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Abstract. - The current-voltage characteristics of tunnel junctions are studied in a region where 
charging effects are important. The influence of the electromagnetic environment on the 
Coulomb blockade is described in terms of the probability P(E)  that a tunnelling electron looses 
the energy E to the environment. This quantity depends only on the external impedance 
shunting the junction. Given P(E),  the tunnelling current for normal as well as superconducting 
tunnel junctions can be calculated for finite temperatures and any impedance. I t  is shown that 
the density of environmental modes becomes primarily observable in differential current- 
voltage characteristics. 

Coulomb charging effects arising in ultrasmall tunnel junctions have recently attracted a 
great deal of interest. These phenomena occur if the charging energy E ,  = e212C is larger 
than the thermal energy kB T ,  where C is the junction capacitance and T the temperature. 
Some of the theoretically predicted effects [ 11 have been observed clearly in multijunction 
circuits [Z ]  and new devices exploiting the Coulomb blockade were fabricated [3]. For single 
junctions the situation is more complicated. Observations of Coulomb gap structures in 
point-contact tunnel junctions [4,5] arise from an effective multijunction circuit, while 
experiments on single oxide layer tunnel junctions [6] showed a strongly suppressed 
Coulomb gap. Recently, it became clear that the influence of the electrodynamic environ- 
ment on single electron tunnelling which was neglected in earlier theoretical treatments is of 
crucial importance. This problem was addressed by Nazarov [7] on the basis of a many-body 
Hamiltonian for the junction coupled to an electromagnetic field which propagates in a 
specified geometry. In a1 alternative approach developed by Devoret et al. [81 the 
environmental influence is incorporated in the theory through a modified tunnelling 
Hamiltonian. This theory expresses the effect of the external circuit directly in terms of the 
environmental impedance Z ( w ) .  For the case of zero temperature related results were also 
obtained by Girvin et al. [9]. These theories predict that the coupling to the environment 
leads to a complete wash-out of the Coulomb blockade for the common case of low-impedance 
environments. However, the Coulomb gap should become visible also for single junctions if 
the impedance of the electrodynamical environment exceeds the resistance quantum 
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RQ = h/2e2. In a set-up where the junction was attached to high-impedance leads [lo, 111, a 
Coulomb gap was recently observed for single normal tunnel junctions by Cleland et al. [lll. 
In this letter we discuss the properties of the function P(E)  which contains the relevant 
information about the coupling of the tunnel junction to its electromagnetic environment. 
We show that the properties of the environment become mostly apparent in the differential 
current-voltage characteristics of normal junctions. 

The theory by Devoret et al. determines the current-voltage characteristic of a normal 
tunnel junction for tunnelling resistances RT >> R Q  and low currents I << e h , ,  where z, is the 
relaxation time of the electromagnetic environment. Under these conditions the tunnelling 
current is given by 

1 - exp [ - PeV] 
P(E)  , 1 I = -  r dE - E )  1 - exp [- P(eV - E ) ]  eRT -- 

where /3 = l/kB T. In contrast to the standard result, this formula incorporates the influence 
of the external electrical circuit described through the function 

P(E)  = (2xh)-' r dt exp [J( t )  + iEtIh1, 
-CC 

which gives the probability for a tunnelling electron to loose the energy E to the 
environment. The dynamical properties of the electrical circuit enter into P(E)  through the 
function 

+- 
(3) 

do ReZ,(o) exp [- iot] - 1 J ( t )  = ,/ - 
-m w R Q  1 - exp [- phol ' 

P(E) therefore only depends on the temperature and the total impedance 

of the junction with capacitance C in parallel with the external circuit with impedance Z ( w ) .  
Using these formulae one may determine the I-V characteristic for arbitrary frequency 
dependence of the external impedance. We note that a related expression for I (V)  also holds 
for the case of a superconducting junction with hI0/2e << e2/2C, where Io is the Josephson 
critical current. Then the occupation probabilities for electronic states have to be replaced 
by those for Cooper pairs on both sides of the junction which are proportional to 6- 
functions [12].  From this it is clear that the function P(E) plays a crucial role in describing 
the influence of the environment on normal as well as superconducting tunnel junctions. 

In the following we will discuss some general properties of P(E) which are related to the 
fact that it describes the probability that a tunnelling electron exchanges the energy E with 
the environment. Firstly, by disregarding the coupling to an external circuit, that is for 
Z ( w ) = O ,  one has P(E)=&(E) and thus does not account for the possibility to excite an 
external mode. When this is inserted into (1) one recovers the usual ohmic I-V characteristic 
with tunnelling resistance RT. For arbitrary impedance and temperature of the environment 

P(E)  is positive and normalized, i .e.  \=dEP(E) = 1, and it satisfies the sum rule 

dEEP(E) = e2/2C. Using these properties, one can show that for large voltages and 
-0E 

-CC 
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arbitrary impedance the I-V curve of a normal junction is ohmic with resistance RT but 
shifted in voltage by e/2C. This is a manifestation of the Coulomb blockade at large voltages. 
Further, P(E)  obeys the detailed balance symmetry, P(E)  = exp [,%YIP(- E) .  For zero 
temperature P(E)  = 0 for E < 0 since the tunnelling electron cannot absorb energy from the 
environment. 

Clearly, P(E) cannot be evaluated analytically except for simple cases and one has to 
resort to numerical methods. There are at least two possibilities to compute P(E)  
numerically. One may use formulae (2)-(4) directly. Given Z,(w) one calculates W(t) /at ,  from 
where one goes back to the frequency domain to obtain P(E).  This method involves two 
often slowly converging Fourier integrals and one standard integration. Of course, it is more 
reasonable to evaluate P(E) directly without going to the time domain. To this end, we 
derive an integral equation for P(E).  When addressing this problem one has to treat the 
asymptotic behaviour of the correlation function J(t> carefully. We assume that the total 
impedance Z, (w)  has an ohmic component, i.e. ReZ,(w = 0) # 0 which is the case for realistic 
electromagnetic environments. In the experimentally relevant case of a finite circuit 
temperature, we split off the leading asymptotic behaviour of J( t )  for large t 

J ( t )=  -Dltl + J l ( t ) ,  (5 )  

where D = (d/?h)(ReZ,(0)/RQ). Equation (5 )  defines Jl(t) which then approaches a constant 
value for t+= CQ. By differentiating exp [J l ( t ) ]  with respect to time and formal reintegration 
under the condition exp [J,(O)] = 1, we arrive at  

t +m 

exp [J1 (t)] - 1 = - i I dt‘ 1 dw k ( w )  exp [ - i d ’ ]  exp [J1 (t)] , (6 )  
0 -m 

where the function 

with 

contains the dependence on the external impedance and temperature. From (3) we see that 
E(w)  is proportional to the Fourier transform of the time derivative of J(t) .  In view of (2), we 
have 

Ljdtexp[iEt]exp[J( t ) ]  = z P ( E )  1 +i r d U  P(E - U )  
2xh 2Tc -m U ’  

where the integral on the r.h.s. is to be taken as a Cauchy principal-value integral. We now 
use (9) with (5) to rewrite (6 )  in terms of P(E).  Taking the real part, we get after some 
rearrangements the integral equation 

+m 

P ( E )  = I(E)  + I dw K(E,  U )  P(E - ho) .
-m 

Here, the inhomogeneity 
I (E)  = - 1 D 

xh D2 + E2h2 
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corresponds to the P(E)  for a purely ohmic environment in the limit of vanishing junction 
capacitance and high temperatures. The integral kernel K(E, w )  is given by 

K ( d ,  
Elh 

D2 + E21h2 k ( W )  + D2 + E 2 h 2  K(E, U) = 

where K(W) is the Hilbert transform of k(w)  which may be written as 

K ( W )  = %(U) - id( - i w ) / x .  (13) 

Here, j(x) is the Laplace transform of J(t) .  I t  can be shown[13] that the fluctuation- 
dissipation theorem implies the relation 

between j(x) and the impedance Z,(w).  Now (13) and (14) combine to yield 

For simple cases the sum in (15) may be expressed in closed form. Let us consider an 
external circuit described by a resistance R in series with an inductance L. This impedance 
was used by Cleland et al. [ l l ]  to model their experimental set-up. The total impedance now 
reads 

1 + iQ20/w,  -- - a  
zt (0) 

RQ 1 + i d w ,  - @(o/w,)' ' 

Here, a= RIRQ is the damping strength, w e =  1IRC the inverse relaxation time, and 
Q= w, / w ,  the quality factor with the resonance frequency of the undamped circuit 
w,  = (LC)-1'2. The sum in (15) can be done and we get 

where $(x) is the logarithmic derivative of the T-function and A+ = (1  k q m ) / 2 Q 2 .  In 
the limit Q -+ 0 (17) also includes the case of an environment consisting of a purely ohmic 
resistor. 

For the impedance (16) it is now straightforward to evaluate the function P(E)  numer- 
ically by virtue of the integral equation (10). We solved the integral equation by simple 
iteration starting with the inhomogeneity I(E)  as first trial function. For 0.1 < Q < 100 and 
0.01 < kB TIE, < 1 we used about 4000 node points and convergence was usually reached in 
about 10 steps. The solution was then stable with a relative error below 

Using the numerical results one may calculate the current-voltage characteristic from (1). 
By differentiating the integrand in (1) one may also calculate derivatives of the I-V 
characteristic. Some sample numerical results are shown in fig. 1 and 2 .  The effect of a 
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Fig. 1. - The function P(E)  giving the probability that a tunnelling particle looses the energy E to the 
environment is depicted for an LCR-circuit formed by the junction capacitance C and the external 
leads of inductance L and resistance R. The energy is measured in units of hw, where wg = l l m i s  
the resonance frequency. The diagrams show results for ho,=E, and low temperatures 
kB T = 0.05EC. Further, from left to right Q = 50, 5, 0.25, where Q = m / R  is the quality factor of 
the LCR-circuit. 
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Fig. 2. - The Z-V characteristic and its first and second derivatives are shown for a normal metal tunnel 
junction with the function P(E)  of fig. 1 for Q = 5. Currents are measured in units of e I 2 c R ~  and 
voltages in units of el2C. The dashed line indicates the characteristic for ideal Coulomb blockade. 

resonance in the environmental spectrum on electron tunnelling is examined in fig. 1. For a 
narrow resonance [Q=501 P(E)  shows a sequence of peaks at  integer multiples of the 
environmental mode energy hw,. These peaks describe the absorption and emission of one or 
more energy quanta hw, by the tunnelling electron. Since fig. 1 gives results for the low 
temperature kB T = 0.O5Ec, the peaks corresponding to the absorption of energy are 
strongly suppressed. The limiting case of an LC-circuit [Q = t.] is treated analytically in 
ref. [S, 141. Figure 1 shows that with decreasing quality factor Q the resonance structure is 
washed out and for Q = 0.25 the spectrum is already close to the purely resistive case. In fig. 
2 the I-V characteristic and its first and second derivatives with respect to voltage are 
presented. The spectral density of the environment becomes primarily observable in 
derivatives of the I-V characteristic. Near resonances dIldV vs. V displays steplike 
structures. This is due to the fact that an electron can only transfer the energy nhw, to the 
environment if the voltage exceeds nhw,le. Correspondingly, d211dV2 vs. V shows a peak 
structure which reproduces the resonance structure of P(E).  For T = 0 one has d21/dV2 = 
= (e/RT) P(eV>. Finite-temperature corrections to this relation arise primarily for voltages 
below kgTle which is the reason why the quasi-elastic peak of P(E)  is suppressed in the 
d211dV2 vs. V diagram of fig. 2. 

These results show that measurements of differential I-V characteristics should be 
particularly useful in gaining information about the effect of the external circuit on tunnel 
junctions. We note that a P(E)  extracted from the d21/dV2 vs. V curve of a Josephson 
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junction driven normal by means of an applied magnetic field should be consistent with the 
measured I-V characteristic in the superconducting case where I = (xhIiI4e) P(2eV) a t  
T = 0 [ 1 2 ] .  Hence, measurements with the same set-up in the normal and the 
superconducting state of the junction electrodes should allow for a decisive test of the 
theoretical model employed here. 
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