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Long-time tails in quantum Brownian motion
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The authors address the problem of quantum Brownian motion at low temperatures and with arbitrarily
strong damping. For a harmonically bound particle the zero-temperature correlation functions are shown to
display long-time tails. At finite temperatures a power-law decay at intermediate times is followed by an ex-
ponential decay with time constant S/27rk&T. The case of free Brownian motion is treated, and some gen-
eral conclusions for nonlinear systems are drawn.

J(cp) =Jt dt e'"'(q (t)q) (2)

of displacement fluctuations in thermal equilibrium accord-
ing to

J(cp) = 2t[1 —exp( —Pttp) ] 'x"(cp), (3)
where P = 1/ktr T. Because of q =p/M, where p is the
momentum, all other pair correlations are obtained from
J (t) as time derivatives, while higher-order correlations can
be factorized into pair correlations due to the Gaussian
property of the process. '

At zero temperature we obtain from (3)

J(t) =—'t drpe '"'x"(tp) .
m "0

It has become clear recently' that even a linear system
exhibits interesting quantum effects when coupled to a low-
temperature heat bath. The simplest microscopic model to
study these phenomena is a particle of mass M moving in a
harmonic potential V(q) =

2 Mcpp2q2 while coupled to a heat
bath environment consisting of harmonic oscillators.
Several authors have examined this model and have shown
how the irreversible motion of the Brownian particle
arises. In a previous work we have derived various exact
results for a quantum harmonic oscillator with Ohmic dissi-
pation. In particular, a power-law decay of zero-temperature
correlation functions was noted. In this work we present a
more detailed study of the long-time behavior of correlation
functions at low temperatures for a harmonically bound par-
ticle. Furthermore, the limit of free Brownian motion is ex-
amined and some general conclusions for nonlinear systems-
are drawn. As a characteristic feature of dissipative quan-
tum systems, a power-law decay of zero-temperature corre-:
lation functions is found.

Dealing first with a strictly linear system, the dynamical
susceptibility X (tp ) characterizing the linear response of
(q (t)) to an external force takes the classical form3 7

X(tp)=M [tap tp imp'y(tp)] =X (QJ)+IX (Cp)

where y (tp ) is the frequency-dependent damping coeffi-
cient. By virtue of the fluctuation-dissipation theorem the
imaginary part X"(tp) of the dynamic susceptibility is related
to the spectral density

Using (1), the asymptotic expansion of J(t) for large t is
found as

J (t) = —(lt/vpMcpp)

x [2n(tppt) +3p(rppt) +0((tppt) )],
where

n = y/2tpp,

p, = 16n —8(1 —y') n —tape",

(6)

In the lower half-plane, X"(tp) has poles at tp = —i lt, .
Now, classically J(t) decays as exp( —Qt), where
0 =min, [Rel.,]. For instance, for a system with Ohmic
dissipation one has 0 = y /2 for n ~ 1 and
II =cpp[n —(n —1)' ] for n & 1. In the quantum regime,
ktr T ((tt0, the long-time behavior of J(t) arises from
the poles of [1—exp( —Pttp) ] ' at tp = —in v, where
v = 2rrks T/t. For large times t » 0 ', we find

N
J(t) =- —i (tv/rr) g X"( —inv) exp( —nvt),

n=1
where N is of order II jv and where terms of order
exp( —Ot) have been disregarded. Expanding X"( —inv)
about the origin, we obtain by virtue of (6) and (7)

x [2 yt(t)+3p, y, (t)+O(g'e-"/(I —e- )s)] (10)

in which y = y(t0= 0), y'= —i (By/Btp)„=p, and
= (B y/Bra )„=p. Hence, for a system with an Ohmic dissi-
pative mechanism, i.e., @&0, the zero-temperature displace-
ment correlation function has a long-time tail ~ t . On
the other hand, if the frictional influence of the environ-
ment has no Ohmic part, J(t) fades out more rapidly. For
instance, a dissipative mechanism characterized in the classi-
cally accessible region by a frictional force qq' leads to the
long-time behavior J(t) = —(6tiri/rrM) (rupt )

At finite temperatures (3) gives

J(t) =—Jt dtp e ' 'X"(tp) [1—exp( —ptttp) ] ' . (8)
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tltt(t) = 02exp( —vt),

tlt2 (t) = —,
' 8 exp ( —v t ),

(12)

leading to an exponential decay of J(t) for t » t '. On
the other hand, for intermediate times 0 ' « t « v
we obtain from (11)

gt(t) = (~ot) ', q2(t) = (~pt) (13)
Now, for k~T && tcvo there is a finite time interval, where
coot » 1, but vt « 1. Hence, for sufficiently low tempera-
tures ktt T « III, true, J (t) displays an intermediate
power-law decay before it crosses over near t = v ' to the
asymptotic exponential decay. This behavior is illustrated in
Fig. 1 for a system with Ohmic dissipation.

For a free Brownian particle it is convenient to consider
the momentum correlation function J~(t) = (p (t)p). By
virtue of J~(t) = —M (B /Bt )J(t) we obtain from (8)

J~(t) =—t dt0 e '"'x~" (t0) [1—exp( —/3ircu) ]n- "— (14)

where X~"(at) = M t02x" (t0), which for a free Brownian par-

where 8= 2rrks T/true and where

tltt(t) = —()'(B/Br) [exp(7 ) —1]

tit2(t) = —,' (—)'(B'/Br')[exp(r) —1]
in which r=vt. For T=0 one has titt(t) = (acct) ', $2(t)
= (etat) 4, and we recover our previous result (5). On the
contrary, for finite temperatures tltt (t) and tlt2(t) decay
asymptotically as

ticle takes the form

X,"(to) =Mt' Re(y(at)) [nt'+ ~y(et) ~' —2atIm(y(ot))]
(15)

In the lower half-plane x~" (t0) has poles at at = —i)t, In-
troducing 0 = min~ (Re)t&], which is given by A = )t for
Ohmic dissipation, we find in the quantum regime, k~ T
«hQ, for Qt » 1,

J~ ( t) = —(Mit y/rr )
&& [@t(t) + 3@~&2(t)+ 0 (tt e "'/(1 —e "t)s), (16)

where tt =2mkttT/Ity, tt~ =2+y)t" —4) '+2@', and where
y, y', and y" have been introduced previously. The func-
tions @t(t) and @2(t) take the same form as Pt(t) and
tlt2(t), except that 0 is replaced by K. In the time interval
II « t « v we have $t(t) = (yt) and $2(t)

(yt) . This gives rise to an intermediate power-law de-
cay of J~(t) which for T = 0 merges into a long-time tail.

It is worthwhile noting that the zero-temperature momen-
tum correlation function of a free Brownian particle with
Ohmic dissipation reads asymptotically for large times
J~(t) = —(AM/rr) )t, while for a bound particle we have
J~(t) = (6tMy/7rtu4q)t 4 On th. e other hand, a strongly
overdarnped bound particle, i.e., y » coo, behaves for
t « coo effectively like a free particle, and its momentum
correlation function can easily be shown to take the form
J~(t) = —(AM/7ry)t in the time interval ) ' && t« o)o before it crosses over to the t behavior for larger
times t » coo . Accordingly, the displacement correlation
function J (t) displays an intermediate logarithmic decay
J(t) = —(ir/rrM)t)(C —1n(2n)+In(coat)), where C is the
Euler constant which is followed by the asymptotic power-
law decay J(t) = —(fy/7rMcoc)(t0ct) . This behavior is
illustrated in Fig. 2. In the strongly overdamped case at fin-
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FIG. 1. The real part of the dimensionless displacement correla-
tion function (2Mcur/'S) J(t) is shown as a function of rust for a har-
monic oscillator with Ohmic damping y =2coo (i.e., a=1) at tem-
perature T = 10 h o)0/2m kg (i.e., 0 = 10 ) . The intermediate
power-law decay (2M0)0/t) J(t) = —(4n/m)(capt) is shown as a
dashed line, and the asymptotic decay (2M coo/h )J(t)= —(4n/m)8 exp( —vt) as a dotted line. Note that the real part
of J(t) is negative for large coot so that J(t) approaches 0 from
below as t
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FIG. 2. Same as Fig. 1 for an overdamped harmonic oscillator
with y =20&so (i.e., o. =10) at zero temperature. The intermed-
iate logarithmic decay (2Mcuo/h )J (t) = —(1/mn) (C —ln(2n)
+ ln(coot ) ) is shown as a dashed line, and the asymptotic power-law
decay (2M&us/t) j(t) = —(4u/n)(duct) as a dotted line. Note
that the correlation function is shown on a linear scale as dis-
tinguished from Fig. 1.



2512 BRIEF REPORTS

ite but low temperatures one finds a region where J(t) de-
cays logarithmically, followed by a region where the decay is
algebraic ~ t 2 before the asymptotic exponential decay
~ exp( —vt) sets in.

So far we have considered linear systems only. However,
the long-time tails of zero-temperature correlation functions
are a rather general feature of dissipative quantum systems
for the following reason. As a consequence of the
fluctuation-dissipation theorem, spectral densities of correla-
tion functions have poles at the Matsubara frequencies
cu = n v which come closer together as T is lowered and give
rise to a cut contribution at zero temperature. This cut
determines the long-time behavior of the correlation func-
tion and leads to power-law decay. For instance, the result

(5) likewise applies to a particle moving in a stable non-
linear potential provided that y(co) and coo are replaced by
the corresponding renormalized quantities. ' The discussion
of the behavior at finite but low temperatures can be ex-
tended to the nonlinear case accordingly. However, it must
be noted that the determination of the low-frequency
behavior of the response functions, which determines the
amplitudes of the asymptotic decay laws derived here, may
itself be a complicated problem for a nonlinear system near
T =0.
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