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Abstract. We consider one-dimensional transport through an interacting region in series with a point-like
one-body scatterer. When the conductance of the interacting region is perfect, independently of the in-
teraction strength, a nonlocal interaction effect yields a total conductance of the composed system that
depends on the interaction strength and is lower than the transmission of the one-body scatterer. This
qualitative nonlocal effect allows to probe the dressing cloud of an interacting system in ideal noninter-
acting leads. The conductance correction increases with the strength of the interaction and the reflection
of the one-body scatterer (attaining relative changes >50%), and decreases with the distance between
the interacting region and the one-body scatterer. Scaling laws are obtained and possible experimental

realizations are suggested.

PACS. 73.23.-b Electronic transport in mesoscopic systems — 71.10.-w Theories and models of many-

electron systems — 73.63.Nm Quantum wires

1 Introduction

Viewing quantum transport as a scattering problem is at
the heart of Landauer’s approach to the conductance of
mesoscopic systems [1]. Working at zero temperature and
ignoring electron-electron interactions we solely have to
consider the elastic scattering of electrons at an energy
that is given by the Fermi level of the electrodes, arising
from one-body potentials in the system. Including inter-
actions through Landau quasiparticles does not modify
appreciably this situation. Such an effective one-body de-
scription allows to understand a wealth of phenomena,
ranging from residual resistivity to interference effects.
Interaction effects become prominent in small and
weakly connected quantum dots displaying Coulomb
blockade oscillations [1]. Describing the charging effects
through capacitances one stays at the level of a simplified
local mean-field approach, and the view of quantum trans-
port as the scattering of (quasi-)particles is still applicable.
Exploring yet smaller systems within the hypothesis of an
effective one-body scattering we encounter cases in which
the effective transmission can no longer be obtained from
such a simple approach ignoring many-body exchange and
correlation effects. Such many-body signatures have been
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theoretically demonstrated for the 0.7 anomaly of quan-
tum point contacts [2], in the length-dependent oscilla-
tions of the conductance through an atomic chain [3],
and in the interaction-induced increase of the conduc-
tance through a strongly disordered quantum wire [4].
Also, the perfect conductance predicted for clean Lut-
tinger liquid wires adiabatically attached to leads [5,6]
is modified by interaction-dependent corrections at finite
frequencies [6,7] or when an impurity is present inside the
wire [8,9]. In realistic systems it is difficult to control the
effective interaction strength independently of other pa-
rameters. Thus, the clear-cut observation of many-body
signatures on the measured transmissions has remained
elusive.

For systems containing a small region, that we refer
to as nanosystem and in which interactions are impor-
tant, the situation is even more complicated since one
can pose the fundamental question under which circum-
stances the one-body scattering approach yielding an ef-
fective transmission is valid. Kondo physics in the trans-
port through ultra-small quantum dots [10,11] provides an
example where electronic correlations are necessary for the
interpretation of the data and where one-body concepts
cannot be used inside the spin screening cloud [12,13].

In generic nanosystems, the effective one-body ap-
proaches are challenged by the nonlocal effects arising
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from interactions which can be tested by approaching an
external scatterer. The nonlocality can be explained al-
ready at the Hartree-Fock (HF) level [14,15], since the
Hartree and Fock corrections are given by nonlocal cou-
pled integral equations. For instance, the effect of an ex-
ternal scatterer upon the Hartree corrections results from
the Friedel oscillations of the electron density that the ex-
ternal scatterer induces inside the nanosystem. The Fock
corrections are characterized by similar oscillations [14].
Using a model where particle-hole symmetry yields a uni-
form density, the nonlocal effect arises from the exchange.
At zero temperature, introducing an external scatterer at
a distance L¢ of the nanosystem yields an effect which de-
cays as the Friedel oscillations which cause it, i.e. x 1/L¢
in one dimension. At a finite temperature T, this effect is
exponentially suppressed [14] if Lo exceeds the thermal
length Lt describing the scale over which the electrons at
the Fermi surface propagate during a time i/kpT. This
means that all the external scatterers located in a region
of size Lt can modify the transmission of the interacting
nanosystem.

Only the dressed nanosystem, consisting of the inter-
acting region and its local environment, behaves as an
effective one-body scatterer. The fundamental question
posed above translates into the question about the na-
ture and the extension of the associated cloud dressing
the nanosystem. A way of testing such a cloud is to study
the conductance through two nanosystems connected in
series by a short noninteracting lead, and to detect the
deviations from the prediction based on the combination
of effective one-body scatterers [17]. This is in principle an
experimentally observable effect, although it seems diffi-
cult to get simultaneous access to both, the conductance
of the individual and of the combined system, and/or to
change the separation between the interacting regions.

Within this line of investigations it seems more promis-
ing to replace one of the nanosystems by a tunable one-
body scatterer. If the one-body scatterer is influenced by
an attached Aharonov-Bohm ring, a HF treatment indi-
cates that a nonlocal interaction effect can lead to a signif-
icant dependence of the nanosystem transmission on the
magnetic flux piercing the ring [15,16]. If the one-body
scatterer is a scanning gate microscope acting on a two-
dimensional electron gas in the proximity of a quantum
point contact [18,19], its effect upon the resulting conduc-
tance carries the signature of the electron-electron inter-
actions inside the constriction [20]. In these two cases the
interaction determines both, the effective transmission of
the nanosystem as well as the interaction-induced nonlo-
cal correction to the total conductance. However, if the
conductance of the nanosystem is independent of the in-
teraction strength, the only source of interaction depen-
dence of the total conductance can be the nonlocal in-
teraction effect. This is a striking situation because an
interaction-dependent conductance implies the nonappli-
cability of the standard composition law and therefore im-
mediately demonstrates the presence of nonlocal effects.

In this work, we consider precisely this situation by
setting up a one-dimensional model with parameters cho-

sen such that the transmission through the nanosystem
is perfect for all values of the interaction strength [3,4],
while the one-body point-like scatterer is introduced as
an electrostatic perturbation.

2 Nanosystem with perfect conductance

We consider spinless fermions in a one-dimensional chain
with an interacting region of length Lg, separated by a
lead of length L¢ from a point-like scatterer (see Fig. 1).
The corresponding Hamiltonian reads

H:Hkin+Hint+H1bsa (1)

where

o0
Hyin = — Z (cjc“rl + h.c.) (2)

1=—00

is the kinetic energy part. Here, ¢; annihilates a fermion
on site ¢, and we have fixed the energy scale by setting the
hopping amplitude equal to unity. The nearest-neighbour
interaction on sites 1 to Lg is described by

Ls—1

Hiny = U Z (ni —1/2) (niy1 = 1/2) (3)

with the local density operators n; = cjci.

At half filling, an odd number of sites Lg ensures a
perfect effective transmission, i.e. a dimensionless conduc-
tance g = G/(e?/h) = 1, for the nanosystem, independent
of the interaction strength [3,4,21]. We choose half filling
and Lg = 3 in order to keep the size of the total system
as small as possible.

The one-body on-site scattering potential of height V'
that is separated from the interacting region by L sites
is represented by

Hyys = Van—i-Lc-i-l' (4)

It is straightforward to calculate the transmission prob-
ability and thus the conductance gps of an on-site po-
tential of strength V' in a clean chain. At energy F = 0
corresponding to the Fermi energy at half filling, one gets

4
4+ V2 5)

For two one-body scatterers in series, where the first one
is characterized by perfect transmission, the total trans-
mission is simply given by the transmission of the second
scatterer. In our case, one would therefore naively expect a
total conductance g = g1ps. However, the perfect transmis-
sion of the interacting region is an effective transmission
describing the interacting region including long attached
leads. The presence of a one-body scatterer in the vicinity
of the nanosystem affects its transmission. We will show
that this leads to pronounced deviations of the total con-
ductance from gips.

Jibs =
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Fig. 1. One-dimensional setup with an interacting region
(nanosystem, grey) of length Ls and a local one-body scat-
tering potential V' at a distance Lc.
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Fig. 2. Conductance of the combined system sketched in Fig-
ure 1 as a function of L¢ for a scatterer with V =2 for U = 2
(triangles) and U = 16 (diamonds). The grey area indicates
that the scatterer is placed in the interacting region.

The embedding method [2,4,21-24] allows to calculate
the zero-temperature linear conductance through the sys-
tem composed of the interacting part and the one-body
scatterer in series. Within this method the conductance is
extracted from the charge stiffness of a ring composed by
the system and a long noninteracting lead in the limit of
infinite lead length. We use the DMRG algorithm [25,26]
to determine the stiffness D for different ring sizes L up
to 120 sites and extrapolate the results to infinite system
size using fits of second-order polynomials to the numeri-
cal data for log D as a function of 1/L. An estimate for the
precision of the resulting extrapolated value is given by the
difference of the result as compared to the one obtained
from a linear extrapolation of log D(1/L). The resulting
precision of the extracted conductance is displayed by the
error bars in some of the figures. Using the DMRG algo-
rithm allows to obtain exact results for finite system sizes
in contrast to the HF approximation, which fails when U
or Lg become large and induce nonnegligible correlation
effects [14].

The dependence of the conductance g on the length
L¢ for an on-site potential V' = 2 is shown in Figure 2
for two different values of the interaction strength. In
this case, gips = 0.5. Pronounced deviations from that
value appear at small separations between the scatterer
and the nanosystem. Those deviations are negative and
increase with decreasing Lc. While this seems reminis-
cent of the increase of the deviations observed for even
values of Lc when two nanosystems in series are consid-
ered [17], there is nevertheless an important difference. In
the present case, deviations from g5 appear for all values
of L¢. For not too strong interaction strength U = 2, the
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Fig. 3. (Color online) Conductance g as a function of L¢ and U
for a scatterer with strength V' = 4 corresponding to gins = 0.2.

deviations increase to 20% of g1ps as Lo decreases down
to zero. For U = 16, the effect is stronger (60% of gips)
and even-odd oscillations as a function of L¢ appear for
large values of Lc. The negative values of L¢ indicated
in grey correspond to the case where the potential scat-
terer is located inside the nanosystem. The deviation from
the noninteracting conductance is particularly strong for
Lc = —1, when the one-body scatterer acts at the edge of
the three interacting sites.

The behaviour of the total conductance g as a function
of U and Lc is shown in Figure 3 for V = 4, that corre-
sponds to gips = 0.2. The total conductance is equal to
g1bs in the noninteracting case (U = 0) and starts to de-
crease with increasing U. In addition, it can be seen that
the oscillations of g with L¢ appear already for moderate
interaction strength. These oscillations and the deviations
of the total conductance g from g1, become stronger as
U increases. As a consequence, g assumes large values ap-
proaching gips for large U when L¢ is odd.

The U-dependence of the deviations of g from g1}, con-
trasts with the situation for two interacting regions in
series [17] where the deviations from the noninteracting
composition law of scatterers reach a maximum around
U = 2 and decrease for stronger values of U. The qualita-
tive difference in the behaviour arises from the fact that
in the case considered in reference [17], for even L¢ the
conductance of the interacting nanosystems and the total
conductance decrease with increasing interaction strength.
This results in a decrease of the nonlocal corrections,
which are further reduced by the effective decoupling of
the nanosystem from the noninteracting leads occurring
in the limit of strong interactions [27].

Apart from the oscillations which are particularly no-
ticeable at strong interaction, the decrease of the nonlocal
correction with Lc is quite well described by the scaling

AU, V)

Lot (6)

gibs — 9
J1bs
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Fig. 4. Log-log plot of the relative conductance correction as
a function of Lc +2 at V = 2, for U = 1 (squares), U = 4
(triangles), and U = 16 (diamonds). The full lines are fits of (6)
while the dotted lines serve to guide the eye.

This is shown in Figure 4 and confirms the expected scal-
ing due to Friedel oscillations caused by the one-body
scatterer influencing the nanosystem whose centre is at
a distance L¢ + 2 from the perturbing tip.

3 Potential scatterer versus weak link

The potential scatterer studied so far breaks particle-
hole symmetry, and therefore disturbs the uniform elec-
tron density at half filling in the perfectly transmitting
nanosystem. It is then important to study whether the
nonlocal effect changes when the one-body scatterer does
not break particle-hole symmetry. This can be achieved
by using a weak link as a one-body scatterer, where the
term Hips in the Hamiltonian (1) is set to

Hipe = (1= tw) (chosposiCiapie +0 ), (1)

replacing the hopping matrix element for the link between
the sites Ls + Lc and Lgs + Lc + 1 by ty. For the con-
ductance of the weak link alone at half filling one obtains

4
(twl + ]-/twl)2 '

The results for the conductance of the combined system
are very similar to the situation of a potential scatterer in
series with an interacting region. In Figure 5 we plot the
relative change of the conductance due to the interactions
as a function of g1ps, for Le = 3. The empty symbols are
data points obtained for a potential scatterer described
by (4) while the filled symbols stand for a system where
the one-body scatterer is modeled as a weak link (7). The
solid and dashed lines are the corresponding linear fits.
The two different ways of modeling the one-body scat-
terer yield nonlocal effects that are very close, demon-
strating that the nonlocal correlation effect scales with
J1bs, independent of the nature of the one-body scatterer.
As expected, the relative change of the conductance due

(8)

Jibs =

Jibs

Fig. 5. Relative change of the conductance as a function of
the conductance of the one-body scatterer arising from an on-
site potential (empty symbols; V =1, 2, 4, and 6) and a weak
link (filled symbols; tw1 = 0.2, 0.3, 0.4, and 0.6), at Lc = 3.
Squares, triangles and circles represent data for U = 1, 2, and
8, respectively. Linear fits of the form (9) are shown for an
on-site potential and a weak link as solid and dashed lines,
respectively. Inset: parameter B of the fit (9) for the case of a
potential scatterer as a function of U for Lc = 1. The results
for Lc = 3 and 5 as well as for a weak link collapse on the
same line with deviations below 3.2%. HF results at Lc = 1
for the slope at gips = 1 are shown for a potential scatterer
(dotted line) and a weak link (dashed-dotted line).

to the interaction effect increases monotonically with de-
creasing gips.

Already for Lo = 3 the nonlocal effect can amount to
a conductance change of more than 20%. This value in-
creases beyond 60% for Lc = 0, when the on-site potential
is applied on the first noninteracting site.

For not too strong interaction, the dependence follows
approximately the linear relationship

Jibs — g 1 —gins
— B(U , 9
J1bs ) Lc+2 ©)

yielding A(U, givs) = B(U)(1 — g1bs) for the parameter A
in (6). For the whole range of explored parameters, the
U-dependence of B, shown in the inset of Figure 5, is
monotonically increasing. The collapse of the data on a
universal curve confirms the scaling (6).

The scaling law (9) represents evidence for an in-
trinsic property of the cloud dressing the nanosystem,
namely that an external scatterer placed in the proximity
of the perfectly transmitting nanosystem yields a univer-
sal renormalized conductance g given by (9).

A comparison of the quasi-exact results obtained using
DMRG to HF results (dotted and dashed-dotted lines) is
shown in the inset of Figure 5. As it turns out that the lin-
earity of the scaling (9) is not satisfied by the HF results,
the parameter B is deduced from the slope at gips = 1.
The linear scaling of the nonlocal conductance correction
with gips, independent of the nature of the scatterer, per-
sists in the quasi-exact results beyond U ~ 10, while HF
yields different results for different scatterers having the
same ¢gips. Since the HF results exhibit the universality of
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Fig. 6. Conductance g as a function of L¢ for an interacting
region of length Ls = 2 and a potential scatterer with V = 4.
Triangles and circles are for U = 2 and 8, respectively. The
solid and dotted horizontal lines are the corresponding upper
and lower limits of the oscillations with L¢ predicted by the
noninteracting composition law of scatterers.

the exact results only at rather weak interaction, the cloud
dressing the nanosystem carries the signature of electronic
correlations.

4 Nanosystem with interaction-dependent
conductance

The results presented above show that the nonlocal ef-
fects in the conductance appear in a particularly spectac-
ular fashion when the nanosystem has perfect transmis-
sion. When the transmission through the nanosystem is
interaction-dependent, the signature of nonlocal interac-
tion effects has to be extracted from the difference between
the total conductance and the prediction resulting from
the composition of the effective interaction-dependent
scatterer corresponding to the nanosystem with the one-
body scatterer. Figure 6 presents the case where the elec-
trons interact only inside a nanosystem of length Lg = 2,
such that the effective transmission of the nanosystem de-
pends on U [3,4]. The total conductance exhibits strong
even-odd oscillations as a function of L¢ that are most
pronounced when the values of the transmissions of the
one-body scatterer and the nanosystem are close, such
that the noninteracting composition law predicts Fabry-
Pérot-like oscillations between values that are represented
by the horizontal lines. The deviations of the total conduc-
tance from those values are much smaller than for the case
of a perfectly transmitting interacting nanosystem. This
example shows that choosing a nanosystem with perfect
conductance allows for a qualitative effect of nonlocal in-
teractions, unlike the merely quantitative corrections in
the general case.

5 Discussion

We have demonstrated that a nanosystem connected in
series with a one-body scatterer constitutes an ideal con-
figuration to identify the nonlocality of the transmission in
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the presence of interaction and to detect how it is dressed
by the attached leads. In particular, when the transmis-
sion through the nanosystem is perfect, the nonlocal in-
teraction effects can be unambiguously identified because
they result in dependencies of the conductance of the total
system on the interaction strength and on the position of
the one-body scatterer.

The experimental confirmation of this striking effect
necessitates a perfectly transmitting nanostructure to-
gether with the ability to control the interaction strength
and/or the distance between the nanostructure and the
one-body scatterer. Silicon quantum wires with nano-
size MOSFETs allow to define regions with strong lo-
cal enhancement of the effective electron-electron interac-
tion [28]. However, considerable disorder is present in the
case of reference [28], and our predictions are not directly
testable at present in this kind of structures. A clean quan-
tum wire with a single occupied transverse channel rep-
resents a possible realization of a one-dimensional model
that has been achieved using cleaved edge overgrowth [29]
or by local oxidation [30] techniques in GaAs-GaAlAs
heterostructures. Well defined conductance plateaus as a
function of the gate voltage are obtained in reference [29],
and the single-mode regime is reached. Gating a part of
the wire will allow to vary locally the electron density lead-
ing to an increased importance of the interactions close to
the gate and thus defining our nanosystem. However, the
screening induced by the gate might weaken the increase
of the effective electron-electron interaction arising from
the low local density [31]. If the gate is not too close to
the quantum wire, the importance of the interactions in-
creases only gradually along the wire as we approach the
nanosystem. Therefore the conductance of the nanosys-
tem can be expected to be perfect, independent of the
precise value of the interaction strength [4-6]. A nearby
scanning gate microscope (SGM) would correspond to the
one-body scatterer of our model.

A dependence of the total conductance of a perfectly
transmitting nanosystem on the distance between the
nanosystem and the tip of the SGM will be a clear con-
sequence of the nonlocal interaction effect. In a quantum
point contact close to pinch-off, strong values of the in-
teraction strength up to U = 27 result from estimations
of the screened on-site Coulomb interaction using a two-
dimensional setup [32]. This estimation, which is conser-
vative for the one-dimensional case of interest falls in the
range of interaction strengths where we observe large os-
cillations of the total conductance with the position of
the tip (see Figs. 2, 3). For these values of the interac-
tion strength, considering only mean-field and exchange
effects becomes unreliable in our one-dimensional models,
and more exact methods like DMRG are needed.

A complementary test in clean quantum wires would
be to vary the gate voltage from close-to-open to close-
to-pinch-off, thus changing the electron density and the
strength of the effective interaction while remaining in a
single-channel situation. In that case we expect to observe
a gate-voltage dependence of the total conductance, that
would be absent if the tip were removed.
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The impressive advances of SGM allow to envision
other tests of our model. Recently this experimental tech-
nique has been applied to more complicated setups, like
the proximity of a quantum point contact [33], the imag-
ing of a one-electron quantum dot in a nanowire [34], and
Aharonov-Bohm rings [35]. In the latter experiments the
imaging of wave functions inside open quantum rings was
achieved. Numerical calculations neglecting interactions
yield patterns resembling the observed ones. Such a cor-
respondence might be explained by the fact that the rings
are relatively large and contain many transverse channels,
such that interaction effects might not be very impor-
tant. Going to smaller structures and eventually to the
single-channel configuration will enhance the role of in-
teractions, thus yielding a nanosystem in the sense of our
interacting model region. We have seen that positioning a
one-body scatterer inside the nanosystem (negative Lc¢
in Figs. 2 and 3) is also a way of exploring electronic
interactions. The conductance obtained when the tip is
close or inside the nanosystem can be very different from
the conductance resulting only from the backscattering by
the tip. The situation with the tip inside the nanosystem
is reminiscent of interaction-induced conductance correc-
tions through inhomogeneous Luttinger liquid wires con-
taining an impurity [8]. In that case, the spin degree of
freedom is of minor importance. Thus, we do not expect
that the nonlocal effect with the tip outside the nanosys-
tem which we observe for spinless fermions depends sig-
nificantly on the spin.

In summary, we have demonstrated the importance of
nonlocal interaction effects in quantum transport through
nanostructures. These effects are particularly striking
when the dressing cloud of a nanosystem with perfect
transmission is perturbed by a one-body scatterer. We
have suggested experimental setups in which the predicted
effects can be detected.

We thank P. Schmitteckert for his DMRG code and useful dis-
cussions. Financial support has been provided by the European
Union through the MCRTN program (contract MCRTN-CT-
2003-504574).
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