading predictors need to be clarified: First—impor-
tance has been estimated on the basis of MRAs applied to the
whole period from 1951 to 2010. Thus, the explained vari-
ances depicted in Figs. 10, 11, 12 and 13 and in Table 5 must
not be related directly to respective R2 values estimated for the
leave-one-out cross-validation. Second—in order to enable a
comprehensible and consistent characterisation of the most
important predictors, importance estimates for each grid cell

are shown for the respective best model that is based on a
variant of the GWT classification. This has the advantage that
in all cases somewhat familiar denotations of circulation types
(see Table 2) appear (instead of arbitrary numbers—as
resulting from the KM classification—that may be related to
differing circulation types at varying grid cells). The main
purpose of this section is simply to highlight which general
circulation characteristics, reflected by CTs (and mean circu-
lation indices), are the most important predictors in which
months and at which locations. Furthermore, it is intended to
show how main parts of the total explained variance are
distributed among these leading predictors. Thus, the above-
mentioned restrictions should not significantly impair the
main findings presented below.

From Table 5, it can be seen that the mean vorticity index
(V) and several CTs (Wc, NWc, H and Wi) can be denoted as
most important predictors, according to their frequencies of
appearance among the first four predictors in the best GWT
basedMRMs. Particularly V/Wc appear exceptionally often as
the leading predictors in August and November/February. In
these months they are the leading predictors for almost or even
more than the half of all grid cells, respectively. A distinct
differentiation between months emerges according to aggre-
gated appearance frequencies of two main groups of CTs. CTs
appearing in Table 5 have been arranged into two categories.
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The first category comprises CTs characterised by a south-
westerly to northwesterly air mass advection or a central low/
high pressure pattern (Wc, Wi, SWc, NWc, NWi, L, H). The
second category includes CTs featuring advection from the
easterly sector or pronounced meridional flow (NEc, NEa,
Na, Ea, Si). February and November exhibit a clear pre-
ponderance of CTs from the first group, whereas appear-
ance frequencies of both groups are far more balanced in
May and August.

Mean relative importance (averaged over all grid cells) of
predictors reach up to 33.0 % for the first predictor and up to
13.3 % for predictors 2 to 4. However, values of relative
importance for individual grid cells may deviate distinctly
from the overall mean values as can be seen—exemplary for
the most important predictor in each month—from Figs. 10,
11, 12 and 13.

Concerning the most important predictor in February
(Fig. 10), the clear preponderance of CTs Wc and Wi is
obvious, especially in the northwestern, western and
southwestern regions. Highest amounts of explained var-
iance for Wc/Wi—partly exceeding 50 %—occur partic-
ularly in the northwestern parts of the Central European
domain. On the other hand, mainly for grid cells in the
east/southeast explained variances decrease to 20 % and
even below.

In May V, Ea and Wc are the most frequent leading
predictors. Maximum explained variances scarcely exceed
40 %, while minimum values are around 10 %. Although
no clear-cut spatial pattern concerning the leading predic-
tor becomes obvious, it appears that V is dominating in
the western parts of the domain, whereas in the eastern
parts no distinct preponderance of any predictor can be
stated.

A much more distinct spatial structure is evident in August,
with V being the predominant predictor in the west and north-
west with explained variances up to 60 %. In the
east/southeast, V becomes less frequent with explained varia-
tions declining to 10 %, while mainly H, Ea and NEa become
more frequent. V is also in November the most frequent
leading predictor featuring maximum/minimum values of ex-
plained variance around 45 % and 15 %, respectively. Wc, Wi
and NWc reach comparable maximum/minimum values of
relative importance. As in May, no distinct spatial patterns of
preferred predictors are discernible in November.

4 Discussion and conclusions

The present investigations aimed for the quantification of the
relationships between interannual variations in gridded 3-
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month SPI over Central Europe and the large-scale atmospher-
ic circulation. Therefore, we applied a variety of automated
CTCs to daily gridded SLP data and utilized monthly occur-
rence frequencies of resulting types, together with monthly
mean circulation indices, as predictors in multiple linear re-
gression analyses to estimate corresponding SPI values for
February, May, August and November. A resampling ap-
proach has been used to find adequate sets of predictors, and
estimates for the relative importance of predictors have been
derived. Based on a leave-one-out cross-validation procedure
and the determination of several skill scores, the performance
of all models has been assessed

For each grid cell, the 20 best performing models (approx-
imately 10 % of all models created for each grid cell) accord-
ing to the MSSS have been selected and further analysed
concerning their skill characteristics and their configuration
settings.

Some common features of the best performing models
became evident.

Most of the superior models are based on the GWT classi-
fication, and most of the superior models utilize classifications
comprising 18 or 27 CTs. The predominance of the GWT
classification—particularly in February and November—can
be explained by the fact that the GWTclassification explicitly
discriminates between cyclonic and anticyclonic CTs and

thus—like other threshold-based CTCs—appears to be better
suited for capturing precipitation variations than other CTCs
(Beck and Philipp 2010). The clear preponderance of 18 and
27 types CTCs reflects the better separation of cyclonic and
anticyclonic CTs with higher type numbers (e.g. the 10 types
variant of the GWT classification does not incorporate the
discrimination into cyclonic and anticyclonic subtypes).

With respect to the preferred properties of the spatial do-
main used for performing the CTCs, it becomes apparent that
smaller domains are generally preferred in the majority of the
best performing models. This, together with the fact that the
predominance of the smaller domains appears most pro-
nounced in August and November and less distinct in Febru-
ary and May, is in line with respective findings from Beck
et al. (2013), reflecting seasonal variations concerning the
spatial scale of circulation features that are relevant for
precipitation.

Concerning the location of the domain on the other hand no
clear-cut evidence for preferred settings shows up. This may
be due to two interrelated reasons. Firstly, the variations in
location of domains introduced here are rather small and
therefore—in most cases—do not lead to the consideration
of different synoptic systems. Secondly, the relevant charac-
teristics of a specific circulation configuration may be cap-
tured focusing on different subparts of the related synoptic
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systems—as has been shown by Beck et al. (2013). However,
more systematic analyses should be performed to get a deeper
insight into the relevance of the location of the classification
domain.

The last configuration setting that has been varied is the
consideration of monthly mean circulation indices (V,M, Z) as
potential predictors in the MRAs in addition to CT frequen-
cies. Apparently, a large majority of best performing models
utilizes mean circulation indices as additional predictors. This
can be seen most distinctly in August and is least obvious in
February. Although the metrically scaled circulation indices
used here do not reflect respective within-type variations of
individual CTs (Beck et al. 2007), they obviously provide
additional information on general circulation characteristics
that are relevant for SPI variability. This is especially true for
the most often selected V index reflecting the mean vorticity
characteristics.

Although quite a large number of potential predictors (up to
30) are available, only a few predictors (2 to 5 in more than
80 % of all models) are selected for developing the final
MRMs.

On the basis of the selected best performing models, dis-
tinct seasonal and spatial variations in skill become apparent.
With respect to all skill scores, a generally better model
performance in February than in August can be stated, while

May and November exhibit intermediate performances. A
more detailed picture of intra-annual variations in model skill
could be achieved by analysing moving 3-month periods with
monthly time steps. Such additional analyses exceed the scope
of this paper but will be considered in future studies.

Spatial variations may be generalized as a decrease in
model skill from the northwestern to the southeastern parts
of the Central European domain. These findings are in accor-
dance with respective results from other studies on the rela-
tionships between CTs and precipitation (Beck and Philipp
2010, Schiemann and Frei 2010, Beck et al. 2013). On the one
hand, the detected variations reflect seasonal differences in the
intensity of the coupling between large-scale circulation and
precipitation being strongest in winter and weakest in summer,
when smaller scale dynamic processes become increasingly
important. On the other hand, such a gradient in the strength of
the relationship between large-scale atmospheric dynamics
and precipitation also exists between the western and north-
western—more oceanic—parts and the eastern and southeast-
ern—more continental—parts of the Central European do-
main. At least partly, these seasonal and spatial variations
are also discernible from the spatial patterns of CTs preferably
selected as predictors. In the western parts of the domain a
preponderance of CTs implying oceanic influence (southwest-
erly, westerly and northwesterly CTs) and of the V index
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persists in all months reflecting the dominating synoptic-scale
atmospheric features (e.g. mid-latitude cyclones and their
frontal systems) relevant for precipitation in these regions. In
regions farther east, CTs representing more continental influ-
ence (northerly to southerly circulation types) gain impor-
tance, particularly in May and August.

Finally, the important question in how far the presented
approaches have the potential for downscaling of future SPI
variability in Central Europe should be addressed, although
they cannot be answered in a general way. The best models
reach remarkable skill in terms of MSSS and as well in terms
of HSSdry and HSSwet, particularly in the more oceanic,
western parts of the domain. For these regions, featuring
MSSS, HSSdry and HSSwet values well above 0.6, the utili-
zation of the CTC-based MRMs within the framework of
downscaling attempts for estimating possible future SPI var-
iations appears to be feasible. However, for those regions
farther to the east/southeast, exhibiting values of the varying
skill scores close to 0 (indicating that the quality of the best
models is comparable to an estimate based on climatology),
the application of the respective CTC-based models in down-
scaling approaches is not justified.

It is worth mentioning that our analyses suggest that using
the mean of the best performing models instead of the indi-
vidual best model results to estimate SPI values leads to an
improvement in model performance, in terms of all skill
scores used in this study. However it needs to be further
investigated in how far this finding is generally transferable.

For the present analyses, CTCs have been used that only
consider gridded SLP data. However, recent studies (Huth
et al. 2014) document that an improvement in synoptic skill
of CTCs can be reached by the inclusion of additional large-
scale atmospheric fields (e.g. vorticity, geopotential height of
varying pressure levels, temperature) into the classification
approaches. Such “extended” CTCs have been developed
with in the f ramework of the COST733 Act ion
“Harmonisation and Applications of Weather Types Classifi-
cations for European Regions” (Philipp et al. 2014). Further-
more, CTCs may be further modified in order to attain max-
imum synoptic skill for specific target variables—e.g. gridded
SPI—via variable weighting schemes applied to the variables
entering the classification or by taking into consideration the
target variable itself (so called conditional classifications).

The utilization of such optimized CTCs within
MRMs as presented here may lead to a further improve-
ment in model skill, possibly enabling the application of
such approaches for the downscaling of future SPI var-
iations, even in regions for which only modest skill has
been reached in this contribution.
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