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Coulomb blockade and single-electron tunneling are manifestations, at the macroscopic level, of the granularity of charge. 
These effects can occur in small capacitance tunnel  junction systems, under  conditions which are discussed in this article. 
We examine in particular how the zero-point electromagnetic fluctuations can eventually wash out the single-electron 
effects. 

1. Introduction 

Although the charge of the electron was mea- 
sured for the first time more than eighty years 
ago [1], the direct manifestation, in a solid-state 
electronic device, of the discreteness of charge 
has only been observed a few years ago [2]. One 
obvious reason is that typical charges in elec- 
tronic circuits are much larger than the electron 
charge: for instance, a charge packet in a charge- 
coupled device (CCD) contains more than 10 6 
electrons [3]. A more fundamental  reason is that, 
because of their quantum delocalization, elec- 
trons in metals and in semiconductors form a 
continuous charged fluid. Two ingredients are 
needed to observe, on macroscopic quantities such 
as currents and voltages, the effect of single- 
charge quanta. The first ingredient is the tunnel 
barrier, which, under appropriate conditions, pro- 
vides a conduction path for charges in and out of 
a metallic electrode while preserving the quanti- 
zation of the total charge of the electrode. The 
second ingredient is the Coulomb interaction be- 
tween electrons, which, for sufficiently small elec- 
trodes placed at sufficiently low temperature,  
provides an energy barrier against thermal charge 
fluctuations. We will see that quantum electro- 
magnetic fluctuations play also an important role 
since they determine the effective energy barrier 

entering in the expression of the tunneling rate of 
electrons across the junctions [4]. These quantum 
fluctuations wash out single-electron effects in a 
single, current-biased, tunnel junction unless a 
very elaborate biasing scheme is adopted. How- 
ever, for devices in which electrons pass through 
at least one "island" (a metallic electrode con- 
nected electrically to the rest of the circuit 
through tunnel barriers only), the electromag- 
netic fluctuations do not prevent the occurrence 
of single-electron effects. In the following we will 
first describe the phenomenon of Coulomb block- 
ade in a one-island system without addressing the 
question of quantum electromagnetic fluctuations 
and by postulating the "global rule" for the calcu- 
lation of the Coulomb gap. We will then examine 
the case of the current-biased single junction and 
show how the quantum electromagnetic fluctua- 
tions induced on the junction by the rest of the 
circuit (referred to as the junction electromag- 
netic environment) affect Coulomb blockade. Fi- 
nally, we will return to the one-island system and 
discuss how these fluctuations make the global 
rule a valid approximation. It is obviously not the 
purpose of this article to review the field of 
single-electron effects. Detailed lists of refer- 
ences to earlier studies can be found in the 
review articles by Averin and Likharev [5] and by 
Sch6n and Zaikin [6]. We refer the reader to the 

                                                                                  



                                                                                        

special issue of Zeitschrift fiir Physik B [7] for a 
snapshot of the leading edge of current research 
on the subject. 

2. Coulomb blockade  in a one- i s land system 

Consider a charge transport  experiment in 
which a voltage difference is applied to two elec- 
trodes (a "source" and a "drain",  see fig. 1) 
separated by an insulating gap. In the middle of 
the gap lies a third metallic electrode, sur- 
rounded everywhere by insulating material. To 
travel from the source to the drain the electrons 
must go through this third electrode, which, as 
mentioned above, we call an "island". We as- 
sume that the conduction of electrons through 
the insulating gaps between the source and the 
island and between the island and the drain oc- 
curs by quantum tunneling. This one-island sys- 
tem can be formed by two metallic tunnel junc- 
tions in series [2], a STM tip over a metallic 
droplet deposited on an oxidized conductive sub- 
strate [8] or a 2D electron gas (2DEG) confined 
by Schottky gates [9]. 

The tunneling process is so short that we can 
consider that the electrons are traversing the 
insulating gaps one at a time. The key point is 
that during its journey from the source to the 
drain the electron necessarily makes the charge 
of the island vary by e. We have indicated in the 
introduction the general requirements for single- 
electron effects to occur. Let us manifest them 
for the one-island system. Firstly, the tunnel bar- 
riers must have a tunneling resistance R T that 
exceeds the resistance quantum R K = h / e  2 ~ 25.8 
kfZ, i.e., 

R T > > R  K . ( l )  

-s00 . 
Fig. 1. The  q u a n t u m  tunne l ing  of e lec t rons  be tween  a " s o u r c e "  
and a " d r a i n "  e l ec t rode  th rough  an i n t e r m e d i a t e  " i s l a n d "  
e lec t rode  can be  b locked  if the e lec t ros ta t i c  energy  of a s ingle  
excess e lec t ron  on the is land is large c o m p a r e d  wi th  the 

energy  of t he rma l  f luctuat ions .  

The tunneling resistance is a phenomenological  
quantity which is defined in the situation where a 
fixed voltage difference V is imposed onto the 
two electrodes on either side of the tunnel bar- 
rier. The tunneling rate F of an electron through 
the barrier is then proportional to V: F = e V / R  x. 
The tunneling resistance can be expressed in 
terms of the microscopic quantity 3-, which is the 
barrier transmission coefficient at the Fermi en- 
ergy: R~ 1= 4rrN,Y-R~< 1, where N is the number  
of independent electron channels through the 
barrier. Condition (1) is obtained by requiring 
that the energy uncertainty associated with the 
lifetime due to tunneling ~'r = RTC of an excess 
charge on the island is much smaller than the 
Coulomb energy E c = e2/2C.  Condition (1) en- 
sures that the wave function of an excess electron 
or Cooper pair on an island is essentially local- 
ized there. It is generally believed that, in systems 
with tunneling resistances that are small on the 
scale provided by R K, charging effects will be 
suppressed since delocalized states in which elec- 
trons flow through an island without charging it 
are available for charge transport, although the 
exact circumstances are not precisely known at 
the time of this writing [10]. Secondly, the total 
capacitance C of the island must be small enough 
and the temperature  low enough that the energy 
E c = e2 /2C required to add a charge carrier to 
an island far exceeds the available energy of 
thermal fluctuations, i.e., 

Ec>> kBT. (2) 

Conditions (1) and (2) ensure that the transport  
of charge through the island is governed by the 
Coulomb charging energy. 

In practice, only islands having capacitances 
not much below a femtofarad can be reliably 
designed with metallic tunnel junctions or con- 
fined 2DEG, thus imposing experiments done at 
a few tens of millikelvins, now routinely attain- 
able with a dilution refrigerator. However, in 
experiments involving an STM, much smaller is- 
lands can be used and very sharp single-electron 
effects have been observed at 4 K [8]. 

Let us now show that there is a threshold 
voltage for the passage of current through this 
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Fig. 2. The one-island system depicted in fig. 1 can be mod- 
elled as two tunnel junctions in series (box symbols) whose 
common electrode forms an island shown inside a dashed 
line. The electrostatic potential of the island is acted upon by 
the gate w)ltage U through the gate capacitance C~;. The bias 
voltage V induces a net flow of charge through this "single- 
electron transistor", the value of the current I being con- 
trolled by the gate voltage U. The tunnel junction capaci- 
tances and tunnel resistances are denoted by C i and Ri, 

where i is the junction number. 

one-island system. This voltage is called the 
Coulomb gap voltage. We show in fig. 2 the 
lumped element representation of the one-island 
system biased with a voltage V. The island is 
submitted through the "gate"  capacitance C o to 
a gate voltage U. In the case of the metallic 
junction system or the 2DEG system, U can be 
controlled externally, a possibility which leads to 
a device called the "single-electron transistor". In 
the case of the STM/drop l e t / subs t r a t e  system, 
U can be thought of as representing charged 
impurities in the vicinity of the droplet and is 
basically uncontrolled. 

Between tunneling events, all charges on the 
capacitances having relaxed to equilibrium, the 
state of the entire circuit shown on fig. 2 is 
described by the numbers n~ and n 2 of electrons 
having passed through junctions 1 and 2, respec- 
tively, in the direction of the current I (see fig. 2). 
The equilibrium energy of the circuit which in- 
cludes the electrostatic energy of the capaci- 
tances and the work performed by the voltage 
source is 

where n = n  1 - n  2 and p = n  I + n  2. The rates F i 
(i = 1 or 2) of electron tunneling through junc- 
tions 1 and 2 are given by the following expres- 
sion [11] 

1 aG~ 
F i -  

e %  1 - (4) 

where A E~q is the difference between the equi- 
librium energy (3) before and after an electron 
has tunneled across junction i. The tunneling rate 
(4) reduces at zero temperature to: 

F i _ A Eiq  
for AE~q > 0, (5a) 

e2Ri 

F '  = 0 f o r  AE~q < 0. ( 5 b )  

Expression (4), together with (3), has been nick- 
named the "global rule" [12] since the tunneling 
rate across a particular junction involves the 
change of energy of the entire circuit. We will see 
in section 6 how the quantum electromagnetic 
fluctuations of the circuit explain this seemingly 
paradoxical property. The global rule can easily 
be generalized to a circuit containing an arbitrary 
number of junctions [11]. 

A straightforward analysis of the rate formula 
(5) shows that at zero temperature  the state with 

C~V/e 

: ' I ~ c G U I e  

Ecq 
( - n e  + CGU + C1V/2  - C217/2) 2 

2(C(~ + Cl + C2) 

+ p e V / 2 ,  (3) 

Fig. 3. The blockade diagram of a single-electron transistor 
with 2C 2 = 10Co; = C 1. The capacitance C E is the total capac- 
itance of the island: C E - C~ + C 2 + Cca. The transistor con- 
ducts only outside the rhombic-shaped regions. Inside these 
regions, there is a constant number n of electrons on the 

island. 



                                                                                          

n electrons on the island is stable with respect to 
tunneling across the first and second junctions for 
voltages satisfying 

e(n - 12) < CGU + (C 2 + C B / 2 ) V  < e(n + 12), 
(6) 

e(n - ½) < C G U -  (C, + C G / 2 ) V < e ( n  + ½), 
(7) 

respectively. Hence,  in the UV plane there are 
rhombic-shaped regions within which the island is 
charged with a fixed number  of excess electrons 
(see fig. 3). Inside these rhombi all transitions are 
suppressed by a Coulomb blockade, and no cur- 
rent flows through the system. 

3. The current-biased single junction 

itance. It is a continuous variable since it de- 
scribes the bodily displacement of the electron 
density in the electrodes with respect to the posi- 
tive ionic background. In fact, Q can be an arbi- 
trarily small fraction of the charge quantum. The 
second degree of freedom is the discrete number  
n of electrons (or Cooper pairs if the electrodes 
are in the superconducting state) which have 
passed through the tunnel barrier. The key hy- 
pothesis in the theory is that variables Q and n 
are assumed to be classical variables with a well 
defined value at every instant t. Charge conserva- 
tion is imposed by the relation Q ( t ) + e * n ( t ) =  
i(t), where i(t) is the current flowing in the leads 
of the junction and e* is the charge e (normal 
state) or 2e (superconducting state) of the carri- 
ers. Since the current bias is assumed to be ideal 
we have i ( t )= I. During a tunneling event, the 
charge Q must thus discontinuously jump by the 
elementary charge e*. The resulting change in 
the electrostatic energy of the junction is 

It is apparent  from the preceding section that 
the basic system in which single-electron effects 
occur is a metallic island connected to electron 
reservoirs through two tunnel barriers. What  
would happen with only one small capacitance 
tunnel junction? Physicists are attracted to simple 
systems. Historically, it is this question which 
started the field a few years ago. Several new 
effects due to the quantization of charge were 
predicted to arise in a tunnel junction, both in 
the superconducting and the normal tunnel state 
[13-16]. Likharev and co-workers [14,16] gave a 
major thrust to this new area of low-temperature 
physics by making detailed predict ions of 
Coulomb blockade phenomena in a single junc- 
tion and by proposing various applications of the 
new effects. 

The theory of Likharev and co-workers thus 
considers one tunnel junction which is biased by a 
current I and whose voltage V is measured by a 
very-high-impedance voltmeter. The junction is 
characterized by two parameters:  its capacitance 
C and tunnel resistance R T. The state of the 
junction is described by two degrees of f reedom 
whose differing nature is crucial. The first degree 
of f reedom is the charge Q on the junction capac- 

Q2 ( Q _ e , ) 2  e * ( Q - e * / 2 )  
- - (8) 

2C 2C C 

At zero temperature,  tunneling can only occur if 
A E is positive. This has two consequences. Firstly, 
the I - V  characteristic should have a I = 0 branch: 

e* e* 
- - - < V < - -  f o r l = 0 ,  (9) 

2C 2C 

where the particular value of V is determined by 
the history of the current in the junction leads: 
C V =  f ' ~ i ( t ' ) d t '  modulo e*. This is the 
Coulomb blockade for single junctions. Secondly, 
when a non-zero current is imposed through the 
junction assumed to be in the normal state, the 
junction capacitor charge Q will increase linearly 
until the threshold charge e / 2  is reached. Then, 
a tunneling e v e n t  occurs, making Q jump to 
- e / 2  and a new charging cycle starts over again. 
This leads to single-electron tunneling (SET) saw- 
tooth oscillations of the junction voltage with the 
fundamental  frequency. 

fSET = I / e .  (10) 



                                                                                         

By a similar kind of reasoning, one predicts for a 
superconducting junction (Josepbson junction) the 
so-called Bioch oscillations with the frequency 

fBloch = 1/2 e . (11) 

senting the results of this analysis we have to 
discuss the various time scales of the problem, 
both the time scales pertaining to the junction 
itself and those pertaining to its environment. 

The difference between the SET and Bloch oscil- 
lations is that in the normal state the charge 
tunnels irreversibly as Q goes beyond e / 2  be- 
cause it is accompanied by quasi-particle excita- 
tions, whereas in the superconducting state the 
charge tunnels reversibly at Q = e / 2  because 
Cooper pairs have no kinetic degrees of freedom. 

This analysis rests on Q and n being classical 
variables. The "classicity" of the variable n is 
solely determined by the properties of the junc- 
tion. We can safely assume that condition (1), 
which is a statement about the tunnel barrier and 
which translates directly in terms of junction fab- 
rication, is a sufficient condition. However, the 
classicity of the variable Q depends on the junc- 
tion electromagnetic environment, and the origi- 
nal predictions concerning Coulomb blockade 
phenomena did not make very explicit statements 
about what the characteristics of this environ- 
ment should be. In this theoretical void, two 
questions concerning the observability of Cou- 
lomb blockade and SET oscillations arose: 

Question A: The pads on the junction chip 
which are needed to make connections to the 
I - V  measuring apparatus have parasitic capaci- 
tances in the pF range. How should the junction 
environment be designed for these parasitic ca- 
pacitances not to shunt the junction capacitance, 
which needs to be kept in the fF range to observe 
the charging effects? 

Question B: Each mode in the environment is 
coupled to the charge Q and its zero point energy 
induces i(t) and Q to fluctuate. How should the 
environment be designed for these quantum me- 
chanical fluctuations not to affect Coulomb 
blockade? In other words, how perfect does the 
current biasing need to be? 

We will see below that these two questions 
are, in fact, closely related and that their answer 
can be obtained by a full quantum mechanical 
analysis of the influence of the junction environ- 
ment on the tunneling probability. Before pre- 

4. Time scales 

The junction is characterized by three time 
scales. The two longer ones can be deduced from 
quantities we have already mentioned. The 
longest time scale is set by the tunneling resis- 
tance and the capacitance: ~'r =RTC. It is the 
reciprocal of the rate of tunnel events for a 
junction biased at the Coulomb voltage e /C.  The 
intermediate time scale is the uncertainty time 
associated with the Coulomb energy ~-c = 
h / ( e 2 / C )  I=RKC.  The shortest time scale is 
the tunneling time ~-t of the junction which is 
given by 

( 0 l o g  J - )  
"r t = h a ~  E=E~' (12) 

where, as previously, 3 ( E )  is the transmission 
probability through the tunnel barrier of an elec- 
tron with energy E. This tunneling time, whose 
importance has been stressed by Biittiker and 
Landauer  [17] (see also ref. [18], and references 
therein) can be loosely described as the time 
spent by the tunneling electron under the barrier. 
In metallic tunnel junctions it is of the order of 
10-1s s. Here  it may be worth pointing out that 
electron tunneling in a metallic junction is in fact 
a complex process, at least much more so than 
what elementary textbooks might lead one to 
suppose: the electrons in the metallic electrodes 
travel as quasi-particles, i.e. bare electrons 
dressed by a positive cloud of charge. When a 
tunneling quasi-particle impinges on the tunnel 
barrier it has to undress, leaving the positive 
charge cloud behind as it travels through the 
barrier. When this bare electron arrives in the 
other electrode it attracts a new cloud of positive 
charge and dresses again to form a quasi-particle. 
The characteristic time scale for the undressing 
and dressing processes is the inverse of the plasma 
frequency. These processes have to be taken into 



                                                                                          

account in the computat ion of the effective tun- 
neling time, which is the one of interest here. The 
tunneling rate of a quasi-particle will be quite 
different from the tunneling rate of a bare elec- 
tron if the effective tunneling time is notably 
longer than the inverse of the plasma frequency 
[19]. 

Let us now discuss the time scales of the 
environment.  We have first to indicate how one 
should model the junction electromagnetic envi- 
ronment  which includes not only the I -V  charac- 
teristic measuring apparatus at high temperature  
but also the leads close to the junction. A priori, 
we need to consider the response of the environ- 
ment  up to the frequency ~-t -1. Although this 
natural cut-off provided by the tunneling time is a 
frequency in the optical domain, the junction, 
whose dimensions have to be of the order of 100 
nm or less to ensure a capacitance in the fF 
range, is small enough to be treated as a lumped 
element. The electromagnetic environment,  as 
seen from the location of the junction, can thus 
be completely described in electrical engineering 
terms by the relationship between the complex 
amplitudes v(w)=Q(o~)/C and i(o~) at fre- 
quency ~o of the voltage across the junction and 
the current in the first few hundred nanometers  
of its leads. Assuming the environment to be 
linear, we arrive at the general lumped element 
model of fig. 4a for the electromagnetic environ- 
ment  as seen from the location of the junction. 
The bias circuitry, which includes the room-tem- 
perature electronics, the filters and the .leads 
down to the pads on the junction chip, is mod- 
elled by a bias resistor R b >> RT in series with a 
voltage source V b. There  is also, in parallel with 
the resistor and the source, a capacitance Cb 
which models the parasitic capacitances in the 
bias circuitry. This three-element  model of the 
bias circuitry accounts for the low-frequency re- 
sponse of the environment and is placed in series 
with a complex impedance Z(oJ) which represents 
the impedance of the last few mm of leads on the 
junction chip. The impedance Z(~o) accounts for 
the high-frequency response of the environment. 
This general model of the environment of the 
junction can be somewhat further simplified, 
however. One has to note that the parasitic ca- 

(a) 

Fig. 4. Lumped element  model of the electromagnetic envi- 
ronment  of a current-biased tunnel  junction, which is repre- 
sented by a double box symbol. The capacitance and tunnel  
resistance of the junction are C and RT, respectively. The 
impedance Z(~o) models the high-frequency response of the 
environment  which is dominated by the effect of the leads 
at tached to the junction. The  environment  low-frequency re- 
sponse, which is dominated by the bias circuitry, is modelled 
in (a) by a resistance Rb, a capacitance C b and a voltage 
source V b. In all practical cases C~, >> C, and one can use the 
simplified model (b) in which the junction is biased by an 
effective voltage source V which is a function of the time- 

averaged current  through the junction. 

pac i t ance  C b is larger than the junction capaci- 
tance C by orders of magnitude (typically C b -~ 
1 0 4 C ) .  This means that, although the current 
through the junction is composed of pulses corre- 
sponding to each tunnel event, the voltage on the 
capacitance C b is essentially time independent.  
One can thus replace the model of fig. 4a by the 
model of fig. 4b in which the impedance Z(6o) is 
simply in series with a voltage source V. Of  
course, V has to be determined self-consistently 
from the t ime-averaged current I(V) through the 
junction by the relation V =  Vb--RbI(V); but 
this is not a problem. If we know how to calculate 
the I -V  characteristics of the junction for the 
model of fig. 4b, the junction voltage as a func- 
tion of the bias current Vb/R b for the model of 
fig. 4a can be reconstructed. An important re- 
mark is now in order. The value of the impedance 
Z(~o) at moderately high frequencies can be made 
large by making the leads on the junction chip 
very narrow and by using a resistive mater ia l  like 
NiCr. However, at frequencies corresponding to 



                                                                                        

micron wavelengths, no matter how careful one is 
in the fabrication of the leads, the impedance 
Z(w) will be dominated by radiation phenomena 
and will be of the order of the impedance of free 
space Z v - -  377 ~. The modulus [Z(w)[ of the 
impedance is thus a decreasing function of fre- 
quency. This behavior can be crudely understood 
by considering the parasitic capacitance between 
the leads, whose shorting effect on the junction 
becomes more and more pronounced as the fre- 
quency gets higher. A more precise understand- 
ing of the frequency dependence of the environ- 
ment is provided by a resistive transmission line 
model of the function Z(w). This model is analo- 
gous to the model described by Martinis and 
Kautz for experiments on the phase diffusion of a 
small Josephson junction [20]. The resistive trans- 
mission line can be thought of as a ladder of 
discrete components R/,,, Cz, , and Lt,,, as shown 
on fig. 5. The total capacitance and resistance of 
the transmission line are respectively C~ = 
Zn  =N  1 Cz, and R~ = F.N]Rz,_ while the characteris- 
tic impedance of the line is Z t = v;LtJCz~. In 
practice, Z t is always a fraction of the vacuum 
impedance Z v while C/, which one tries to get as 
small as possible, is not much below 0.1 pF. As 
we mentioned above, by using very narrow leads 
made from NiCr, values of the order of 100 k ~  
can be obtained for R z (we refer to this case as 
"extreme"). If no special effort is put into making 
high-resistance lead resistors, typical values for 
R t are in the 100 D - 1 kf~ range (hereafter 
referred to as the "standard" case). A log-log 
plot of the function [Z(w)l is shown schemati- 
cally in fig. 6. If one is in the standard case where 
the lead total resistance is comparable to the line 
impedance, the environment behaves then as a 
resistor Zz. If one is in the extreme case where 

R~7 LH RI 2 LI2 
. . . . .  

Rt(N+H LI(N+H 

Fig. 5. Resistive transmission line model for the impedance 
z(oJ). 

INVERSE JUNCTION .~-I I -I 1 
TIME SCALES ~ r = ~ ~ c  = ~N-NC ~ t  1 

10 7 ~ , - -  

~- FOR COULOMB BLOCKADE I- i 

RI " EXTREME CASE" ENVZ - -  10 5 - ' ~ . / . ~ . %~  

3 STANDARD CASE " "~. 
10 a ; ENVZ ~ 

,Zl " , "~, ' -Zv 
i 

~o' ~ I / RL ~2 1 i 

10 z' 10 6 10 8 ]010 1012 1014 1015 
W(2~'Hz)  

Fig. 6. Schematic behavior of the modulus [Z(m)p of the 
environment impedance, as a function of the frequency to. We 
have shown for comparison (i) the inverse junction time scales 
on the frequency axis and (ii) the resistance quantum R K = 
h / e  z and the impedance of the vacuum Z v = ~ 7 o -  0 on 

the resistance axis. 

the lead total resistance is much higher than the 
line impedance, the environment behaves as a 
resistor R t until a roll-off frequency given by 
(RzCt)-i is reached. One then enters an RC line 
regime where the leads behave as an impedance 
with equal reactive and dissipative parts failing 
off as w -1/2. Finally, at the final saturation fre- 
quency ~o s = (Rt/ZI)Z(RICI) 1, one recovers the 
frequency-independent behavior of the standard 
case. Note that the final saturation frequency co s
is independent of the length of the leads provided 
that Cl, = Cz/N and Rln = RJN,  which is a real- 
istic assumption. As an example, for leads with 
distributed resistance, capacitance and induc- 
tance of 100 ~ / /xm,  0.5 × 10 16 F/p .m and 0.5 
× 10 -12 H/p.m,  respectively, one finds that 
~os/2~- = 1.6 × 1013 Hz. These values correspond 
to NiCr resistors that are 60 nm thick and 1 p.m 
wide. 

The imperfection of the current bias scheme, 
on one hand, and the parasitic and the parasitic 
capacitances with which the environment shunts 
the junction, on the other hand, are thus just two 
aspects of the properties of the function Z(w). 
Questions A and B can now be unified into a 
single one: What values should I Z(w)] have at 
the junction characteristic frequencies in order to 



                                                                                         

observe Coulomb blockade? It is clear that a 
sufficient condition written in the spirit of (1), 

Iz(~o)l >>RK f o r w < ~ ' T  ~, (13) 

to ensure that Q is a classical variable is impossi- 
ble to satisfy. This is a fundamental  limitation 
since the ratio between the impedance of free 
space Z v, which controls the asymptotic behavior 
of Z(w) at high frequencies, and the resistance 
quantum R K is equal to twice the fine structure 
constant 1/137.0! One thus cannot avoid the 
problem of finding the tunneling rate as a func- 
tion of V for a junction coupled to an arbitrary 
Z(co). The environment needs to be treated quan- 
tum-mechanically since over most of the relevant 
frequency range, thermal fluctuations are smaller 
than quantum fluctuations, i.e h~o >> kBT. In the 
following we will just emphasize the main fea- 
tures of the theory [21,4,22]. 

5. Theory of the effect of  the quantum nature of 
the junction electromagnetic environment 

The theory first assumes a clear separation of 
time scales: 

T t < <  T c < <  T r . (14) 

The first inequality states that the tunneling time 
is negligible while the second one restates the 
classicity of n. The theory then considers the 
modes of the linear circuit formed by the environ- 
ment impedance Z(w) in series with the junction 
capacitance C. Of  course, for a dissipative envi- 
ronment,  the mode frequencies form a continu- 
ous spectrum. It is assumed that, before a tunnel 
event, the environment modes are in their ground 
state. A tunnel event excites them. This process is 
described by the function P(E), which gives the 
probability that the tunneling electron transfers 
the energy E to the distribution of modes of the 
circuit. One finds, from a quantum calculation, 
that P(E) is a distribution function which is 
given, through a mathematical  transformation, by 
the density of modes given by the real part of the 

total circuit impedance Z t ( w ) =  [iC~o + Z(~o)] 1. 
The probability P(E) is given by 

1 f + =~ P(E) = ~ h J  ~ dt e x p [ J ( t )  + lEt/hi (15) 

with the function J(t) given by 

co~ dw Ue[Zt(~,)] 
J(t)=2~o] w R K ( co th ( f l hw/2 )  

x [cos(~ot) - 1] - i  s in (wt ) ) ,  (16) 

where /3 = 1/kBT is the inverse temperature.  
Finally, the tunnel rate in the direction imposed 
by V is computed from P(E) using 

T r  - 1  r + ~  f + ~  

F=--JE~ _~deJ_o~dE' f ( E ) [ 1 - f ( E ' ) ]  

×P(E + e V - E ' ) ,  (17) 

which reflects the fact that only a part  of the 
energy eV of the voltage source is used to excite 
the environment, the rest being used to excite 
one hole and one electron on either side of the 
barrier. At temperatures  much lower than the 
Coulomb gap, i.e. /3E c >> 1, one finds: 

(i) For impedances Z(w) such that, whatever 
the frequency, ] Z(w)l << RK, the tunneling elec- 
trons are not well coupled to lower-frequency 
modes of the environment. The function P(E) is 
sharply peaked at E = 0, i.e. P(E)--6(E), and 
we find from eq. (17) a straight I -V  characteristic 
with no Coulomb blockade. This result means 
that most tunneling transitions leave the environ- 
ment  modes undisturbed except for the oJ = 0 
mode. The charge transferred through the junc- 
tion is thus removed instantaneously from the 
voltage source constituted by the pads even 
though it is physically located a few mm away. In 
a way, for most tunnel events, the enuironment 
acts as a perfect voltage source. This is a purely 
quantum-mechanical  effect. It seems to defy lo- 
cality since one would expect the charge to prop- 
agate at the speed of light from the reservoir of 
charge constituted by the pads to the junction. 
This expectation, which seemed based on good 
relativistic common sense, was actually the basis 
for an argument in favor of the existence of 



                                                                                           

Coulomb blockade in a low-impedance environ- 
ment [23]. There is, in fact, no contradiction 
between locality and the perfect "quantum rigid- 
ity" of the charge along the leads that this quasi- 
elastic tunneling suggests. In this low-impedance 
environment case, one calculates that the zero- 
point motion of the environment modes induces 
quantum fluctuations of the operator Q which 
are much larger than e. Remember  that the junc- 
tion and the environment behaves as a whole 
quantum-mechanically coherent unit. One can 
thus consider that the transferred charge is en- 
tirely provided by the zero-point charge fluctua- 
tions of the environment. Even though the charge 
is removed instantaneously from the voltage 
source, the source cannot tell when a tunnel 
event occurs because the charge pulse associated 
with a tunnel event is buried in the quantum 
fluctuations. This "charge-less" transfer of charge 
through the junction is analogous to the 
M6ssbauer effect. Gamma rays can be emitted 
from a nucleus in a solid without exciting the 
phonon modes. The conservation of momentum 
is not violated because the recoil momentum of 
the nucleus is transferred to the whole crystal 
("recoil-less" emission). One can think of our 
function P ( E )  as equivalent to the gamma ray 
energy spectrum. 

(ii) For impedances such that I Z(~o)l >> R K 
for all frequencies o)< ~-[~ << 1, the tunneling 
electrons are well coupled to all the environment 
modes. One finds that the function P ( E )  is 
sharply peaked at E c, i.e. P ( E ) = a ( E - E c ) .  
Hence, like in the classical case, an electron can 
only tunnel when it gains at least E c from the 
applied voltage, which leads to a Coulomb block- 
ade of tunneling. The problem is that this limit is 
very difficult to achieve experimentally. We have 
represented in fig. 6 the domain where I Z(w)[ 
<<R K by a shaded area. The w -~/2 roll-off of 
the impedance must cross the impedance quan- 
tum R K at low enough frequencies on the scale 
of the Coulomb frequency ~-[1. In practice this 
means that the on-chip lead resistors must have a 
saturation frequency w S as high as possible, which 
in turn means a resistance and a capacitance per 
unit length as high as possible. This requirement 
is unfortunately in conflict with the requirement 

of no heating in the resistor, and a compromise 
has to be found. This has been achieved by Cle- 
land et al. [24] for normal junctions and by Kuzmin 
et al. [25] for superconducting junctions. The 
theory we have outlined can easily be adapted to 
the tunneling of Cooper pairs [26]. The function 
P(E) ,  modified slightly to take into account the 
charge 2e of Cooper pairs, yields directly the I - V  
characteristic if no quasi-particles are present. 
As in the normal state, theory predicts that no 
"Cooper  pair gap" exists for a single junction if 
the environment impedance is less than R K. This 
result explains that no Cooper pair gap was found 
in the Harvard group experiments [27]. 

6. Validity of the global rule 

Let us compute the total equilibrium electro- 
static energy of the circuit of fig. 4a as a function 
of the number  n of electrons that went through 
the junction. We make this calculation as in sec- 
tion 2 for the one-island circuit, taking into ac- 
count the work performed by the voltage source. 
One finds: 

Eeq = - n e  + terms independent of n. (18) 

It is thus always energetically favorable for an 
electron, as far as equilibrium states are con- 
cerned, to tunnel. The charge fluctuations of the 
junction capacitance, which are much greater than 
e in standard cases, enable, so to speak, the 
system to overcome the Coulomb barrier and to 
find its equilibrium state. Coulomb blockade in a 
current-biased single jucntion is thus a dynamical 
effect: one can only slow down the tunneling 
rates as much as possible by making the environ- 
ment impedance as high as possible. The global 
rule (4) together with (18) is equivalent to (17) in 
the low-environment-impedance limit and pre- 
dicts that there is no Coulomb blockade. 

Consider now the one-island system in the 
standard case of low-impedance leads between 
the system and the voltage sources. In addition to 
the number  of electrons n 1 and n 2 having tra- 
versed the junctions we should also, in principle, 
consider the electromagnetic degrees of freedom 
which are the charges Q1, Q2 and Qc on the 
capacitances C1, C 2 and C o, respectively (the 



                                                                                         

sign convent ion for these charges is that they 
should increase when the total charge o f  the 
island increases). As in the single-junction case 
these charges undergo  large zero-point  fluctua- 
tions. However,  these fluctuations are not inde- 
pendent .  The  linear combinat ion Q1 + Q2 + QG 
= - n e ,  which is decoupled f rom the leads, is 
quant ized in units of  the e lementary  charge and 
can only change during a tunnel ing event. On  the 
o ther  hand, the two o ther  independent  l inear 
combinat ions which are directly coupled to the 
leads undergo  large quan tum fluctuations and 
thus cannot  be excited by the tunnel  events, just 
like the capaci tor  charge in the single-junction 
case. The  effective electrostatic energy change 
induced by a tunnel ing event can thus be com- 
puted using the expression of  the equilibrium 
energy (3). In o ther  words, in the s tandard  case of  
low-impedance leads, the voltage sources can be 
considered as ideal, and the global rule is a very 
good approximat ion for the computa t ion  of  the 
tunnel ing rates. A detailed discussion of  the va- 
lidity of  the global rule for the one-island system 
is given in ref. [28]. As we have seen in section 2, 
the global rule predicts a clear-cut Coulomb gap, 
except for part icular  values of  the gate voltage U, 
because the system energy, even at equilibrium, 
increases when an electron passes through the 
island. 

Using the global rule, one  can show that  SET 
oscillations do not  exist for the one-island system. 
However,  long one-dimensional  arrays of  tunnel  
junct ion can be traversed by charge solitons and 
exhibit a behavior  resembling that of  SET oscilla- 
tions [11,29]. A relation between f requency and 
current  such as (10) can be best observed,  how- 
ever, using devices with a small number  of  islands 
such as the single-electron turnstile [30] or the 
single-electron p u m p  [31]. The  dynamics of  these 
devices in which an external radio-f requency sig- 
nal applied to gate electrodes clock electrons one 
at a time is found to be very accurately described 
by the global-rule equations.  

7. Concluding summary 

Coulomb blockade is the suppression of  the 
zero voltage conductance  of  a tunnel  junct ion 

caused by the Coulomb interaction of  the tunnel-  
ing electrons with the e lectromagnet ic  environ- 
ment  of  the junction, i.e. the circuit to which it is 
electrically connected.  Coulomb blockade only 
occurs if the electrostatic energy e 2 / 2 C  of a 
single electron on the junct ion capaci tance C is 
much greater  than the characterist ic energy kBT  
of thermal  fluctuations. Ano the r  condit ion for 
the occurrence  of  Coulomb blockade is that the 
impedance  with which the environment  shunts 
the junct ion capaci tance be much larger than the 
resistance quan tum R K = h / e  2 = 26 kf~ at fre- 
quencies smaller than the charging energy fre- 
quency eZ/Ch. In general,  unless a very special 
experimental  scheme is adopted,  a single junct ion 
connected  to an I - V  measur ing appara tus  by 
resistive leads cannot  meet  this condition. There  
is a profound reason for this: the ratio between 
the impedance  of  the vacuum Z = 377 f~ and the 
resistance quan tum RK, which is fixed by the fine 
structure constant,  is much less than unity. 
Coulomb blockade can readily manifest  itself, 
however, if the environment  of  the junct ion con- 
sists of  o ther  small capaci tance junctions. 
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