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Fig. 1. A model circuit describing a single electron transistor cou-
pled to its electromagnetic environment

and Z;(w). We also include the stray capacitances C,;
and C, formed by the leads leading to the island.

The charges Q,, Q,, and Q4 on the capacitors C,,
C,, and Cg undergo large quantum fluctuations due to
the leads attached to the transistor. However, these fluc-
tuations are not independent and the charge on the tran-
sistor island g=Q, + Q, — O decouples from the electro-
magnetic environment for R, R, > Ry [15]. The island
charge is quantized in units of the elementary charge
since it may change only by tunneling of electrons to
or from the island. In the absence of background charges
the island charge is g=ne. If the charges on the capaci-
tors are in electrostatic equilibrium with the applied volt-
ages we have for the average charges
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with Cs=C;+C,+Cg. For the charges on the stray
capacitances we find
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The influence of the various impedances (including
the capacitances) in the circuit on the tunneling of an
electron through one of the junctions may be described
in terms of an effective impedance. This impedance is
obtained by network considerations which were ex-
plained in detail in [15]. The application to the transistor
circuit considered here is straighforward if one uses the
transformation between 7- and n-networks [17] in addi-
tion to the rules explained in [15]. For tunneling through
the first junction we find the effective single junction
circuit shown in Fig. 2. The capacitance C; describes
the charging energy ¢2/2 C; corresponding to the island

Fig. 2. The effective single junction circuit for the first tunnel junc-
tion

charge. From the effective voltage
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one gets the work eV, done by the voltage sources while
reestablishing charge equilibrium after an electron has
tunneled. The effective total impedance is given by
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with the effective total capacitance
C—: — CE [(C + Csl) CZZ + C Csl (CZ + CSZ)] (8)
! (Ce+Cy) CHL+C3Cy

where C2,=C,Cq+C,Cy,+C;Cy, is a capacitance
formed by the loop containing the second stray capaci-
tance. The effective admittance is found to read

Y _C_)% W1 +in12

= - 9
Yy yatioy, ®
with the coefficients
y1=(C,+Cq) C2,+C3C,, (10a)
Vo= Cz Csl VA +Ca2 Z, +(C§2+ C, Csl)ZZG (10b)
y3=(C2+CG)221+C%ZZ+CéZG (].OC)
Va=WZ1Zy+Z Zg+2Z, Zg). (10d)

The decomposition of the effective total impedance into
a capacitive part and a remaining admittance according
to (7) is only correct if the high frequency behavior of
the external impedances Z, (), Z,(w), and Z;(w) is not
determined by a capacitance. While this will be so in
most cases we shall give an example in Sect. 3A where
the environment changes the effective total capacitance
C1 -

B. Electron tunneling rates

Given the effective single junction circuit in Fig. 2 which
is described by the island capacitance Cjy, the voltage
¥, defined in (6) and the total impedance Z,; determined
by C, and ¥, as given by (8) and (9), respectively, one
may calculate electron tunneling rates through the first
junction. Following the line of reasoning explained in
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of the gap voltage as function of Q, which is a direct
consequence of the asymmetry of the transistor.

E. High impedance limit

In the opposite limit, we assume that the impedances
are very large compared to the resistance quantum. To
obtain this limit it is sufficient to have Z,, Z, > Rg. Then,
at zero temperature P, (E) for the first junction is given
by the shifted delta function P,(E)=06(E—e?*/2C,). This
is a consequence of the high frequency behavior of the
impedance (7) which is determined by the capacitance
C, defined in (8). For finite temperatures P, (E) is given
by a Gaussian like in the case of a double junction [15].
Evaluating the forward rate through the first junction
at zero temperature one finds from (11)

. 1 o2
E(I{V(;:CI): 2 El(I{VG: q)———_
e“R, 2C,
eZ
0 (2. (0Ve 057 20
1

The energy difference occurring in this rate formula may
be rewritten as
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with
S—eC C,C+CCin+C,Cq

to (9) and (10), the effective impedance at zero frequency
is reduced further by a factor which for vanishing gate
capacitance becomes (C,/Cj)* for the first junction.
Therefore, one may often apply the theory in the low
impedance limit, However, one should be aware of the
fact that for sufficiently large voltages a crossover to
the high impedance behavior occurs except in the case
of vanishing external impedance [15]. Furthermore, in
transistor setups using a channel of a two-dimensional
electron gas the impedances Z; and Z, will typically
be in the MQ range. In the sequel, we shall discuss the
effect of higher impedances only in connection with the
assumption Z,, Z,> Z;. This will usually be the case.
From the form of the admittance (9) and its coefficients
(10) one finds that Z; may then be neglected.

For arbitrary impedances Z, and Z, but vanishing
Z; one may account for the stray capacitances by replac-
ing Z; by Z,/1+iwCg Z;). This shows that for vanishing
impedances the stray capacitances become unimportant
since they are shorted out while in the high impedance
limit they will affect the rates. As remarked in Sect. 2A
this is a situation where the high frequency behavior
of the external impedances is determined by a capaci-
tance. Accordingly, the effective total capacitance C; will
depend on the stray capacitances Cg;. In the following
we neglect the stray capacitances bearing in mind that,
if necessary, we always can reintroduce them by means

(22)

In the absence of stray capacitances ¢ vanishes, and the
energy difference (21) becomes the one appearing in the
local rule rate where only the difference in charging ener-
gy before and after the tunneling process at the respective
junction is considered. The critical charge ¢/2 which ac-
cording to the local rule has to be exceeded in order
to get a nonvanishing rate is diminished by the influence
of the stray capacitances. Therefore, stray capacitances
become important in the high impedance regime. As can
be seen from Fig. 1, the capacitances C,, C,, and C,
as well as C,, Cg, and C,, form loops and therefore
the change of the charge @, due to the tunneling process
is not independent of the other capacitances. The shift
(22) corresponds to the charge which has to be trans-
ferred in the left loop after an electron has tunneled in
order to satisfy Kirchhoff’s law for both loops. The modi-
fied local rule thus takes into account all changes in
charging energy enforced by the internal equilibrium of
the circuit, while, as usual, the equilibrium with the exter-
nal voltage sources has no effect on the rates in the high
impedance limit. Of course, in the limit C; — 0 the con-
ventional local rule is recovered.

3. Current-voltage characteristics for a reduced model

A. A reduced model

In many real trapsistor-like circuits the impedances
Z.,Z,,and Z g are only of the order of 100 Q. According

1 CyC(Ci+C)+C Coy (Co+Cyn)+ Co(Cy+ Ci ) (Cy+Cyo)

of the replacement of impedances given above provided
that Z; may be neglected with respect to Z, and Z,.
We thus arrive at the simpiified circuit shown in Fig. 3
where the environment is determined by the impedances
Z, and Z,. We shall not neglect the effect of the gate
capacitance C,; which in some experiments is compara-
ble to the junction capacitances C, and C, [9]. In other
experiments Cg is much smaller than C; and C,. One
can then drop Cg in Cy and Z,; but has to keep the
product Qo= Cg V; finite in order to be able to control
the transistor by means of Q,. For the circuit of Fig. 3
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Fig. 3. A reduced model circuit for a single electron transistor cou-
pled to its electromagnetic environment
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low impedance limit we obtain

- 1 1 EL(V',q)
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is the energy difference of a double junction circuit with-
out gate branch [15]. The voltage is scaled according
to V'=(1+c¢/2) V and the effective charge ¢ =g+ Cg Vg
accounts for the shift of the island charge due to the
gate voltage. The inverse temperature is rescaled accord-
ing to f'=p/(1+c/2). Since the multiplicative factor 1/
(1+¢/2) of the rate appears also in the current, we find
that the current-voltage characteristic for nonvanishing
Cg can be obtained from the I —V characteristic for Cg
=0 by a proper rescaling of parameters. If I,(V;) is the
current-voltage characteristic for C;=0 and temperature
T, the current-voltage characteristic for finite C; and
temperature T is given by I(V)=1Iy((1+¢/2) V)/(1+¢/2)
with T=Ty/(1 +¢/2). Therefore, a finite gate capacitance
results in an effectively increased temperature. The same
kind of reasoning may be applied to the case of finite
impedances where one finds the same scaling of parame-
ters. In addition, the frequency scale of the total imped-
ance Z,;(w) is changed by a factor (1+c¢/2). While for
vanishing impedance the shape of the I — V characteristic
is preserved when C; is changed this is no longer so
for finite impedance since the parameters of the effective
impedance are modified due to the frequency scaling.

In Fig. 5 the current-voltage characteristics are pre-
sented in terms of current and voltage units reflecting
this scaling behavior. The insert compares the I — V char-
acteristics for vanishing gate capacitance and Cg=2C.
In the absence of an external impedance these curves
would coincide. For finite external resistance we find
that the characteristics in these scaled units differs only
little for low voltages. On the other hand, for large volt-
ages one reaches the high impedance asymptotes which
depend on the gate capacitance in this representation.
Accordingly, the two curves in the insert of Fig. 5 sepa-
rate as the voltage is increased.

D. Qgy-dependence of the current

In the previous section we have discussed the influence
of the gate capacitance on the current-voltage character-
istic for Q,=0. Now, in Fig. 6 we show the dependence
of the current on Q, for various fixed transport voltages
V. This is of particular relevance if the transistor is oper-
ated as an clectrometer where one determines Q, via
a current measurement [6, 7]. At zero temperature and
for voltages below the gap a current flows only for a
certain range of Q, while for voltages above the gap
one can continuously measure a charge by measuring
the current through the tunnel junctions. Figures 6a and
6b show the I —Q, characteristics for a symmetric tran-
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Fig. 6a—c. ] —Q, characteristics at zero temperature for transistors
with gate capacitance C;=2C and Ohmic environment Z,(w)
=Z,(w)=R/2. a Symmetric transistor with R/R=0.05. The trans-
port voltages in units of the gap voltage Vo =V,(Q,=0)=¢/C; are
from bottom to top ¥=0.2, 0.6, 1.0, 1.2, 1.4, 1.6, 2.0. b Symmetric
transistor with R/Rg=1. The transport voltages are V=0.6, 1.0,
1.6,2.0, 24, 2.8. ¢ Asymmetric transitor with R;/R, =10 and exter-
nal resistance R/R,=0.05. The transport voltages are V=0.6. 1.0,
12,14, 1.6, 1.8, 2.0. The current is given in units of ¥,/(R, + R,)

sistor with low and moderate external resistances, respec-
tively. As discussed earlier, the curves are periodic in
Qo with period e [1]. The electrometer has its highest
sensitivity if biased at the gap voltage. For increasing
external resistance the sensitivity strongly decreases as
is expected from the suppression of the current above
the low impedance gap. In Fig. 6¢ the I —Q, characteris-
tics for an asymmetric transistor with R,/R,=10 are
shown. At the gap voltage one finds that the range of
charges for which the characteristic is basically linear
is enlarged as compared to the symmetric case. The rea-
son is that for an asymmetric transistor one of the junc-
tions acts as a bottleneck determining the rate while
in the symmetric case two rates combine to yield the
current. Another interesting feature is that for the asym-
metric transistor one finds a very high sensitivity for
a certain range of charges. This could be of considerable
interest in connection with the optimization of the per-
formance of SCT electrometers.

The results presented here do not take into account
the phenomenon of co-tunneling, a simultaneous tunnel-
ing of two electrons. If the tunneling resistances are not
large compared to Ry, co-tunneling will lead to impor-
tant corrections which might be qualitatively similar to
the effect of larger external resistances (cf. Fig. 6b). For
high tunneling resistances, however, our results should
describe the electrometer rather well.

4. Conclusions

We have discussed the influence of the electromagnetic
environment on the current-voltage characteristic of a
single electron transistor. Starting from a general circuit
including stray capacitances, a finite gate capacitance,
and environmental impedances, an effective single junc-
tion circuit was derived which allows for the calculation
of tunneling rates and the Coulomb gap. In the low im-
pedance limit the global rule rate is recovered while in
the high impedance limit stray capacitances lead to a
modification of the local rule. Current-voltage character-
istics were calculated for a simplified model without stray
capacitances. It was found that the effect of a finite gate



capacitance on a symmetric transistor can be taken into
account for a low impedance environment by appropria-
tely scaling the current, the voltage, and the temperature.
The current was also studied as a function of the charge
induced by the gate which is of importance for the under-
standing of electrometers based on single electron tran-
sistor circuits. External impedances lead to a suppression
of the sensitivity. A built-in asymmetry may provide de-
sirable features like a linear characteristic and a higher
sensitivity in certain ranges of charges. Corrections to
our results will arise from co-tunneling, especially if the
tunnel resistances are not sufficiently high. The influence
of the environment on co-tunneling and related higher
order processes above the gap voltage has not been ad-
dressed as yet and remains as an open problem.
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