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and calculate the rates for electron transitions between
the electrodes of a single tunnel junction. This problem
is treated for arbitrary environmental impedance and
temperature. Apart from general results, two limiting
cases where the electromagnetic environment has a very
low or high impedance are presented. It is shown that
the Coulomb blockade of tunneling is washed out by
quantum fluctuations of the charge except for very high
impedance environments. In Sect. 4 we then consider a
double junction. There the quantized charge on the me-
tallic island between the junctions introduces new fea-
tures and causes a Coulomb blockade of tunneling even
for low impedance environments. In Sect. 5 we apply
network theory to show that the double junction results
may be easily explained in terms of a single junction
in series with an effective capacitance. This reduction
scheme naturally extends to more complicated multi-
junction circuits. In Sect. 6 the theory is illustrated by
applying it to a one-dimensional array of tunnel junc-
tions. Finally, in Sect. 7 we present our conclusions.

2. The charge on the junction capacitance

Let us first consider a single junction of capacitance C
embedded in an electromagnetic environment. We first
suppose there is no electron tunneling through the junc-
tion barrier. Since we are interested in phenomena occur-
ring at low temperatures and for low voltages, only the
properties of the electromagnetic environment well be-
low the plasma frequency will be important. We shall
assume that the environment is linear, that is there are
no further tunnel junctions in the circuit. The environ-
ment can then be modelled by an impedance Z(w) in
series with a voltage source (cf. Fig. 1). This model is
appropriate even for the case of a current-biased junction
with a capacitance in the fF range [7]. The leads at-
tached to the junction have capacitances that always
exceed the junction capacitance by several orders of mag-
nitude. These parasitic capacitances, which are polarized
by the average voltage across the junction, will act as
a voltage source. The electromagnetic environment as
seen from the junction can then effectively be described
by the model depicted in Fig. 1.

From a phenomenological point of view the dynami-
cal behavior of the capacitance C in parallel with the
external impedance Z(w) can be described in terms of
the charge Q on the junction capacitance. Q is the surface
charge on the junction electrodes arising from a displace-

Fig. 1. Model of a tunnel junction with tunneling resistance Ry
and capacitance C used in the theory. The junction is coupled
‘to an environment with an impedance Z(w) and an ideal voltage
source

ment of the metallic electrons on either side of the junc-
tion with respect to the background of opposite charge
formed by the metal ions. Thus, Q is a collective or mac-
roscopic variable. Since the junction electrodes are con-
nected to an external circuit, small displacements of the
clectron clouds may lead to arbitrarily small changes
of Q. For instance, Q =e for a 100 nm x 100 nm junction
corresponds to a displacement of the order of 1 fermi.
Hence, Q has a continuous spectrum.

Assume now that at time t=0 the external voltage
applied to the junction is suddenly changed from ¥, to
V. In the absence of tunneling, the charge on the junction
capacitance then relaxes from its initial value Qo =CV,
towards its new steady state value Q(o0)=CV according
to

Q) =CV+C(¥Vy—VIR(®). 1

The charge relaxation function R(t) is given in terms
of its Fourier transform

R(w)= }odte"i“” R(t)=CZ,(w) 2)
0
where
1

is the total impedance of the capacitance C in parallel
with the environmental impedance Z(w).

So far the electrical circuit was treated classically. In
the absence of electron tunneling through the junction
barrier the corresponding quantum mechanical treat-
ment is straightforward. Since the equation of motion
for the charge is linear, the quantum mechanical re-
sponse of the average charge to a voltage perturbation
coincides with the corresponding classical response as
a consequence of Ehrenfest’s theorem. The quantum me-
chanical correlation function can then readily be deter-
mined with the fluctuation-dissipation theorem, pro-
vided the electromagnetic environment is in thermal
equilibrium. Alternatively, we may write down a Cal-
deira-Leggett Hamiltonian [12] for the environment
with a spectral density determined by the impedance.
The variable canonically conjugate to the charge Q is
the phase ¢ which is defined in terms of the voltage
U across the junction by [13]

e

eH)=y 7§ U)de 4)

where e is the elementary charge. The variables Q and
¢ obey the commutation relation

Lo, Q]=ie. )

We note that the quantum mechanics of a capacitance
attached to an electrical circuit is closely related to the
problem of quantum Brownian motion with frequency
dependent damping [14]. The charging energy corre-



sponds to the kinetic energy of the Brownian particle
and the electromagnetic environment plays the role of
the heat bath. It can now easily be shown that the classi-
cal mean relaxation law (1) is connected with spontane-
ous quantum mechanical charge fluctuations on the
junction capacitance described by the correlation func-
tion

300 600>=C* | 42 ho Re[Z, (@]

[coth(2 fhw) cos(wit)—isin(wt)] (6)

where 5Q(t)=Q()—<Q(1)> and where f=1/kgT is the
inverse temperature of the environment. For later pur-
poses we also give the result for the correlation function
of phase fluctuations in the steady state

J(O=<Te®— 0] ¢0). (7

To avoid clumsy formulae in the sequel the phase fluctu-
ation will also be denoted by ¢(t). Using C ¢ =(e/h)Q
we find :

J(@t)= }o d?w E[—Ift(ﬂ (coth(3 Bhw)[cos(wt)—1]
—isin{wt)) (8)
where
h

is the resistance quantum.

3. The tunneling Hamiltonian and electron tunneling rates
A. The rate formula for single junctions

We now take into account the tunneling of electrons
across the junction which has been neglected so far. The
Hamiltonian of the entire system formed by a tunnel
Jjunction and the external electrical circuit may be written
as

H=H0+HT. (10)
Here,
Hy=H, ,+H,, (11)

is the Hamiltonian in the absence of tunneling of elec-
trons through the junction barrier. It consists of the
usual quasiparticle Hamiltonian H , for the two junction
electrodes and the electromagnetic Hamiltonian H,,.
This latter part may explicitly been written as a Caldeira-
Leggett Hamiltonian [12] with Q as the macroscopic
variable. It is important to note that although the charge
operator and quasiparticle creation and annihilation op-
erators can eventually be expressed in terms of true elec-
tron operators, they commute in the limit where the elec-
tron density is large or, equivalently, when @ is small
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enough that quasiparticle states are not affected by the
electron mean displacements. In the sequel such micro-
scopic considerations will not be persued and we shall
no longer distinguish between quasiparticles and elec-
trons. The second part in (10)

Hy=Y Tk, ch,oCrie eXP(—1@)+ He. (12)

skiky

is the tunneling Hamiltonian {7, 15, 16]. Here,
Tisk, € ya Ci, o 18 the usual tunneling term [17] which anni-
hilates an electron with wave vector k; on side “1” of
the barrier and creates an electron with wave vector k,
on side “2”. ¢ denotes the spin quantum number. The
term exp(—i¢) describes the change of the charge Q
by one elementary charge e as a consequence of the tun-
neling event. In fact, we have

exp(ip)Qexp(—ig)=Q—e (13)

which follows from the commutation relation (5). The
charge shift operators in (12) couple the tunneling transi-
tions to the electromagnetic environment. From a more
microscopic point of view, the factor exp(—i¢) can be
explained as a modification of the transition amplitude
T.,x, due to the electric field in the barrier region caused
by the electromagnetic environment.

The tunneling Hamiltonian transfers charges be-
tween the electrodes “1” and “2” of the junction. The
corresponding tunneling rates will be denoted by I* and
T, respectively. To calculate these rates we shall treat
the tunneling Hamiltonian as a small perturbation. This
approach will turn out to be sufficient if the tunneling
resistance R, introduced below is large compared with
the resistance quantum R,. Before the tunneling transi-
tion occurs the system is assumed to have reached the
equilibrium state of H, at a given voltage V and environ-
mental temperature T. The Fermi level of electrode “2”
is then shifted with respect to the Fermi level of electrode
“1” by —eV. We choose the signs of electrical variables
such that a positive voltage will favor transitions from
“1” to “2” described by I. These transitions are caused
by the terms in Hy that are explicitly written out in
(12). The operators ¢, and ¢, transfer an electron and
thereby disturb the equilibrium state of the junction elec-
trodes while the term exp(—i ¢) disturbs the equilibrium
between the charge distribution on the junction capaci-
tance and the external circuit. Now, proceeding along
the usual lines, we obtain to second order in H; the
golden rule result

rh=-2; %2 [ dE [ dESE)1—1(E)]

-P(E4+eV—E). (14)

Here, 1/R; is the usual tunneling conductance [17]
which is proportional to |T|? and to the densities of
electronic states on either side of the junction. f(E)
=[1+exp(BE)] ! is the Fermi function. In formula (14)
the initial energy E of the tunneling eleciron in electrode
“1” and its final energy E’ in electrode “2” are measured
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relative to the Fermi energies. Of course, E' would equal
E + ¢V if the equilibrium between the charge distribution
on the capacitance and the external circuit were not dis-
turbed. However, the charge shift operators in H; affect
the coupled system formed by the capacitance and the
external circuit. This leads to the appearance of the func-
tion [7]

+ o0

P(E):E—% [ dtexp(Et/h)

Cexplip(@®)]exp[—10(0)]) (15)

which can be interpreted as the probability that a tunnel-
ing electron looses the energy E to the electromagnetic
environment.

Since the fluctuations of ¢ are Gaussian, we have

exp[ip(®)] exp[—i@(0)]>=exp[J(f)] (16)

where J(t) is the phase correlation function introduced
previously. We thus obtain

P(E)=5 = }wdtexp [J()+iEt/h]. (17)

In connection with (3) and (8), this relation determines
P(E) for arbitrary environmental impedance and temper-
ature. Using properties of the Fermi function, the result
(14) may also be written as

o R

1 e E
T= TRy I 9E

—————— P(eV—-E). 1
[—exp(—FE) (eV—E) (18)
The rate for transitions in the opposite direction is given
by

rwv)=Ir(-7). (19)

Since P(E) satisfies the detailed balance symmetry
P(E)=exp(BE) P(—E), we find that the forward and
backward rates are also related by

F'(Vy=exp(—BeV) (V). (20)

In general, these rates have to be calculated numerically.
Here, we shall first consider two limiting cases.

B. High- and low-impedance environments

The phase correlation function J(¢) introduced in (8) de-
pends on the impedance ratio Re[Z,(w)]/R,. Hence, for
a low-impedance environment we find approximately
P(E)=6(E). In this limit a tunneling electron cannot ex-
change energy with the environment and (18) reduces
to

1 Ry eV

"%k Ry T-exp(—pe?)”

21

which is the familiar result obtained in the conventional
treatment where the coupling to the electromagnetic en-

vironment is neglected [17]. Hence, a very low-imped-
ance environment influences the dynamics of the tunnel
junction like a voltage bias.

In the opposite limit energy can very casily be ex-
changed between the tunneling particle and the electro-
magnetic environment. This is the case when the function
Re[Z,(w)], which determines the spectral density of
spontaneous fluctuations of Q and ¢, is concentrated
at low frequencies. In the limit of an high-impedance
environment the spectral density is in fact sharply peaked
at =0 and the short time expansion of (§)

J)= 2CnR (1t+hﬁ ) (22)

is valid for all times. Now, (22) combines with (17) to
give

1
P(E)=——r— —(E—E?/AE kT 23
(E) mexp[ ( )"/ ] (23)
where
E.=¢*2C 24)

is the single electron charging energy. Hence, in the high-
impedance limit the tunneling rate reads

1 Ry *° E

=2, J Y e (—5D

exp[—(eV—E—E)*/4E kyT]
|/4nE kgT

which is seen to reduce at zero temperature to

(25)

lh ﬁQ( V—E)©(eV—E) for T=0 (26)

ry)=
where @(x) is the unit step function. The result (26) de-
scribes the so-called Coulomb blockade of tunneling,
since I'(V) vanishes at T=0 even for finite positive volt-
ages V<e/2C.

C. The I —V characteristic

For small currents the I —V characteristic is related to
the tunneling rates by

[(V)y=e[['(V)—T (V)]

1 RQ + 0

l—exp(—ﬂeV)
nhRT jdE —————-P(eV—E). 27

1—exp(—BE)

This result is only valid provided the system can relax
to the steady state between subsequent tunneling transi-
tions. Hence, we should have I <e/z. where 7, is the relax-
ation time. The full rate (18) will lie between the limiting
results (21) and (25). Quite generally, the function P(E)
satisfies the sum rules [8, 9]









ance limit we have P(x, E)=0(FE) and (42) reduces to

N 1R E,(V,q)
I, ‘D"%E l—expl—PBEL(V, q)] 4

which is seen to give at zero temperature

Ra=— R E (Vg O, (g) for T=0. @)
nh R

In view of (38) and (40) we thus find I} (V, q)=0 for
V<(e—-2g)/2C,. The rate formula (48) corresponds to
the so-called global rule rate of the conventional theory
of Coulomb charging effects [2, 10]. There, one considers
the difference in energy E;(V, g) of equilibrium configura-
tions of the whole circuit before and after tunneling
through the i-th junction. This energy difference (40)
takes into account the change in charging energy and
the work done by the voltage source to reestablish
charge equilibrium. We note that the energy difference
(40) may also be written as

Ei(V, =4 (0= Q) (50)

where we introduced the critical charge

Q.=5 (1—xky). (51)

(NS

Hence, E;(V, q) depends only on the charge Q; on the
capacitor through which the electron is tunneling. How-
ever, this should not be confused with the local rule
which is discussed below.

For a high-impedance environment we have from (22)
and (41)

1

[/4nK? E kT

-exp[—(E—x?E,)*/4x*E ks T]. (52)

Pk, E)y=

This yields for the zero temperature rate

L q)—i;[E (V. )~ K2 E

'@(EI(V; 9)~xiE) for T=0. (53)

Now, the zero temperature rate vanishes for V<
(e—2q)/2C,+¢/2C,. The expression (53) corresponds to
the local rule rate of the conventional theory [2, 10]
since

% (Q1—e)2
2 =
EI(VJ ‘I) K:lEC 2C1 2C1

(54)

gives the change in charging energy on the junction
through which the electron is tunneling. As in the case
of a low impedance environment one may define a criti-
cal charge. In contrast to (51) one finds here g,=¢/2.
We emphasize that even for a high impedance environ-
ment the local rule rate is not valid at finite temperatures
due to the Gaussian nature of P(x, E) in (52).
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We see that in both limits the rate shows a Coulomb
blockade of tunneling. For instance, for an electrically
neutral island, ¢=0, we find that all four tunneling rates
vanish at T=0 for |V|<min(e/2C;, ¢/2C,) in the low-
impedance limit, and for |V|<e/2C, +¢/2 C, in the high-
impedance limit. Note that this latter limit is now much
harder to achieve, since the effective environmental im-
pedance is reduced by a factor k% or x3, respectively.
For arbitrary impedance the tunneling rates have to be
calculated from (42)(47) using numerical results for
P(x;, E) that may be obtained by the same method as
for single junctions. For the double junction the Cou-
lomb blockade arises from the charge quantization on
the island. In order to transfer a charge, say, from elec-
trode “1” to electrode “3”, one has to occupy the island
“2” in an intermediate step, and there is an energy bar-
rier to be overcome. Higher order terms of the perturba-
tion theory for the rate will lead to a finite, yet small
current in the presence of a voltage [16]. This problem
will not be addressed here.

C. The I—V characteristic

For a single junction the current-voltage characteristic
can be calculated from the forward and backward tun-
neling rates by I(V)=e[I'(V)—I'(V)]. For a double junc-
tion, and more generally for multijunction systems, the
calculation of the current from the rates is more compli-
cated. In general, one has to solve a master equation.
The state of a double junction may be characterized by
the voltage V and the island charge 4. Since we assume
that between two tunneling processes there is enough
time to restore equilibrium with the environment, the
voltage V is constant during a sequence of tunneling
transitions while the island charge g changes. At finite
temperatures the time sequence of g is arbitrary since
all tunneling rates differ from zero although some tunnel-
ing processes are more likely than others. On the other
hand, at zero temperature certain tunneling transitions
are forbidden depending on V and ¢ as is apparent from
(49) and (53).

The current-voltage characteristic of a double junc-
tion may be calculated from

I=e Z Py () =T ()= 8_2 PG —Lm) (59

n= n= o0

where p, is the probability that the charge ¢ on the island
equals ne. This probability together with the difference
of rates I}(n)—1I;(n) describes the net current flowing
through the first junction. In view of charge conservation
the current may also be expressed in terms of the rates
at the second junction. Since the tunneling rates have
already been discussed in the previous sections, we now
have to determine the steady state probabilities p,. The
island charge ¢ may change by tunneling of electrons
from or to the island as described by the master equation

Z [ n+1pn+1+rn 1pn 17 (1—711+1,n+1—;;——1,n)pn]'
(56)
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The array of capacitances presents itself to the environ-
ment as one capacitance C with

|
T 74
S (74)
which carries the charge
N
0,
= 75
—CY & 75)
The charge Q is again a variable with a continuous spec-

trum. On the other hand the charges

G=0k—Ok+1

on the N—1 metallic islands between the junctions are
quantized in units of e. Of course, it is advantageous
to work with the variables Q, g, in terms of which the
charging energy (73) reads

(k=1,...,N—1) (76)

2

He= 2C

+Z~(C

k=1

Jer G - (77)

Here, we introduced the capacitance matrix

Ck+Ck+1 fOf l=k
_ _Ck+1 fOI‘ l:k+1
Cu= —Cy for I=k—1 78
0 otherwise.

The self capacitance of the k-th island equals the sum
of the capacitances of the two junctions to the left and
to the right of the island. In addition, there is a capacitive
coupling between adjacent islands given by the capaci-
tance of the junction separating the islands. The inverse
of the capacitance matrix is found to be

(C 1) Cmmz(k 0 1 ‘E _1- (79)
“ Cm n=max(k,l)+ 1 Cn '

We note that usually one also has to account for the
capacitive coupling of the metallic islands to ground.
This gives rise to a modification of the diagonal elements
of the capacitance matrix (78). Here we are mainly inter-
ested in the effect of the external circuit on electron tun-
neling rates. A modification of the self capacitances can
always be accounted for later. Of course, in order to
describe charge solitons in 1 D-arrays of tunnel junctions
[23] one has to take into account the capacitive coupling
to ground since it determines the size of the soliton.

Before we apply network analysis to this problem,
let us briefly outline the direct calculation of tunneling
rates from the tunneling Hamiltonian. To this purpose
we introduce the phases ¢ and ¥, that are canonically
conjugate to the charges Q and g,. Hence, these variables
satisfy the commutation relations

Lo, Q]=ie, [Yy, gl=ie (80)
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with all remaining commutators among these variables
vanishing. The phase ¢; canonically conjugate to the
charge Q; on the i-th junction reads in terms of the new
phase variables

P1=Y+K
=Yi—Yi- trp (i=2,...,N-1)
On=—Yn-1+KyQ (81)

where we introduced the capacitance ratio
k,=C/C; (i=1,...,N). (82)

The Hamiltonian of the entire system formed by the
1D-array of junctions and the electrical circuit loading
the array splits into

N
H=H,+ Y H, (83)

i=1

where H, is the Hamiltonian in the absence of tunneling
which includes H,, and H, describes tunneling through
the i-th junction. The steady states of H, are character-
ized by the voltage ¥, the temperature T, and the island
charges ¢, that are conserved quantities in the absence
of tunneling. A straightforward extension of the reason-
ing in the preceding sections now yields for the golden
rule rates through the i-th junction (cf. Fig. 9a)

~ 1 Ry I E
IV, nhR j l—exp(—ﬁE)

P, E(V, 41)—E) (84)
where

s qn-1)
s i—2s qi~1+ea q4;—6

E((V. g)=x,eV+elg)—elg,—e, g, ...
E(V, qy=r;eV+elq)—e(qss ...

div1> - qdn-1) (=2,...,N=1)
Ex(V,g)=xyeV+e(q)—e(dy, ..., qn-2. qn-1+€)-  (85)
Here,
N-1
S(Qk)=“221%(c_l)kt%€lz (86)

is the internal charging energy of the array.
The backward tunneling rate I(V, q;) is related to
L(V, g1 by

LV q)=L(—V, ~q) ®87)

and by the detailed balance symmetry

T—}(V; gi—¢€ 425 -, ‘1N~1)
:exp[_ﬁEl(K qk)]rll(V; Gis s qN—l)a
E(V; i> s Gi—2: Qi1 € Gi—€ Gy s r—1)

=exp[—BE;(V, q)] L(V; q),






theory in the tunneling Hamiltonian which is appro-
priate for junctions with tunneling resistances Ry that
are large compared with the resistance quantum Ry. It
was pointed out that the dynamics of these mesoscopic
multijunction circuits is usually strongly affected by the
external electrical circuit loading the device.

In multijunction circuits the discreteness of the charge
transfer through the junctions implies a quantization of
island charges which in turn causes a Coulomb blockade
of tunneling. This effect is more pronounced for systems
embedded in a high impedance environment. In fact, for
single junctions the suppression of charge fluctuations
by high impedance leads is the only reason for a Cou-
lomb gap structure. In multijunction circuits, on the
other hand, the effective environmental impedance de-
creases roughly as one over the square of the number
of junctions. As a consequence, electrons tunneling in
large arrays see only a very low impedance environment
and the tunneling rates may be calculated using the glob-
al rule rate of the conventional theory. This is true for
arbitrary temperatures. On the other hand, the local rule
rates were shown to become correct in the limit of a
very high impedance environment and at zero tempera-
ture only. For arbitrary environmental impedance the
tunneling rates have to be computed numerically from
the general rate formulas derived in this paper.

We have demonstrated that network analysis allows
one to reduce the calculation of tunneling rates in multi-
junction circuits to those of an effective single junction
circuit of the form given in Fig. 9b where the tunneling
element is in series with an effective capacitance repre-
senting the internal charging energy of the circuit, a re-
duced impedance, and a reduced voltage source. Explicit
results were given for a one-dimensional array but the
method can directly be used to treat more complicated
cases. One of the main challenges for future work is an
extension of the results presented here to the case of
tunnel junctions with higher tunneling conductances.

During the course of this work we have benefitted from inspiring
discussions with K.K. Likharev and Yu.V. Nazarov. This work was
supported by the Deutsche Forschungsgemeinschaft through
SFB237 and by the Science Program of the European Community
under grant number 90200290/JU 1.
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