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Abstract The control charts are main tools of statistical surveillance of quality in
production processes. Exponentially weighted moving average charts that make use
of exact control limits are discussed in detail in this paper. We start by assessing the
impact of the smoothing constant A not only in the in-control average run length (ARL)
of upper one-sided EWMA charts with exact control limits, but also in the range of
the exact control limits of such charts with a common in-control ARL value (i.e.
matched in-control). Based on the analytical results and on an extensive simulation
study we conclude that the out-of-control ARL of matched in-control upper one-sided
EWMA charts with exact control limits increases with A. This in turn suggests the
use of A values as close to the zero as possible and motivates what we called the
(upper one-sided) limit chart. Its performance is extensively studied with regard to
the ARL. Finally, we investigate the impact of A on the ARL of EWMA charts with
asymptotic control limits; the (maximum) conditional average delay is also addressed
as an additional performance measure.
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1 Background

Production is typically monitored using data collected on a regular basis: the observed
values of a control statistic are sequentially plotted together with appropriate control
limits in what is grandly termed as quality control chart. This graphical device is used to
track process performance over time and identify assignable causes that may affect the
quality of the output. Moreover, although proposed by Shewhart to his superiors at Bell
Laboratories in a historic memorandum of May 16, 1924 (Juran 1997 and http://www.
asq.org/about-asq/who-we-are/bio_shewhart.html), control charts are still among the
most important and widely used devices in statistics (Stoumbos et al. 2000).

The simplicity and the one-size-fits-all character of the control charts pioneered by
Shewhart (1931) are responsible for their immense popularity among practitioners.
However, the fact that the Shewhart charts only use the information about the process
given by the last observed value of the control statistic, and completely ignore any past
information, is responsible for a serious limitation: Shewhart charts are not effective
in the detection of assignable causes that lead to small and moderate shifts in the
parameter being monitored.

The exponentially weighted moving average (EWMA) chart, introduced by Roberts
(1959), incorporates all the information in the sequence of observed values of the
control statistic and prove to be more effective than Shewhart chart for detecting small
and moderate shifts, namely, in the process mean (Lucas and Saccucci 1990) or in the
process variance (Crowder and Hamilton 1992) of independent output. EWMA has
been also used to monitor the process mean and the process mean vector of dependent
output with considerable advantage, as reported by several authors like Schmid (1997)
and Kramer and Schmid (1997).

Moreover, apart from being a process monitoring device, EWMA can be viewed as
a method for establishing real-time dynamical control of industrial processes (Hunter
1986), namely as the best linear forecast for a first order integrated moving average
process (IMA(1)) with drifts, as promoted by Baxley (1990).

The EWMA chart for monitoring the process mean p of independent output is often
based on the statistic

| zo, t=0
Z’_{(l—x)zt_lﬂx,, (=1.2,..., M)

where: the initial value z( is frequently taken to be the target process mean pg; X; is
an estimator of p, usually the sample mean at time #; and A € (0, 1] is a smoothing
constant that corresponds to the weight given to the most recent sample. Having in
mind that Z; can be equivalently written as the following moving average

—1
Zi=2) (1= X+ (1 =)'z, 1=12,..., @
i=0

whose weights fall off geometrically, we immediately conclude that a A close to one
leads to a short memory EWMA chart—in fact A = 1 leads to nothing but a She-
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whart chart—, whereas values of A close to zero lead to EWMA charts that give little
importance to the most recent observations.

Clearly, the value of A and the control limits of the EWMA chart have a strong
impact in its performance, as we can see in the next section, and should be carefully
chosen by the user to give this chart desirable properties for both in-control and out-
of-control situations.

2 EWMA charts with exact control limits

In what follows {Y;} denotes an 1.i.d. target process normally distributed with mean
o and variance o which is related to an observed process {X;} as follows:

Y; forr=...,—1,0
Xt:IYt—I—aa for t =1,2,..., ©)
where —00 < a < o00. If a # 0 then a sustained shift in the process mean p has
occurred at time ¢ = 1. Needless to say, {X;} is said to be in-control if @ = 0, and to
be out-of-control otherwise.

The expectation (when Zy = o) and variance of this normally distributed control
statistic with respect to (3) are equal to

E(Z) = Eo(Z) +ao [l =1 =1 ]=po+ac[l-A-1] @

Var,(Z,) = Varo(Z;) = o2 [1 — (- A)Zt] . (5)

2—Ax

The indexes “textita” and “0” mean, throughout the remainder of this paper, that
the quantity (an expectation, a variance, a covariance, a probability, etc.) is calculated
with respect to (3) and to the in-control situation, respectively.

Upward shifts (i.e. @ > 0) can be detected by upper one-sided EWMA charts that
give a signal at the sampling period 7, suggesting that an increase in the process mean
has occurred, if

Zi > Eo(Zy) + ¢/ Varg(Zy) | (6)

for some fixed constant critical value c that defines the range of these exact control
limits. This signal is a valid one, in case the process is out-of-control, and it is called
a false alarm, otherwise.

2.1 Assessing the performance of upper one-sided EWMA charts with exact control
limits
To assess the performance of a control chart we have to consider the number of

observations taken until a signal is triggered by this chart. This random variable is
usually called the run length (RL) of the chart and it is defined as

N, = inf { teIN:Z > Eo(Z) + c/Varg(Z;) } %)
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for the upper one-sided EWMA charts with exact control limits. The properties of this
performance measure not only depend on the magnitude of the shift a, but also on the
values of A and c, therefore it is going to be often represented by N, (A, ¢).

It should be also added that the asymptotic variance of Z;, lim;_, 1, Varg(Z;)
= ﬁ o2, is frequently preferred by practitioners to Varg(Z;), since this leads to
constant control limits and therefore less computational effort in the implementation
of the EWMA chart. Note, however, that the adoption of the asymptotic variance should
be avoided when the value of A is small, since in this case Varg(Z;) slowly converges
to its asymptotic value making the EWMA scheme substantially less sensitive to early
process shifts (Steiner 1999).

Thus, we strongly recommend the use of exact control limits, also called time-
varying control limits by Steiner (1999).

Now, before we go any further into the assessment of the performance of the upper
one-sided EWMA chart with exact control limits, it is essential to add the joint dis-
tribution of Z = [Z; ];=1,.._k, a multivariate normal distribution with mean vector and
covariance matrix given by

Ry = [MO tao [1 —(a- Mi]]i:l k v
Y, =X
= [Covo(Zi, Zj)]i,j=1 ..... t
N o o
_ [2 - 0_2 (1 _ }\‘)lj_ll [1 — (1 — )\-)2 mm{l’J}iIiI ’ (9)
— i,j=1,..., k

and distribution function represented by Far,(u,,5)(Z)-
In fact, the survival function of the first passage time N, (X, ¢) is equal to

PIN,(.c) > k] = P, [zi < Eo(Z) + ¢ JVarg(Z)). i=1. .. .,k]

—PI:—Zi_Ea(Zi)<c—aa—1_(1_k)i i =1 k]
L WWNVarg(Z) SVarg(Zp) T T

1—(1=x" . )

=F c—a0 ——, i=1,...,k]), 10

Ni(0.Cr (1) ( Varo(Z) (10)

fork = 1,2, ..., where 0 is a column vector with k zeroes and Cy (1) is a correlation

matrix with entries defined by
Corro(Zi, 2y = (1 — =1 L2 UZDY ik
orrg(Z;, Z;) = (1 — _— <i<j<k.
010> £ 1= (1= /
The average run length (ARL) is then given by
+o00
E[Na(t, &)l = 14 " P[Na(h, ¢) > k. (12)

k=1



867

We rely on Monte-Carlo simulation methods to approximate the ARL of this upper
one-sided EWMA chart with exact limits. This allows us to analyse all the charts in a
methodologically consistent way.

Before we proceed we need to introduce two preparatory definitions, to make a
comment and recall Theorem 5.1.7 by Tong (1990, p. 103) because they play a major
role in the presentation of the main results that will soon follow.

The run length RL is said to be stochastically smaller than the run length RL’
in the usual sense (RL <;; RL') if and only if P(RL > x) < P(RL' > x), for
—00 < x < oo (see Shaked and Shanthikumar 1994, p.4)). Needless to say that
RL <;; RL' implies E(RL) < E(RL).

Let RLy be arun length whose distribution depends on the parameter 6 € ®. Then
R Ly stochastically increases with & € ® in the usual sense (for short, RLy 15, with8)
ifand only if RLy <;; RLy, for6 <0’ (0,0’ € ©).

If 6 represents the magnitude of a sustained shift in a specific parameter, then a
stochastically decreasing RLg with regard to 0 is what we hope to be dealing with
since it means a stochastically increasing detection speed as the shift becomes more
severe.

Finally, Theorem 5.1.7 by Tong (1990, p. 103) can also be stated as follows: let
Z=1Zli=1,..xk ~Ni(m, 2 = [oyli j=1,..x) and Z = [Z;)i=1,..x ~ Ne(n,T =
[vijli,j=1,...x) be such that 0;; = y;;,i = 1,...,k (i.e. Z; and Z; have the same
marginal normal distribution fori =1, ..., k). If 0;; > y;; foralli # j, then

~

P(Zi<cl,....Zx<cx)>P(Zi<ct,....Zr < cp), (13)

for all vectors [c¢;li=1, k-

2.2 Monotonicity results

First note that the survival function of N, (A, ¢) can be rewritten as

2—x 1—(=2n)
X "
A 1+(1—2)

P[Na()\-’c)>k]:FJ\/'k(0k,Ck()»)) c—a\/ , l=1,,k ,

(14)
fork = 1,2, .... Thus, we can immediately conclude that, for any fixed critical value
¢, any fixed smoothing constant A € (0, I]and any k = 1,2, ..., P[Ny(A,c¢) > k] is
a decreasing function of a, i.e.

Nay(h, ©) g witha. (15)

As a consequence, (15) means that the upper one-sided EWMA chart with exact
control limits stochastically increases its detection speed as the upward shift becomes
more severe. Not surprisingly, the detection speed stochastically decreases with the
absolute value of a when a < O—after all, we are dealing with an upper one-sided
chart which should never be used to detect downward shifts.
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Another obvious result: for any fixed a, any fixed smoothing constant A € (0, 1]
andany k = 1,2, ..., P[Nys(A, ¢) > k] is an increasing function of c, i.e.

Ny(A, c) 15 withc. (16)

This result should be read as follows: if we increase the critical value ¢ we are bound
to deal with a stochastically less sensitive upper one-sided EWMA chart with exact
control limits.

Results concerning the stochastically monotone behaviour of N, (A, ¢) in terms of
A are difficult to achieve for two reasons, as we shall see later on: we are dealing
with a multivariate normal distribution whose covariance matrix depends on A; and

\/ ZX—A X :E}:gi is a decreasing function of A.

However, in the absence of assignable causes (¢ = 0), we can state an important
result concerning the in-control RL of all upper one-sided EWMA control charts with
exact control limits and sharing the same critical value c; let us designate this family

of control charts by F, ewmae(c).

Theorem 1 Assume that the random variables {Y;} are independent and identically
distributed to N (1o, 02). Then P[No(r, ¢) > klisa decreasing functionin A € (0, 1],
for any fixedk = 1,2, ... and any fixed ¢ > 0, that is,

No(h, €) Lgs with A. (17)

We can immediately interpret (17) as follows: increasing the weight given to the
most recent observation yields within the family F, ew m 4. (c) leads to a chart with a
stochastically smaller number of observations taken until a false alarm.

Remark 2 1. The in-control RL of the upper one-sided Shewhart control chart,
No(A = 1, ¢), is the smallest in-control RL within F,, zwam4.(c), stochastically
speaking.

2. The monotonicity result (17) implies that for any fixed critical value ¢ the in-control
ARL of any control chart in the family F,,rw a4 (c) is a decreasing function in
A € (0, 1], as suggested but not proven by Frisén and Sonesson (2006). Therefore
the Shewhart control chart has the smallest in-control ARL value within the family

FuEWMAe(C).
3. (17) is still valid for ¢ < 0.

Proof (Theorem 1)—From (11) we get

A-n2-1
oo ' sisisk (18)

COI‘I‘()(Z,‘, Zj) = \/
which is a decreasing function in A € (0, 1].

Now, let ¢; be a column vector with all its k values equal to the critical value c.
Then, from Theorem 5.1.7 by Tong (1990, p. 103), we can conclude that, for any
fixed k = 1,2, ... and critical value c, the survival function P[Ny(A,c) > k] =
Fnr0,.c, ) (k) decreases with A, 1.e. No(A, ¢) |y, with A. O
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The critical value ¢ in Theorem 1 is fixed. However, in order to compare control
charts the critical value c is usually chosen so that the in-control ARL is equal to a
pre-specified value & > 1. This means that c is the solution of the equation

E[No(A, )] =§. (19)

The critical value c is therefore a function of A and &. To make this dependence and
the one of N, on this critical value even more obvious, we refer from now on to ¢ as
c(r, &), and N, (X, c) as Ny(A, c(X, £)). Moreover, capitalizing on the fact that

e E[No(r,c(X, &))] is a continuous function in ¢, for fixed A, because {Z;} is a
collection of continuous random variables,

o lim,, o E[No(A,c(A,8)] =1,

o lim¢ o0 E[No(A, c(2,§))] = o0,

and on the mean-value theorem, we conclude that there is always a solution for Equa-
tion (19) and it is unique since E[Ng(A, c(A, &))] is strictly increasing in c¢ (this
monotone behaviour follows from (16) and the fact that we are dealing with a contin-
uous random variable Z;).

Since we rely on simulation to evaluate the ARL of the upper one-sided EWMA
charts with exact control limits and on a numerical search for c¢(X, &), it is essential to
characterize the critical value namely as a function of A.

Theorem 3 Assume that the random variables {Y;} are independent and identically
distributed to N (jvo, 0%) and consider a fixed & > 1. Then the critical value c(A, &)
is a continuous and increasing function in A € (0, 1].

Theorem 3 can be interpreted as follows: increasing the weight on the latest obser-
vation requires a larger critical value to attain the same in-control ARL.

Remark 4 Note that we get E[No(h = 1,0)] = g5 and c(h = 1,€) = (1 —
£~1), for the upper one-sided Shewart control chart.
It is interesting to note that c(X, &) may be also negative when A € (0, 1), even for

large values of &. Recall that

oo
E[NoGhc=0)]=1+> Po(Zi<po i=1...0=§>1 (20
k=1

for & € (0, 1), therefore we are drawn to the conclusion that we can always achieve
a smaller in-control ARL value & € (1, &’) by considering a smaller negative critical
value, i.e. c(A, £) may take negative values.

Proof (Theorem 3)—c(X, &) is continuous in A € (0, 1] because E[No(A, c(X, §))]
is also continuous.

Let No(A1, c(r1, §)) and No(r2, c(X2, £)) be the in-control RL of two upper one-
sided EWMA with exact control limits and smoothing constants A1 and Ap—0 < A1 <
A2 < 1—, and such that they are matched in-control

E[No(A1, c(r1,§))] = E[No(A2, c(X2,§))] = §. 2D
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Now, recall the fact that the in-control ARL decreases with A € (0, 1], for any fixed
critical value, say c(A1, &) (see second remark to Theorem 1). As a consequence

& = E[No(A1, c(A1, 8))] > E[No(A2, c(A1, &)]. (22)

Please note that, according to result (16), the only way to stochastically increase the in-
control RL (and therefore the in-control ARL) of the upper one-sided EWMA chart—
with smoothing parameter A and exact control limits dependent on c(A1, £)—is to
increase the critical value to c(A», &), thus

c(A1,8) < c(r2,§), (23)

i.e. c(A, &) is increasing in A, for any fixed in-control ARL, & > 1. O

2.3 Tllustrating some of the monotonicity results

FBy relying on the increasing behaviour of the in-control ARL in terms of the critical
value c(X, &) (a consequence of result (16)), we are able to use the false position (or
regula falsi) method (Conte and de Boor 1980, pp.76-77) to find the root c(A, &), as
shown in the next example.

Weset& = 500 samples, simulated the in-control process from a normal distribution
with zero mean and unit variance, considered the number of replications equal to
107, and got the critical values c(A, & = 500), for different values of the smoothing
parameter A = 0.0001, 0.0003, 0.0005, 0.0007, 0.001, 0.003, 0.005, 0.007, 0.01, 0.03,
0.05,0.07,0.1,0.2,0.3,0.4, 0.5, 1, and also the out-control (zero-state) ARL values for
all these values of A and several magnitudes of the shift a = 0.25, 0.5, 1.0, 1.5, 2.0,
3.0, 4.0.

Please note that in any case the convergence criteria for the critical values is a rel-
ative error between the simulated in-control (zero-state) ARL and & = 500 smaller
than 0.2 %. Moreover, any simulated RL is truncated if it is larger than 50,000 samples
except for A = 0 and A = 0.0001. In these two cases 500000 samples were considered
to avoid biased estimates of ARL. The reader should be aware that: the truncation of
the simulated RL is absolutely crucial; the estimate of the ARL, based on unlimited
simulated RL, and its standard error increase with the number of replications essen-
tially because of the occurrence of some rare exceptional long runs. Suffice to say that
a rigorous discussion of this phenomenon goes beyond the scope of this paper.

Also worthy of note is the fact that the ARL values of the upper one-sided Shewhart
chart (A = 1) were not obtained by simulation since there is a closed expression for
them: E[N,(1,c(1,§&))] = ﬁ where ¢(1, &) = &~ 1(1 — 1/8).

. (c(1.§)—a)’
The results in Table 1 not only illustrate

e the decreasing behaviour of the out-of-control ARL when we fix both A and the
critical value (a consequence of result (15)) and

e the increasing behaviour of the critical value c(A, &) in terms of A (see Theorem 3
and Fig. 2),
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Table 1 Critical values, in-control and out-of-control ARLs for upper one-sided EWMA charts with exact
control limits and different smoothing parameters 1

A c(A,500) a

0 0.25 0.5 1.0 1.5 2.0 3.0 4.0
0.0001  0.341738  500.986 5.395 2611 1.455 1.158 1.053 1.004 1.000
0.0003  0.541806  499.034 7.316  3.223 1.629 1.227 1.081 1.007  1.000
0.0005  0.653826  499.790 8.665 3.641 1.746 1.274 1.102  1.010  1.000

0.0007  0.735931  499.955 9.785 3.991 1.843 1.314 1.119 1.012 1.001
0.001 0.829928  499.612 11.231 4429 1.965 1.365 1.141  1.015  1.001
0.003 1.176433  500.046 18.079  6.498 2.531 1.605 1.254  1.035 1.002
0.005 1.368107  500.097 22.838  7.953 2.930 1.777 1.339  1.053  1.004
0.007 1.503701  499.703 26.523  9.124 3.253 1.920 1412 1.070 1.006
0.01 1.654164  500.518 30.815  10.547 3.651 2.097 1.503 1.093 1.010
0.03 2.119538  499.941 45.136  15.552 5.131 2.771 1.867 1.205 1.028
0.05 2311206  499.768 52360  17.818 5.829 3.102 2053 1271 1.045
0.07 2432397  499.922 58.745  19.531 6.298 3.325 2,180 1319  1.069

0.1 2.543225  499.745 66.944  21.635 6.761 3.540 2304 1367 1.073
0.2 2716605  500.155 90.816  28.487 7.838 3.937 2519 1453  1.101
0.3 2.789789  500.079  111.585  36.168 8.998 4.245 2647 1494 1.115
04 2.828317 499949  130.705 44.673 10.503  4.606 27768 1522 1.123
0.5 2.850393 499985  148.764  54.017 12450  5.091 2920 1546  1.129
1 2.878162  500.000 232971 114948 33.135 11.894 5265 1.823 1.151

out—of-control ARL
out-of-control ARL

Fig.1 Out-of-control ARL of matched in-control upper one-sided EWMA charts with exact control limits
as a function of X (on the left) and of log(A) (on the right)

but also suggest that

e the out-of-control ARL values of matched in-control upper one-sided EWMA charts
with exact limits increase with A, for all the values we considered for the magnitude
of the shift.

The results in Table 1 and Fig. 1 (but also in Figure 1 of Frisén and Sonesson 2006)
support the conclusion that A should approach to zero to minimize the out-of-control
ARL (for a fixed in-control ARL), regardless of the magnitude of the shift.

In Table 2 we can find additional Monte-Carlo simulation results. They refer to
the in-control and the out-of-control median RL of the upper one-sided EWMA chart
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Table 2 Critical values and

out-of-control median RLs for 5 ¢, 500) “

upper one-sided EWMA charts 0 025 05 10 1.5 20 30 40

with exact control limits and

different smoothing parameters 0.0001 0.341738 3 2 1 1 1 1 1 1

5 0.0003  0.541806 4 2 2 11 1 1 1
0.0005 0.653826 6 3 2 1 1 1 1 1
0.0007 0.735931 8 3 2 1 1 1 1 1
0.001  0.829928 11 4 2 1 1 1 1 1
0.003  1.176433 57 7 4 2 1 1 1 1
0.005  1.368107 137 11 5 2 1 1 1 1
0.007  1.503701 205 14 6 2 2 1 1 1
0.01 1.654164 263 18 7 3 2 1 1 1
0.03 2.119538 332 33 12 4 2 2 1 1
0.05 2.311206 336 39 14 5 3 2 1 1
0.07 2432397 344 43 16 5 3 2 1 1
0.1 2.543225 345 48 17 6 3 2 1 1
0.2 2.716605 346 64 21 7 3 2 1 1
0.3 2.789789 347 78 26 7 4 2 1 1
0.4 2.828317 347 91 32 8 4 2 1 1
0.5 2.850393 347 104 38 9 4 3 1 1
1 2.878162 347 161 80 23 8 4 1 1

with exact control limits and lead to a similar conclusion: the closer A is to zero, the
smaller is the median RL of this chart.

The increasing behaviour of the out-of-control ARL (and median RL) in terms of
A 1s the main motivation for the derivation of what we shall call the limit chart in the
next section.

3 The limit chart

So far we studied the distribution of N, (A, ¢) as a function of A assuming that this
smoothing parameter belongs to (0, 1], which is reasonable since N, (A, ¢) and c(A, &)
are only defined for A € (0, 1].

In this section we extend some of the results of Morais et al. (2012) and discuss
the limiting distribution of N, (A, ¢) as A tends to zero in order to derive a control
chart—the upper one-sided limit chart—whose RL has such a limiting distribution.

Proposition 5 Assume that the random variables {Y;} are independent and identically
distributed to N (o, 02). Then, for any fixedk = 1,2, . .. and any fixed critical value
C;

lim PINaG-, ) > kI = FN 0,0 (c—avii=1...k), @4
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where

.....

Note that result (24) holds for any value of a, therefore for the in-control and the
out-of-control states as described by (3).

Proof (Proposition 5)—Capitalizing on the L”Hopital rule and on results (18) and (14)
we successively get

lim Corro(Z;. Z) = fim O =P =L i i i e
im Corrg(Z;, Z;) = lim . = /-, 1<i<j<k,
js OO L) = T A =2 —1 | b=/

=1,...

Iim P[N,(A,c) > k]
A—>0+

T 2-x 1-a=m L
Ty NGO | €T T X T T P T e

= ooy (e —avii=1,.. k) k=12,.... 27)
O
(24) clearly suggests the use of a linear combination of X;,i = 1,...,1, as the

control statistic at time ¢ of the upper one-sided limit chart, as stated in the next
proposition.

Proposition 6 The upper one-sided limit chart makes use of the overall mean at
sample time t, X; = % >i_, X;, and its RL,

N4 (0, ¢) = inf {r eIN: X, > Eo(X;) + e/ Varg(X;) = po + ca/\/;] . (28)

has the survival function defined by lim) o4 P[N,(A, c) > k] in (24).

Remark 7 1. X, happens to be the best linear unbiased overall estimator of .

2. The RL of the upper one-sided limit chart can be rewritten as inf{t € IN :
Zf.:l(Xi — o) > co+/t}, which can be thought as the RL of an upper one-
sided repeated significance test (please refer to Siegmund (1977) or Morais et al.
2012 for more details).
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3. If we use the control statistic % Zf _1(Xi — o) instead of X,, we are now
dealing with a chart similar to the CUSUM procedure from the structural change
(econometrics) literature.

4. Moreover, if we note that X; = (1— %))_( —1+ % X, the limit chart can be interpreted
as an upper one-sided EWMA chart with time-varying smoothing parameters A; =
1 and exact control limits 2o + co//7.

5. It should be emphasized that the upper one-sided limit chart is not a moving average
chart as defined by (Montgomery 2009, p. 419).

Proof (Proposition 6)—The result can be immediately proved. Since E|, (X;) = o+
ao, Varg(X;) = "l—z and

llzmin{i’j}COV . ..
_ F 52— o(X1, X1)
Corro(X;, Xj) = L Sy KLU LR AR o
J )
ala max{i, j}

T

fori, j =1,..., k, we consequently get [Corrg()_(i, )_(j)]
= C¢(0) and

i,jZl _____ k - hm)»—)()-i- Ck()\')

P[N4(0,¢) > k] = P, | Xi < Eo(X;) + ¢ y/ Varg(X;), i = 1, k]
\/Varg()_(i)

= FNG0r,C(0) (C_a [ i=1,...,k)
A—0+

[ X, — E (X
=P, l—a(l)gc—a«/l_',izl,...,k]

fork =1,2,....

Assuming that (3) is valid, we can interpret the chart described in Proposition 6 as
the limit of the upper one-sided EWMA chart with exact control limits when A tends
to zero, thus, concluding the proof. O

3.1 Illustrating the performance of the limit chart

It is time to assess the performance of the (upper one-sided) limit chart and confront
it with other matched in-control charts (¢ = 500). For that matter, let us consider the
following charts and parameters:

A. upper one-sided limit chart—c(0, 500) = —0.084701;

B. upper one-sided EWMA chart with exact control limits—A = 0.1 and
c(0.1, 500) = 2.543225;

C. upper one-sided EWMA chart with asymptotic control limits—A = 0.1 and ¢ =
2.532760; note that the value of A is in the interval [0.05, 0.25], as recommended
by Montgomery (Montgomery 2009, p. 423);

D. upper one-sided Shewhart chart—c(1, 500) = 2.878162;
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Table 3 In-control and out-of-control ARL of the upper one-sided limit chart (A) and four other matched
in-control competing charts (B-E)

Chart a

0 0.25 0.5 1.0 1.5 2.0 3.0 4.0
A 501.1468 2.9139 1.7614 1.2122 1.0670 1.0197 1.0010 1.0000
B 499.7454 66.9442 21.6346 6.7607 3.5398 2.3040 1.3671 1.0733
C 500.2899 70.3600 24.7263 8.9078 5.3898 3.9152 2.6044 2.0577
D 500.0000 232.9707 114.9479 33.1351 11.8939 5.2652 1.8232 1.1507
E 500.4931 98.2612 30.8521 9.1548 5.1368 3.6029 2.3409 1.8456

E. upper one-sided CUSUM chart—K = 0.5 and & = 4.38913, as optimal refer-
ence value and upper control limit; recall that the control statistic of this scheme
is C;¥ = max {0, C:r_l + X, — K}, with C(J)r = 0, and where K equals to
half-distance between the target and the out-of-control process mean; settting
K = 0.5 implies that we anticipate a shift from po = 0 to u; = 1; and con-
sidering & = 4.38913 leads to an in-control ARL around & = 500 (accord-
ing to (Montgomery 2009, Sect. 9.2.2), the upper one-sided CUSUM chart with
this reference value and the upper one-sided EWMA chart with asymptotic con-
trol limits and A = 0.1 have a similar behaviour when it comes to the ARL for
a=1).

It should be also noted that all simulated RL is truncated if it is larger than 50,000
samples, except for A = 0, as in Sect. 2.3.

We ought to comment the negative character of the critical value of the upper one-
sided limit chart—a surprising result thoroughly discussed by Morais et al. (2012),
namely by its Theorem 3, stated below.

Assume that the random variables {Y;} are independent and identically distributed
with mean p and variance yy. (a) If ¢ > 0 then E[Ny(0, ¢)] = oo. (b) Suppose that
PlY; = 0] < 1 and that the variables {Y;} are symmetric around p. If ¢ < O then
E[Ny(0, ¢)] < oo and Var[Ny(0, ¢)] < oo.

This result is remarkable: it implies that the in-control ARL of the upper one-sided
limit chart is equal to infinity if the control limit is nonnegative.

From Table 3 it is apparent that the upper one-sided limit chart outperforms all the
four other matched in-control competing charts.

This table certainly supports the well known fact that Shewhart charts tend to be
faster than the EWMA charts with asymptotic limits in the detection of very large
shifts. However, when we compare their (zero-state) ARL values with the ones of
the upper one-sided EWMA with exact control limits (B) or of the upper one-sided
limit chart (A), we immediately recommend abandoning both the upper one-sided
Shewhart chart (D) and the upper one-sided EWMA chart with asymptotic limits (C).
The reader should recall that using the exact control limits for the EWMA chart is one
of several possibilities to introduce fast initial response, as put by Steiner (1999) and
Knoth (2005).
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3.2 On the stochastic comparison of the run lengths of the limit and EWMA charts
with exact control limits

It should be noted that we failed to establish a stochastic order relation between the
RL of the (upper one-sided) limit chart, N, (0, ¢(0, §£)), and the RL of the matched
in-control upper one-sided EWMA with exact control limits, N, (A, c(X, &)), for any
fixed values of a (a > 0), & (¢ > 1) and A (A € (0, 1]).

In fact, by capitalizing on the increasing behaviour of c¢(X, £) and the decreasing

behaviour of \/ 2% X :8:;; in terms of A, we can conclude that

PN (0, c(0,§)) > k] = FAr(0,.C,(0) (c(o, Ey—avi,i=1,..., k)

2—x 1—=(1=n)i .
x _i=1,....k|, 3D
Y 1+ (1 =)

< Fnqoncoo) | €A, 8) — a\/

fork = 1,2,.... However, by using Theorem 5.1.7 by Tong (1990, p. 103), we get

2—A 1—(1-=21)

Fanocro) | €A, 6) —a \/

X - i=1,...,k
A 1+1—A1)
- F G 6) 2—A 11— =X { I
Cc(A, —a X -, L =1,...,
Z PN (0, Cr (1)) Py 14+ (1 =)

= P[Na(%, c(,§)) > k], (32)

fork = 1,2, ..., thus failing to prove that N, (0, c(0, §)) <;; Ny(A, c(%, §)), for any
fixed values of a (a > 0),& (¢ > 1) and A (A € (0, 1]). Needless to say, that a similar
difficulty arises when we try to prove that the RL N, (A, ¢) stochastically decreases
with A for a fixed and common critical value c.

Difficulties such as these do not come as a surprise, namely for the matched in-
control run lengths Ny (0, ¢(0, £)) and No(A, c(X, §)), since Theorem 1.A.7 of (Shaked

and Shanthikumar 1994, p. 8) can be restated as follows:

o if No(0,¢(0,8)) <5 No(x,c(x,§)) and E[No(0,c(0,§))] = E[No(x, c(%, §))]
then No(0, ¢(0, §)) =g No(%, c(&, §)).

But since we know that Ny(0, c(0, &)) #s+ No(A, c(A, &)) and E[Ny(0, c(0,&))] =
E[No(A, c(A, &))] for matched in-control charts, we can conclude that these two RL
cannot be compared in the usual sense, i.e. No(0, c(0, §)) £+ No(X, c(A, §)).

Curiously enough, if a = 0 and we consider a common critical value c(X, &), we
can rewrite (32) as
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P[No(0, c(X, §)) > kI = Far o, cr0)) (c(A, 8), i =1,...,k)
= F./\/-k(ok,ck()\)) (c(h, ‘i:)’ i=1,...,k)
= P[No(r,c(A, &) > k], (33)

fork=1,2,..., thatis,
No(0, c(X, §)) =5 No(A, c(A,§)). (34)

This result can be read as follows: the probability of no false alarms within the first
k samples is larger for the upper one-sided limit chart than for the upper one-sided
EWMA chart with exact control limits if the same critical value c¢(X, &) is used in both
charts.

Interestingly enough, if the upper one-sided limit chart is used with its own critical
value c(0, &), the probability of a false alarm at the first sample is high. The implications
of this result and a solution will be further explored in Sect. 4.2.

Furthermore, since assuming that the shift occurs at time ¢ = 1 is not very realistic,
other performance measures than the ARL are also discussed in the next section.

4 Further investigations
4.1 Exact vs. asymptotic control limits

So far we have investigated the impact of A in the in-control and out-of-control ARL of
upper one-sided EWMA charts with exact control limits, and in the range of the exact
control limits of such charts with acommon in-control ARL value. These investigations
led to what we called the limit chart. Now it is time to examine how do the critical
values and the out-of-control ARL change with A when we adopt asymptotic control
limits and therefore the RL of the chart is defined by

inf{ teIN:Z > EyZ) —l—c\/r 1113 Varg(Z;) } (35)
—> 400

Our numerical investigations considering the same set of parameters as in Sect. 2.3 led
to the obvious conclusion, made apparent from Fig. 2, that critical values associated to
exact control limits are obviously larger than the ones associated to asymptotic control
limits of matched in-control upper one-sided EWMA charts.

In fact, if we consider upper one-sided EWMA charts with exact and asymptotic
control limits with the same critical value, say ¢, the chart with asymptotic control
limits has a stochastically larger (in and out-of-control) RL since those limits are larger
than the exact ones. This stochastic behaviour implies in turn the use of smaller critical
value, say ¢’ < c¢ in order to match in-control the upper one-sided EWMA chart with
asymptotic control limits and the correspondent chart with exact control limits.

Moreover, these critical values seem to take quite similar values for large values
of A, namely larger than 0.2 in our numerical example. However, when asymptotic
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Fig. 2 Critical values of matched in-control upper one-sided EWMA charts with exact and asymptotic
control limits as a function of log(1)
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Fig.3 Out-of-control ARL of matched in-control upper one-sided EWMA charts with asymptotic control
limits as a function of A (on the left) and of log(A) (on the right)

control limits are at use, the out-of-control ARL is no longer an increasing function
of A, as shown by Fig. 3.

Deriving the survival function of the RL does not shed any light on this non
monotone behaviour. In fact, this survival function is given by

1 —(1—2)

F c \/2 —A
—d X -
J\/’k(ﬂk,Ck()t)) /1 _ (1 _ )\‘)21- A 1 + (1 _ )\‘)l

ci=1,...,k],

(36)
fork = 1,2, ...,whichis quite similar to Equation (14): the critical value c is different
from the one of the in-control matched chart with exact control limits and it is now
regretfully divided by an increasing function of A.

Despite of this discouraging result, we are able to add that, when a = 0, the survival
function in (36) decreases with A, for any fixed k = 1,2, ... and any fixed critical
value c¢. This means that the in-control RL of upper one-sided EWMA charts with
both exact and asymptotic control limits stochastically decreases with A for any fixed
critical value (please refer to Theorem 1).

It is also worth mentioning that, when asymptotic control limits are at use, the out-
of-control ARL values in Fig. 3 are larger than the ones of the matched in-control upper
one-sided EWMA chart with exact control limits in Table 1 and Fig. 1. Furthermore,
if we superimpose Figs. 1 and 3 we conclude that: the out-of-control ARL values
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Fig.4 Out-of-control ARL of matched in-control two-sided EWMA charts—with exact control limits (on
the left) and asymptotic ones (on the right)—as a function of A

of the upper one-sided EWMA chart with asymptotic control limits converge to the
ones associated to exact control limits, as A tend to one; the in-control ARL of the
upper one-sided EWMA charts with exact or asymptotic limits seem to reach a global
minimum value as A — O.

Even though the detection of both increases and decreases in the process mean is
beyond the scope of this paper, we briefly explore the impact of A when an EWMA
chart with exact control limits is at use and when these limits are replaced by the
asymptotic ones. Let us remind the reader that the two-sided EWMA chart with exact
control limits has the following RL:

inf 1€ V2 Z < Eo(Z) = o/Varg(Z)) or Zi > Eo(Zo) + e/Narg(Zo) |
(37)
As shown by the two graphs of Fig. 4, the out-of-control ARL of the two-sided EWMA
chart with exact control limits still increases with A but this monotonicity no longer
holds when these limits are replaced by the asymptotic ones, as in the upper one-sided
case.

4.2 On the in-control behaviour of the limit chart

A close inspection of the simulated values of the in-control RL of the upper one-sided
limit chart made us realize that the probability of a false alarm at the first sample is
very high. In fact, it is equal to

Po[X1=X1>po+¢0,80]=1-2[c(0,8)]; (38)

and since the absolute value of ¢(0, &) is small this probability is large and the number
of false alarms at sample 1 higher than the one of the competing charts even though
they are matched in-control.

The impact of this undesired property can be reasonably minimized by adding a
negative head start value, say HS™, to X1, therefore the control statistic now reads as

__ HS™ 1<
X; =T+;§X,~. (39)
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Table 4 Percentage of simulated in-control RL equal to one, in-control and out-of-control ARL of the
upper one-sided limit charts A, Al and A2, and the competing charts B-E

Chart % of RL a
equal to one 0 0.05 0.1 0.15 0.2 025
A 0.5336 5011468 11.6335 62806 44263 34894  2.9139
Al 0.0020 28435256 627517 33.0347  22.8104  17.5949  14.4308
A2 00038 25937166 574177 302333 209299  16.1643  13.2812
B 0.0055 5003034 3048160 1952651  130.8202  91.8641  66.9634
C 0.0000 5002899  307.2937  198.8014 1344792  95.4423  70.4296
D 0.0020 500.0000 4272030  365.8488  314.0291  270.1700  232.9707
E 0.0000 5004931  349.6541  247.8247 1785377 1312821  98.2469

H S should chosen in order to achieve a reasonably small value for the probability in
(38). For instance, the probability of triggering a false alarm at the first sample while
using the upper one-sided limit chart could be taken as equal to the one of the upper
one-sided Shewhart chart and therefore

HS™ = HS (1/€) = ¢(0,&) — ' (1 — 1/¢). (40)

We ought to note that head start values are throughly recommended in the literature
(e.g. Lucas and Crosier (1982)). Positive (resp. negative) head start values are used
by quality control practitioners when dealing with upper one-sided (resp. lower one-
sided) charts. The rationale 1s as follows: if the process is operating in control, the
control statistic of the chart is soon brought to zero, so that the expected effect of the
head start is minimal; otherwise, the operator is alerted to the out-of-control situation
much sooner, which may prevent start-up problems.

In our specific case, the adoption of a negative head start while using an upper
one-sided chart limit chart has a sort of opposed effect. As a matter of fact, there is a
stochastic increase of RL and, thus, larger in-control and out-of-control ARL values,
and we are no longer dealing with matched in-control charts, as illustrated by Table 4
for the upper one-sided limit charts with critical value ¢(0, £ = 500) = —0.084701
and

Al. HS=(1/&) = ¢(0,8) — 711 — 1/8) ~= —3;

A2. HST(2/&) = c(0,&) — d~1(1 —2/8) ~= —2.7.

However, the upper one-sided limit charts with these two head starts (A1-A2) can still
outperform the competing ones (B—E) in the detection of very small shifts (e.g. a =
0.05, 0.1, 0.15, 0.2) in terms of the (zero-state) ARL, as shown by Table 4. Moreover,
the adoption of head starts HS™(1/£) and HS™ (2/&) substantially decreased the
percentage of simulated in-control RL values equal to one of the upper one-sided limit
chart, as we can see from Table 4.

It is worth noticing that there was no single false alarm at the first time point in
these simulation results for the upper one-sided EWMA chart with asymptotic limits
(C) and the upper one-sided CUSUM chart (E). This is essentially due to the fact that
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Fig. 5 Upper one-sided EWMA with asymptotic limits—probabilities that the in-control RL is equal to
one or is smaller than some prespecified value [ 4+ 1, [ = 10, 100, 500, 1000, 10000, as a function of A

the probabilities of these occurrences (pfa) are very small. In fact, in our examples,
they are equal to pfac = P(AX1 > ¢) =1 — & (2J/T/TA2 = M)]) =~ 3 x 107 and
pfap = P(X1 — K > h) =1—®(K —h) =~ 5 x 107>, respectively.

We ought to add that the upper one-sided EWMA charts with small values of
the smoothing parameter are also associated to large values of the probability of a
false alarm at the first sample, as illustrated by Fig. 5. This figure also includes the
profiles of the probability of a false alarm before the collection of / + 1 samples
(l = 10, 100, 500, 1000, 10000) and lead us to conclude that, despite of the in-control
ARL of 500, the probability of a false alarm within, for instance, the first 500 samples
is quite high for A < 0.1, thus, suggesting that the upper one-sided EWMA charts
with small A should be used with great care.

Finally, note that these new set of simulations (and the ones in the next subsection)
were based on 10° replications for charts A—E.

4.3 The (maximum) conditional average delay

Up to now we have assumed that the shift occurs at time + = 1 and this can be
unrealistic. So we ought to investigate the performance of both the upper one-sided
EWMA with exact control limits and the upper one-sided limit chart when the shift
occurs at an arbitrary time, say g (g > 1). In order to do that, let us consider the model

| Y, t<gq
X“‘[n+a,t2q, “h

where ¢ > 1 and is usually called the change point.
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Under this model the ARL is no longer an adequate chart performance. In fact,
the essential tools in the comparison of the performances of several competing charts
under (41) are the conditional average delays

CADu(q, 2, c) = E[Na(X,0) —q + 1[Na(X, ¢) = q], (42)

which corresponds to the number of observations until the detection of a shift of
magnitude a, conditionally on the fact that it occurred at time ¢ (see, for example,
Knoth 2003), and the maximum conditional average delay,

MCAD,(A,c) = n}azx CAD,(q, X, c). (43)
qg=1,2,...

We begin with an illustration with simulated conditional average delay values refer-
ring to matched in-control (¢ = 500) upper one-sided limit chart (A) and a few upper
one-sided EWMA charts with exact control limits and different values of A.

Firstly, let us remind the reader that CAD,(q, A = 1,¢) = E[Nyz(A = 1,0)],
qg = 1,2, ..., for any (upper one-sided) Shewhart chart, after all the RL of this chart
has a geometric distribution. Please also note that, under the change point model (41),
we have, fora > 0:

o E,(Z))=pno+ao [1 —(1— k)’_Q+1], for A € (0, 1] and considering Zy = wo;
o Ea(% i X)) =po+ 00#-

Figure 6 provides the plots of CAD as a function of the change point ¢ and A, where
the horizontal line in each graph on the right hand side refers to A = 1 (Shewhart chart).

It is apparent from these plots that the detection ability of upper one-sided EWMA
charts with exact control limits and small values of A, as well as the one of the upper one-
sided limit chart, is heavily dependent on the change point ¢. In fact, CAD,(q, X, ¢)
is an nondecreasing function of ¢ in the absence of head-starts, reflecting the fact that
the control statistics Z; and % > t_, X, underestimate the out-of-control process mean

no + ao, for t > ¢, and the absolute value of their biases, | —a o (1 — A) 41| and
| —ao t_‘f’l |, both increase with g.

Moreover, if the shift occurs quickly the charts with smaller values of A outperform
charts with high smoothing parameters under the same criterion. However, if the shift
occurs later the charts with weaker memory perform better. It is also worth adding
that, for shifts of unit size, the control charts with A = 0.5 or larger become almost
insensitive to the change point g.

Unlike the out-of-control ARL, CAD,(q, A, ¢) is not an increasing function of
A, as pictured by Fig. 7, for ¢ = 250, 500, 750, 1000. As a consequence, the upper
one-sided limit chart is not necessarily better than all of the matched in-control upper
one-sided EWMA charts with exact control limits (or the Shewhart chart), under the
CAD criterion. For instance, the optimal value for the smoothing parameter is around
0.1, fora = 1.

Unsurprisingly, the maximum conditional average delay (MCAD) is not an increas-
ing function of A and therefore the upper one-sided limit chart can be outperformed by
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some matched in-control upper one-sided EWMA with exact control limits, namely

the ones with A in the interval [0.05, 0.1], as illustrated by Fig. 8.
Finally, we summarize some MCAD values in Table 5.These values refer to the
charts A—E defined in Sect. 3.1, by considering the following approximation to MCAD

in formula (43): max,—1 2, .. gee CADa(q), Where gpq = 1000.
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Table 5 Maximum conditional average delays of the upper one-sided limit chart (A) and five other matched
in-control competing charts (B-E)

Chart a

0.25 0.5 1.0 1.5 2.0 3.0 4.0
A 156.0252 78.9033 40.1450 27.2221 20.7695 14.3244 11.1077
B 70.5266 24.1794 8.9059 5.4083 3.9467 2.6459 2.0534
C 69.9194 24.1532 8.8542 5.3910 3.9322 2.6355 2.0474
D 232.9708 114.9479 33.1351 11.8939 5.2652 1.8232 1.1507
E 97.2617 30.3813 8.8689 4.9589 3.4709 2.2635 1.7696

The reader should be also aware that: max,—12,... g« CADa(q) increases with
Gmax; this approximation to MCAD does not change if ¢,,,4, 1s increased beyond 100,
while using the competing charts B—E.

It is apparent from Table 5 that, according to the MCAD performance criterion,
the upper one-sided limit chart (A) is only able to outperform the upper one-sided
Shewhart chart (D) for small shifts. Furthermore, this criterion favours the upper one-
sided CUSUM chart (E) for moderate shifts and the upper one-sided Shewhart chart
(D) for large shifts.

5 Conclusions

This paper essentially provides a thorough study on the behaviour of the upper one-
sided EWMA chart with exact control limits when the smoothing parameter A con-
verges to zero. We ought to note that the resulting chart—the upper one-sided limit
chart—has small out-of-control (zero-state) ARL values when compared to other
matched in-control EWMA (and CUSUM) charts. However, we cannot advocate the
use of the limit chart, namely because:

o it triggers false alarms quite frequently in the first samples;
e its conditional average delay profile is highly dependent on the change point g;
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e its CAD and maximum conditional average delay are not necessarily better than
the ones of the remaining matched in-control upper one-sided EWMA charts with
exact control limits.

Finally, this study also brought to light a few useful results in the design of EWMA
charts. For instance, we proved that:

e increasing A yields leads to a stochastically smaller in-control RL, within the family
of upper one-sided EWMA charts with the same critical value;

e increasing A requires a larger critical value if we decide to deal with a matched
in-control chart.
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