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Highly stable and efficient charge generation layers (CGLs) comprising caesium phosphate (Cs3PO4)

doped 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as n-type organic semiconductor

and molybdenum trioxide (MoO3) doped N,N0-di-(naphthalen-1-yl)-N,N0-diphenyl-benzidine

(a-NPD) as p-type organic semiconductor, respectively, are presented. By inserting narrow-gap

organic copper-phthalocyanine (CuPc) and wide-gap insulating aluminum oxide (Al2O3) as

interlayer (IL), we show that the long-term stability of the CGL can be improved. The variation of

the CuPc IL thickness yields an optimum of 8 nm as a trade-off between minimal operating voltage

and maximum voltage stability of the CGL. Luminance-current density-voltage characteristics and

lifetime measurements of stacked green organic light emitting diodes (OLEDs) confirm the

functionality and high voltage stability of the presented CGL. The luminous efficacy of the stacked

OLED compared to the non-stacked reference device is nearly unchanged. However, the lifetime of

the stacked device is enhanced by a factor of 3.5. Consistent with our experimental findings, we

propose a model of the energy-level diagram of a fully doped CGL with IL based on a field-assisted

tunneling mechanism. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4720064]

I. INTRODUCTION

Organic light emitting diodes (OLEDs) have attracted

increasing attention in the recent years, since they are promis-

ing candidates for high-efficiency solid state light sources.1 A

long operation lifetime of the OLED devices without reduc-

tion in luminous flux has to be ensured to increase their ac-

ceptance in the growing market of new lighting technologies

and allow for mass-production. One elegant way to improve

the lifetime is vertical stacking of a number of OLEDs on top

of each other.2–5 This stacking approach reduces the electrical

stress for each individual OLED unit, resulting in an

enhanced lifetime at a given luminance level. The connecting

element of the individual OLED units is commonly called a

charge generation layer (CGL).2 Since the first studies by

Kido et al.2 using indium tin oxide (ITO) or (F4-TCNQ) adja-

cent to a hole transport layer (HTL) as CGLs, many other

materials were investigated.3,6–12 Under suitable bias condi-

tions, the connection unit should be capable of generating

electron-hole pairs, separating them and supplying these

charges to the neighboring functional layers. The main

requirement is that the charge generation takes place with a

lowest possible voltage drop across the CGL. This means that

a two-fold stacked OLED roughly consumes twice the volt-

age of a non-stacked OLED. The most crucial point for light-

ing applications is the reduction of voltage increase during

operation of the stacked OLED, and hence the charge genera-

tion layer, under constant current conditions.

Charge generation layers based on thin metal films,

transparent conductive oxides and transition metal oxides

(TMOs) have been demonstrated.3,10–12 Another approach is

using a doped organic p-n heterojunction as suggested by

Liao et al.6 The latter type can be described by a field-

induced charge-carrier separation at the doped organic/

organic heterointerface via tunneling of electrons through the

depletion zone from the highest occupied molecular orbital

(HOMO) of the p-type layer to the lowest unoccupied molec-

ular orbital (LUMO) of the n-type layer.13 The p-type dopant

can either be organic such as F4-TCNQ or a transparent metal

oxide, like WO3, V2O5 or molybdenum trioxide (MoO3) as

used in this work.6,9,13 Elementary alkaline metals such as Li,

Cs, and Mg or alkaline metal complexes as caesium carbon-

ate (Cs2CO3) are typically used for doping of electron trans-

port layers (ETLs).6–8,12–15

For future mass-production, it is essential that the used

organic materials are easily processable and cost efficient.

Very recently, Wemken et al. demonstrated that caesium

phosphate (Cs3PO4) is both a low cost and efficient n-type

dopant in OLEDs.16

To the best of our knowledge, we are the first to demon-

strate that Cs3PO4 can also be used in CGLs with improved

performance, e.g., regarding drive voltage. Furthermore, this

material overcomes some of the difficulties encountered with

other n-type dopants, such as the need of special evaporation

cells, absorption in the visible range, migration of dopants

and hence instability of the fabricated devices.17

So far, there are only few reports on long-term stability

of stacked OLEDs or charge generation layers under real

operation conditions.5 In this paper, we address this issue in

a detailed and systematic study and show that by inserting

both a narrow-gap organic material and a wide-gap oxidic

material as interlayer (IL) between the p-doped and thea)Electronic mail: carola.diez@osram-os.com.
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n-doped part, the operating voltage can be minimized under

constant current conditions and the long-term stability of the

devices can be improved. Consistent with our experimental

findings we propose a model of an energy-level diagram for

a fully doped CGL with IL based on a field-assisted tunnel-

ing mechanism.

This paper is organized as follows: The experimental

details of the fabricated CGL test devices and the stacked

green light-emitting diodes are given in Sec. II. Section III A

shows the influence of an organic interlayer within the doped

p-n heterojunction as compared to a wide-gap oxidic inter-

layer. The results of the stacked green OLEDs, including

efficacies and lifetime are presented in Sec. III B. The paper

concludes with a discussion about the physical mechanism

of an interlayer within a doped p-n junction (Sec. IV).

II. EXPERIMENTAL DETAILS

All devices prepared in this study exhibited an active

area of 4 mm2 and were fabricated in a vacuum deposition

chamber at a base pressure of 10�7 mbar. Before evaporation

the patterned ITO glass substrates were cleaned with solvents

in a multistep process and exposed to oxygen plasma. Before

loading into the evaporation cell, the Cs3PO4 powder

was dried at 440 �C for over 6 h under inert atmosphere to

remove traces of water. All other materials were used as

received. The rate of deposition for the organic materials was

0.05 nm/s, and the substrates were not heated during evapora-

tion. The doped layers were directly formed from the gas

phase by co-evaporation of the host material and the dopant.

This deposition technique was also used for the green dye

inside the host. Prior to testing, the devices were encapsulated

under inert gas atmosphere with a glass lid and getter con-

taining zeolite as dryer. Current density-voltage characteris-

tics and electroluminescence (EL) spectra were measured

using a source measurement unit (Keithley 2400-C) and a

spectrometer (Instrument Systems CAS 140 with TOP100).

The luminance over time was detected by a blue enhanced

silicon photodiode (Photonic Detectors, Inc., PDB-C613)

under constant current conditions.

A. CGL test devices

For a fast investigation and optimization of charge gen-

eration layers, a simplified test structure was developed. The

general layer sequence is shown in Fig. 1(a), including thick-

nesses. The doping concentration of both Cs3PO4 and MoO3

was 10%.

The test structure is designed in such a way that by apply-

ing a positive bias to the ITO anode a tunneling current can be

measured (see Fig. 1(b)). This polarity for the CGL is the

same as in the stacked OLED. The undoped 2,9-dimethyl-4,7-

diphenyl-1,10-phenanthroline (BCP) and N,N0-Di-(naphtha-

len-1-yl)-N,N0-diphenyl-benzidine (a-NPD) layers prevent

direct charge carrier injection from the electrodes under these

bias conditions to ensure that the measured current results

from charge generation at the p-n junction. Two different

types of interlayer materials were used. The first device set

comprising the narrow-gap organic material copper-

phthalocyanine (CuPc) and the second device set comprising

the wide-gap insulator material aluminum oxide (Al2O3). For

the growth of the Al2O3 layers, a non-reactive RF magnetron

sputtering process with a frequency of 13.56 MHz

was applied. The power density on the Al2O3 target was

2.3 W/cm2 and the base pressure was about 3 l bars. The pro-

cess gas was argon with a total flux of 70 sccm. All experi-

ments were done without breaking vacuum between the

organic deposition processes. The IL thickness of both series

was varied between 0 nm and 16 nm in steps of 2 nm. By a

combinatorial evaporation and sputtering process with differ-

ent shadow masks, it was possible to process the devices on

the same substrate successively to ensure comparability of dif-

ferent devices.

B. Stacked green light-emitting diodes

To find the optimal position of the emitting layers

(EMLs) of the green devices, optical simulations based on a

dipole model were carried out.18–20 For comparison, a non-

stacked reference device with the same organic layer thick-

ness as the stacked devices was prepared. This is necessary

to ensure an approximately equal mode distribution espe-

cially for ITO/organic-modes and therefore reduces influence

of the optical microcavities. A schematic sketch of the non-

stacked and stacked devices can be found in Fig. 2.

The single p-i-n OLED structure consisted of an ITO an-

ode, 5% molybdenum trioxide (MoO3) doped a-NPD for hole

injection and transport (180 nm), undoped a-NPD (10 nm) as

electron blocking layer, 15% of a green phosphorescent dye

fac-tris(2-phenly-pyridin)iridium (Ir(ppy)3) in a predomi-

nantly electron conductive host (TMM004 (Ref. 21) as EML

(10 nm), 10 nm thick TMM004 as hole blocking layer, 2%

Cs3PO4 doped BCP as an electron transport and injection

layer (60 nm) and a 150 nm thick silver cathode. After that,

we fabricated stacked p-i-n OLEDs by simply stacking the

single p-i-n cell without or with an 8 nm thick CuPc IL within

the p-n junction interconnection unit as shown in Fig. 2(b).

III. RESULTS

A. CGL test devices

To investigate the influence of a narrow-gap organic IL,

namely, CuPc, and a wide-gap insulating IL, namely, Al2O3,

within the p-n junction, a series of CGL test devices with

FIG. 1. (a.) Device structure of the CGL test device with different IL thick-

ness x. The doping concentration of both Cs3PO4 and MoO3 was 10%. (b.)

Exemplary j-V characteristics of a CGL test device.
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varying IL thickness were processed as described in Sec. II

A. For comparison a reference device without IL was fabri-

cated as well. Fig. 3 shows the j-V characteristics.

It is remarkable that the steepest characteristic is meas-

ured for the device with 4 nm CuPc IL and not for the refer-

ence device without IL. One would assume intuitively that

by inserting an undoped IL material, the IL should act as a

resistor and therefore the voltage drop across the CGL

should be increased. But this is not the case here. The volt-

age drop across the CGL can even be reduced by inserting

4 nm of the organic IL CuPc. Whereas inserting 4 nm Al2O3

leads to a rise of the applied voltage for a given tunneling

current. The larger the Al2O3 layer thickness the flatter the j-

V characteristics become. It can be concluded that all CGL

test devices comprising the Al2O3 IL have lower conductiv-

ity compared to the device without IL and the devices with

CuPc IL, respectively. Therefore, an Al2O3 IL acts as a car-

rier blocking layer in a doped p-n junction.

The stability of the CGL test device comprising the

CuPc and the Al2O3 IL was investigated by applying a con-

stant current density of 10 mA/cm2 and monitoring the volt-

age over time. The experimental data can be found in Figs. 4

and 5, respectively. We note that these current densities cor-

respond to accelerated testing conditions in OLEDs. For a

high operational stability in an OLED, it is required that the

voltage remains constant over time. Within the first hour a

pronounced voltage rise for the device without IL can be

measured. Clearly, such a behavior would be detrimental for

a stacked OLED. At the same time, the devices with the

CuPc IL (see Fig. 4) show a voltage drop, which we attribute

to a temperature enhanced conductivity of organic materials

due to heating during the measurement.22

At later times, a significant voltage rise can be seen for

the device with 2 nm CuPc during electrical aging. Only a

small voltage rise can be found for the device with 4 nm

CuPc, whereas there is no voltage rise for the device with

8 nm CuPc.

The devices with the Al2O3 IL show qualitatively a sim-

ilar behavior during electrical aging. With rising interlayer

thickness, the voltage stability of the devices is increased.

But we have to point out that for an acceptable stability of

FIG. 3. Current density-voltage characteristics of CGL test devices (struc-

ture shown in Fig. 1) with a narrow-gap organic and wide-gap oxidic inter-

layer material of different thicknesses. (Filled symbols: CuPc, open

symbols: Al2O3).

FIG. 2. Device structure of the non-stacked (a) reference OLED and the

stacked (b) OLED without and with an 8 nm CuPc IL. The total organic

layer thickness of all 3 fabricated devices is the same.

FIG. 4. Voltage dependency over time at a constant current density of

10 mA/cm2 of CGL test devices. The CuPc IL thickness was varied between

0 nm and 8 nm.

FIG. 5. Voltage dependency over time at a constant current density of

10 mA/cm2 of CGL test devices. The Al2O3 IL thickness was varied

between 0 nm and 12 nm.
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the CGL an Al2O3 IL thickness of at least 12 nm is needed.

This finding is consistent with a proportionally high voltage

drop across the CGL which would reduce the efficiency in a

stacked OLED. Consequently, the devices with the CuPc IL

and not with the Al2O3 IL are further examined.

To demonstrate the IL thickness dependency of the

CGL stability, the voltage at a constant current density of

10 mA/cm2 was extracted from the j-V characteristics meas-

urements for each CuPc layer thickness before and after elec-

trical aging of the test devices, respectively. This serves as a

figure of merit for the operating voltage of the CGL. Fig. 6

shows this dependency. As mentioned above, it can be seen

clearly that there is a voltage minimum for a CuPc thickness

of 4 nm. With rising layer thickness the voltage drop at the

CGL is increased. This holds true for devices before and af-

ter electrical aging. The lowest voltage rise can be found for

devices with an IL thickness of 8 nm or larger. In conclusion,

we observe an optimum of 8 nm CuPc thickness as a trade-

off between minimal voltage drop and maximum stability of

the CGL.

B. Stacked green light-emitting diodes

Stacked green light-emitting diodes without and with an

8 nm thick CuPc IL as well as a non-stacked reference device

with the same organic layer thickness were fabricated as

described in Sec. II B. The current density-voltage character-

istics and the luminance versus voltage of the three devices

are presented in Fig. 7.

For a given current density, the stacked devices con-

sume slightly more than twice the voltage of the non-stacked

device. This can be explained by an equivalent circuit where

the individual diodes, and for a stacked device the individual

emission units, are connected in series. The remaining differ-

ence can be attributed to a small voltage drop across the

CGL. At 1000 cd/m2 the stacked OLED without IL exhibits

an operation voltage of 6.3 V, which is larger than twice the

operation voltage (2.7 V) of the non-stacked reference

OLED. However, the incorporation of the CuPc IL leads to a

reduction in operation voltage to 5.9 V at 1000 cd/m2, indi-

cating that this effectively enhances the tunneling probability

of charge carriers through the depletion zone at the interface

of the doped organic p-n junction. The additional 0.5 V volt-

age drop compared to twice the voltage of the non-stacked

device can be attributed to the CGL. However, we have to

point out that the CGL is working well, if one takes into

account that the CGL has to overcome approximately 3 V

built-in potential, which is the difference between the

LUMO of BCP (Ref. 23) and the HOMO of a-NPD.24 Few

results with a comparable voltage drop across the CGL have

been reported in the literature.5,14 One possibility to reduce

this voltage drop further could be a tuning of the concentra-

tion of Cs3PO4 and MoO3 in the doped layers resulting in a

better energy-level alignment at the interface.

Fig. 8 shows the normalized electroluminescence spec-

tra of the stacked and non-stacked green OLEDs measured at

10 mA/cm2. All three OLEDs exhibit the same EL intensity

without any narrowing of the spectrum. The emission profile

follows a Lambertian distribution (not shown here) for all

three devices. These findings are a clear indication that the

positioning of the EMLs within the microcavity was correct

and that all devices are optically comparable.

The current efficiency as well as the luminous efficacy

of the stacked and reference devices, respectively, are dis-

played in Fig. 9. The data were measured on devices without

FIG. 6. Voltage dependency with respect to IL thickness at a constant cur-

rent density of 10 mA/cm2 of CGL test devices. Filled symbols: before elec-

trical aging, open symbols: after electrical aging for 90 h at 10 mA/cm2.

FIG. 7. Current density-voltage characteristics (filled symbols) and lumi-

nance (open symbols) of green stacked OLEDs and a non-stacked reference

device. The stacked OLEDs were fabricated without and with an 8 nm thick

CuPc interlayer.

FIG. 8. Normalized emission spectra of stacked devices without and with

CuPc interlayer as well as a non-stacked reference device. Measurements

were done at a constant current density of 10 mA/cm2.
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any outcoupling enhancement via half ball lenses, microlens

arrays or scattering foils.20 At 1000 cd/m2 the current effi-

ciency of both stacked devices is 64 cd/A. Comparing with

the non-stacked device (28 cd/A at 1000 cd/m2), the current

efficiency of the stacked devices is more than doubled. This

can be explained by an optical benefit of the second cavity

maximum for EML2 (see Fig. 2) in the stacked device,

where plasmonic losses are avoided.25 However, this gain in

current efficiency is compensated by a slightly larger operat-

ing voltage of the CGL, resulting in comparable luminous ef-

ficacy of all three OLEDs (34 lm/W at 1000 cd/m2).

One of the most important parameters in real OLED

applications is the lifetime of the devices, which goes hand

in hand with the voltage stability. An accelerated lifetime

measurement at an initial luminance of 4000 cd/m2 under

constant current conditions was performed. For the stacked

and non-stacked devices, the constant current density was

j¼ 7.5 mA/cm2 and j¼ 18.7 mA/cm2, respectively. The

luminance decay and the voltage stability over the operating

time are presented in Fig. 10. The time to 70% of the initial

luminance (LT70) for the non-stacked reference device is

180 h, whereas for the stacked device without CuPc IL it is

580 h. These numbers are outperformed by the lifetime of

the stacked device with the CuPc IL, which is 630 h. This

means that the lifetime of the stacked device is 3.5 times

higher compared to the non-stacked device. The lifetime at a

common initial luminance of 1000 cd/m2 can easily be calcu-

lated from the measured data by using the well-known rela-

tionship Ln
0 � s ¼ const:, 26 with the initial luminance L0, the

acceleration factor n, and the measured lifetime s. With the

lifetime measurement of the reference device at 4000 cd/m2

and by approximating an equal luminance output from both

emission units in the stacked device, i.e., each unit emits

2000 cd/m2 leading to the lifetime of 630 h, an acceleration

factor of n¼ 1.8 can be calculated. This results in an extrapo-

lated lifetime of over 7500 h (LT70) at 1000 cd/m2. Most

remarkably, however, there is no voltage rise for the device

with the 8 nm IL during operation. This clearly demonstrates

the superior performance of the investigated CGL system

consisting of caesium phosphate as a novel n-dopant and

CuPc as interlayer.

IV. DISCUSSION

The understanding of the working mechanisms of

charge generation in different CGL architectures is an active

field of research.3,5,13 Generally, CGL architectures are di-

vided into two classes.3,13 In the first class, the CGL is

formed by a doped p-n heterojunction where the charge gen-

eration takes place at the interface between the p- and n-

doped layers.13 The second class comprises TMOs. In the

latter case, charge generation takes place at the interface

between the hole transporting material and the TMO.3,27 Gao

et al. proposed an architecture where only a p-type doped or-

ganic layer together with Al2O3 as hole blocking layer serve

as CGL.28 So far, the focus of research has been on minimiz-

ing the voltage drop across the CGL and thus maximizing

the charge generation efficiency, but less attention has been

paid to the long-term stability of CGLs. Our results show

that the voltage stability of the CGL can be improved by

inserting an IL. One hypothesis is that the IL prevents a

chemical reaction at the interface between different species

of the n- and p-type doped layers or dopant interdiffusion.

Both of these detrimental effects can lead to additional tun-

neling barriers and result in traps or compensation effects.

This assumption is supported by the observation that for

both IL, the voltage rise during operation is decreased in

comparison to CGLs without IL (see Figs. 4 and 5, respec-

tively). CuPc is a well-known material which was often used

for improving hole injection,29–31 whereas wide-gap insulat-

ing materials as Li2O or Al2O3 were often used for improv-

ing the electron injection32 by optimizing the band

alignment. The advantage of CuPc is, that closed layers are

formed at small thicknesses.29 In contrast, a larger thickness

of Al2O3 compared to CuPc is needed, because of its differ-

ent wetting behavior. We found in our measurements inho-

mogeneities for the Al2O3 layer thickness which can be

attributed to the sputtering process (not shown here). There-

fore, larger thicknesses are necessary to form closed layers

with sputtered Al2O3. Once a closed layer is formed, the IL

acts as a physical barrier between the reactive materials.

It is striking that we observe a decrease of the voltage

drop across the CGL with increasing CuPc thickness within

the first 4 nm (see Figs. 3 and 6). Intuitively, one would

FIG. 9. Current efficiency (filled symbols) and luminous efficacy (open

symbols) of stacked devices without and with CuPc interlayer with respect

to a non-stacked reference device.

FIG. 10. Luminance (filled symbols) and voltage (open symbols) versus

time of stacked devices without and with CuPc interlayer in comparison to a

non-stacked reference device. Measurements were done at an initial lumi-

nance of 4000 cd/m2.
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expect an additional voltage drop due to the undoped dielec-

tric material acting as a resistor. In fact, this is what we

observe with the Al2O3 IL, but not with CuPc. Instead, for

CuPc the voltage drop decreases up to a layer thickness of

4–8 nm, corresponding to the formation of a closed layer29–31

and thus resulting in a smaller barrier and hence higher tun-

neling current as observed in our experiments.

We now turn to the mechanism of charge generation.

Al2O3 is a wide-gap insulating material, whereas CuPc is a

material with a narrow-gap lying between the HOMO of the

p-doped layer and the LUMO of the n-doped layer.23,33

Fig. 11 shows a simplified drawing of the CGL energy-level

diagram for devices without IL ((a) and (b)), with Al2O3 IL

((c) and (d)), and with CuPc IL ((e) and (f)). The energy-

level diagram for the device without IL is taken from Kröger

et al. Note that in an ideal p-n junction without considering

interfacial dipoles the depletion zone is in the order of

10–20 nm assuming typical free carrier concentrations of

10�1–10�19 cm�3. As a matter of fact, Kröger et al. found

that without considering interfacial dipoles in their system it

is not possible to explain the tunneling mechanism. There-

fore, Figs. 11(a) and 11(b) have to be seen as a simplified

sketch. In the case of the wide-gap Al2O3 the interlayer leads

to an additional tunneling barrier (see Fig. 11(d)), resulting

in an increased drive voltage as we found in our experiments.

By inserting the narrow-gap CuPc interlayer the large band

bending at the interface may result in an additional tunneling

path from the HOMO of the p-type organic semiconductor

via the LUMO of CuPc to the LUMO of the n-type semicon-

ductor as indicated in Fig. 11(f). The sketch of the energy-

level diagram is not correct in a quantitative sense, but it

qualitatively explains the observed charge generation. Fur-

ther measurements by, e.g., ultraviolet photoelectron spec-

troscopy (UPS) would be helpful to clarify the exact values

of the energy levels but are beyond the scope of this

publication.

Furthermore, the tunneling probability of charge carriers

through the depletion zone could be further enhanced by the

thin CuPc IL within the CGL, because of the formation of an

additional interfacial dipole. Lai et al.36 found that there is an

interfacial dipole between CuPc and F16CuPc. Another impor-

tant aspect is that CuPc may introduce additional gap states.

Such gap states have been proposed in several reports on

enhanced charge carrier injection by inserting CuPc layers

between the anode and the organic layer sequence.29–31,33

Schöbel found by UPS measurements additional gap states

which explained the improved charge carrier injection.34 In

addition, in other CGL systems gap states have been deliber-

ately introduced for assisting charge carrier injection by

inserting an Li2O interlayer35 or by inserting a combination of

a thin LiF/Al layer.5 In our case, such gap states could assist

electron tunneling from the HOMO of the p-doped layer to

the LUMO of the n-doped layer.

Finally, band-to-band tunneling from the HOMO of

CuPc to the LUMO of CuPc is also likely, if the band bend-

ing is large enough. Our experimental findings of the

increased current density for the device with the 4 nm CuPc

IL support these hypotheses explaining the very efficient

charge generation.

V. CONCLUSION

We showed that a highly stable CGL based on a doped p-
n junction can be formed by using MoO3 as p-type dopant and

Cs3PO4 as novel n-type dopant. The investigation of two dif-

ferent classes of interlayer material inserted within the doped

junction, on the one hand, the narrow-gap organic material

CuPc, and on the other hand, the wide-gap oxidic material

Al2O3, demonstrated that both types of IL help to stabilize the

CGL. Furthermore, the voltage consumption of a CGL com-

prising a thin IL of CuPc can be further improved and an opti-

mal IL thickness of 8 nm can be found as a trade-off between

minimal operating voltage and maximum voltage stability of

the CGL. Luminance-current density-voltage as well as life-

time measurements on stacked green OLEDs confirmed the

good functionality and stability of the developed CGL. The

lifetime of the stacked device was enhanced by a factor of 3.5

without reduction in efficiency or luminous flux. We dis-

cussed the charge generation mechanism of the CGL with dif-

ferent types of IL and proposed a model of the energy-level

alignment which describes consistently our experimental find-

ings. From our point of view, the IL is needed to prevent

chemical reactions or dopant interdiffusion at the p-n interface

leading to a reduced drive voltage and an enhanced stability

of the devices. By choosing a proper IL material, e.g., CuPc,

the energy-level alignment at the interface can be modified by

interfacial dipoles, and gap states can be deliberately intro-

duced leading to an enhanced tunneling current and therefore

increased performance of stacked OLEDs.

(a.) no external bias (b.) under reverse bias

p-doped n-doped p-doped n-doped

(c.) no external bias,
with Al O IL2 3

(d.) under reverse bias,
with Al O IL2 3

p-doped n-doped

IL

p-doped n-doped

IL

(e.) no external bias,
with CuPc IL

(f.) under reverse bias,
with CuPc IL

p-doped n-doped
IL

p-doped n-doped
IL

FIG. 11. Simplified model of the energy-level alignment for a CGL device

without IL ((a) and (b)), with Al2O3 IL ((c) and (d)) and with CuPc IL ((e)

and (f)): (a), (c), and (e) no external bias, (b), (d), and (f.) under reverse bias.
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