
                                                          
                                

                        

Effect of the electromagnetic environment 
on the single electron transistor 
Gert-Ludwig Ingold 1, Petra Wyrowskil, and Hermann Grabert 1, 2 

1 Fachbereich Physik der Universtfits-GHS, Universitfitsstrasse 5, W-4300 Essen, Federal Republic of Germany 
2 Service de Physique de l'Etat Condense, Centre d'Etudes de Saclay, F-91191 Gif-sur-Yvette, France 

                                                          

The influence of environmental impedances on tunneling 
rates in a single electron transistor circuit is investigated. 
Effects of the finite gate capacitance and of stray capaci- 
tances at the tunnel junctions are considered. For the 
case of a low impedance environment the electron tun- 
neling rates reduce to the so-called global rule rate while 
for a high impedance environment a modification of the 
so-called local rule rate arises from the stray capaci- 
tances. Special emphasis is given to the dependence of 
the current on the gate voltage which determines the 
sensitivity of electrometers based on the transistor setup. 
It is found that a higher sensitivity of the electrometer 
can be achieved by means of asymmetric transistors. 

1. Introduction 

In small capacitance tunnel junctions the tunneling of 
electrons can be hindered by a Coulomb barrier [1, 2]. 
Provided the charging energy e2/2 C of a single electron 
exceeds the energy ks T of thermal fluctuations and the 
tunneling resistance of the junctions exceeds the resis- 
tance quantum RK=h/e 2 a variety of new phenomena 
arise [3]. The present state of the art of single charge 
tunneling allows one to sincerely think about applica- 
tions of the new effects. The controlled transfer of elec- 
trons one-by-one [4, 5] might lead to a high precision 
current standard, and a very sensitive electrometer can 
be built by means of ultrasmall tunnel junctions [6, 7]. 
Further applications of single charge tunneling (SCT) 
are being thought of [8]. The basic unit of many of 
these applications is the single electron transistor [1] 
composed of two tunnel junctions in series and a gate 
electrode capacitively coupled to the common electrode 
of the junctions. Transistor type circuits have been built 
not only with oxide layer metal tunnel junctions but 
were also studied in channels of a two-dimensional elec- 
tron gas with constrictions [9-11]. In these latter systems 
the discrete spectrum of the electron states on the corn- 

mon electrode can lead to additional effects that are not 
discussed here. 

Since a small circuit of tunnel junctions with capaci- 
tances in the f F  range is in some sense a mesoscopic 
system, it can generally not be considered as being iso- 
lated from its electromagnetic environment. The leads 
attached to the circuit do not only provide the externally 
imposed voltages but they also couple the electromag- 
netic fluctuations in the leads to the tunnel junctions 
[12-14]. For the frequency range of interest the electro- 
magnetic environment can usually be described in terms 
of a lumped circuit model. The circuit as seen from the 
junctions is then described by voltage sources and exter- 
nal impedances [13, 15]. In this article was discuss the 
influence of these impedances on the single etectron tran- 
sistor. In the following section we introduce a rather 
general circuit to describe the environment and give 
some results for this model. For  the more specific discus- 
sion in Sect. 3 we reduce the circuit while retaining the 
essential features. Some aspects of this model were also 
addressed by Odintsov et al. [16]. In the last section 
we present our conclusions. 

2. Network considerations and electron tunneling rates 

A. Network analysis 

To discuss the influence of the electromagnetic environ- 
ment on a single electron transistor we start by consider- 
ing the circuit depicted in Fig. 1. It consists of two tunnel 
junctions in series characterized by capacitances and tun- 
nel resistances C1, el and C2, R2, respectively. To form 
a SET transistor a gate branch is coupled to the island 
between the two junctions via a gate capacitance CG. 
The transistor may be controlled by the gate voltage 
VG which allows for a shift of the island charge. Two 
voltage sources V/2 symmetric to the gate branch lead 
to a transport voltage V across the double junction. The 
connections between the voltage sources and the transis- 
tor setup are modelled by the impedances Z 1 (o~), Z2(o9), 
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Fig. 1. A model circuit describing a single electron transistor cou- 
pled to its electromagnetic environment 

and ZG(co). We also include the stray capacitances C~a 
and Cs2 formed by the leads leading to the island. 

The charges Qa, Q2, and QG on the capacitors C1, 
C2, and CG undergo large quantum fluctuations due to 
the leads attached to the transistor. However, these fluc- 
tuations are not independent and the charge on the tran- 
sistor island q = Q1 + Q2 - Q6 decouples from the electro- 
magnetic environment for R1, R2 >>R~ [15]. The island 
charge is quantized in units of the elementary charge 
since it may change only by tunneling of electrons to 
or from the island. In the absence of background charges 
the island charge is q = he. If the charges on the capaci- 
tors are in electrostatic equilibrium with the applied volt- 
ages we have for the average charges 

C1 F~ CG\ VG+q] (1) 

C2 CG V G + q] (2) Q2=~[--(Ca+ 2 )V+CG 

C6 a 
~G : - - ~ - [ : ( C 2 - -  C2) V - ( C  1 --]- C2) V G + q] (3) 

with Cs=Ca+C2+Cv. For the charges on the stray 
capacitances we find 

The influence of the various impedances (including 
the capacitances) in the circuit on the tunneling of an 
electron through one of the junctions may be described 
in terms of an effective impedance. This impedance is 
obtained by network considerations which were ex- 
plained in detail in [15]. The application to the transistor 
circuit considered here is straighforward if one uses the 
transformation between T- and ~-networks [17] in addi- 
tion to the rules explained in [15]. For tunneling through 
the first junction we find the effective single junction 
circuit shown in Fig. 2. The capacitance Cx describes 
the charging energy q2/2 Cz corresponding to the island 

q 

ztl( ) 

Fig. 2. The effective single junction circuit for the first tunnel junc- 
tion 

charge. From the effective voltage 

one gets the work eva done by the voltage sources while 
reestablishing charge equilibrium after an electron has 
tunneled. The effective total impedance is given by 

1 
Z~I ((9) = io)Ca + F1 

(7) 

with the effective total capacitance 

C1 : Cz [(C1 -~- Csl) C22 -~- C1 Csl (C2 -~- Cs2)] 
(CG+ C2) + (8) 

where 2 C~2 : C z C G-I- C 2 Cs2 -[- C G Cs2 is a capacitance 
formed by the loop containing the second stray capaci- 
tance. The effective admittance is found to read 

Y-a - Cxa Yl +icoy2 (9) 
Ya Y3 +icoy4 

with the coefficients 

C~2 + C 2 Csa (10a) Ya = (C2-~ CG) z 

y2~---C 2 Cs 2 Za-l-C4222-~-(C22@C 2 Csa)2ZG (10b) 

y3 =(c2 + 2 za + z2 + cg zG (10c) 
yg = ya (Z1 Zz-[- Z 1 ZG-[- Z 2 ZG). (10d) 

The decomposition of the effective total impedance into 
a capacitive part and a remaining admittance according 
to (7) is only correct if the high frequency behavior of 
the external impedances Za(co), Zz(co), and ZG(co) is not 
determined by a capacitance. While this will be so in 
most cases we shall give an example in Sect. 3 A where 
the environment changes the effective total capacitance 
C a . 

B. Electron tunneling rates 

Given the effective single junction circuit in Fig. 2 which 
is described by the island capacitance Cz, the voltage 
Va defined in (6) and the total impedance Zta determined 
by C a and Ya as given by (8) and (9), respectively, one 
may calculate electron tunneling rates through the first 
junction. Following the line of reasoning explained in 



[15] one finds the forward tunneling rate 

1 +m +ao 
�9 q(V, VG, q)=e2R, ~ dE ~ dE'f(E) 

- o o  - o o  

�9 [1-f(E')]P,(E+E,(V, VG, q)-E' ) (11) 

with the Fermi function f(E)= 1/[1 + exp(flE)] taken at 
the inverse temperature fl = 1/k~ T. The function 

1 +~176 (12) P1 (~) = 2--~ _S 

gives the probability that the energy E is exchanged be- 
tween the tunneling electron and the environment. In 
(12) the environmental influence is described by means 
of the function 

+r ~~ do) Re Z,l(o) ) al(t)= J co RK 

�9 [coth(fiho)/2) (cos(o) t ) -  1 ) - i  sin(o) t)J (13) 

which is given in terms of the total impedance (7) taken 
relative to the resistance quantum RK. The energy 
E 1 (V, V~, q) appearing in (11) represents the energy differ- 
ence according to the so-called global rule. It is given 
by 

q2 (q __ e)2 
E1 (V, V~, q) t- e V1 (14) 2 C~ 2 Cz 
and contains contributions from the change in charging 
energy of the island caused by the tunneling of an elec- 
tron and the work done by the voltage sources while 
restoring equilibrium between the charges on the capaci- 
tors and the applied voltages�9 The backward tunneling 
rate /~(V, V~, q) for the first junction can be calculated 
by means of the relation 

/~(V, VG, q ) = / ~ ( -  V, -V~, -q) .  (15) 

The forward tunneling rate through the second junction 
is 

1 +o0 +o0 ~(V,V~,q)-e2R2 ~ dE ~o~ dEf(E) 
-[i --f(E')] P2(E+E2(V, VG, q)-E') (16) 

where P2 (E) and E2(V, V~, q) are obtained from P1 (E) and 
E1 (V, Va, q) by interchanging indices 1 and 2 and chang- 
ing the signs of q and V G. The backward tunneling rate 
is connected to the forward rate by a relation analogous 
to (15). 

C. Relation to double junction 

Many features of the tunneling rates in a single electron 
transistor can easily be understood in terms of the behav- 
ior of a double junction [-1, 15J. Let us first have a closer 
look at the energy EI(V,V~, q). Using the definition (6) 

445 

of I71 we get 

EI (V, VG, q)= ~ [ ( C2 + ? )  V-[- CG VG-t- Q-2]. (17) 

As a consequence, the work done by the gate voltage 
when transferring charge after an electron has tunneled 
has the same effect on EI(V,V~,q) as a shift of q by 
an offset charge Qo = Ca va. We may look upon Qo as 
a charge (independent of the gate capacitance) which 
is imposed externally by choosing the proper gate volt- 
age. Basically, a transistor can be looked upon as a dou- 
ble junction with an effective island charge q + Qo. The 
effective charge can take a discrete set of values which 
may be shifted continuously by changing V G. This exter- 
nally controlled shift represents the main difference be- 
tween a single electron transistor and a double junction 
where (2o=0. The combination of the island charge ne 
and the charge Qo leads to a periodicity in (2o with period 
e since the integer part of (2o can always be absorbed 
in n. The remaining dependence of El(V, Ve, q) on the 
gate capacitance can be taken into account by replacing 
Ci(i= 1, 2) by Ci+ CG/2 in the corresponding formulae 
for the double junction. It should be noted, however, 
that CG modifies the effective total impedances Zti 
(i = 1, 2). 

D. Low impedance limit 

We now discuss some general properties of the circuit 
introduced in Fig. 1 starting with a very low impedance 
environment (Z~,Z2, ZG4~R~v ) which turns out to be 
particularly simple. In this case and for not too large 
transport voltages, the probabilities P~(E) can be approxi- 
mated by 6(E) since there are no environmental modes 
to which energy could be transferred [15J�9 The forward 
tunneling rate through the first junction then becomes 

~(V, V6, q)= 1 EI(V, VG, q) 
e2R1 1 - e x p [ - - f l E  1 (g VG, q)]" (18) 

At zero temperature the rate is only nonvanishing if 
E1 (V, VG, q)> 0. As a consequence there exists a gap volt- 
age % below which no current can flow. For a symmetric 
transistor with C1 = C2 = C this gap voltage is given by 

Vg- e-2[Q~ (19) 
2C+C G 

where the charge Qo may vary between - e / 2  and e/2. 
Beyond this range we may use the argument given in 
the previous section to extend (19) by periodic continua- 
tion with a period of e in (2o. According to (!9) the 
maximum gap is reached for (2o =0  while it vanishes 
for (20 = e/2. For an asymmetric transistor with Ca < C2 
the situation is slightly more complicated. At Qo = 0 the 
gap voltage is e/(2C2+CG) and with increasing Qo it 
decreases linearly down to zero which is reached for 
Qo = e/2. The maximum gap voltage, however, is reached 
for Q o = - e ( C 2 - C 1 ) / 4 C s .  This leads to an asymmetry 
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of the gap voltage as function of Qo which is a direct 
consequence of the asymmetry of the transistor. 

E. High impedance limit 

In the opposite limit, we assume that the impedances 
are very large compared to the resistance quantum. To 
obtain this limit it is sufficient to have Za, Z2 >> RK. Then, 
at zero temperature Pa(E) for the first junction is given 
by the shifted delta function Pa (E)= 6(E-e2/2C,). This 
is a consequence of the high frequency behavior of the 
impedance (7) which is determined by the capacitance 
C a defined in (8). For finite temperatures P1 (E) is given 
by a Gaussian like in the case of a double junction [15]. 
Evaluating the forward rate through the first junction 
at zero temperature one finds from (11) 

~(V, VG, q)= I~[Ea(V' Vo, 

The energy difference occurring in this rate formula may 
be rewritten as 

e 2 e (  e 3) 
EI(V, VG, q) 2 C 1 -  C1 Q a - @  (21) 

with 

to (9) and (10), the effective impedance at zero frequency 
is reduced further by a factor which for vanishing gate 
capacitance becomes (C2/Cs) 2 for the first junction. 
Therefore, one may often apply the theory in the low 
impedance limit. However, one should be aware of the 
fact that for sufficiently large voltages a crossover to 
the high impedance behavior occurs except in the case 
of vanishing external impedance [15]. Furthermore, in 
transistor setups using a channel of a two-dimensional 
electron gas the impedances Z1 and Z2 will typically 
be in the M~2 range. In the sequel, we shall discuss the 
effect of higher impedances only in connection with the 
assumption Za, Z2>ZG. This will usually be the case. 
From the form of the admittance (9) and its coefficients 
(10) one finds that Z~ may then be neglected. 

For arbitrary impedances Z 1 and Z 2 but vanishing 
Z~ one may account for the stray capacitances by replac- 
ing Zi by Zi/(1 +ic0Cs~ Zi). This shows that for vanishing 
impedances the stray capacitances become unimportant 
since they are shorted out while in the high impedance 
limit they will affect the rates. As remarked in Sect. 2A 
this is a situation where the high frequency behavior 
of the external impedances is determined by a capaci- 
tance. Accordingly, the effective total capacitance C~ will 
depend on the stray capacitances Cs/. In the following 
we neglect the stray capacitances bearing in mind that, 
if necessary, we always can reintroduce them by means 

C2 Cs2 -}- CG Cs2 -~ C 2 C G 
~=eCsl C2Cs2(Cl -~- Csa)-}- C 1Csl(C2--}.- Cs2)-}-CG(C1 -{- C s l ) ( C 2  -~ Ca2) " 

In the absence of stray capacitances ~ vanishes, and the 
energy difference (21) becomes the one appearing in the 

(22) 

local rule rate where only the difference in charging ener- 
gy before and after the tunneling process at the respective 
junction is considered. The critical charge e/2 which ac- 
cording to the local rule has to be exceeded in order 
to get a nonvanishing rate is diminished by the influence 
of the stray capacitances. Therefore, stray capacitances 
become important in the high impedance regime. As can 
be seen from Fig. 1, the capacitances Ca, C2, and C~1 
as well as C2, C~, and Cs2 form loops and therefore 
the change of the charge Q a due to the tunneling process 
is not independent of the other capacitances. The shift 
(22) corresponds to the charge which has to be trans- 
ferred in the left loop after an electron has tunneled in 
order to satisfy Kirchhoffs law for both loops. The modi- 
fied local rule thus takes into account all changes in 
charging energy enforced by the internal equilibrium of 
the circuit, while, as usual, the equilibrium with the exter- 
nal voltage sources has no effect on the rates in the high 
impedance limit. Of course, in the limit C~1 ~ 0 the con- 
ventional local rule is recovered. 

3. Current-voltage characteristics for a reduced model 

A. A reduced model 
In many real transistor-like circuits the impedances 
Za, Z2, and ZG are only of the order of 100 s According 

of the replacement of impedances given above provided 
that Z~ may be neglected with respect to Z a and Z2. 
We thus arrive at the simplified circuit shown in Fig. 3 
where the environment is determined by the impedances 
Za and Z2. We shall not neglect the effect of the gate 
capacitance CG which in some experiments is compara- 
ble to the junction capacitances C 1 and C2 [9]. In other 
experiments CG is much smaller than Ca and C2. One 
can then drop C~ in C~ and Zt~ but has to keep the 
product Qo = CG V~ finite in order to be able to control 
the transistor by means of Qo- For the circuit of Fig. 3 

CI, R1 C2, R2 

~ c~ 

II 

v/e v/e 
Fig. 3. A reduced model circuit for a single electron transistor cou- 
pled to its electromagnetic environment 



C1_  C 1 C,v 
C2 + Ca" (23) 

The admittance (9) simplifies to read 

1 1 +ico C2G Z 2 (24) 
Y' = ~c~ ZI + (C2a/Ca) 2 Z2 +ico C2a Z ,  Z2 

where C2G = C 2 CG/(C 2 @-Ca) describes the capacitances 
C2 and Ca in parallel. The factor 

C2 + Ca 
tel - C~ (25) 

accounts for the reduced coupling of this multijunction 
circuit to the environment [15]. For  much of the follow- 
ing discussion we shall assume Ohmic resistances Z~ 
=Za=R/2.  In this case the impedance Z I = I / Y  ~ de- 
creases from K2(R/2) [1 +(C2G/Ca) 2] at co=0 to ~c2R/2 
for co--, oo since the gate capacitance is shortening out 
the resistance in the branch leading to the second tunnel 
junction for frequencies co>>(2/RC2a). This effect does 
not occur if C a is neglected. Then Z~ is given by Z~ 
+ Z 2 = R for all frequencies. 

Also for the reduced model, the explicit calculation 
of tunneling rates requires numerical methods as ex- 
plained in [15] and [18]. The precision of the numerics 
can be checked very accurately from the low and high 
energy behavior of P~(E). Analytically, these limits can 
readily be obtained from the corresponding results for 
a single junction. Using (23) and (24) and defining the 
dimensionless conductance g~=RK~(0) and the fre- 
quency co,i= ~(O)/Ci, one finds at zero temperature for 
small energies [133 

p..tE~ = e x p ( -  27/gi) l I E ]  2/'' 
'" ' F(2/gi) E khcociJ for E ~ 0 (26) 

T 

where ~=0.577. . .  is the Euler constant. The behavior 
for high energies is determined by the high frequency 
behavior of the admittance according to [19] 

2h 2 Re Yii(E/h) 
Pi(E) = RK C2 E3 for E ~ oo. (27) 

Figure 4 shows a numerically calculated P(E) for a sym- 
metric transistor with C1 = C2 and R1 = R2 together with 
its low and high energy asymptotes. Because of the finite 
gate capacitance the effective resistances that determine 
the low and high energy asymptotes are different. 

B. Current-voltage characteristics 

The rates given in the previous sections may be used 
to calculate the current-voltage characteristic of the sin- 
gle electron transistor much in the same way as for a 
double junction by solving the master equation for the 
occupation probabilities of the different island charge 
states [1, 15]. In the following we present some humeri- 
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Fig. 4. Double logarithmic plot of P(E) together with the asymptot- 
ic behavior for small and large energies according to (26) and (27). 
This P(E) was calculated for a symmetric single electron transistor 
with C: = C2 = C, a gate capacitance C~ =0.5 C, and impedances 
Z1 = Z2 = 0.1 RK at zero temperature 

/ 
i 2 4 fi 

1 
0 - -  

0 1 2 

the effective total capacitance (8) reduces to 

4 6 8 
V 

Fig. 5. Zero temperature current-voltage characteristic for a sym- 
metric transistor with Ca ~ 2 C. From left to right the impedances 
Z1 =Z2 =R/2 are given by R/R~=O, 0.05, 0.2, 1, 5, o~. The voltage 
is given in units of the low impedance gap voltage V~0 = Vg(Q0=0 ) 
=e/Cx. The current is given in units of Vgo/(R 1 +R2). The insert 
shows the I-Vcharacteristics for two symmetric transistors with 
C~=0 and CG=2C, respectively, for environmental impedances 
Z1 =Z2 =0.1 RK 

cal results illustrating the behavior of a single electron 
transistor. In this and the next section we consider the 
circuit of Fig. 3 with symmetric junction parameters 
C 1 = C 2 = C  and R I = R  2. Figure 5 shows current-volt- 
age characteristics at zero temperature for a transistor 
with a gate capacitance CG = 2 C, Qo = 0, and an Ohmic 
environment for various values of the external resistance 
R=2Zl(co)=2Z2(co). For  a finite resistance the gap is 
always given by the low impedance gap (19). However, 
for larger resistances one finds a strong suppression of 
the current also at voltages between the low impedance 
gap and the high impedance gap. 

C. Gate capacitance scaling 

For  a symmetric transistor in a symmetric environment, 
i.e., Zl(co)=Z2(co), a change of the gate capacitance CG 
leads to a simple scaling of the I -  V characteristics. In- 
troducing the capacitance ratio c = CG/C we may rewrite 
the rates. For  instance, from the rate (18) valid in the 
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low impedance limit we obtain 

1 1 El (V', q') /~ (V, V~, q) = - -  
1 + c/2 e 2 R a 1 -- exp [-- fl' E~ (V', q')] 

where 

e 

is the energy difference of a double junction circuit with- 
out gate branch [-15]. The voltage is scaled according 
to V' = (1 + c/2) V and the effective charge q' = q + Ca Va 
accounts for the shift of the island charge due to the 
gate voltage. The inverse temperature is rescaled accord- 
ing to fl'=fl/(1 + c/2). Since the multiplicative factor 1/ 
(1 + c/2) of the rate appears also in the current, we find 
that the current-voltage characteristic for nonvanishing 
Ca can be obtained from the I -  V characteristic for Ca 
=0  by a proper rescaling of parameters. If Io(Vo) is the 
current-voltage characteristic for Ca = 0 and temperature 
To the current-voltage characteristic for finite Ca and 
temperature r is given by I (V) = Io ((1 + c/2) V)/(1 + c/2) 
with T= To/(1 + c/2). Therefore, a finite gate capacitance 
results in an effectively increased temperature. The same 
kind of reasoning may be applied to the case of finite 
impedances where one finds the same scaling of parame- 
ters. In addition, the frequency scale of the total imped- 
ance Zti(o) ) is changed by a factor (1 +c/2). While for 
vanishing impedance the shape of the I -  V characteristic 
is preserved when Ca is changed this is no longer so 
for finite impedance since the parameters of the effective 
impedance are modified due to the frequency scaling. 

In Fig. 5 the current-voltage characteristics are pre- 
sented in terms of current and voltage units reflecting 
this scaling behavior. The insert compares the I - V char- 
acteristics for vanishing gate capacitance and Ca = 2 C. 
In the absence of an external impedance these curves 
would coincide. For finite external resistance we find 
that the characteristics in these scaled units differs only 
little for low voltages. On the other hand, for large volt- 
ages one reaches the high impedance asymptotes which 
depend on the gate capacitance in this representation. 
Accordingly, the two curves in the insert of Fig. 5 sepa- 
rate as the voltage is increased. 

(28) 

(29) 

0 . 5 - ~ 0  

0 e 2e 

(a) Qo (b) 
I 

e 2e 0 e 2e 

Qo (e) Qo 
Fig. 6a-e. I -Qo characteristics at zero temperature for transistors 
with gate capacitance CG=2C and Ohmic environment Zl(co ) 
= Z2 (co)= R/2. a Symmetric transistor with R/RK = 0.05. The trans- 
port voltages in units of the gap voltage Vg o = Vg(Qo=O)=e/C z are 
from bottom to top V=0.2, 0.6, 1.0, 1.2, 1.4, 1.6, 2.0. b Symmetric 
transistor with R/RK= 1. The transport voltages are V=0.6, 1.0, 
1.6, 2.0, 2.4, 2.8. e Asymmetric transitor with R1/R2 = 10 and exter- 
nal resistance R/RK=O.05. The transport voltages are V=0.6. 1.0, 
1.2, 1.4, 1.6, 1.8, 2.0. The current is given in units of Vgo/(R ~ +R2) 

sistor with low and moderate external resistances, respec- 
tively. As discussed earlier, the curves are periodic in 
Qo with period e [1]. The electrometer has its highest 
sensitivity if biased at the gap voltage. For increasing 
external resistance the sensitivity strongly decreases as 
is expected from the suppression of the current above 
the low impedance gap. In Fig. 6c the I - Q o  characteris- 
tics for an asymmetric transistor with Ra/R2= 10 are 
shown. At the gap voltage one finds that the range of 
charges for which the characteristic is basically linear 
is enlarged as compared to the symmetric case. The rea- 
son is that for an asymmetric transistor one of the junc- 
tions acts as a bottleneck determining the rate while 
in the symmetric case two rates combine to yield the 
current. Another interesting feature is that for the asym- 
metric transistor one finds a very high sensitivity for 
a certain range of charges. This could be of considerable 
interest in connection with the optimization of the per- 
formance of SCT electrometers. 

The results presented here do not take into account 
the phenomenon of co-tunneling, a simultaneous tunnel- 
ing of two electrons. If the tunneling resistances are not 
large compared to R~, co-tunneling will lead to impor- 
tant corrections which might be qualitatively similar to 
the effect of larger external resistances (cf. Fig. 6b). For 
high tunneling resistances, however, our results should 
describe the electrometer rather well. 

D. Qo-dependence of the current 

In the previous section we have discussed the influence 
of the gate capacitance on the current-voltage character- 
istic for Qo = 0. Now, in Fig. 6 we show the dependence 
of the current on Q0 for various fixed transport voltages 
V This is of particular relevance if the transistor is oper- 
ated as an electrometer where one determines Qo via 
a current measurement [6, 7]. At zero temperature and 
for voltages below the gap a current flows only for a 
certain range of Qo while for voltages above the gap 
one can continuously measure a charge by measuring 
the current through the tunnel junctions. Figures 6a and 
6b show the I - Q o  characteristics for a symmetric tran- 

4. Conclusions 

We have discussed the influence of the electromagnetic 
environment on the current-voltage characteristic of a 
single electron transistor. Starting from a general circuit 
including stray capacitances, a finite gate capacitance, 
and environmental impedances, an effective single junc- 
tion circuit was derived which allows for the calculation 
of tunneling rates and the Coulomb gap. In the low im- 
pedance limit the global rule rate is recovered while in 
the high impedance limit stray capacitances lead to a 
modification of the local rule. Current-voltage character- 
istics were calculated for a simplified model without stray 
capacitances. It was found that the effect of a finite gate 
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capaci tance on a symmetr ic  t ransis tor  can be taken into 
account  for a low impedance  envi ronment  by appropr ia -  
tely scaling the current,  the voltage, and the temperature.  
The current  was also studied as a funct ion of  the charge 
induced by the gate which is of  impor tance  for the under-  
s tanding of electrometers based on single electron tran-  
sistor circuits. External  impedances  lead to a suppression 
of the sensitivity. A built-in asymmet ry  m a y  provide de- 
sirable features like a linear characterist ic and a higher 
sensitivity in certain ranges of  charges. Correct ions  to 
our  results will arise f rom co-tunneling,  especially if the 
tunnel resistances are no t  sufficiently high. The influence 
of the envi ronment  on co- tunnel ing and related higher 
order  processes above  the gap voltage has no t  been ad- 
dressed as yet and remains as an open problem. 
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