
J Glob Optim (2012) 52:537–551
DOI 10.1007/s10898-011-9766-2

An improved algorithm to test copositivity

Julia Sponsel · Stefan Bundfuss · Mirjam Dür

Received: 30 January 2011 / Accepted: 8 August 2011 / Published online: 25 August 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Copositivity plays a role in combinatorial and nonconvex quadratic optimization.
However, testing copositivity of a given matrix is a co-NP-complete problem. We improve
a previously given branch-and-bound type algorithm for testing copositivity and discuss its
behavior in particular for the maximum clique problem. Numerical experiments indicate that
the speedup is considerable.

Keywords Copositive matrices ·Maximum clique problem · Standard quadratic program ·
Semidefinite programming

Mathematics Subject Classification (2000) 15A48 · 15A63 · 05C69 · 90C09 · 90C20

1 Introduction

In the last decade, copositivity of matrices has received a growing amount of interest in the
optimization community. A symmetric matrix A is said to be copositive, if xT Ax ≥ 0 holds
for all x ≥ 0. A copositive matrix is strictly copositive if xT Ax = 0 only holds for x = 0.
The set of copositive matrices

C = {A ∈ S : xT Ax ≥ 0 for all x ≥ 0}

Dedicated to the memory of Reiner Horst.

J. Sponsel ·M. Dür (B)
Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen,
P.O. Box 407, 9700 AK Groningen, The Netherlands
e-mail: M.E.Dur@rug.nl

J. Sponsel
e-mail: J.K.Sponsel@rug.nl

S. Bundfuss
Uhlandstraße 14, 68542 Heddesheim, Germany
e-mail: stefan.bundfuss@gmx.de

123

538 J Glob Optim (2012) 52:537–551

(where S denotes the set of symmetric matrices) is known to be a closed, convex, full-dimen-
sional and pointed cone whose interior is the set of strictly copositive matrices. Like the
semidefinite cone it is nonpolyhedral, but its structure is more complex, as testing whether a
given matrix A is in C is a co-NP-complete problem [23].

Numerous conditions for copositivity have been proposed, see [1,15,19,20] for recent sur-
veys. Many of these conditions involve properties of principal submatrices, and it is hard to
use those for optimization purposes. However, in [11] an algorithmic approach was proposed,
which basically relies on investigating xT Ax on smaller and smaller parts of the standard
simplex. The paper [7] follows somewhat related ideas. We will review and generalize the
method of [11] in Sect. 2.2.

Although testing copositivity of a matrix is an interesting problem in its own, copositiv-
ity also plays an important role in optimization. A number of optimization problems can
be solved through a sequence of copositivity tests. An example is the standard quadratic
optimization problem (StQP):

(StQP)
min xT Qx
s.t. eT x = 1

x ≥ 0

with e denoting the all-ones vector and Q symmetric, but not necessarily positive semidefinite.
This problem includes NP-hard problems like the maximum clique problem, see [5,6,13]. It
is well-known ([6]) that (StQP) has the following copositive formulation

max{y : Q − yE ∈ C} (1)

where E = eeT denotes the all-ones matrix. Since the variable y is one-dimensional and C is
convex, we can approximate the optimal value by a bisection procedure: Assume we have a
lower bound yl with B(yl) := Q − yl E ∈ C and an upper bound yu with B(yu) /∈ C. Check
whether B(

yl+yu
2) is copositive. If it is, we can improve the lower bound, otherwise the upper

bound. Iterating this procedure approximates the optimal value to arbitrary precision.
A special case of the standard quadratic problem is the maximum clique problem. Given

an undirected graph G, it asks for a clique (i.e., a complete subgraph) of maximal cardinality.
This maximal cardinality is called the clique number and is denoted by ω(G) or simply ω.
Motzkin and Straus showed in [22] that

1
ω
= min{xT (E − AG)x : eT x = 1, x ≥ 0} (2)

where AG is the adjacency matrix of G. Hence, the clique number can be determined by a
standard quadratic optimization problem, which can be formulated as the copositive program

1
ω
= max{λ ∈ N : (E − AG)− λE ∈ C}.

In the literature [13, Corollary 2.4], there is a second copositive formulation of the maximum
clique problem:

ω = min{λ ∈ N : λ(E − AG)− E ∈ C}. (3)

These formulations are equivalent, see [9] for more details. As ω ∈ {1, . . . , n}, it can be
determined by at most n copositivity tests using either formulation.

Whereas this paper will focus on the maximum clique problem, many other problems are
also known to have a copositive formulation. The reader is referred to [12,15] and references
therein for a more detailed exposition. Our paper is organized as follows: We first review and
improve the copositivity conditions and the test algorithm introduced in [11]. In Sect. 3 we

123

J Glob Optim (2012) 52:537–551 539

discuss the behavior of our algorithm when applied to the maximum clique problem. This
behavior depends crucially on the choice of a suitable set M in the algorithm. This choice is
discussed in Sect. 4. Numerical experiments are described in Sect. 5.

2 Testing copositivity

2.1 Idea and notation

The starting point of our approach is the observation that A is copositive if and only if
xT Ax ≥ 0 for all x ≥ 0 with ‖x‖1 = 1. The set of all these points is called the standard
simplex:

�S := {x ∈ R
n+ : ‖x‖1 = 1}.

The simplices � in R
n+ we consider are the convex hull of n affinely independent points

(vertices) v1, . . . , vn . The vertices of �S are the unit vectors e1, . . . , en .
In [11], a sufficient copositivity condition based on the vertices of �S was given, and it was

shown how better conditions can be derived by looking at smaller and smaller parts of �S .
More formally, let � be some simplex in R

n . A family P = {�1, . . . , �m} of simplices
satisfying

� =
m⋃

i=1

�i and int(�i) ∩ int(� j) = ∅ for i �= j

is called a simplicial partition of �. Such a partition can be generated by successively bisect-
ing simplices in the partition. For a more detailed description of simplicial partitions see [18].
It will be convenient to denote the set of vertices of partition P by

V (P) = {v : v is a vertex of some � ∈ P}.
As a simplex � is determined by its vertices, it can be represented by a matrix V� whose
columns are these vertices. V� is nonsingular and unique up to a permutation of its columns
(which is irrelevant in our arguments). We shall refer to the set of all matrices corresponding
to simplices in partition P as

M(P) = {V� : � ∈ P}.
We will quantify the “fineness” of a partition P by the maximum diameter of a simplex in P ,
which we denote by

δ(P) = max
�∈P max

u,v∈V ({�}) ‖u − v‖.

2.2 Copositivity conditions

Letting N resp. S+ denote the cones of entrywise nonnegative matrices resp. positive semi-
definite matrices, it is easy to see from the definition that both A ∈ N and A ∈ S+ are
sufficient conditions for copositivity of a matrix A. More generally, if M ⊂ C, then trivially
A ∈M is a sufficient condition for copositivity. Using simplicial partitions of �S , this can
be strengthened as follows:

123

540 J Glob Optim (2012) 52:537–551

Theorem 2.1 Let A ∈ S, let M ⊂ C, and let P be a simplicial partition of �S. If

V TAV ∈M for all V ∈ M(P),

then A is copositive.

Proof Let x ∈ �S . We have to show that xTAx ≥ 0. Let � ∈ P be a simplex containing x ,
and let v1, . . . , vn denote its vertices. We represent x in barycentric coordinates with respect
to �:

x =
n∑

i=1

λivi with
n∑

i=1

λi = 1.

Since x ∈ �, we have λ := (λ1, . . . , λn)T ≥ 0, whence we get

xTAx = (V λ)TA(V λ) = λT V TAV︸ ︷︷ ︸
∈M⊂C

λ ≥ 0,

which shows that A is copositive. 	

Theorem 2.1 is a generalization of the sufficient copositivity condition proposed in [11],

where the case M = N was discussed in detail. From the same paper it follows that, provided
that the set M contains the nonnegative cone N , we can formulate the following necessary
criterion for strict copositivity:

Theorem 2.2 Let A ∈ S be strictly copositive and let M ⊇ N . Then there exists ε > 0 such
that for all partitions P of �S with δ(P) < ε we have

V TAV ∈M for all V ∈ M(P). (4)

Proof Since this statement was shown to be true for M = N in [11, Theorem 2], this follows
immediately. 	

The results of this section can be interpreted as the construction of a new approximation
hierarchy. We define

KM,P = {A ∈ S : V TAV ∈M for all V ∈ M(P)}.
Then Theorem 2.1 entails KM,P ⊂ C for any M ⊂ C and all partitions P of the standard
simplex. And, assuming M ⊇ N , we get from Theorem 2.2 that

int(C) ⊂
⋃

ε>0

⋃

δ(P)<ε

KM,P .

Next, we prove a lemma which will be used to show that the algorithm described in the
next section terminates finitely for A /∈ C.

Lemma 2.3 Let A ∈ S. The following two assertions are equivalent.

1. The matrix A is not copositive.
2. There exists ε > 0 such that for all partitions P of �S with δ(P) < ε there exists

v ∈ V (P) with vTAv < 0.

Proof Obviously, 2 implies 1. To show the converse, take A /∈ C. Then there exists x ∈ �S

with xTAx < 0. Since the quadratic form xTAx is continuous, there exists ε > 0 such that
yTAy < 0 for all y ∈ R

n with ‖x − y‖ < ε. Let P be a partition of �S with δ(P) < ε. Then
there exists v ∈ V (P) with ‖x − v‖ < ε and consequently vTAv < 0. Thus, 1 implies 2. 	

123

J Glob Optim (2012) 52:537–551 541

2.3 The algorithm

The results of the preceding section naturally yield an algorithm to test whether a matrix is
copositive or not: Starting with P = {�S}, check whether there is a vertex v with vT Av < 0,
or whether the copositivity criterion of Theorem 2.1 is satisfied. If neither is the case, refine
the partition and iterate the process. Formally, this procedure is stated in Algorithm 1.

Algorithm 1: Test whether a matrix A is copositive or not.
Input: A ∈ S,M ⊂ C
Output: “A is copositive” or “A is not copositive”
P ← {�S};1
while P �= ∅ do2

choose � ∈ P ;3

if ∃v ∈ V ({�}) : vTAv < 0 then4
return “A is not copositive”;5

end6

if V T
� AV� ∈M then7

P ← P \ {�};8

else9

partition � into � = �1 ∪�2;10

P ← P \ {�} ∪ {�1,�2};11

end12

end13
return “A is copositive.”14

It is immediate from Theorem 2.1 and the definition of copositive matrices that if the algo-
rithm terminates, the result is correct. Whether or not the algorithm does terminate depends
on the input matrix A, the set M, and the refinement strategy used in Step 10. For the lat-
ter, we will always assume that the refinement of the simplices is done in such a way that
δ(P)→ 0.

– If A /∈ C, then the algorithm terminates, since then Lemma 2.3 applies. In this case, it
does not matter which set M is used.

– If M ⊇ N and A is strictly copositive, then Theorem 2.2 implies that the algorithm
terminates. If A is copositive but not strictly copositive, then the algorithm may or may
not terminate.

– If M = S+ is used and A ∈ S+, then the algorithm terminates in one iteration because
for any nonsingular matrix V ∈ R

n×n we have

A ∈ S+ ⇔ V TAV ∈ S+. (5)

If A is copositive but not positive semidefinite, then the algorithm does not terminate.

3 The algorithm and the maximum clique problem

3.1 Clique enumeration

We next describe an interesting feature that Algorithm 1 with M = N exhibits when it is
used on the maximum clique problem, namely, in this case it basically enumerates all cliques.

123

542 J Glob Optim (2012) 52:537–551

Of course this is a most undesirable behavior, and it will motivate different choices of M in
Sect. 4.

Recall that in formulation (3) of the maximum clique problem we have to test copositivity
of matrices Bλ := λ(E − AG)− E for λ ∈ {1, . . . , n}. These matrices have the form

(Bλ)i j =
{
−1 if {i, j} is an edge in G

λ− 1 otherwise.
(6)

If we use Algorithm 1 with M = N to test copositivity of Bλ for λ ≥ ω, it turns out that it
enumerates every clique of G in form of the non-zero entries of a vertex v of a simplex � in the
partition of �S . We will use the following notation to describe the set of nodes corresponding
to the non-zero entries of a vertex v:

C(v) = {i : vi > 0}.
Theorem 3.1 Consider a graph with clique number ω, and let C be a clique in G. Assume
that Algorithm 1 with M = N and A = Bλ, λ ≥ ω, terminates. Then it must terminate
positively (i.e., in line 14). Further, if the branching rule in line 10 is such that a simplex �

is split along an edge {u, v}, then the algorithm produces a partition P such that C = C(v)

for some v ∈ V (P).

Proof Since (3) implies Bλ ∈ C, the algorithm cannot terminate with a negative certificate.
Let C be a clique in G. If |C | = 1 then C = {i} for some i ∈ {1, . . . , n}, and C(ei) = C .
Consequently, the theorem is true for cliques of size 1.

So assume |C | > 1. We show that there is a sequence (�i)i of successive simplices gen-
erated by the algorithm (�0 = �S and �i+1 is one of the two simplices that result of the
bisection of �i), such that

(*) there is a subset Ri of the vertices of �i with

uT Bλv = −1, for all u, v ∈ Ri with u �= v and
⋃

v∈Ri

C(v) = C.

We set R0 = {ei : i ∈ C}. Then for ei , e j ∈ R0 with i �= j it holds eT
i Bλe j = −1 and

we have
⋃

i∈C C(ei) = C . It follows that �0 fulfills (*). We now assume that �i fulfills (*).
If |Ri | = 1 we have found a simplex such that C = C(v) for a vertex v and the theorem

is shown. If |Ri | > 1 there is at least one pair of vertices (v1, v2) with vT
1 Bλv2 = −1. This

means that the algorithm does not yet terminate since V T
�i

BλV�i /∈ N , and that the simplex
is split at an edge {u, v}. Now we have to choose a successor simplex �i+1 satisfying (*).
We distinguish two cases:

Case 1: z = μu + (1− μ)v with v /∈ Ri

We select

�i+1 = conv(V ({�i }) \ {v} ∪ {z})
and put Ri+1 = Ri , so that property (*) holds for �i+1.

Case 2: z = μu + (1− μ)v with u, v ∈ Ri

We again put

�i+1 = conv(V ({�i }) \ {v} ∪ {z}).
We have C(z) = C(u)∪C(v). If C(z) = C then �i+1 fulfills (*) and our statement
is shown with Ri+1 = {z}. Otherwise we set

Ri+1 = Ri \ {u, v} ∪ {z}.

123

J Glob Optim (2012) 52:537–551 543

Then

C =
⋃

w∈Ri \{u,v}
C(w) ∪ C(u) ∪ C(v)︸ ︷︷ ︸

=C(z)

=
⋃

w∈Ri+1

C(w).

Since Ri+1 \ {z} = Ri \ {u, v} we have for all w ∈ Ri+1 \ {z} that

zT Bλw = μ uT Bλw︸ ︷︷ ︸
=−1

+(1− μ) vT Bλw︸ ︷︷ ︸
=−1

= −1

and for all w1, w2 ∈ Ri+1 \ {z}, w1 �= w2,

wT
1 Bλw2 = −1.

Hence �i+1 fulfills (*).

Now assume that the algorithm and hence our successor sequence terminates, say, at �N . As
argued above, this can only happen with a singleton RN = {z}, and then C = C(z). 	

3.2 Non-strict copositivity of Bω and an easy remedy

The formulation (3) implies that the matrices Bλ are not copositive for λ < ω and strictly co-
positive for λ > ω. We prove in the following lemma that the matrix Bω lies on the boundary
of C.

Proposition 3.2 Let G be a graph with clique number ω. The matrix

Bω = ω(E − AG)− E

is copositive but not strictly copositive.

Proof According to (3), the matrix Bω = ω(E − AG)− E is copositive. To show that it is
not strictly copositive, let C denote a maximum clique and xC the incidence vector of C , i.e.

(xC)i =
{

1 if i ∈ C
0 otherwise.

Note that xC �= 0. From (6) we get xT
C BωxC = ∑

i, j (Bω)i j (xC)i (xC) j = ω(ω − 1) +
ω(ω − 1)(−1) = 0, which says that Bω is not strictly copositive. 	

As noted in [11], Algorithm 1 with M = N may fail to terminate if the input matrix
lies on the boundary of C. However, we next show that the matrices Bλ can be replaced by
a modified matrix without changing the result. For λ ≥ ω, this modified matrix lies in the
interior of C, whereas for N � λ < ω it is not in C. This means that numerical problems can
be avoided by solving the following problem instead of (3):

Theorem 3.3 Let 0 ≤ ρ < 1
ω

. Then the clique number ω can be obtained from the following
modified copositive program:

ω = min{λ ∈ N : Bλ + ρ · E ∈ C}.
Moreover, Bλ + ρ · E is strictly copositive for any λ ≥ ω and ρ > 0.

123

544 J Glob Optim (2012) 52:537–551

Proof Let C be a maximum clique and let x̂ = 1
ω

xC , where xC denotes the incidence vector
of C . Then it is easy to verify that x̂ T AG x̂ = 1− 1

ω
. So for 1 ≤ λ ≤ ω − 1 and 0 ≤ ρ < 1

ω

we have

x̂ T (Bλ + ρ · E)x̂ = x̂ T (λ(E − AG)− E)x̂ + ρ · x̂ T E x̂

= (λ− 1+ ρ) x̂ T E x̂︸ ︷︷ ︸
=1

−λ x̂ T AG x̂︸ ︷︷ ︸
=1− 1

ω

= λ− ω

ω
+ ρ ≤ − 1

ω
+ ρ < 0.

Consequently, Bλ + ρ · E /∈ C for all λ ∈ N with λ < ω.
If ρ > 0 and λ ≥ ω, then for all x ∈ R

n+ \ {0} we have

xT (Bλ + ρ · E)x = xT (λ(E − AG)− E)x︸ ︷︷ ︸
≥0

+ρ · xT Ex︸ ︷︷ ︸
>0

> 0.

Therefore, Bλ + ρ · E is strictly copositive and lies in the interior of C for these values of ρ

and λ. This holds in particular for Bω + ρ · E with ρ > 0. 	

If the clique number of a graph is not known but an upper bound u ≥ ω is given, we can
choose any ρ such that 0 < ρ < 1

u ≤ 1
ω

. Consequently, we can avoid termination problems
for Algorithm 1 by solving the modified version of the problem defined in Theorem 3.3.

The idea of the shift perturbation used in Theorem 3.3 is not new and has been used
by several authors before. A systematic investigation of shift-equivariance of StQP-bounds
which are closely related to testing copositivity is offered in [8]. Also, the shift perturbation
is similar to the regularization approach where the identity matrix I replaces E . For details
see [2–4].

4 How to choose M

An important issue which influences the number of iterations and the runtime of Algorithm 1
is the choice of the set M. To keep the number of iterations small the set M should be a
good approximation of C. On the other hand, checking membership of M should be cheap
to keep the total runtime short. As we saw in Sect. 3.1, the choice M = N is not always
desirable. To check whether a matrix is in N does not take much effort but the nonnegative
cone is a quite bad approximation of the copositive cone. So each iteration of the algorithm
is cheap but the number of iterations will tend to be large. Hence, we discuss other possible
choices of M here.

4.1 M = S+

Using M = S+ would be the next canonical choice, but unfortunately this is not appropri-
ate, either. The problem is that for M = S+ condition (4) from Theorem 2.2 is never met
if the input matrix is not in S+. To see this, consider the strictly copositive but not positive
semidefinite matrix

A =
(

1 2
2 1

)
,

123

J Glob Optim (2012) 52:537–551 545

and consider the simplex � = {e1, v} with v = λe1 + (1 − λ)e2 and λ ∈ (0, 1), which is
present in any non-trivial partition P of �S in R

2. The matrix

V T
� AV� =

(
eT

1
vT

)
A

(
e1 v

) =
(

1 2− λ

2− λ 1+ 2λ− 2λ2

)

has determinant−3(λ−1)2 and is thus indefinite for all λ ∈ (0, 1). Consequently, there does
not exist a partition P such that (4) is true for M = S+.

Moreover, we already saw in (5) that for any nonsingular matrix V ∈ R
n×n we have

A ∈ S+ if and only if V TAV ∈ S+. Hence the sufficient copositivity condition of Theo-
rem 2.1 reduces to positive semidefiniteness, which is trivially sufficient for copositivity. For
these reasons, the choice M = S+ is not favorable.

4.2 M = S+ +N

By definition of copositivity, we have S+ +N ⊆ C, and for matrices up to order 4× 4, it is
known that C = S+ + N (cf. [14]), so S+ + N is a good approximation to the copositive
cone. This fact also implies that for graphs with at most 4 nodes the matrix Bλ lies in S++N
for all λ ≥ ω. But there are more graphs for which this is true. Denoting by χ the chromatic
number of a graph, the following was shown in [24, Corollary 15].

Lemma 4.1 If G is a graph with χ = ω, then Bλ ∈ S+ +N for all λ ≥ ω.

This means that for these graphs all copositive matrices Bλ, λ ≥ ω, can be written as the
sum of a positive semidefinite and a nonnegative matrix. In particular Lemma 4.1 holds for
perfect graphs. So if we use Algorithm 1 with M = S+ +N , we can determine copositivity
of these matrices in the first iteration.

In fact, for any perfect graph (and any other graph for which the chromatic number equals
the clique number), all SDP-bounds coincide. So even the Lovász number ϑ of the comple-
mentary graph of G equals ω, and to compute this number we only need S+ and not S++N .
But as we have seen in the previous subsection, using M = S+ is not a good choice in gen-
eral. And of course, there are also graphs for which Bω /∈ S+ +N which implies Bω /∈ S+.
For these graphs, copositivity of Bω cannot be verified using M = S+, which motivates the
choice of M = S+ + N . The smallest example of such a graph is the cycle with 5 nodes
whose clique number is ω = 2. Its corresponding matrix Bω is the Horn-matrix H which
can be shown to fulfill H /∈ S+ +N , see for example [17].

The cone S+ +N may be a good approximation of C, but in order to check if a matrix A
is in S+ +N we need to solve the semidefinite feasibility problem

A − N ∈ S+
Ni j ≥ 0 ∀ i, j

which is possible in polynomial time but quite costly. So we may need only few iterations
but still have a high runtime.

4.3 An alternative choice for M

The above observations indicate that it may be favorable to choose as M some cone between
N and S+ + N . Theorem 2.2 suggests that is is desirable to impose M ⊃ N to ensure
termination of the algorithm.

123

546 J Glob Optim (2012) 52:537–551

To define such a set, observe that we can decompose any A ∈ S into A = N (A)+ S(A),
where N (A) denotes the matrix containing the positive non-diagonal entries of A:

N (A)i j :=
{

Ai j if Ai j > 0 and i �= j

0 otherwise.

The remaining part S(A) := A − N (A) is not necessarily positive semidefinite (even if
A ∈ S+ + N), but if it is, then we have a decomposition which shows A ∈ S+ + N . This
motivates to define

H := {A ∈ S : S(A) ∈ S+},
and the next theorem shows that H has indeed the desired properties:

Theorem 4.2 H is a convex cone, and N ⊂ H ⊂ S+ + N . If n ≥ 3, these inclusions are
strict and S+ � H. For n = 2 we have H = S+ ∪N = S+ +N = C.

To show convexity of H, we need the following auxiliary lemma:

Lemma 4.3 Denote by Z the class of all real square matrices whose off-diagonal entries are
nonpositive. Let A, B ∈ Z with B ≥ A. If A is positive semidefinite, then B is also positive
semidefinite.

Proof Let A, B ∈ Z such that A is positive semidefinite and B ≥ A. We make use of a
similar result on positive definiteness taken from [16]: for n ∈ N, consider the sequences
An = A + 1

n I and Bn = B + 1
n I . Then An, Bn ∈ Z and Bn ≥ An for all n ∈ N. Further-

more, the matrices An are positive definite. From [16, (4.2)] it follows that the matrices Bn

are positive definite. Since B = limn→∞ Bn , it follows that B is positive semidefinite. 	

Proof (of Theorem 4.2) Both the property that H is a cone and the inclusions N ⊂ H ⊂
S+ +N are immediate from the definitions. For n ≥ 3 both inclusions are strict, since

A :=
(

1 −1
−1 1

)
∈ H but A /∈ N

and

B :=
⎛

⎝
1 −1 1
−1 1 −1

1 −1 1

⎞

⎠ ∈ S+ ⊂ S+ +N but B /∈ H.

For a matrix A of order 2× 2 the following two cases can occur:

1. a12 > 0 ⇒ S(A) = A − N (A) =
(

a11 0
0 a22

)
,

2. a12 ≤ 0 ⇒ S(A) = A − N (A) = A.

In the first case, A ∈ H if and only if its diagonal entries are nonnegative which means
that A ∈ N . In the second case, we have A ∈ H if and only if A ∈ S+. It follows that
H = S+ ∪N = S+ +N = C.

To show that H is convex, take A, B ∈ H. We have to show that A + B ∈ H. A, B ∈ H
means that both S(A) ∈ S+ and S(B) ∈ S+, and hence S(A)+S(B) ∈ S+. By construction,
we have S(A+ B) ≥ S(A)+ S(B). Consequently, S(A+ B) ∈ S+ by Lemma 4.3, whence
A + B ∈ H. 	

123

J Glob Optim (2012) 52:537–551 547

Table 1 Test instances

Instance n Problem Value of y resp. λ

5_cycleCopos 5 (3) 2

5_cycleNotCopos 5 (3) 1.5

graph8_3Copos 8 (3) 3

graph8_3NotCopos 8 (3) 2.5

graph12_4Copos 12 (3) 4

graph12_4NotCopos 12 (3) 3.5

penaCopos 17 (3) 6

penaNotCopos 17 (3) 5.5

geneticCopos 5 (StQP) −16 1
3

geneticNotCopos 5 (StQP) −16

icosahedronCopos 12 (StQP) 1
3

icosahedronNotCopos 12 (StQP) 0.5

pentagonCopos 5 (StQP) 0.5

pentagonNotCopos 5 (StQP) 1

portCopos 5 (StQP) 0.48

portNotCopos 5 (StQP) 0.5

The instances graph8 3 and graph12 4 are described in Fig. 1. The graph of the max clique related
instances pena is the complementary graph of G17 from [24] (with ω=6). The instances (StQP) were taken
from [5]

5 Numerical results

We implemented Algorithm 1 with various choices of M in Matlab and tested our implemen-
tation on a Pentium IV, 2.8 Gigahertz Linux machine. To solve the semidefinite programs
resulting from the test A ∈ S+ +N we used yalmip [21] and sedumi [25].

As test-instances we used the matrices B(y) = Q − yE originating from the standard
quadratic problem (1), and Bλ from the max clique problem as described in the previous
section. The test instances with their respective values of y resp. λ are listed in Table 1.

We solved these instances with our algorithm for different choices of M. Note that the
algorithm has freedom not only in the choice of M, but also in the strategy according to
which the simplex is refined (see Step 10 in Algorithm 1). Different refinement strategies
have already been discussed in [11] and [10], so we will not go into too much detail here. The
basic idea behind all strategies for the case M = N is to partition one of the edges {vi , v j }
which give the most negative value vT

i Av j .
These strategies can be adapted for the choices M = H or M = S+ +N as follows:
Consider the case M = H. The partition is refined if V T AV /∈ H. Then there exists an

eigenvector x ∈ R
n with

0 > xT S(V T AV)x =
n∑

i, j=1

(S(V T AV))i j xi x j .

A promising strategy is to choose the eigenvector x corresponding to the smallest eigenvalue
and then choose i, j ∈ {1, . . . , n} such that

(S(V T AV))i j xi x j = min
i, j∈{1,...,n}(S(V T AV))i j xi x j .

123

548 J Glob Optim (2012) 52:537–551

Fig. 1 The graphs corresponding to the instances graph8 3 (left, with ω = 3) and graph12 4 (right,
with ω = 4)

Next, consider the case M = S+ + N . To test whether V TAV ∈ S+ + N we solve the
following semidefinite program

min 〈V TAV, X〉
s.t. 〈I, X〉 = 1

X ∈ S+ ∩N
Its optimal value is negative if and only if V TAV /∈ S+ + N . In this case, we refine the
partition by splitting an edge of the simplex which corresponds to V . Consider the objective
value for an optimal X :

0 > 〈V TAV, X〉 =
n∑

i, j=1

vT
i Av j Xi j

It seems promising to partition the edge {vi , v j }which has the largest (negative) contribution
to this sum, i.e., to choose i and j such that

vT
i Av j Xi j = min

i, j∈{1,...,n} v
T
i Av j Xi j .

Unfortunately, this strategy turned out to be not very efficient. Therefore, we simply choose
i, j ∈ {1, . . . , n} such that

Xi j = min
i, j∈{1,...,n} Xi j

and split the edge {vi , v j }. This turned out to give better results.
Generally, it is clear that the behavior of our algorithm highly depends on the partition-

ing strategy. There does not seem to be one strategy which outperforms the others for every
instance, but the strategies described above seem to work reasonably well in our test instances.

Our results are stated in Tables 2 and 3. As expected, for M = S+ + N we need the
smallest number of iterations. In spite of that, all instances were solved faster with M = N
or M = H. Another observation of our experiments is that it seems to be much easier to
verify non-copositivity of a matrix than copositivity.

These observations motivate the following idea to solve the maximum clique problem
by our test procedure. We start with λ = 1 and test whether the matrices B1, B2, . . . are

123

J Glob Optim (2012) 52:537–551 549

Table 2 The number of iterations needed by the algorithm for different choices of M
Instance n Iterations

M = N M = H M = S+ +N

5_cycleCopos 5 19 7 3

5_ cycleNotCopos 5 1 1 1

graph8_3Copos 8 1359 151 9

graph8_3NotCopos 8 2 2 3

graph12_4Copos 12 (128105) 21719 225

graph12_4NotCopos 12 6 7 4

penaCopos 17 (73058) (84188) (1054)

penaNotCopos 17 977 147 (829)

geneticCopos 5 29 7 1

geneticNotCopos 5 1 1 1

icosahedronCopos 12 71679 5183 703

icosahedronNotCopos 12 2 3 3

pentagonCopos 5 19 7 3

pentagonNotCopos 5 1 1 1

portCopos 5 25 5 1

portNotCopos 5 2 2 3

Brackets indicate that the algorithm did not terminate within half an hour

Table 3 The runtime for different choices of M
Instance Cpu-time (s)

M = N M = H M = S+ +N

5_cycleCopos 0.0055 0.0680 3.9753

5_cycleNotCopos 0.0008 0.0010 1.1225

graph8_3Copos 0.9785 0.2639 18.4915

graph8_3NotCopos 0.0092 0.0016 2.1444

graph12_4Copos – 50.8841 335.5044

graph12_4NotCopos 0.0103 0.0045 5.7601

penaCopos – – –

penaNotCopos 3.3632 0.3289 –

geneticCopos 0.0088 0.0691 0.7819

geneticNotCopos 0.0008 0.0010 0.6532

icosahedronCopos 218.0965 6.3096 1467.0274

icosahedronNotCopos 0.0013 0.0022 4.4716

pentagonCopos 0.0029 0.0712 5.9983

pentagonNotCopos 0.0042 0.0009 1.7977

portCopos 0.0190 0.0893 1.9345

portNotCopos 0.0013 0.0015 5.7740

If no value is given, this means that the algorithm did not terminate within half an hour

123

550 J Glob Optim (2012) 52:537–551

Table 4 Results for max clique instances from the second DIMACS challenge

Instance Vertices Edges ω Bounds for ω # of victories

N H S+ +N None

hamming6-2 64 1824 32 21/32 12 0 1 19

hamming6-4 64 704 4 4/4 4 0 0 0

johnson8-2-4 28 210 4 4/4 2 1 1 0

johnson8-4-4 70 1855 14 12/14 11 0 0 3

MANN_a9 45 918 16 16/18 9 2 1 6

copositive. The first value of λ for which Bλ is copositive is the clique number. From the
viewpoint of computation time it would be favorable to choose M ∈ {N , H} if the matrix
is not copositive and M = S+ +N otherwise. As we do not know this a priori, we started
for each value of λ three parallel processes for the three considered choices of M. When
one process terminates we stop the others and increase λ. We also stop if the matrix is found
to be copositive. We tested this procedure with some instances from the second DIMACS
challenge. The results are listed in Table 4. The columns “# of victories” record the number of
times the process with the respective choice of M was the first to terminate. We restricted the
runtime for each value of λ to one hour and the amount of memory consumed by the partition
to 500MB. For some instances the algorithm did not terminate with these restrictions. The
last column indicates how often this happened. In this case we only got a lower and upper
bound for the clique number which are shown in the column “bounds for ω”. Consider for
example the instance hamming6-2. The matrix B20 was found to be non-copositive which
implies that ω ≥ 21. For the matrices B21, . . . , B31 the algorithm did not terminate within
the restrictions, and for B32 copositivity was verified. This means that we have a lower bound
of 21 and an upper bound of 32.

6 Conclusion

We gave an improved algorithm which is built on a generalization of results of [11]. We saw
that for the performance of this algorithm the choice of the set M is crucial. The total run-
time is a trade-off between the number of iterations and the cost of each iteration. Choosing
M = S+ +N requires the least number of iterations but each iteration is so costly that the
overall runtime is in most cases still higher than when choosing M = N or M = H. We
observe the well known numerical phenomenon that verifying copositivity is much harder
than verifying non-copositivity.

Acknowledgments The authors wish to thank the two anonymous referees for careful reading and useful
suggestions which helped to improve the presentation of the paper. M. Dür was partially supported by the
Netherlands Organisation for Scientific Research (NWO) through Vici grant no.639.033.907.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

123

J Glob Optim (2012) 52:537–551 551

References

1. Bomze, I.M.: Copositive optimization – recent developments and applications. Eur. J. Oper. Res. forth-
coming (2011)

2. Bomze, I.M.: On standard quadratic optimization problems. J. Glob. Optim. 13, 369–387 (1998)
3. Bomze, I.M.: Evolution towards the maximum clique. J. Glob. Optim. 10, 143–164 (1997)
4. Bomze, I.M., Budinich, M., Pelillo, M., Rossi, C.: Annealed replication: a new heuristic for the maximum

clique problem. Discrete Appl. Math. 121, 27–49 (2002)
5. Bomze, I.M., de Klerk, E.: Solving standard quadratic optimization problems via linear, semidefinite and

copositive programming. J. Glob. Optim. 24, 163–185 (2002)
6. Bomze, I.M., Dür, M., de Klerk, E., Roos, C., Quist, A.J., Terlaky, T.: On copositive programming and

standard quadratic optimization problems. J. Glob. Optim. 18, 301–320 (2000)
7. Bomze, I.M., Eichfelder, G.: Copositivity detection by difference-of-convex decomposition and ω-sub-

division. Preprint (2010), available online at http://www.optimization-online.org/DB_HTML/2010/01/
2523.html

8. Bomze, I.M., Locatelli, M., Tardella, F.: New and old bounds for standard quadratic optimization: domi-
nance, equivalence and incomparability. Math. Program. 115, 31–64 (2008)

9. Bundfuss, S.: Copositive matrices, copositive programming, and applications. Ph.D. Dissertation, TU
Darmstadt (2009). Online at http://www3.mathematik.tu-darmstadt.de/index.php?id=483

10. Bundfuss, S., Dür, M.: An adaptive linear approximation algorithm for copositive programs. SIAM
J. Optim. 20, 30–53 (2009)

11. Bundfuss, S., Dür, M.: Algorithmic copositivity detection by simplicial partition. Linear Algebra
Appl. 428, 1511–1523 (2008)

12. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math.
Program. 120, 479–495 (2009)

13. de Klerk, E., Pasechnik, D.V.: Approximation of the stability number of a graph via copositive program-
ming. SIAM J. Optim. 12, 875–892 (2002)

14. Diananda, P.: On non-negative forms in real variables some or all of which are non-negative. Proc. Camb.
Philol. Soc. 58, 17–25 (1962)

15. Dür, M.: Copositive programming – a survey. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W.
(eds.) Recent Advances in Optimization and its Applications in Engineering, pp. 3–20. Springer, Ber-
lin (2010)

16. Fiedler, M., Pták, V.: On matrices with non-positive off-diagonal elements and positive principal mi-
nors. Czechoslovak Math. J. 12, 382–400 (1962)

17. Hall, M. Jr., Newman, M.: Copositive and completely positive quadratic forms. Proc. Camb. Philol.
Soc. 59, 329–339 (1963)

18. Horst, R.: On generalized bisection of n-simplices. Math. Comput. 218, 691–698 (1997)
19. Hiriart-Urruty, J.-B., Seeger, A.: A variational approach to copositive matrices. SIAM Rev. 52, 593–

629 (2010)
20. Ikramov, K.D., Savel’eva, N.: Conditionally definite matrices. J. Math. Sci. 99, 1–50 (2000)
21. Löfberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. In: Proceedings of the

CACSD Conference, Taipei, Taiwan (2004)
22. Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem of Turan. Canadian

J. Math. 17, 533–540 (1965)
23. Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math.

Program. 39, 117–129 (1987)
24. Peña, J., Vera, J., Zuluaga, L.: Computing the stability number of a graph via linear and semidefinite

programming. SIAM J. Optim. 18, 87–105 (2007)
25. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim.

Methods Softw. 11/12, 625–653 (1999)

123

http://www.optimization-online.org/DB_HTML/2010/01/2523.html
http://www.optimization-online.org/DB_HTML/2010/01/2523.html
http://www3.mathematik.tu-darmstadt.de/index.php?id=483

	An improved algorithm to test copositivity
	Abstract
	1 Introduction
	2 Testing copositivity
	2.1 Idea and notation
	2.2 Copositivity conditions
	2.3 The algorithm

	3 The algorithm and the maximum clique problem
	3.1 Clique enumeration
	3.2 Non-strict copositivity of Bω and an easy remedy

	4 How to choose
	4.1 M = S+
	4.2 M = S+ + N
	4.3 An alternative choice for

	5 Numerical results
	6 Conclusion
	Acknowledgments
	References

