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The rate of electron tunneling through normal metal 
tunnel junctions is calculated for the case of ultrasmall 
junction capacitances. The so-called Coulomb blockade 
of electron tunneling at low temperatures is shown to 
be strongly affected by the external electrical circuit. 
Under the common experimental condition of a low im- 
pedance environment the Coulomb blockade is sup- 
pressed for single tunnel junctions. However, a Coulomb 
gap structure emerges for junctions embedded in a high 
impedance environment. For a double junction setup 
a Coulomb blockade of tunneling arises even for low 
impedance environments due to the charge quantization 
on the metallic island between the junctions. An ap- 
proach using circuit analysis is presented which allows 
to reduce the calculation of tunneling rates in multijunc- 
tion circuits to those of a single junction in series with 
an effective capacitance. The range of validity of the so- 
called local rule and global rule rates is clarified. It is 
found that the tunneling rate tends towards the global 
rule rate as the number of junctions is increased. Some 
specific results are given for a one-dimensional array of 
tunnel junctions. 

1. Introduction 

For ultrasmall tunnel junctions with capacitances in the 
fF range or below the charging energy e2/2 C of a single 
electron can easily exceed the energy k8 T of thermal 
fluctuations at sub Kelvin temperatures. In this situation 
new phenomena such as the Coulomb blockade of tun- 
neling can arise. In fact, charging effects were observed 
many years ago on tunnel junctions containing metal 
grains within the barrier [1] and these effects were stud- 
ied theoretically quite extensively in the last decade [2]. 
While a large body of experimental work [3] supports 
most of the theoretical predictions, it is only now that 
a clear physical picture is emerging. It is important to 
note [4-9] that charging effects in tunnel junctions are 
strongly affected by the electrical circuit loading the junc- 

tion. In fact, the influence of the electromagnetic environ- 
ment on single electron tunneling is reminiscent of the 
role played by the crystal lattice in the M6ssbauer effect 
I-7]. When addressing the problem of charge tunneling 
in an ultrasmall junction it is thus essential to treat the 
coupled system formed by the tunnel junction and its 
electromagnetic environment. Moreover, in a circuit 
composed of several junctions the question arises as to 
whether the rate of tunneling through one of the junc- 
tions depends only on the parameters and on the voltage 
across this junction or if it depends also on the rest 
of the circuit. Two simple rate formulas have been pro- 
posed in the literature [2, 10]. According to the so-called 
local rule the energy governing the tunneling rate is the 
difference of electrostatic energy of the junction capacitor 
immediately before and after the tunnel event. In con- 
trast, according to the global rule the tunneling rate is 
governed by the difference in energy of the equilibrium 
configuration of the whole circuit before and after the 
tunnel event. In this paper we calculate the tunneling 
rates of multijunction circuits for a general electrody- 
namic environment. We also specify the conditions for 
the validity of simplified rate formulas. 

A microscopic approach to electron transfer rates 
through tunnel barriers in the presence of an electromag- 
netic field propagating in a specified geometry was put 
forward by Nazarov [5]. In another approach by Devor- 
et et al. [-7] the effect of the external electrical circuit 
is expressed directly in terms of the environmental im- 
pedance function. This allows for a straightforward cal- 
culation of measurable quantities under realistic experi- 
mental conditions [7, 9]. Here, we present some results 
of our earlier work [7] in greater detail and extend the 
theory to the case of multijunction circuits. A short sum- 
mary of these results was given in [11]. 

In the following, we first consider the case of a single 
tunnel junction. Section 2 deals with the effect of the 
external electrical circuit on the quantum mechanical 
behavior of the charge on the junction capacitance in 
the absence of tunneling through the junction barrier. 
In Sect. 3 we then introduce the tunneling Hamiltonian 
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and calculate the rates for electron transitions between 
the electrodes of a single tunnel junction. This problem 
is treated for arbitrary environmental impedance and 
temperature. Apart from general results, two limiting 
cases where the electromagnetic environment has a very 
low or high impedance are presented. It is shown that 
the Coulomb blockade of tunneling is washed out by 
quantum fluctuations of the charge except for very high 
impedance environments. In Sect. 4 we then consider a 
double junction. There the quantized charge on the me- 
tallic island between the junctions introduces new fea- 
tures and causes a Coulomb blockade of tunneling even 
for low impedance environments. In Sect. 5 we apply 
network theory to show that the double junction results 
may be easily explained in terms of a single junction 
in series with an effective capacitance. This reduction 
scheme naturally extends to more complicated multi- 
junction circuits. In Sect. 6 the theory is illustrated by 
applying it to a one-dimensional array of tunnel junc- 
tions. Finally, in Sect. 7 we present our conclusions. 

2. The charge on the junction capacitance 

Let us first consider a single junction of capacitance C 
embedded in an electromagnetic environment. We first 
suppose there is no electron tunneling through the junc- 
tion barrier. Since we are interested in phenomena occur- 
ring at low temperatures and for low voltages, only the 
properties of the electromagnetic environment well be- 
low the plasma frequency will be important. We shall 
assume that the environment is linear, that is there are 
no further tunnel junctions in the circuit. The environ- 
ment can then be modelled by an impedance Z(co) in 
series with a voltage source (cf. Fig. 1). This model is 
appropriate even for the case of a current-biased junction 
with a capacitance in the fF range [7]. The leads at- 
tached to the junction have capacitances that always 
exceed the junction capacitance by several orders of mag- 
nitude. These parasitic capacitances, which are polarized 
by the average voltage across the junction, will act as 
a voltage source. The electromagnetic environment as 
seen from the junction can then effectively be described 
by the model depicted in Fig. 1. 

From a phenomenological point of view the dynami- 
cal behavior of the capacitance C in parallel with the 
external impedance Z(co) can be described in terms of 
the charge Q on the junction capacitance. Q is the surface 
charge on the junction electrodes arising from a displace- 

Fig. 1. Model of a tunnel junction with tunneling resistance R T 
and capacitance C used in the theory. The junction is coupled 

to an environment with an impedance Z(co) and an ideal voltage 
SOllrcc 

ment of the metallic electrons on either side of the junc- 
tion with respect to the background of opposite charge 
formed by the metal ions. Thus, Q is a collective or mac- 
roscopic variable. Since the junction electrodes are con- 
nected to an external circuit, small displacements of the 
electron clouds may lead to arbitrarily small changes 
of Q. For instance, Q=e for a 100nm x 100 nm junction 
corresponds to a displacement of the order of 1 fermi. 
Hence, Q has a continuous spectrum. 

Assume now that at time t = 0  the external voltage 
applied to the junction is suddenly changed from Vo to 
V In the absence of tunneling, the charge on the junction 
capacitance then relaxes from its initial value Qo = CVo 
towards its new steady state value Q(oc)= CV according 
to 

O.(t) = c v +  C(Vo- v) R(O. (0 
The charge relaxation function R(t) is given in terms 
of its Fourier transform 

/~((.0)= j" d te  - i~t  R(t)=CZt(co ) (2) 
0 

where 

1 
Zt(o)) = i O) C -~ Z - 1 (o.)) (3) 

is the total impedance of the capacitance C in parallel 
with the environmental impedance Z(~o). 

So far the electrical circuit was treated classically. In 
the absence of electron tunneling through the junction 
barrier the corresponding quantum mechanical treat- 
ment is straightforward. Since the equation of motion 
for the charge is linear, the quantum mechanical re- 
sponse of the average charge to a voltage perturbation 
coincides with the corresponding classical response as 
a consequence of Ehrenfest's theorem. The quantum me- 
chanical correlation function can then readily be deter- 
mined with the fluctuation-dissipation theorem, pro- 
vided the electromagnetic environment is in thermal 
equilibrium. Alternatively, we may write down a Cal- 
deira-Leggett Hamiltonian [12] for  the environment 
with a spectral density determined by the impedance. 
The variable canonically conjugate to the charge Q is 
the phase ~0 which is defined in terms of the voltage 
U across the junction by [13] 

t 
q)(t)=~ ~ U(t')dt' (4) 

where e is the elementary charge. The variables Q and 
~0 obey the commutation relation 

[(p, Q] = i e. (5) 

We note that the quantum mechanics of a capacitance 
attached to an electrical circuit is closely related to the 
problem of quantum Brownian motion with frequency 
dependent damping [14]. The charging energy corre- 



sponds to the kinetic energy of the Brownian particle 
and the electromagnetic environment plays the role of 
the heat bath. It can now easily be shown that the classi- 
cal mean relaxation law (1) is connected with spontane- 
ous quantum mechanical charge fluctuations on the 
junction capacitance described by the correlation func- 
tion 

(SQ(t) (SQ(O)) = c  a [ d o  he) Re[Zdco)] 
0 

�9 [coth(�89 h co) cos(co t ) - i  sin(co t)] (6) 

where 5 Q (t) = Q ( t ) -  (Q (t)) and where /3 = 1/k B T is the 
inverse temperature of the environment. For later pur- 
poses we also give the result for the correlation function 
of phase fluctuations in the steady state 

J (t) = ( [~o (t) -- ~0 (0)] q, (0)). (7) 

To avoid clumsy formulae in the sequel the phase fluctu- 
ation will also be denoted by ~o(t). Using C(o=(e/h)Q 
we find 

d o  Re [Z~(co)] 
J(t)= 

o J co RQ 

where 

h 
Re = 2 e 2 

(coth (�89 fl h co) [cos(co t) - 1] 

--i sin(co t)) (8) 

(9) 

is the resistance quantum. 

3. The tunneling Hamiltonian and electron tunneling rates 

A. The rate formula for single junctions 

We now take into account the tunneling of electrons 
across the junction which has been neglected so far, The 
Hamiltonian of the entire system formed by a tunnel 
junction and the external electrical circuit may be written 
as  

H = Ho + Hr.  (1 O) 

Here, 

Ho = Hqp + Hem (11) 

is the Hamiltonian in the absence of tunneling of elec- 
trons through the junction barrier. It consists of the 
usual quasiparticle Hamiltonian Hqp for the two junction 
electrodes and the electromagnetic Hamiltonian Hem. 
This latter part may explicitly been written as a Caldeira- 
Leggett Hamiltonian [12] with Q as the macroscopic 
variable. It is important to note that although the charge 
operator and quasiparticle creation and annihilation op- 
erators can eventually be expressed in terms of true elec- 
tron operators, they commute in the limit where the elec- 
tron density is large or, equivalently, when Q is small 
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enough that quasiparticle states are not affected by the 
electron mean displacements, tn the sequel such micro- 
scopic considerations will not be persued and we shall 
no longer distinguish between quasiparticles and elec- 
trons. The second part in (10) 

HT = ~ Tk~k, C~Cka~ exp(--i q0)+H.c. (12) 
~k~k2 

is the tunneling Hamiltonian [7, 15, 16].  Here, 
Tk2kl C~2o Ck~ is the usual tunneling term [17] which anni- 
hilates an electron with wave vector kl on side "1" of 
the barrier and creates an electron with wave vector k2 
on side "2". a denotes the spin quantum number. The 
term exp(-iq~) describes the change of the charge Q 
by one elementary charge e as a consequence of the tun- 
neling event. In fact, we have 

exp(i (p) Q exp( - i  (?)= Q - e  (13) 

which follows from the commutation relation (5). The 
charge shift operators in (12) couple the tunneling transi- 
tions to the electromagnetic environment. From a more 
microscopic point of view, the factor exp(-iq)) can be 
explained as a modification of the transition amplitude 
Tk2k, due to the electric field in the barrier region caused 
by the electromagnetic environment. 

The tunneling Hamiltonian transfers charges be- 
tween the electrodes "1" and "2" of the junction. The 
corresponding tunneling rates will be denoted by/~ and 
F, respectively. To calculate these rates we shall treat 
the tunneling Hamiltonian as a small perturbation. This 
approach will turn out to be sufficient if the tunneling 
resistance RT introduced below is large compared with 
the resistance quantum RQ. Before the tunneling transi- 
tion occurs the system is assumed to have reached the 
equilibrium state of Ho at a given voltage V and environ- 
mental temperature T. The Fermi level of electrode "2" 
is then shifted with respect to the Fermi level of electrode 
"1" by -eV. We choose the signs of electrical variables 
such that a positive volta~ge will favor transitions from 
"1" to "2" described by F. These transitions are caused 
by the terms in /-/r that are explicitly written out in 
(12). The operators ck~ and c ~  transfer an electron and 
thereby disturb the equilibrium state of the junction elec- 
trodes while the term exp ( - i  ~0) disturbs the equilibrium 
between the charge distribution on the junction capaci- 
tance and the external circuit. Now, proceeding along 
the usual lines, we obtain to second order in H r the 
golden rule result 

3-00 +o0 
fi(V)= 1 RQ f dE ~ dE' f (E)[1- f (E')]  

nh RT _~ _~ 

�9 P(E+eV--E'), (14) 

Here, 1/R r is the usual tunneling conductance [17] 
which is proportional to IT[ 2 and to the densities of 
electronic states on either side of the junction, f(E) 
= [1 +exp(flE)]- 1 is the Fermi function. In formula (14) 
the initial energy E of the tunneling electron in electrode 
"1" and its final energy E' in electrode "2" are measured 
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relative to the Fermi energies. Of course, E' would equal 
E + e V if the equilibrium between the charge distribution 
on the capacitance and the external circuit were not dis- 
turbed. However, the charge shift operators in Hr  affect 
the coupled system formed by the capacitance and the 
external circuit. This leads to the appearance of the func- 
tion [-73 

1 +co 
P (E) = 2 n h _[.~ d t exp(iE t/h) 

. (exp [i ~o (t)] exp [ -  i q~ (0)3) (15) 

which can be interpreted as the probability that a tunnel- 
ing electron looses the energy E to the electromagnetic 
environment. 

Since the fluctuations of ~0 are Gaussian, we have 

@xp [i ~o (t)] exp [ - i q~ (0)3) = exp [J (t)] (16) 

where J(t) is the phase correlation function introduced 
previously. We thus obtain 

1 +co 
P(E)=-2n h ~ dtexp[a(t)+iEt/h]. (17) 

- c o  

In connection with (3) and (8), this relation determines 
P (E) for arbitrary environmental impedance and temper- 
ature. Using properties of the Fermi function, the result 
(14) may also be written as 

F(V)= 1 RQ +[co E P(eV-E). (18) 
~r-h R~ _ ~  dE 1- -exp(- f lE)  

The rate for transitions in the opposite direction is given 
by 

F(V) = F ( -  V). (19) 

Since P(E) satisfies the detailed balance symmetry 
P(E)=exp(flE) P ( -  E), we find that the forward and 
backward rates are also related by 

F(V) = e x p ( -  fie V) if(V). (20) 

In general, these rates have to be calculated numerically. 
Here, we shall first consider two limiting cases. 

B. High- and low-impedance environments 

The phase correlation function J(t) introduced in (8) de- 
pends on the impedance ratio Re [Z,(co)]/RQ. Hence, for 
a low-impedance environment we find approximately 
P(E) = 6(E). In this limit a tunneling electron cannot ex- 
change energy with the environment and (18) reduces 
to 

1 RQ eV (21) 
F(V) = r~-h Rr 1--exp(- f leV)  ' 

which is the familiar result obtained in the conventional 
treatment where the coupling to the electromagnetic en- 

vironment is neglected [17]. Hence, a very low-imped- 
ance environment influences the dynamics of the tunnel 
junction like a voltage bias. 

In the opposite limit energy can very easily be ex- 
changed between the tunneling particle and the electro- 
magnetic environment. This is the case when the function 
Re[Zt(co)], which determines the spectral density of 
spontaneous fluctuations of Q and q), is concentrated 
at low frequencies. In the limit of an high-impedance 
environment the spectral density is in fact sharply peaked 
at co = 0 and the short time expansion of (8) 

J ( t )= 2C-Re i t +  t 2 (22) 

is valid for all times. Now, (22) combines with (17) to 
give 

1 P(E) = 
]//4nEck~T 

where 

exp [ -  (E - E~)2/4 Ec ks T] (23) 

E~=e2/2C (24) 

is the single electron charging energy. Hence, in the high- 
impedance limit the tunneling rate reads 

-t-co 
1 RQ ~ dE E 

if(V) = rch R~- _ co 1 - -exp(- f iE)  

exp [-- (e V -  E-- E32/4 E~ ks T] 

which is seen to reduce at zero temperature to 

(25) 

if(V)= 1 RQ (eV_Ec) O(eV--Ec) for T - 0  
nh Rr  

(26) 

where O(x) is the unit step function. The result (26) de- 
scribes the so-called Coulomb blockade of tunneling, 
since r(V) vanishes at T= 0 even for finite positive volt- 
ages V< e/2 C. 

C. The I -  V characteristic 

For small currents the I - V  characteristic is related to 
the tunneling rates by 

I(V) = e [ i f (V)-  s 
1 RQ +oor 

dE'E nh RT _J~ 
1-exp(- f leV)  P(eV--E). (27) 
1 -exp(--f lE)  

This result is only valid provided the system can relax 
to the steady state between subsequent tunneling transi- 
tions. Hence, we should have I ~ el'co where zc is the relax- 
ation time. The full rate (18) will lie between the limiting 
results (21) and (25). Quite generally, the function P(E) 
satisfies the sum rules [-8, 9] 
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Fig. 2. The current-voltage characteristic of a single tunnel junction 
at zero temperature. The long-dashed line shows the Ohmic I - V  
curve for a very low impedance environment and the solid line 
shows the Coulomb gap structure for a high impedance environ- 
ment. The short-dashed line depicts an intermediate case with envi- 
ronmental impedance Z(co)=RQ. The voltage V is given in units 
of e/2 C and the current I in units of e/2 CR r 

+oo +o0 

d E P ( E ) = I ,  ~ dEEP(E)=E~.  (28) 
-oo -oo  

Using these properties one finds that the rate (18) always 
approaches (26) for large voltages. However, in the inter- 
esting region of voltages of the order Eje  the detailed 
low frequency behavior of the environmental impedance 
is relevant. Figure 2 shows the I - V  characteristic at 
T= 0 for the limiting cases of a high- and low-impedance 
environment, respectively, Also an intermediate case 
with an Ohmic environmental impedance Z(o~)=RQ is 
shown. In this latter case a somewhat smeared Coulomb 
gap structure is found. The form of the I -  V curve for 
various models of the environmental impedance and a 
range of temperatures was discussed elsewhere [7, 9, 18]. 
It was noted that the effect of the environment becomes 
particularly apparent in derivatives of the I - V  curve 
since the form of the second derivative approaches the 
shape of P(E) for low temperatures [9]. This can easily 
be seen from (27) for T ~  0. 

4. The double junction 

A. The island charge and electron tunneling rates 

We now consider the simplest multijunction circuit, that 
is two tunnel junctions in series which are connected 
to an electrical circuit characterized by the impedance 
Z(o)  (cf. Fig. 3). As in the case of a single junction, we 
first study the dynamics in the absence of electron tunnel- 
ing. We then are left with two capacitances C1 and C2 
in series with the external impedance. The dynamical 
behavior of this circuit can be described in terms of the 
charges Q1 and Q2 on the capacitors. Of course, in the 
absence of tunneling the charge 

q = Q, - Q2 (29) 

on the metallic island between the junctions will be con- 
served. Further, the two capacitances in series couple 
to the external electrical circuit like one capacitance 

C =  C1 C2 
C1 -~ C2 (30) 

> ~. > 

C~ 

C I 

Fig. 3. A double junction system consisting of two tunnel junctions 
with tunneling resistances R1 and R2 and capacitances C 1 and 
C2. The system is coupled to an external circuit with impedance 
Z(co) and an ideal voltage source. The tunneling rates calculated 
in the text are shown in the upper part of the figure 

carrying the charge 

C2 Ol + C1 Q: Q= (31) 
C 1 --~ C 2 

In the absence of tunneling the charge Q will obey the 
mean relaxation law (1) with the charge relaxation func- 
tion (2). The total impedance Zt(o)) is again of the form 
(3) with the capacitance C given by (30). 

To treat the circuit quantum mechanically we intro- 
duce the phases cp I and ~02 that are canonically conjugate 
to the charges Q1 and Q2. These phases are related to 
the voltages U1 and U 2 across the junctions by relations 
of the form (4). It is of course advantageous to use the 
variables q and Q that are uncoupled in the absence 
of tunneling. From (29) and (31) we obtain for the phase 
variables canonically conjugate to q and Q 

= C1 @1 --  C2 @2 (32) 
C 1 - } - C  2 

and 

q) = q01 + ~02. (33) 

These variables satisfy the commutation relations 

[O, q] = i e, [q~, Q] = i e (34) 

with all remaining commutators among the four vari- 
ables vanishing. Now, Q and ~0 have the same properties 
as the corresponding variables of a single junction. 
In particular, the phase correlation function 
J(t)=([cp(t)-cp(O)] q0(0)) is given by (8). On the other 
hand, the charge q on the island is conserved and quan- 
tized in units of e. Hence, in the absence of tunneling, 
the coupled system has steady states characterized by 
the voltage V and the charge q = n e on the island where 
n is an integer. 
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The Hamiltonian of the entire system formed by the 
two tunnel junctions and the external circuit may be 
written as 

H = Ho + H ~ + H z (35) 

where Ho is again the Hamiltonian in the absence of 
tunneling. This part contains the Hamiltonian of the 
electromagnetic environment and its interaction with the 
charge Q, the energy of the electrons in the junction 
electrodes, and also the charging energy 

nc=2c1  q -  2C2 2(C,+C2) ~ 2C (36) 

of the two capacitors. H1 and H2 describe tunneling 
through the junction barriers. These operators are of 
the form (12). Denoting the outer electrode of the first 
junction by "1", the island by "2", and the other outer 
electrode by "3" we have, for instance, 

H i =  ~ Tk12k, c~Ck~,exp(--i~clq)--i~k)+H.c. (37) 
Crklk2 

where we introduced 

C (i= 1, 2). (38) t<  

In (37) we have made use of ~01 = ~, (p + ~, which follows 
from (32) and (33), to express the charge shift operator 
exp(- i~o0 in terms of ~ and ~0. 

Let us assume that the system has reached the equi- 
librium state of Ho at given voltage V, environmental 
temperature T, and island charge q. The four rates 
/~(V, q), FI(V, q),/~(V, q), and Fz(V, q) for electron tunnel- 
ing between adjacent electrodes will again be calculated 
by treating the tunneling Hamiltonians as small pertur- 
bations. By convention, the forward rates, /~(V, q), de- 
scribe transitions favored bj  a positive applied voltage 
V (cf. Fig. 3). For instance, F~ (V, q) is related to the terms 
explicitly written out in (37). The operators ck,~ and t Ck2r 
transfer an electron from the outer electrode to the 
island. Thereby the island charge is changed from q to 
q -  e as described by the charge shift operator exp ( - i  ~). 
Further, the equilibrium between the Q-charge distribu- 
tion and the external circuit is disturbed by the operator 
e x p ( - i  tq (p). The golden rule rate now takes the form 

/~(V, q ) = - -  - -  1 R e +o~f +~ 
R1 dE d E' f (E ) [1 - f  (E')] 

--o3 

�9 P(tq, E+EI(V, q)-E'). (39) 

Here, R1 is the tunneling resistance of the first junction 
and the other quantities are defined as earlier. If the 
equilibrium between the Q-charge distribution and the 
electromagnetic environment were not disturbed, energy 
conservation would give E '=  E +E~ (V,, q), where 

qZ (q__ e)Z 
Ei(V,q)=~heV-~ 2(C~+C2) 2(C1+C2) 

=tcieV+ CIAvC2 (i=1, 2). (40) 

Note that now only a fraction of an elementary charge, 
namely K, e, has to be transferred through the external 
circuit in order to maintain equilibrium with the environ- 
ment. In reality, the equilibrium between the Q-charge 
distribution and the electromagnetic environment is dis- 
turbed by the operator e x p ( - i  ~cl q)) which leads in (39) 
to the appearance of the function 

1 +m 
P(tq, E) - 2re h _ [  ~ d t exp [~:~ J(t) q- iE t/h]. (41) 

This function gives the probability that the tunneling 
electron looses the energy E to the environment. Com- 
pared with the corresponding quantity for a single junc- 
tion, Eq. (17), the effective impedance Zt(co) is now weak- 
ened by the factor ~c~. The result (39) may also be written 
as  

1 R 0 +oo~ dE E 
/~(V, q)= ~z h Ra _J  1- -exp(- f iE)  

�9 Pf fq ,  Ea(V, q ) - E ) .  (42) 
The backward tunneling rate ~ (V, q) is related to/~ (V, q) 
by 

~(V, q ) = / ~ ( -  V, - q )  (43) 

and by the detailed balance symmetry 

~(V, q-e)=exp[-- f lEl(V,  q)]/~(V, q). (44) 

The rate F2(V, q) is obtained from (42) when we exchange 
the indices 1 and 2 and replace V by - V. We find 

1 RQ +0o E 
P2(V" q)=nh R2 S dE 1 - e x p ( - f i E )  

�9 P(rc2, E2( -  V, q)-E). (45) 

which is related to the forward rate by 

/~(V, q ) : ~ ( -  V, - q )  (46) 

and the detailed balance symmetry 

~(V, q - e ) = e x p [ - f l E 2 ( - V ,  q)] ~(V, q). (47) 

We mention that for the case of two identical junctions 
with C1=C2 and R1 =R2 the four tunneling rates are 
related by ~(V, q ) = ~ ( -  V, -q)=/~(V,  -q ) -=Fz( -  V, q). 

B. High- and low-impedance environments 

Let us again study the limiting cases for the electromag- 
netic environment treated in Sect. 3 B. In the low-imped- 



ance limit we have P(K, E)= 6(E) and (42) reduces to 

/~(V, q)= 1 R e EI (V' q) (48) 
rch R1 1 - e x p [ - f l E l ( V ,  q)] 

which is seen to give at zero temperature 

1 R a E,(V, q) O(E~(V, q)) for T=0. (49) /~(V, q)= ~h R, 

In view of (38) and (40) we thus find i~(V, q)=0 for 
V<(e-2q)/2C2. The rate formula (48) corresponds to 
the so-called global rule rate of the conventional theory 
of Coulomb charging effects [2, 10]. There, one considers 
the difference in energy El(V, q) of equilibrium configura- 
tions of the whole circuit before and after tunneling 
through the i-th junction. This energy difference (40) 
takes into account the change in charging energy and 
the work done by the voltage source to reestablish 
charge equilibrium. We note that the energy difference 
(40) may also be written as 

E,(V, q)=~/(Qi-Qc) (50) 

where we introduced the critical charge 

e Q~=g (1 -~h). (51) 

Hence, El(V, q) depends only on the charge Qi on the 
capacitor through which the electron is tunneling. How- 
ever, this should not be confused with the local rule 
which is discussed below. 

For a high-impedance environment we have from (22) 
and (41) 

1 
P fie, E) = l ~  

�9 exp [-- (E-- ~2 Ec)a/4 ~2 Ec kBT]. (52) 

This yields for the zero temperature rate 

/~(V, q)= 1 R o [E~ (V, q ) -  ~c~ E~] 
~h R 1 
�9 O(E~(V,q)--~c2Ec) for T=0. (53) 

Now, the zero temperature rate vanishes for V< 
(e-  2 q)/2 C2 + e/2 C1. The expression (53) corresponds to 
the local rule rate of the conventional theory [2, 10] 
since 

~c2E_ Q~ (Q~-e): (54) EI(V~ q)-- 1 c 2C1 2C1 

gives the change in charging energy on the junction 
through which the electron is tunneling. As in the case 
of a low impedance environment one may define a criti- 
cal charge. In contrast to (5i) one finds here Qc=e/2. 
We emphasize that even for a high impedance environ- 
ment the local rule rate is not valid at finite temperatures 
due to the Gaussian nature of P(~c, E) in (52). 
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We see that in both limits the rate shows a Coulomb 
blockade of tunneling. For instance, for an electrically 
neutral island, q = 0, we find that all four tunneling rates 
vanish at r = 0  for ]Vl<min(e/2C1, e/2C2) in the low- 
impedance limit, and for I V[ < e/2 C 1 + e/2 C2 in the high- 
impedance limit. Note that this latter limit is now much 
harder to achieve, since the effective environmental im- 
pedance is reduced by a factor Xx z or tc~, respectively. 
For arbitrary impedance the tunneling rates have to be 
calculated from (42)-(47) using numerical results for 
Pffci, E) that may be obtained by the same method as 
for single junctions. For the double junction the Cou- 
lomb blockade arises from the charge quantization on 
the island. In order to transfer a charge, say, from elec- 
trode "1" to electrode "3 ", one has to occupy the island 
"2" in an intermediate step, and there is an energy bar- 
rier to be overcome. Higher order terms of the perturba- 
tion theory for the rate will lead to a finite, yet small 
current in the presence of a voltage [163. This problem 
will not be addressed here. 

C. The I -  V characteristic 

For a single junction the current-voltage characteristic 
can be calculated from the forward and backward tun- 
neling rates by I (V)= e IF(V)-JP(V)]. For a double junc- 
tion, and more generally for multijunction systems, the 
calculation of the current from the rates is more compli- 
cated. In general, one has to solve a master equation. 
The state of a double junction may be characterized by 
the voltage V and the island charge q. Since we assume 
that between two tunneling processes there is enough 
time to restore equilibrium with the environment, the 
voltage V is constant during a sequence of tunneling 
transitions while the island charge q changes. At finite 
temperatures the time sequence of q is arbitrary since 
all tunneling rates differ from zero although some tunnel- 
ing processes are more likely than others. On the other 
hand, at zero temperature certain tunneling transitions 
are forbidden depending on V and q as is apparent from 
(49) and (53). 

The current-voltage characteristic of a double junc- 
tion may be calculated from 

+ ~  + o o  

I=e ~ p,(~(n)-P~(n))=e Z p,(~(n)-~(n)) (55) 
n = - o o  n = - - 0 3  

where p, is the probability that the charge q on the island 
equals n e. This probability together with the difference 
of rates /~ (n)-F1 (n) describes the net current flowing 
through the first junction. In view of charge conservation 
the current may also be expressed in terms of the rates 
at the second junction. Since the tunneling rates have 
already been discussed in the previous sections, we now 
have to determine the steady state probabilities p,. The 
island charge q may change by tunneling of electrons 
from or to the island as described by the master equation 

-boo 

n ~  - o o  

(56) 
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Here, F.+a,. is the rate for the transition from q=ne 
to q = ( n _  1)e. Since we have to consider a change in 
q by tunneling through the first as well as through the 
second junction, we get for these rates 

F. + 1,. = ~ (n) + /~  (n) (57) 

r ._  = (n) + (n). (58) 

The stationary solution of (56) satisfies the detailed bal- 
ance condition 

Fn,n+ ~ Pn+ l = ~+ l,.Pn, (59) 

which may be used to express the probability Pn of find- 
ing the charge n e on the island in terms of the probability 
Po for the island to be neutral as 

.-1 Fm+ 1,m (60) 
P.=Po I~ rm m+l m=0 

and 

~ I  /~m-1 m P-,=Po ~, -"_~ (61) 
m = - - n + l  

where in both formulas n >0. Po is determined through 
the normalization condition 

-boo 
p . = l .  (62) 

n=--o0 

The formulae (55) and (60)-(62) together with the rate 
expression (42) allow us to calculate the current-voltage 
characteristics for arbitrary temperature and environ- 
ment. This can easily be done numerically. An example 
of a current-voltage characteristic is shown in Fig. 4. 

Some basic features of a double junction can best 
be seen from further analytical results available at zero 
temperature. While for finite temperatures in principle 
any integer charge can sit on the island, we find from 
(60) and (61) that for zero temperature the possible 
charges are restricted due to vanishing rates. Let us first 
consider two junctions with equal capacitances C~ 

4] 
31 

J:U I 
0 1 2 3 4 

v 
Fig. 4. The current-voltage characteristic of a double junction with 
tunneling resistances Rz= 10R1 and capacitances C1 = C2 =2C at 
zero temperature. The long-dashed line I=  V/(RI +Rz) shows the 
Ohmic characteristic of two resistors in series. The short-dashed 
line and the solid line are for low and high impedance environ- 
ments, respectively. The voltage Vis given in units of e/2 C 

= C 2 = 2 C  but arbitrary tunnel resistances R~ and R 2. 
For voltages Vm=(e/2C)(m+l/2)(m=O, 1, 2 . . . .  ) in the 
low impedance case and Vm = (e/2 C)(m + 1) (m = 
0, 1, 2 . . . .  ) in the high impedance case it is possible to 
evaluate the products and sums appearing in the expres- 
sions for the probabilities yielding 

(2m)! (R1/R2) "+" 
P" - ( m - I n  [)!(m +In  I)! (1 + (R,/R2)) z"" (63) 

For these voltages we then find the current 

1 e I m. (64) 
R1 +RE 2C 

Hence, these points lie on a straight line in the current- 
voltage diagram. The slope of this straight line character- 
istic is given by the total tunneling resistance R1 +R2 
and it shows a Coulomb gap of e/4 C and e/2 C for the 
low and high impedance cases, respectively. This proper- 
ty of the I -  V characteristic is also apparent from Fig. 4 
which in addition shows that for other voltages the cur- 
rent lies above the straight line. The periodic structure 
of the I -  V curve becomes more pronounced as the ratio 
between the two tunneling resistances is increased. If one 
of the resistances is very large compared to the other, 
the tunneling current is restricted by the high resistance 
junction. In the voltage regime Vm- ~ < V< Vm the island 
is then charged through the low resistance junction up 
to the maximal charge q = -4-_ m e, the sign of q depending 
on which of the two junction has high resistance, Since 
then p_+m=l, the current is determined by the rate 
F (_m)  through the high resistance junction. The corre- 
sponding I -  V characteristic has the form of a staircase 
with current jumps at the voltages V,~ and segments of 
constant slope between these voltage values. This so- 
called Coulomb staircase has been discussed in the litera- 
ture [19]. In these earlier treatments the coupling to 
the external circuit was neglected and the results where 
mostly based on numerical simulations of the master 
equation. In various experiments on double junction sys- 
tems [20] the steplike structure has been observed in 
the current-voltage characteristic as well as in the differ- 
ential d I/d V -  V curve. 

In order to further illustrate the calculation of the 
current from the rates F,,,+I let us consider a double 
junction with capacitances C1 < C2 coupled to a low im- 
pedance environment and biased with a positive voltage 
V. From (49) we find that the rates are different from 
zero in the following voltage regimes 

/~(V, q)=~0 for V>(e/2-q)/C2 (65) 

FI(V, q)+0 for V< -(e/2+q)/C2 (66) 

/~(V, q )#0  for V>(e/2+q)/C1 (67) 

F2(V, q )#0  for V< - (e /Z-q) /C1.  (68) 

As already discussed above, the current through the dou- 
ble junction vanishes for IVI < 1/'1 =e/2C2 giving rise to 
a Coulomb gap in the current-voltage characteristic (see 
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Fig. 5. The current-voltage characteristic of a double junction with 
tunneling resistances R 1 = 1 0 R  2 and capacitances C 1 = 1.8C and 
Cz=2.25C at zero temperature. The long-dashed line I=V/(R 1 
+R2) shows the Ohmic characteristic of two resistors in series. 
For a low impedance environment (short-dashed line) the gap ex- 
tends up t o  VI=e/2C 2 and there is a cusp a t  V2=e/2C1 where 
the sequence of electron tunneling to and from the island becomes 
statistical. For a high impedance environment (solid line) the Cou- 
lomb gap extends up to V3 = e/2 C 

Fig. 5). In this voltage regime q = 0  is stable since al l  
rates for transitions starting from q = 0  vanish. For  
q = n e  (n>0)  only the rates which decrease q are non- 
zero and the opposite is true for q - - - n e .  Therefore, 
even if initially the double junction has non-vanishing 
probabilities p, for n +0,  the stat ionary solution P0 = 1, 
p, = 0 (n + 0) will be approached.  

In the following we assume 1 < C2/C1 < 3 for the junc- 
tion capacitances. Let us first consider the voltage regime 
V1 < V< V2 = e/2 C1. When q -= 0 the only non-vanishing 
rate is/~ (V, 0) bringing the double junction into the state 
q = - e .  There, the only possible transition is back to 
q = 0  described by /~(V, - e ) .  The two tunneling events 
lead to a current through the double junction. In the 
steady state the non-vanishing probabilities are 

/~(V, - e )  
Po =/~(V, 0) + /~  (V,, - e )  (69) 

o)  
P - I = I ~  (V~ O)~-~(V~ - e )  (70) 

which yield for the current 

I = eC(V) (71) 

where 

1 1 1 
- + ~ . (72)  r ( v )  ~ Fz (V , - e )  

For  V2 < V< 3 e/2 C2 the situation becomes more compli- 
cated. Starting from q = 0  there are now two channels 
q = 0 ~ - e --* 0 and q = 0 ~ e ~ 0 both  leading to a cur- 
rent through the junctions in the same direction. How- 
ever, the time order of the tunneling is different. This 
means that in this voltage regime we can have successive 
tunneling of two electrons through the same junction. 
The corresponding probabilities p_ 1, Po, and Pl are giv- 
en by Eqs. (60)-(62) yielding the I -  V characteristic for 
V > V2 shown in Fig. 5. It is straightforward to calculate 
the current for larger voltages analytically or numerically 
and to extend these considerations to other capacitance 
ratios C2/C 1 . 

5. A p p l i c a t i o n  o f  n e t w o r k  a n a l y s i s  

As discussed in the previous section the influence of an 
electromagnetic environment on the behavior of a system 
of two tunnel junctions may basically be formulated in 
a way very analogous to the case of a single tunnel junc- 
tion coupled to an external circuit. In both cases the 
effect of the environment is characterized through a func- 
tion P(E) containing an effective external impedance. In 
this section we present rules from network theory by 
means of which tunneling rates in a multijunction system 
can be reduced to rates of a single junction system in 
series with an effective capacitance. 

To introduce the basic ideas let us first consider a 
voltage-biased single tunnel junction with capacitance 
C coupled to an environment of impedance Z(co) as de- 
picted in Fig. 1. The junction itself is described by a 
capacitor in parallel with a tunneling element. The tun- 
neling element is a device which transfers electrons with 
a certain rate. We now look at the circuit shown in Fig. 1 
from the viewpoint of the tunneling element. This one- 
port  circuit may be transformed by changing between 
so-called Thevenin and Nor ton  configurations [21] 
which are shown in Figs. 6a  and b, respectively. If the 
Thevenin configuration contains a voltage source V(co) 
in series with an impedance Z(co), the equivalent Nor ton  
configuration consists of this impedance in parallel with 
a current source I(o))= V(co)/Z(co). We may use this rule 
to transform the right section of Fig. 7 a into its Nor ton  

o J o-- 

I 

] 
l i ! J 

Fig. 6a, b. The Thevenin configuration a is equivalent to the Nor- 
ton configuration b if 1= V/Z(co) 

o i o i I 

o I 

Fig. 7a-c. In three steps the single junction circuit is transformed 
by network theoretical rules, a shows the original circuit as seen 
from the tunneling element. In the Norton equivalent b we may 
combine the capacitance C and the impedance Z(co) leading to 
the Thevenin-type circuit c 
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equivalent (Fig. 7b). It is advantageous to perform the 
transformations with an ac voltage and to consider the 
limit co ~ 0 only at the end. In the Norton form we sum 
up the two parallel impedances Z(co) and 1/ie)C yielding 
the total impedance Z, (co) = l/(i co C + Z (co)- *). Return- 
ing to the Thevenin equivalent we find the one-port cir- 
cuit shown in Fig. 7c containing the impedance Zt(co ) 
in series with a voltage source V(co)/(1 +ira CZ(co)). Since 
the original voltage source was a dc source this again 
leads to a dc voltage source V. Thus the following picture 
emerges. We have an ideal tunneling element passing 
an electron through the effective circuit in Fig. 7c. The 
transfer through the voltage source V leads to a change 
in the energy by e V The electromagnetic environment 
is described by the total impedance Z~(o~) introduced 
in (3) which eventually determines the tunneling rate via 
P(E). The reduction of a Coulomb gap in the case of 
a low impedance environment manifests itself in the fact 
that the effective circuit in the limit Z(c0)~ 0 no longer 
contains a capacitance. 

We now apply this reasoning to the double junction 
system shown in Fig. 3. For the discussion of tunneling 
through the first junction we may replace the second 
junction by the capacitance C2 thereby disregarding the 
possibility of simultaneous charge transfer through both 
junctions. This is correct within lowest order perturba- 
tion theory in the tunneling conductances 1/R 1 and 1/R 2. 
Here, we now have to keep track of the charges sitting 
on the two capacitors. If a capacitor in a Thevenin con- 
figuration, where it is in series with a voltage source, 
carries a charge Q, it will carry the charge Q - C V  in 
the corresponding Norton configuration. Applying this 
to the circuit of Fig. 8a we obtain the capacitor C1 with 
charge Q1 in parallel with a series connection consisting 
of the impedance Z(og) and the capacitor C: with charge 
Q 2 -  C2 V (Fig. 8 b). It is straightforward to calculate the 
impedance corresponding to the branches in parallel. If 
we split off a capacitance pole 1/ie)(C~ + C2), we are left 
with the impedance ~c~ Z/co) where the capacitance is 
the total capacitance given by (30). After the transforma- 

Q2 

oT 
-q  

q+c2 dzt(.) 

J 

Ci QI 

o L 

Fig. 8a-c. A double junction circuit is transformed into an effective 
single junction circuit. The right part of the original circuit a may 
be cast in the Norton form b. If the signs of the charges on C1 
and Ca are properly taken into account one finally gets the circuit 
e with a reduced voltage tq Vand reduced impedance x~ Zt(co ) 

tion back to the Thevenin form the capacitance pole 
corresponds to the capacitances C1 and C 2 in parallel 
carrying a total charge of Q1-Q2 which according to 
(29) is just the island charge q. In addition, the new circuit 
contains a voltage source with reduced voltage K1 V We 
can now use this effective single junction circuit depicted 
in Fig. 8c to interpret the double junction results pre- 
sented in the previous section. The energy change (40) 
related to a tunneling event contains contributions from 
the transport of the electron through the voltage source 
~c, V and from the change of the charging energy on the 
capacitor with capacitance C~ + C 2 due to a change in 
the island charge q. Furthermore, the coupling to the 
impedance Z~(co) which contains the capacitance C of 
the original circuit in parallel with the original external 
impedance Z(o)) is reduced by a factor of ~:~. 

The network analysis presented here may easily be 
extended to other multijunction circuits. A simple exam- 
ple is presented in the next section and further interesting 
multijunction circuits are treated elsewhere [22]. 

6. Electron tunneling in a 1 D-array 
A. Charging energy and tunneling rates 

We shall consider here an array of N tunnel junctions 
with capacitances C~ and tunneling resistances R~(i= 
1, ..., N). The array is connected to an electrical circuit 
consisting of a voltage source in series with the environ- 
mental impedance Z(~) (see Fig. 9a). The charge on the 
i-th junction will be denoted by Qi. The charging energy 
of the whole array may then be written 

H ~ = f  1 Q~ (73) 
�9 = 2Ci" 

- >  < -  > < - >  <-- 

~ C N  
Z 

,) 

qeff 

Ceff 

J 

Fig. 9. a A schematic drawing of an 1 D-array. The electron tunnel- 
ing rates for the first, the i-th, and the last junction are indicated. 
b Reduced effective circuit which may be used to calculate the 
rates/~ and 



The array of capacitances presents itself to the environ- 
ment as one capacitance C with 

1 N 1 (74) 

which carries the charge 

N Qi 

Q = CiZ'2-1 (75) 

The charge Q is again a variable with a continuous spec- 
trum. On the other hand the charges 

qk=Qk--Qk+l  ( k = l ,  ..., N - l )  (76) 

on the N - 1  metallic islands between the junctions are 
quantized in units of e. Of course, it is advantageous 
to work with the variables Q, qk in terms of which the 
charging energy (73) reads 

/-}2 N -  1 
H ~ = ~ - - +  ~ l ( C - 1 ) ~ l q k q l .  

2C k,l=l 
(77) 

Here, we introduced the capacitance matrix 

C~+Ck+I for l = k  

Ckl= Ck+l for l = k + l  
C k for l = k - 1 

otherwise. 

(78) 

The self capacitance of the k-th island equals the sum 
of the capacitances of the two junctions to the left and 
to the right of the island. In addition, there is a capacitive 
coupling between adjacent islands given by the capaci- 
tance of the junction separating the islands. The inverse 
of the capacitance matrix is found to be 

min(k,/) 1 N 1 
(C-~)kz=C ~ Cm ~ C~" (79) 

m= 1 n=max(k,l)+ 1 

We note that usually one also has to account for the 
capacitive coupling of the metallic islands to ground. 
This gives rise to a modification of the diagonal elements 
of the capacitance matrix (78). Here we are mainly inter- 
ested in the effect of the external circuit on electron tun- 
neling rates�9 A modification of the self capacitances can 
always be accounted for later. Of course, in order to 
describe charge solitons in 1 D-arrays of tunnel junctions 
[23] one has to take into account the capacitive coupling 
to ground since it determines the size of the soliton. 

Before we apply network analysis to this problem, 
let us briefly outline the direct calculation of tunneling 
rates from the tunneling Hamiltonian. To this purpose 
we introduce the phases q0 and 0k that are canonically 
conjugate to the charges Q and qk. Hence, these variables 
satisfy the commutation relations 

[~0, Q] = i e, [Ok, qk] = i e (80) 
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with all remaining commutators among these variables 
vanishing. The phase q0 i canonically conjugate to the 
charge Qi on the i-th junction reads in terms of the new 
phase variables 

q)l = @ 1 -[- h21 (49 

(Pi = 0~-- 0i-1 + ~c~ q~ (i = 2, ..., N- -  1) 

~oN = -- ~'N- 1 + ~c~ q~ (81) 

where we introduced the capacitance ratio 

tci = C/Ci (i = 1, ..., N). (82) 

The Hamiltonian of the entire system formed by the 
1 D-array of junctions and the electrical circuit loading 
the array splits into 

N 
H = H o + ~ Hi (83) 

i=1 

where H0 is the Hamiltonian in the absence of tunneling 
which includes Hc, and H i describes tunneling through 
the i-th junction. The steady states of Ho are character- 
ized by the voltage V, the temperature T, and the island 
charges qk that are conserved quantities in the absence 
of tunneling. A straightforward extension of the reason- 
ing in the preceding sections now yields for the golden 
rule rates through the i-th junction (cf. Fig. 9 a) 

+co 
1 R e S d  E E 

/~(V, qk)= rC~ R~. -o0 1 --exp(--f iE) 

�9 P(~c i, Ei(V, qk)--E) (84) 

where 

El(V, qk)=~q e V+ e(qk)--~(ql--e ,  q2 . . . . .  qN-1) 

Ei(V, qk)=~cieV+ e(qk)--e(ql . . . .  , ql-  2, q i - i  +e,  qi--e,  

qi+l . . . .  , q s  1) (i=2, ..., N- -  1) 

EN(V,, qk) - -=tCNeV-l -~ ' (qk) - -c(q l ,  " " ,  q N - 2 ,  q N - !  +e). (85) 

Here, 

N - 1  
~(qk) = ~ �89 (86) 

k,l= l 

is the internal charging energy of the array. 
The backward tunneling rate ~(V, qk) is related to 

/~(V, qk) by 

~(V,, qk)=/~(-- V,, -- qk) 

and by the detailed balance symmetry 

FI ( V, q l  - e ,  q2 . . . . .  q N - 1 )  

=exp[ - - f lE1  (V, qk)]/~(V, ql, ..., qN- 1), 

~(V, ql . . . . .  q~-2, q~-i +e,  q z - e ,  qz+l . . . . .  qu-~) 

= exp [ -  fiE~(V, qk)]/~(V, q), 

(87) 
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I'N(V, q, . . . .  , qN- 2, qu-1 + e) 
=exp[--  flEN(V, qk)] ~(V, q~ . . . . .  qN- ,). (88) 

In view of (82) and the factor tc~ in the exponent of 
the integrand of (41), for an array of junctions with capa- 
citances of the same order of magnitude the effective 
environmental impedance Z(co) is reduced by a factor 
N 2 as compared to a single junction. Hence, for large 
arrays the low-impedance limit is mostly appropriate 
and the rates reduce to the global rule result [2] 

1 R e E,(V, qk) (89) qk) = 
rCh Ri !--exp[--flEi(V, qk)] " 

At zero temperature this gives 

Re E,(V, qk) O(Ei(V, qk))" (90) ~(V, qk)= 1 h Ri 

Now, using (85) and (86), the energy Ei(V, qk) which must 
be positive for the rate not to vanish may be written 
a s  

e (1--tq)-- qg + qk E~(V, qk)=e~ V--2C k=~ C; k=~" . (91) 

Here, we introduced the capacitances of the junction ar- 
rays to the left and right of the k-th junction 

Ck- = , C~- = . (92) 
J J 

In (91) the energy change is expressed in terms of the 
state variables (V, q0 of the array. By means of the rela- 
tion (76) between the island and junction charges, it can 
be shown that the energy E~ for the i-th junction depends 
just on the charge Qi on this junction. We then obtain 
the simple form 

Ei(Q~) = ~ (Q~- Qc) (93) 

with the critical charge 

e 
Qc = ~ (1 - 1r (94) 

This is in accordance with the result (50), (51) for the 
double junction in the low impedance limit. 

From (91) we find that the Coulomb gap is deter- 
mined by the junction with the largest capacitance, i.e. 
at zero temperature no current will flow for voltages 
I Vl < min(1-  C/Ci)Eje. For the special case of a double 

i 
junction this reduces to the result given in Sect. 4B. Con- 
sidering an array consisting of tunnel junctions with the 
same capacitance, i.e. C i = n C, we find for the Coulomb 
gap ( 1 -  l/n)EJe. Therefore, for a large array, the Cou- 
lomb gap at zero temperature is given by the charging 
energy Ec corresponding to the capacitance C of the 
whole array. 

We now want to apply the rules for network transfor- 
mations introduced in Sect. 5 to the 1 D-array. Let us 
pick an arbitrary tunnel junction "i" of the array. All 
other tunnel junctions may be treated like capacitances. 
In a first step we rearrange the capacitances in the circuit 
leaving the tunnel junction fixed. All junctions to the 
left of the i-th junction are shifted through the voltage 
source and the external impedance. Then they may be 
combined with the capacitances to the right of the tunnel 
junction resulting in a total capacitance 

Ci -  CiC (95) 
C i - C  

carrying the charge 

C,C z Q i (96) 
Q i - C i - C  j*i Cj " 

This capacitance may then be considered analogous to 
the capacitance Cx of the double junction circuit dis- 
cussed in Sect. 5. Along the same lines of reasoning we 
find the circuit shown in Fig. 9b. It contains an effective 
voltage source ~cl V, a reduced total impedance K{ Z,(co) 
and a capacitance 

C2 (97) 
C e f f  - -  C i - C 

carrying the charge 

_ c, ( - o . , + c 2  e,) 
q e f f  C i -  C j C j]"  (98) 

This charge may be expressed entirely in terms of proper- 
ties of the i-th junction and the voltage as 

Ci - -  ( -  Q, + CV). (99) q e f f  - -  C~ - -  C 

During the tunneling process an electron is transferred 
through the effective voltage source and an electron 
charge is added to the charge present on the effective 
capacitor. Summing up the corresponding energy 
changes we find the result (93) for Ei(Qi) which depends 
only on the charge of the tunnel junction under consider- 
ation. The environment of the i-th junction is character- 
ized by the effective impedance tc 2 Zt(m) and we are thus 
led directly to the rate formula (84) with Ei given by 
(93). As we have already mentioned for large arrays this 
rate expression can mostly be simplified to the global 
rule rate (89) since ir 2 Z,(co)~Ro. under common experi- 
mental conditions. 

7. Conclusions 

The transport of electrons in circuits with several normal 
tunnel junctions was examined for the case of ultrasmall 
junction capacitances where Coulomb blockade of tun- 
neling may arise. The analysis was based on perturbation 
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theory in the tunneling Hamil tonian which is appro- 
priate for junctions with tunneling resistances R r  that  
are large compared with the resistance quantum RQ. It  
was pointed out that  the dynamics of these mesoscopic 
multijunction circuits is usually strongly affected by the 
external electrical circuit loading the device. 

In multijunction circuits the discreteness of the charge 
transfer through the junctions implies a quantization of 
island charges which in turn causes a Coulomb blockade 
of tunneling. This effect is more pronounced for systems 
embedded in a high impedance environment. In fact, for 
single junctions the suppression of charge fluctuations 
by high impedance leads is the only reason for a Cou- 
lomb gap structure. In multijunction circuits, on the 
other hand, the effective environmental  impedance de- 
creases roughly as one over the square of the number  
of junctions, As a consequence, electrons tunneling in 
large arrays see only a very low impedance environment 
and the tunneling rates may be calculated using the glob- 
al rule rate of the conventional theory. This is true for 
arbitrary temperatures.  On the other hand, the local rule 
rates were shown to become correct in the limit of a 
very high impedance environment and at zero tempera-  
ture only. For  arbitrary environmental  impedance the 
tunneling rates have to be computed numerically from 
the general rate formulas derived in this paper. 

We have demonstra ted that network analysis allows 
one to reduce the calculation of tunneling rates in multi- 
junction circuits to those of an effective single junction 
circuit of the form given in Fig. 9b where the tunneling 
element is in series with an effective capacitance repre- 
senting the internal charging energy of the circuit, a re- 
duced impedance, and a reduced voltage source. Explicit 
results were given for a one-dimensional array but the 
method can directly be used to treat more complicated 
cases. One of the main challenges for future work is an 
extension of the results presented here to the case of 
tunnel junctions with higher tunneling conductances. 

During the course of this work we have benefitted from inspiring 
discussions with K.K. Likharev and Yu.V. Nazarov. This work was 
supported by the Deutsche Forschungsgemeinschaft through 
SFB237 and by the Science Program of the European Community 
under grant number 90200290/JU 1. 
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