Nonclassical phase-space trajectories for the damped harmonic quantum oscillator
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1. Introduction

In quantum chemistry, biophysics, and more recently in some
problems in quantum computation, the time evolution of systems
of large size and at high excitations is in the center of interest. Gen-
erally, a full quantum treatment of such systems is practically
impossible. In order to get a first insight into the behavior of such
systems, they are usually propagated using the associated classical
equations of motion. This approach, which disregards all possible
quantum effects, is known as molecular dynamics (MD). Often,
the scales involved in a problem call for a semiclassical approxima-
tion where molecular dynamics would constitute the zeroth order.
To next order, one obtains the well-known van Vleck-Gutzwiller
propagator [1,2]. This quantity is arguably one of the most funda-
mental elements of semiclassical theory. It constitutes, e.g., the
starting point for the derivation of the celebrated Gutzwiller trace
formula [3] and also for the semiclassical reaction rate theory [4,5].

Traditionally, semiclassical methods have been developed in
position representation. This implies, however, that (i) determi-
nants arising from the projection along momentum appear in the
prefactor, (ii) they are formulated in terms of double-sided bound-
ary condition problems and (iii) are based on wave functions. Thus,
they do not speak the same language as classical mechanics, which
certainly would be desirable in order to describe and study the
quantum-classical transition [6-8]. In view of these drawbacks,
semiclassical methods in phase space offer a conceptually clearer
and possibly a numerically more efficient approach [9-11].

Recently, significant progress has been achieved as to semiclas-
sical approximations to the Wigner propagator corresponding
to the unitary quantum dynamical group. The case of damped
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nonunitary time evolution, giving rise to a semi-group, is different
even in its basic mathematical structures and largely requires to
reconsider the phase-space approach. In order to clearly distin-
guish the two cases, we shall use the term “propagating function”
instead of “propagator” in the context of this semi-group.

To be sure, a semiclassical phase-space analysis of open quan-
tum systems has recently been presented in the Markovian limit
[12] on the basis of the Lindblad master equation which can be ex-
tended to the general non-Markovian case [13] for a system bilin-
early coupled to a bath consisting of harmonic oscillators. In order
to illustrate the latter approach by means of an analytically solv-
able case, we here present a study of the damped harmonic oscil-
lator in phase space. While certain aspects will turn out to be
specific for this linear system, we expect the overall picture to be
useful to understand the more general case of nonlinear systems
for which details will be discussed elsewhere [13].

In an attempt to make the discussion accessible to readers with
different backgrounds, we review in the next three sections the ba-
sic ideas of the semiclassical phase-space approach, the influence
functional theory, and the quantum damped harmonic oscillator
as far as they are needed for the following. Section 5 will then con-
tain the main results for the propagating function in phase space.
We will argue that a Gaussian broadening arises due to the non-
local interaction of the system degree of freedom mediated by
the coupling to the environment. Furthermore, we demonstrate
the nonclassical nature of the trajectories contributing within the
phase-space path-integral representation of the Wigner propagat-
ing function.

2. Unitary evolution of the density matrix

Before discussing the case of a damped quantum system, it is
useful to fix the main ideas and the notation by considering the
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unitary time evolution of an isolated system degree of freedom in
real space as well as in phase space. In later sections, we will be
forced to employ a density operator to describe the state of a
damped quantum system. Therefore, we express the state of our
isolated system S, which could well be a pure state, also in terms
of a density matrix denoted by ps in the following.

For an isolated system described by a time-independent Hamil-
tonian ﬁs, the time evolution of an initial density matrix ps(0) is
determined through the unitary time evolution operator

U(t) = exp (%Hsr) (1)
and its adjoint operator Uf(t) by means of the relation

ps(t) = U(t)ps(0)U'(0). )
In position representation, this expression turns into

ps(d?.q”,t) :/dq;dq’J(ql,qZ,t;q;7q’,70)ps(q;7qi70), 3)
where

Jat,q”,t:q,.q-,0) = U(qL. 4\, )U"(q”. 4", t) (4)
is the propagator with

U(qL.q..0) = (11U (t)]qL) (5)
and

Ps(d,,9-) =(q.1pslq-) (6)

is the density matrix.

According to Feynman [14,15], the unitary propagator can be
expressed as a path integral

1" / ' 1
ULt = [ Da.exp [gSs(a. o) @)
running over all paths which satisfy the boundary conditions
q.(0) = q. and q.(t) = q.

Sslq.t] = / dt'Ls(q.4.t) (8)

is the action associated with the path q(t') where Ls(q,q,t') is the
Lagrangian describing the degree of freedom of the system.

As a system degree of freedom, we will specifically consider a
harmonic oscillator of mass m and frequency . Then, the exact
propagator takes the form

"o 1 azsgl : 1 <l
U(qi,qi,t) = 27ih (9(]” aq/ exp ESS (qi7qi7t) . (9)
+ +

The classical action

_ Wo 172 12 _ i
- 2 sin(a)ot) [(qi + qi) COS(C{)ot) Zqiqi] (10)

5§(qL,q..1)
is completely determined by solutions of the classical equation of
motion

qe = —mayqs, (11)

while the fluctuations contribute only to the prefactor which is
independent of g, and ¢’..

For the harmonic oscillator in real space, we can thus conclude
that the propagator for the density matrix is determined by two
independent solutions of the classical equation of motion. The
question now arises what can be said about the relevant trajecto-
ries in phase space where instead of two initial and two final points
in position space one has only one initial and one final point in
phase space, each comprising a position and a momentum.

Among the infinitely many possible phase-space representations
[16] we choose the Wigner function, which for our one-dimensional
system degree of freedom is given by the Weyl-ordered transform of
the density operator [16],

_ [ dq i q|. q
Ws(r) = [ 5 exp (——pq><q +3 ps]q—§>. (12)
Here, r = (p,q) denotes a vector in two-dimensional phase space.
By means of the transformation (12) one obtains from (3) for
the time evolution of the Wigner function

Ws(r',t) = /dzr’GW(r”,r’,t)Ws(ﬂO). (13)

Introducing the difference coordinate ¢ =q, —q_ and the sum
coordinate q=(q.+q.)/2, the Wigner propagator appearing here
as an integral kernel can be written in terms of a double Fourier
transform of the propagator of the density matrix (4) along the dif-
ference coordinates

U ] ' ) Al l i Vi
Gw(r",r',t) = fm/dqdq exp {ﬁ(pq -p'q )}

P P o0 4, q
><U<q +5.4 +7,t>U< ~ 5.4 —E,t) (14)

A similar expression can be obtained with the position-space prop-
agator replaced by the Weyl transform of the time evolution oper-
ator [17],

" _ 1 2= i /1 w
Gw(f,f,t)—ﬁ/d rexp ﬁ(r’—r )/\r}
r+r r L (T+T T
TN LSS TN LSS SR
where, analogous to (12),
_ [dqg i 9|5 q
Uw(l"f)*/ﬁ exp <—EPQ><Q+E U(t)’q—f . (16)

In this way, the classical trajectories ¢¢ determining the propagator
(9) in position space become the phase-space trajectories r. shown
in Fig. 1. All such pairs share the same meanr = (r_ +r,)/2. For the
harmonic oscillator, the phase-space difference vector r=r, —r_
appears only linearly in the dynamical phase. Thus, integration over
T in (15) directly results in the exact Wigner propagator

Gw(r',r,t) :5[1"’—r°‘(1“,t)]. (17)
This result implies that each initial point r’ in phase space is prop-
agated along the solution r(r, t) of the classical equation of motion.

Fig. 1. For an undamped harmonic oscillator, the pairs of phase-space trajectories
r: as well as their sum trajectory r satisfy the classical equations of motion. r’_, 1’
and r/,r’ denote the initial and final phase-space points of the trajectories,
respectively, and r=r, —r_.



All quantum effects, including tunneling [18], must therefore be
contained already in nonclassical features, such as an irreducible
energy spread, of the initial Wigner function itself.

As we shall see in Section 5, the relevant trajectories will be dif-
ferent for the harmonic oscillator in the presence of damping.
While the mean of a trajectory pair still satisfies the classical equa-
tion of motion, the two trajectories themselves will behave non-
classically and separate exponentially fast in time. How this
comes about will be explained in the following sections.

3. Influence functional theory

We now turn the so far isolated quantum system S into a dissi-
pative quantum system by coupling it to a heat bath characterized
by a temperature T. The complete Hamiltonian then is of the gen-
eral form

H:Hs+ﬁs+ﬁ53~, (18)

where the second and third term describe the bath Hamiltonian and
the system-bath coupling, respectively.

As long as the complete Hilbert space is retained, the evolution
of the density matrix is still of the form (2) where the system den-
sity operator ps is replaced by the full density operator p. Corre-
spondingly, in the time evolution operator (1) the system
Hamiltonian has to be replaced by the full Hamiltonian (18). In po-
sition representation, (3) still holds with the appropriate replace-
ments. In particular the coordinates are now Q= {q,Q} and
comprise the system coordinate q as well as the vector of bath
coordinates Q.

If one considers a harmonic oscillator bilinearly coupled to a
bath of oscillators [19], a situation which we will discuss in detail
below, the Wigner propagator

Gw(R", R t) =§[R" - RR',1)]. (19)

can be exactly expressed in terms of the classical phase-space tra-
jectories R = {r,R} of system and heat bath. They are obtained even
in the continuum limit and for a thermal initial state of the bath by
transforming to normal modes of the total system [20]. It is only
after tracing out the heat bath that quantum effects come into play
in the time evolution of the Wigner function. Instead of carrying out
this analysis in phase space, we will rather follow the strategy pre-
sented in Section 2 for the undamped case where we started from
the position-space description.

For a dissipative system, one is usually not interested in the full
dynamics but only in the reduced dynamics of the system degree of
freedom. In order to integrate out the bath degrees of freedom, one
needs to specify the initial density matrix of system and bath. For
simplicity, in the main part of the paper we will restrict ourselves
to factorizing initial conditions [21,22]. Then, the initial density
matrix

p(0) = ps(0) %ﬁ”) (20)

is given by the product of the initial density matrix ps(0) of the sys-
tem and the thermal density matrix of the heat bath at inverse tem-
perature 3 = 1/kgT. Zg denotes the partition function of the bath. As
we will show in Appendix A, our reasoning can readily be general-
ized to a certain class of nonfactorizing initial conditions.

The time evolution of the initial state (20) is obtained as a gen-
eralization of the considerations in Section 2 by substituting the
single system degree of freedom by the ensemble of system and
bath degrees of freedom. In order to obtain the reduced dynamics
of the system, one needs to trace out the environmental degrees of
freedom. This can be done analytically if the heat bath is modelled
by a set of harmonic oscillators with masses m; and frequencies

w;j whose coordinates are bilinearly coupled to the system coordi-
nate. The Hamiltonian (18) then consists of the three contributions

~ 7& N

As=2_+V(), 1)
- < 1 . 1 .

Hy =" |- P2 + - mw? ?}, (22)
b ; 2m; 0 T2

-~ P o4

Hsp = 7qZCJ j+q2 Z 2m]4w.2’ (23)

where ¢; are the coupling constants. The second term in (23) cor-
rects a potential renormalization induced by the coupling of the
system to the heat bath. It turns out that the microscopic details
of the heat bath and its coupling to the system appear in the re-
duced system dynamics only through the spectral density of bath
oscillators

x 2
() = nz]: 2n2-wj 3w — wj). (24)
=

For later convenience, we introduce two quantities which depend
on this spectral density. The friction kernel is defined as

n(t) = % /0x dw% cos(wt) (25)

and the correlation function of the noise [24] induced by the cou-
pling to the heat bath is given by

~ [*dw,,  cosh[w(lhp—iz)]
K(z)—/0 7I(w)sinh(hzw -

where z is a generally complex time.

Tracing out the heat bath, one finds for the time evolution of the
reduced density matrix of the system starting from the factorizing
initial state (20) [21,22]

ps(@?.q".t) :/de;dq’J(qZ,ql,t; 4,9 )ps(d,q",0). (27)
Here we have introduced the propagating function which can be ex-

pressed in terms of a path integral over the system degree of free-
dom as

J(q’i,q’i,t;q;,q’,):%/quqf
cexp {50 - Ss@ )] [F@.qa ). (28

The partition function Z appearing here is an effective partition
function of the damped system defined as the ratio of the partition
functions of system plus bath and of the heat bath alone. The influ-
ence of the heat bath in (28) is contained in the influence functional

F0.9.) =exp |- 0(a..0 ). (29)
with the exponent
2lq..q )= [ ds [ quk(s—wia.(9) - ©)la. (0 -q @)
by [ s [ dunts - wia. ) - a0+ w)
3l +q] [ dsig. () -q (5. (30)

The prime in the first line indicates that the real part of the noise
correlation function (26) should be taken.



4. Quantum damped harmonic oscillator

While the results reviewed in the previous section are valid for
a general system degree of freedom, we will now specifically con-
sider a damped harmonic oscillator with

V(@ =5 o (1)

In this way, we will be able to generalize the considerations of Sec-
tion 2 concerning the relevant trajectories in phase space. At the
same time, this prevents making direct use of semiclassical
phase-space dynamics based on the van Vleck approximation as
in Refs. [10,11], since this only applies to sufficiently anharmonic
potentials.

As for the propagator in the undamped case, the path-integral
expression for the propagating function (28) is evaluated by an
expansion around the paths maximizing the complex action. The
dependence on the initial and final coordinates is entirely deter-
mined by these paths while the fluctuations only yield a time-
dependent prefactor. For a harmonic oscillator, the complex action
in (28) is stationary for trajectories satisfying

M. (5)+ moa. (9)% 5 g [ dunts —wlg. @ -q )

+%% / dun(s — w)(q, (u) +q_(u)]

—i [ duk(s - g, (w) - g (w)], (32)
0

As in the undamped case, the paths are subject to the boundary con-
ditions q, (0) = ¢, and q,(t) = q’..

The two equations of motion (32) replace the equations of mo-
tion (11) obtained for the undamped case. As a consequence of the
coupling to the heat bath, the equations of motion (32) now in-
clude damping terms depending on the friction kernel (25). In
addition, an imaginary nonlocal force appears indicating the occur-
rence of decoherence. For linear systems, it turns out that the
imaginary part of the trajectories does not need to be considered
and that their real part is sufficient to obtain the propagating func-
tion [25,26]. As we shall see in the sequel, neither of the two paths

follows a classical equation of motion and their separation grows
exponentially fast. This somewhat surprising behavior is a conse-
quence of the coupling to the heat bath.

In order to make the discussion transparent, we now consider
the special case of Ohmic damping in addition to the assumption
of factorizing initial conditions and the restriction to the real part
of the equations of motion. We thus set I(w)=myw and
P(t) = n(t)/m=2y4(t), so that the equations of motion (32) reduce
to [22]

G: + 3q, +74= =0, (33)

where the damping term couples the trajectories q. and q.. It is
interesting to note that yq acts actually as a driving instead of a
damping in the sense that the separation between trajectories
grows exponentially (see Fig. 2). This can be seen more clearly by
decoupling the two equations of motion, using sum, q = (q. +q.)/2,
and difference coordinates, ¢ = q. — q_. The Eqgs. (33) then read
PNy 24 _
draona =0 (34)
q— 74+ w3q = 0.
As in the undamped case, the sum trajectory corresponding to
the paths g. and q. obeys the classical equation of motion, which
here takes a time-local form because we have assumed Ohmic
damping. In contrast to the sum coordinate g which decreases
exponentially in time, the difference coordinate g grows exponen-
tially so that we obtain a hyperbolic dynamics in the (g, q)-plane.
As a consequence, the trajectories g. do not obey the classical
damped equation of motion. The solutions of the equations of mo-
tion (34) read

/Gf(tfs) //G+(S)
1=T"cm e 45
o Gt=5) | G (s) 59
W="Cwo Tcn
where
Ga(t) = wld exp (%t) sin (wqt) (36)

Fig. 2. The time evolution of a pair of phase-space trajectories r. marked by + (depicted in blue) and by — (depicted in red) is shown together with the corresponding classical
sum trajectory depicted in black. While the sum trajectory decays to zero for long times, the trajectories r. grow exponentially. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)



and w} = w3 — y?/4. We remark that by choosing appropriate func-
tions G(t), more general linear damped systems like the parametri-
cally driven damped harmonic oscillator [27-29] can be studied
with solutions of the form (35).

We now return to the propagating function which was given in
(28) in terms of a twofold path-integral. It is instructive to decom-
pose the exponent into two parts

5(q".9",6,q,9") =51 + 52, (37)
where

_ Gty 1 1
S — ] 11 11 + Al _Aa'q 38
1=m|(q'q +q"q )G+(t) 9 1w (38)

is obtained by evaluating the action of the system degree of free-
dom along the trajectories given by (35) while

52:% /0 ds /O duk'(s — w)q(s)q(u) (39)

arises from the influence functional (29), i.e. by the interaction of
paths at different times through the coupling to the environment.
The significance of this decomposition will become clear in the fol-
lowing section where we discuss the results of the present section
from a phase-space point of view.

5. Quantum damped harmonic oscillator in phase space

The undamped time evolution (13) of the Wigner function can
immediately be transferred to the dissipative case if we relate
the Wigner propagating function to the propagating function by
means of

1 = A~ l /=1 Vi
Gw(l“ﬁlﬂt):ﬁ/dqdq exp {ﬁ(pq -0"q )}

xJ(@".q".t:q.q), (40)

where we recall that r = (p,q) is the phase-space vector. Inserting (4)
valid for the unitary case into (40) one recovers expression (14) for
the Wigner propagator. We continue to restrict ourselves to factor-
izing initial conditions but present in Appendix A the generalization
of (40) to nonfactorizing initial conditions.

Before analyzing the Wigner propagating function for Ohmic
damping, we discuss the decomposition (37) of the exponent of
the propagating function. The contribution (38) is linear in the dif-
ference coordinates ¢’ and q”. Performing the transformation (40),
we therefore arrive at the Wigner propagating function

Gw(r',r,t) =5[r”—r°‘(r’,t)], (41)
where the classical phase-space trajectory
- 2
P =G op +m COL_ 1 Ag.
GO G (42)
G.(t .
q(t) = #p’ +G. (09,

with G.(t) defined by (36) is now damped. While (42) satisfies
q°(0) =g’ as expected, the initial momentum is given by p(0)=
p' — myq'. This initial slip is typical for factorizing initial conditions
[26,30].

Employing the Wigner propagating function (41) amounts to
adding a velocity-dependent force in the system Hamiltonian as
was proposed by Caldirola and Kanai (see e.g., the review [31] for
an account of this kind of phenomenological approach). However,
the Wigner propagating function (41) accounts only for part of
the exponent of the propagating function. The second contribution
(39) is quadratic in the difference coordinate and limits their

contributions. As a result, the delta function in (41) will be broad-
ened into a Gaussian

_ m
2mhA(t)"?

X exp {— Zhjl a [ — 0] 2 — (1)) } (43)

G.(t)

GW (l‘”., t, l") T(t)

whose center moves along the damped classical trajectory (42). The
matrix appearing in the exponent is given by its components

2 = a(t),

G,

Z‘12 = Z:21 =-m G+E§; [a(t) + b(t)}* (44)

_ 2 [GaF
Zyp=m G (0 [a(t) + 2b(t) + c(t)]
and A(t) = det(2)/m? = a(t)c(t) — b(t)%. The functions
a(t) = G ()P P(L.L),

: ov(t,t)
b = G+ G+ P
0 =606 )
2 /
) = (G T et)
v/t

can all be expressed in terms of a single function

W[ Ga(t—5) Gt — )
P(t,t) = ./0 ds /0 duK'(s — u) C.0 C.(0) (46)

This function is completely determined by the thermal position
autocorrelation function (q(t)q(0)) and its time derivatives. Explicit
expressions are given in Appendix B and the interested reader may
also want to consult Ref. [26] for further details.

The Gaussian form of the Wigner propagating function (43) is a
consequence of the linearity of the harmonic oscillator damped by
the coupling to a harmonic heat bath. A similar expression has
therefore been found in the Markovian limit [32]. Similarly, as indi-
cated in Appendix A, the result can be generalized to the case of
nonfactorizing initial conditions. Again one would find a Gaussian
Wigner propagating function.

From (40) it follows that pairs of trajectories g. satisfying the
equations of motion (33) and leading to a sum trajectory connect-
ing the initial phase-space point r’ to the end point r’ contribute
with a weight determined by (39). As discussed in the previous
section, according to (33) these pairs do not obey the classical
damped equation of motion. The same is true in phase space. The
hyperbolic character of the solutions of (34) already contains all
quantum effects that arise upon tracing out the heat bath. The
equations of motion (33) can therefore be lifted to the phase space
of the central oscillator by defining p, = mq.,

ps = —mwiq. — myg-., )
. D=

q: = m
so that the sum trajectory follows the classical equation of motion
of the damped harmonic oscillator. This result was also found by
Ozorio et al. [12] for the Markovian case derived directly from the
Lindblad master equation.

In Fig. 2 we depict the time evolution in phase space of two tra-
jectories q. indicated by + and — together with the corresponding
sum trajectory shown in black. Due to the damping, the sum trajec-
tory for long times approaches the origin of phase space. The tra-
jectories g. grow exponentially for long times and therefore
clearly behave nonclassically. Although in Fig. 2 the paths q. and
q_ have started on the same side of the origin of phase space, for



Fig. 3. Isosurface of the time-dependent Wigner propagating function (43) for y/wo = 0.3 and kgT = 5h. Position and momentum are scaled with respect to the square root

of the respective equilibrium second moments.

long times they are found opposite to each other. This is a conse-
quence of their exponential growth and of the fact that their mid-
point approaches the origin of phase space.

We close our discussion of the phase-space properties of the
damped harmonic oscillator by considering how the thermal equi-
librium state is approached for long times. First, we notice that in
the Wigner propagator (43) the dependence on the initial phase-
space coordinates r’ disappears in that limit because the sum coor-
dinate then approaches the origin of phase space. Furthermore, the
long-time behavior of the functions (45) is given by

m2 G0, ,
R G.(0f 5 (3%,

2
by - a0
)

a(t) ~

2
c.op 48)

m? G, ()]

iy~ 0, T o™

where (g?) and (p?) are the second moments of position and
momentum, respectively, in thermal equilibrium. Inserting these
expressions into (43), one obtains the thermal Wigner function of
the damped harmonic oscillator

1 p? q?
(@) 2 <‘2<p2> - 2<q2>>' (49)

In Fig. 3 we illustrate the time evolution of the Wigner
propagating function for y=0.3wo and kgT =5hmo by means of
an isosurface. The function (46) has been evaluated with the
high-temperature approximation K'(t) = (2y/hp)é(t). The propagat-
ing function evolves from an initial delta function to the thermal
Wigner function (49) which has a circular cross section because
position and momentum are scaled with the square roots of the
respective equilibrium second moments.

Wy(p,q) =

6. Conclusion

Our analysis of the propagating function of a damped harmonic
oscillator in phase space has shown that pairs of trajectories con-
tribute which, in contrast to the undamped case, are nonclassical
in nature. In the course of time the distance between the two tra-
jectories of a pair grows exponentially. This behavior is typical also
for nonlinear systems [13] so that the damped harmonic oscillator
can serve as an exactly solvable reference case. The harmonic oscil-

lator coupled to a linear heat bath is however special insofar as the
linearity of the system implies that the sum of the pairs of trajec-
tories satisfies the classical damped equation of motion.

Furthermore, it was shown that it is the nonlocal interaction
(39) appearing in a reduced description of the system degree of
freedom which is responsible for the broadening of the delta-like
Wigner propagator found for the undamped case into the Gaussian
propagating function. While most of the explicit results have been
presented for the special case of factorizing initial conditions, the
generalization to a broader class of initial states is straightforward
along the lines presented in Appendix A and the Gaussian nature of
the propagating function remains unchanged.
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Appendix A. Propagating function for nonfactorizing initial
conditions

In the main part of this paper, we have restricted our consider-
ations to the case of factorizing initial conditions for the sake of
simplicity. The generalization to nonfactorizing initial conditions
is a bit more tedious but straightforward. In this appendix, we
briefly derive the phase-space representation of the time evolution
of a nonfactorizing initial Wigner function [33].

Specifically, we will consider nonfactorizing initial conditions
where system and bath together are in their equilibrium state thus
accounting for initial correlations. Then, operators taken from the
Hilbert space of the system are allowed to act in order to generate
a nonthermal initial state for the system. On the formal side, this
preparation in comparison with factorizing initial conditions has
two consequences. Firstly, in addition to the two real-time paths
¢+, an imaginary-time path q appears. Secondly, a preparation
function 4(¢',q, g, ) joins the real-time and imaginary-time paths.
Here, g and g refer to sum and difference coordinates of the imag-
inary-time path. The preparation function describes the initial



preparation and depends on the matrix elements of the system
operators. For more details, we refer the reader to Ref. [26].

The generalization of (27) to the nonfactorizing initial condi-
tions just described reads

:q)-

K=}l

ps(@’.q".t) :/dé’dq’dfldfll(é”,Q”,t; 7.9.,9,9)1(d .9,
(A1)
Now, the propagating function also depends on the endpoints of the

imaginary-time path. Introducing the Wigner transform of the
preparation function

_ 1 - i,_= - - =
A ,7,7’ :—/d,dex |:_ _/,:|;L /’/77 ’
w(P'.q',p,q) (2mh)? qdqexp h(Pq p'q)|Aq.q,q.q9)
(A2)
we obtain for the time evolution of the Wigner function after carry-
ing out the Fourier transform with respect to q”

Ws(p".q") = [ dpdq'dpda Gu(p'.".6:p'.q'P.0) 2w(p'.qP.).
(A3)

By comparison with (A.1) one finds for the relation between the
propagating function introduced in (A.1) and its Wigner transform

GW(p//1q//7t;p/$q/7ﬁ7EI)
1 “NnAR AR i 10 Py P S N
:H/dq dg'dg exp [ﬁ(pq -p"q"-pq)|J(q".q",. 9,9 ,4,9)-
(A4)

For the special case of factorizing initial conditions, the coordinates
G, g and the momentum § are to be disregarded and one arrives at
the relation (40) between the propagating functions in position and
phase space.

Appendix B. Propagating function and position autocorrelation
function

The Gaussian nature of a harmonic oscillator coupled linearly to
a bath of harmonic oscillators implies that its reduced dynamics
can be expressed completely in terms of the thermal position auto-
correlation function [34,35]

C(t) = (q(0)q(0)) = S(t) +1A(t)
_ h gt wp(—iw) exp(—iwt)
- mm /m do (@2 — aR)* + w?)(—im)® 1 —exp(~phw)’
(B.1)

S(t) and A(t) denote the symmetrized and antisymmetrized correla-
tion functions and correspond to the real and imaginary part of C(t),
respectively. J(z) is the Laplace transform of the friction kernel (25)
divided by the oscillator mass m. The antisymmetric correlation
function is related to the function G.(t) introduced for the special
case of Ohmic damping in (36) by

2m

G () = Ao, (B:2)

where ©(t) is the unit step function. The second moments of posi-
tion and momentum appearing in (49) are related to the symme-
trized correlation function by (g% =S(0) and (p*) = —mS(0),
respectively. For the latter to be finite, the Laplace transform §(z) re-
quires a high-frequency cutoff.

The functions (45) are found to read [26]

m? G, (£)]° NOHIN"S!
a(t) = ? [G+(t)]2 {<q2> |:1 - <q2>2 W

+

G (O] + 25(f)G+(t)}7

2. 2 - . .
b - - & {<q2> [l - } e+ 6.ms
~G.(O5(t) + 5(<t();§t) }
w6 of @) 1 [0 G Tl s
€O ="5 @ SO E @S0 - B

If one takes into account that G.(t), S( t), and their derivatives decay
to zero for long times but not the ratio G, (t)/G, (t), one immediately
finds the asymptotic expressions (48).
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