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Quantum Theory of Activated Events in Presence of Long-Time Memory
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The temperature dependence of kinetic processes involving activation over a potential barrier is
studied in the temperature range where quantum effects are important. Deviations form the Ar-
rhenius law are determined and a simple formula for the dominant quantum corrections is ob-
tained. The dissipative coupling to the environment is explicitly taken into account and the role of
long-time memory is emphasized.
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The Arrhenius law I =co, exp( —Vb/kaT) governs
the classical kinetics of many processes in physical and
chemical sciences. Here, the preexponential factor cu,
is an attempt frequency and Vb is the height of the po-
tential barrier which should be surmounted by the
kinetic process. The Arrhenius law predicts a vanish-
ing rate I" as the temperature T approaches absolute
zero. However, quantum mechanics allows for tunnel-
ing through the potential barrier and leads to a finite
rate at zero temperature. The crossover between clas-
sical and quantum behavior was observed for
phenomena as diverse as diffusion of atoms on sur-
faces, ' ligand migration in bimolecules, 2 decay of the
zero-voltage state in current-biased Josephson junc-
tions, and domain-wall motion in ferromagnets, to
name only a few.
A simple criterion that characterizes the crossover

temperature To below which tunneling transitions are
predominant over thermally activated Arrhenius-type
transitions was given by Gol'danskii. 5 For parabolic
barriers he found

where M~b ———Vb' is the curvature of the potential at
the barrier top and M is the mass of the tunneling par-
ticle. The Gol danskii criterion, however, entirely
disregards the environmental influence upon the tun-
neling rate. Recently, it has been shown that tunnel-
ing rates are indeed strongly influenced by dissipation
and thermal fluctuations which are present whenever
the tunneling system is part of a macroscopic system.
For dissipative systems the transition between ther-

mal hopping and quantum tunneling has recently been
studied by means of a functional integral approach. s 9
At high temperatures the rate I is found to be affected
by the fluctuation modes about the metastable
minimum and the barrier top, respectively. When the
temperature is lowered one of the eigenvlaues of the
fluctuation modes about the barrier top decreases and
reaches zero at a temperature To. There a new
saddle-point solution of the functional integral, the
so-called bounce trajectory associated with quantum
tunneling, appears. Hence, To is the crossover tem-
perature below which quantum tunneling dominates
thermal hopping.
For a system with long-time memory, the critical

eigenvalue is given by A. & = v —cob +vj (v), where
v=2mkaT/II, and where y(co) denotes the Laplace
transform of the friction kernel y(t) (see below).
vanishes at the crossover temperature To given by

Tp =Irto /2Rm. k , a (2)
where cuz is a dissipation-renormalized frequency
which is given by the largest positive solution of the
equation

~R +~R'Y(~R ) =~b.2 " 2 (3)
This relation holds independent of the detailed

shape of the potential provided that it is parabolic in
the vicinity of the barrier top. Hence, the result
(2), (3) gives the dissipation- and memory-renor-
malized crossover temperature for transitions between
two bound states as well as for decay into a continuum.
Amazingly, the relation (3) was previously encoun-
tered in studies of classical activation rates for systems
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with frequency-dependent damping. In the presence
of memory effects the classical hopping rate reads'

t

~or,=2 exp —k T (4)

where duo is the frequency of small oscillations about
the metastable minimum while cuz and cob are defined
as above. It is now readily seen that the factor cuti/orb
which gives the difference between the transition-state
result and the correct classical rate (4) also determines
the deviation of the crossover temperature T0, Eq.
(2), from the simple estimate (1).
In the case of frequency-independent damping, i.e. ,

y (cu) = yo, one has
~~ = (~t'+yo/4)"' yo/2—

However, several recent experiments" on classical ac-
tivation rates have shown a failure of a simple ap-
proach based on frequency-independent damping.
This is due to the fact that barrier frequencies, cob, are
often of the order 10' -10' sec ', and environmental
forces are likely to be correlated on this time scale,
thereby giving rise to memory effects. On the other
hand, these memory effects will likewise be important
for the determination of the transition between classi-
cal hopping and quantum tunneling. In this Letter we
shall address this problem.
Let us first consider a specific model henceforth re-

ferred to as model A. A particle of mass M moving in
a multistable potential V(xo) is coupled to a doubly
infinite harmonic chain of particles of mass m with

(5) nearest-neighbor interactions. The Hamiltonian of the
system reads

0= —,'Mxo+ V(xo) + —,
' m X x; + —,

' K X (Bx;—Sx; i)2,
I=—co
iw0

(6)

ereby r = m/M is the mass ra-
tio, co&——2(K/m) t is a typical frequency of the har-
monic lattice, and Ji (z) is a Bessel function of the first

Note that y(t) describes a dissipative mechan-
ism with long-time memory since

y (t)—r (2o~L/7« ) ' ' sin(o)L t—7«/4) t
for t
We assume now that the potential V(x) has a meta-

stable minimum at x0 and an adjacent barrier at xb.
For model A the temperature T0 below which quan-
tum tunneling through the barrier dominates over
thermal hopping can be evaluated in closed form.
Since the Laplace transform of (9) reads
y(oi) = rruL2/[o) + (co~+ a)t2)'t~], (10)

we obtain from (3)

x,=K (~x, + Sx i—2gxo) —~ V/gxo. (7a)

mx, =K(nx, +,+Sx,—25x,.-), (7b)

for i e0.
Considering K 5xo(t) as a given "external force, "Eqs.
(7b) may be solved for x, (t) and x, (t). Substituting
the result into (7a) and performing an average over in-
itial conditions, one arrives at a classical equation of
motion for x (t) = xo(t) of the form

t f
x (t) =—M ' 8 V/Bx —J ds y (t—s)x (s), (8)

t '1 2
(1—r) + ~ /2 —[r + K (1—r) + ~ /4]' 1

GOg for r ~—,(1—2r)

where hx, denotes the displacement of the i th particle
from its equilibrium position in the absence of V. For
V(xo) = 0, model A just coincides with the free y (t) = r cut Ii (o)I t )/t
Brownian motion model of R.ubin. ' The equations of is a dampingmotion read ~ 1 2

QJb
(1+K ) ', for r = —,',

where ~ = rcuL/cot, . The crossover temperature To fol-
lows immediately by virtue of (2).
The memory correlation time is characterized by

dt ty(t)/yo, (12)

where yo——f dt y (t) denotes the noise strength. For
0

model A one has T =ctlL ——«/yo and yo= ~~b. F«
fixed noise strength we can take the limit r 0 lead-
ing to memoryless damping. In this limit the previous
ous result (5) is recovered. On the other hand, for
r ~ the frequency co& approaches the undamped

! value sob. We find that for given noise strength the
crossover temperature T0 increases monotonically with
increasing r, that is, increasing memory correlation
time (Fig. 1). Hence, the suppression of tunneling
events by dissipation is less effective in the presence
of long-time memory.
As a second model, called B, we consider the arche-

type of a phenomenological description of memory ef-
fects, namely, the exponential memory

y(t) = (yo/~, )exp( —t/~, ).
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FIG. 3. The approximation (16) for the quantum correc-

tion factor q (dashed line) compared with the exact result
(solid line) for model A, with parameters Q)p =cl)o, K =0.5,
and r = 0.25. The inset shows the same quantities for model
8, with parameters Q)y = ~o, K = 0.5, and co~7, = 0.5.

physics'4 and chemical kinetics' is obtained by adding
the classical hopping rate and the zero-temperature
WKB rate, i.e., I =l,~+I wKB. Such an approach en-
tirely disregards the interplay between thermal and
quantum fluctuations. We have shown that a more de-
tailed analysis of the temperature dependence of I can
yield substantial information about the metastable po-
tential and the dissipative mechanism. This is particu-
larly important for many problems of molecular tun-
neling in chemical and biological systems where little a
priori information about the potential shape and the
environmental coupling is available. The theory
should be useful, e g. , for the analysis of low-
temperature migration rates of ligands in biomolecules
(see Ref. 2 and Beece et al. "and Doster"), hydrogen
transfer rates in polar solvents, ' and other reaction
rates affected by memory and quantum tunneling.
The theory has already successfully been applied to the
analysis of decay rates of the zero-voltage state in
current-biased Josephson junctions. ' Because of their
great generality and simplicity the results (2) and (17)
are believed to be particularly helpful for the experi-
mentalists.
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