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By means of a set of kinetic equations, we describe nonequilibrium electrons
and phonons in a superconductor. We assign expressions for the distribution
functions and the relaxation times of the coupled electron—phonon system in
various situations. In order to obtain transparent results, we replace the
collision operator by a reduced operator which still satisfies the conservation
laws. We also investigate systems at low temperatures.

1. INTRODUCTION

A superconductor can be driven out of thermal equilibrium by various
techniques, for example, by electron injection, electromagnetic radiation,
or simply heating of the metal. An essential quantity in analyzing the
experimental results is the particular relaxation time corresponding to the
considered experiment. These are, for example, the quasiparticle recom-
bination time first measured in the experiments of GinsbergI or the
“branch mixing” time investigated in the experiment of Clarke.” A further
interesting topic in nonequilibrium superconductivity is the gap enhance-
ment caused by microwave irradiation of superccnductors3 near T..

The nonequilibrium properties of superconductors can be understood
in terms of electronic quasiparticles and the condensate of pairs, charac-
terized by a complex order parameter, Furthermore, when the energy of
the system varies, nonequilibrium phonons can be excited. Characteristic
times for relaxation processes in the coupled electron-phonon system are
the inelastic scattering time 7o of electrons at the Fermi surface and the
*On leave from Institut fiir Theorie der Kondensierten Materie, Universitit Karlsruhe,

Karlsruhe, West Germany.
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lifetime ™" of phonons with energy of order T. In an experiment the
thermal contact results in an energy transfer between the probe and the
surrounding material. This process, which is essentially effected by
phonons escaping from the probe, is conveniently described by a phonon
escape time 7., depending on the geometry of the probe and the velocity of
sound. In the limit of strong escape (1.5« 'r"h), which is often considered,
the phonons remain in thermal equilibrium.

The basic equations describing nonequilibrium properties of super-
conductors are a set of Boltzmann equations for the distribution functions
of electrons and phonons, coupled to a time-dependent Ginzburg-Landau
equation for the order parameter.4 In a linear theory one finds two
independent modes: one involving changes in the energy of the system and
in the magnitude of the order parameter (“energy mode”), the other mode
involving changes in the particle number and in the phase of the order
parameter (‘‘particle mode”).* Consequently, in the energy mode,
nonequilibrium phonon distributions are also excited. Due to the electron—
phonon collision processes, a complicated integral operator appears in the
Boltzmann equation. In this paper, we will replace this collision integral by
a reduced operator which satisfies the same conservation laws as the exact
operator. This approximation allows a straightforward solution of the
coupled kinetic equations, thus providing transparent results for various
problems. Some details of the collision processes that are important at low
temperatures are not described correctly by the reduced operator; there-
fore, we will develop an alternative method which applies to this limit.

Concentrating first on the energy mode, we present in Section 2 the
appropriate Boltzmann equation for the electron and phonon distribution
functions and discuss the reduced operator. We apply this approximation
in Section 3 to determine the relaxation time of the energy mode near T,
and consider stationary nonequilibrium situations. In Section 4 we
compare the relaxation times corresponding to the energy and the particle
modes. In Section 5 we extend the investigation of the particle mode to low
temperatures, where, as mentioned above, a different method has to be
used to calculate the solution of the kinetic equations. Finally, in Section 6,
we discuss the validity of our approximations.

2. THE KINETIC EQUATIONS IN THE ENERGY MODE AND
THE REDUCED OPERATOR

Starting from microscopic theory, a set of linear kinetic equations for
dirty superconductors was derived by Schmid and Schon.* These equa-
tions consist of a Boltzmann equation for the electron distribution

*These modes were called the longitudinal and transverse modes, respectively, in Ref. 4.
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function, coupled to a time-dependent Ginzburg-Landau equation
(TDGL) for the order parameter. The phonons were assumed to remain in
thermal equilibrium. The form of the kinetic equations is different in the
two modes, the energy mode and the particle mode. In general, for a finite
escape time of the phonons, a nonequilibrium phonon distribution is
connected with the energy mode as well. In analogy to Ref. 4, one can
derive the Boltzmann equation for the coupled electron-phonon system
from microscopic theory, with the following result:

5o a2 v
ot \(Fg/2No) 6Ng

- k| { (FE/}z\;fgfaNED “;71; { (Fg/zzgo) SNE} +§{%E} T ()

We restrict ourselves in the following to homogeneous systems, and the
notations and definitions are the same as in Ref. 4. Furthermore, §Ng is the
deviation of the phonon distribution function from the equilibrium form,
and Fg is the phonon density of states. The collision integral K couples
electrons and phonons and is given by
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The second term on the right-hand side of Eq. (1) describes the phonon
escape, which is assumed not to depend on the phonon energy. In the limit
of zero level broadening, the spectral function N; reduces to the normal-
ized BCS density of state,” and R.=(A/E)N,. In this case, the collision
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operator, Eq. (2), has been derived by Bardeen et al.® using golden rule
arguments,

In order to simplify the above equations, we introduce a short-hand
notation by

8f
P~ {on)
FY=1sn
Then the Boltzmann equation becomes
3 3 ,
5;M¥F>=K\F>~mes]F>+§lh>+lI> (1

where the definitions of the various quantities follow by comparing (1) and
(1. Furthermore, we define a scalar product by

E E
<F1,F2>=J dE[5f1 Chz’z-}:tsfz“‘}'SNl ShQE%&Nz] (3)

The collision operator K has the following properties:

(a) K is Hermitian.

(b) All eigenvalues of K are smaller than or equal to zero. The
eigenfunctions corresponding to the eigenvalue 0 are thermal distributions
corresponding to a shifted temperature. This means K|F,) =0, where

E/ch*(E/2T)
IF(:) = { 2
E/sh™(E/2T)
‘ {c) K conserves the energy. This can be expressed in our notation by
E|con=2No{Fo|K|F) =0 for arbitrary |F).
Furthermore, one can split the collision operator into two contribu-
tions, which we call **scattering out’” and ‘‘scattering in”’ terms. The scat-
tering out term is given by

(1/76)N1 8f } )

KoulF) = =m|F) {(1/7*;;“ )(Fg/2No) 5N
where 1/7¢ and 1/7% are the temperature- and energy-dependent scat-
tering rates for electrons and phonons, respectively. The scattering in term
involves the remaining integrals of Eq. (2). In a normal metal, the energy
dependence of the scattering rates is given by 1/7z=(1/70)(1+v|E/T|?)
and 1/7% = (1/7°™)|E/ T|, where the former result is an approximation and
v =2/21£(3). Furthermore, we can express the ratio of the characteristic
times 7o and 7°" by the ratio of the specific heats of the normal electron and
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the phonon system, ci and ¢, respectively.* The relation for arbitrary
temperature is as follows:

™ _35((3) ¢
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In a superconductor, numerical solution of an integral equation is neces-
sary to calculate the energy dependence of 1/7g, since this rate in turn
enters into the spectral quantities N; and R,. An iterative procedure,
however, converges rapidly.

Numerical methods have been used by Chang and Scalapino’® to
solve the Boltzmann equation. However, great accuracy is required in
order to calculate correctly the effect of the superconducting state, because
of the peak in the density of states at the gap edge. Thus we propose to
employ another method, namely to replace the exact operator K by a
reduced operator K,, which has the same scattering out term as K and is
given by

m}FoXF()[m
K,=-m+ FomlFo) (6)
This collision operator is simple enough to allow an explicit solution of the
Boltzmann equation, but on the other hand, still preserves the properties
(a)-(c) of the exact operator. While both the exact operator K and the
reduced K, have the eigenfunction |Fy) with eigenvalue zero, the higher
eigenfunctions of K are described by K, only in a relaxation approxima-
tion. Notice that the choice of K, is not unique.

3. THE ENERGY MODE
3.1. Relaxation Rate near T,

When determining the free relaxation rate of a nonequilibrium dis-
tribution in the energy mode, we have to consider a situation without
external perturbations, i.e., we set |I) equal to zero in Eq. (1). The term A1),
which is proportional to 8A, can be eliminated by using the time-depen-
dent Ginzburg-Landau equation. As long as Arg » 1, which excludes the
case of a gapless superconductor, we obtain

|h) = y|r)r|F) (7)

*cPM is the specific heat of the phonons that couple to the electrons: in our model these are the

longitudinal phonons.
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Fig. 1. The energy relaxation rate 1/7g near T, plotted as
a function of /7., and compared to the normal state
result 1/7% (broken line). A/T takes the value 0.2. (a)

¢™/c® is assumed to be small, appropriate to Al (b)
¢™/c*' = 38, appropriate to Pb.

where y = 72T/ [7£(3)A%] and

“"{1} R,(E)
"= \oJ h¥E/2T)

By solving the Boltzmann equation we find the solution

1P =

M
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which is normalized such that

(Folm|F) = (Fo|lm|Fo)
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(10)
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Equation (10) provides an implicit relation for 1/7r. We are interested
only in slow modes, i.e., 1/74 small compared to 1/7, and (1/ P41 /Tes).
Thus we expand the matrix elements in [(m + mes)r=]". Up to the lowest
order in A/ T, we are allowed to neglect the energy dependence of 1/7g, use
the normal state result for 1/ f‘,{.;h, and also set N;=1 and R,=A/E. The
result is a quadratic equation in 1/7g, and the two solutions are plotted in
Fig. 1 as a function of the escape rate at a fixed temperature. We dis-
tinguish the two cases ¢™/c®« 1, which corresponds to materials like
aluminum (Fig. 1a), and c™/c® » 1, corresponding to lead, for example
(Fig. 1b). For illustration, we include also the normal state result in Fig. 1a.

3.1.1. Normal State Relaxation

At small escape rates the distribution function is the temperature-
shifted thermal function, as can be seen from Eq. (9) using |7} = 0. Since the
decay of this nonequilibrium distribution involves an energy transfer from
the electron-phonon system to the surrounding material, the relaxation
becomes arbitrarily slow as 1/7. goes to zero. By integration of the
Boltzmann equation, we obtain the following equation for the change of
the electron and phonon energy:

9 1
—(8Ea+8Epm)+— 8Epn =0 o (11)

€8

where

SEe;=2Ng J EN1 ng dE
(12)

8E = JEF(E 6Nz dE

From Eq. (11) we find the relaxation rate 1/r5. A particularly simple result
is obtained when most of the energy is carried by the phonon system. In
this case 1/78° =1/ and the energy transfer from the electron to the
phonon system is of minor importance. More generally, since for weak

escape the distributions are thermal, we obtain

1 1 ™

Ny ™ "ph ., el
TR) Tes Cp +C;}

(13)
For large escape rates, on the other hand, the relaxation is restricted by the
energy transfer from the electron to the phonon system and therefore is of
order 1/7y, independent of the ratio of the specific heats.
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3.1.2. Relaxation Below T,

In a superconductor an additional branch resulting from the order-
parameter relaxation appears, which has a typical relaxation rate of order
A/ T, for all escape rates. When the normal metal result 1/7%" is of the
same order, we find the usual splitting and thus two branches in the
spectrum. The eigenfunctions of the lower branch for small escape and the
upper branch for large escape are approximately the distribution functions
discussed above. Furthermore, the relaxation rate of the lower branch for
small escape is again given by Eq. (13), with the replacement of ¢ by c%,
the latter being the electronic specific heat of the superconductor.

The order-parameter relaxation is represented by the upper branch
for weak escape and by the lower branch for strong escape. It is connected
with the decay of a nonequilibrium distribution created by a change in the
magnitude of the order parameter. We obtain the following limiting values
for the relaxation rate for weak escape:

(7:3) A ¥ oh el
. 5 Tro ol for ¢"«¢ (14a)
.—_=<
TR TE(3) A
—g‘(g—z-—— for ¢™»c” (14b)
7 Try

For strong escape, we find the same relaxation rate as given in Eq.
(14b), independent of the ratio of the specific heats. This case has been
studied in Ref. 4. In this limit, the phonons remain in thermal equilibrium
(6Ng=0), and only relaxation between excitations and the order
parameter is important. In this process the temperature of the electrons
approaches the bath temperature.

For weak escape, on the other hand, the energy of the electron-
phonon system can be considered constant during the order-parameter
relaxation. In order to illustrate this case, we start with a situation where
the order-parameter is changed while the temperature of the electrons is
the bath temperature. Then the order parameter and the electrons relax to
an equilibrium distribution with higher temperature. In other words, the
thermal background of electrons and the nonthermal distribution approach
one another (like the two blades of a pair of scissors), and this leads to an
increase of the relaxation rate compared to the limit of strong escape
proportional to c¢%/cn. In the case ¢™»c¢®, however, the phonons
effectively play the role of a heat bath, and the relaxation rate is the same
as for strong escape.

As an illustration, we consider a system where only particle~particle
collision processes are important. This applies, for example, to the
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superfluid phases of *He; for simplicity, we consider only the isotropic B
phase. Using the approximation of the reduced collision operator, we find
the relaxation rate for zero escape:

1 743 4 o (15)

where 1/7, is the particle-particle cc:slhsmn rate on the Fermi surface. This
is obviously analogous to the case ¢™"« ¢®. Note, however, that because of
the direct coupling between particles and the surroundings, the relaxation
rate for strong escape is given by

1 7{(3) A

3
TR w TTeS

(16)

3.2. Stationary Nonthermal Situations

In this section, we examine systems driven out of thermal equilibrium
due to the action of a perturbation. We consider two cases: (a) the irradia-
tion of a superconductor by microwaves, and (b) the injection of electrons
from a normal metal through a tunnel junction into a superconductor. The
inl}‘omogeneity entering into the Boltzmann equation is in case (a) given
by

Wy :
1= | | SR NI E+) + RaBIRAE I = 1)+ (4> )
(17a)

where E+ = E = v, v is the frequency of the electromagnetic radiation; and
W, is the power absorbed in the normal state at the same electric field. In
case (b), we have®

1) =constx | INWEX/2. +72- —2/%) (17b)

where Ex=E +eV and eV is the potential difference between normal
metal and superconductor. Corresponding to the symmetry in the energy
mode, we have written down only the part of |I,) that is odd in energy.

In the stationary case, we easily find from Eqs. (1) and (6) the solution
of the Boltzmann equation, and plots of 8fg and §Ng are given in Figs. 2
and 3 for both cases. We used the same parameters as Chang and
Scalapino,’ to allow comparison of the results. The electron distributions
are, of course, dominated by the inhomogeneities, which in our examples
act only on the electronic part. Therefore, as far as the electrons are
concerned, it is sufficient to treat the influence of the scattering-in term in
the global way as we do in our approximation.
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Fig. 2. The electron distribution multiplied
by the reduced density of states N 8fg,
plotted as a function of E. Only the part
with E >0 is shown; the values for E<{
are obtained from &fg=-8f_g. The
temperature s T=0.5T7;; two different
escape rates are considered: Tes/r§g=1
Tes . 1 and 8. These parameters approximately

arbifrary units
<
_j
|

tgg agree with values chosen by Chang and

L | Scalapino. The linewidth corresponds to

_— .Eg.;_ 8 lead: 1/7o(T = T.)=T./3. (a) The system

T is excited by microwave radiation with y =

i ] 0.5A. (b) The system is excited by tunnel
{a) mmjection with eV = 1,54,

A more serious test for our approximation scheme is the investigation
of the phonon distribution, since the phonons are only indirectly excited by
collisions with nonequilibrium electrons. In our approximation, 8Ng does
not depend on the form of the perturbation. A remarkable feature is the
peak at energies E =2A. This is due to the strong increase of the phonon
relaxation rate 1/7% at the same energy, which in turn results from the
possibility of scattering electrons across the gap by phonons with E =2A,
This process is known as phonon trapping. The reduced operator yields
correct results for thermally shifted distributions; thus we expect K, to be a
good approximation in the case of electron injection, where 8fg approxi-
mately is of this form (compare also Ref. 7). In the case of microwave
irradiation, on the other hand, the detailed form of 8fg is important; the
shift of electrons from the gap edge to higher energies in this case results in
an exact treatment in a negative SNg for E = 2A, an effect which cannot be
described by the reduced operator. To conclude, we mention another
detail: since we are taking into account the linewidth in the density of
states, we have, in contrast to the results of Chang and Scalapino, no
jumps in the distribution functions.

The effect of microwave radiation on the order parameter in super-
conductors>®'° follows from the Ginzburg-Landau equation:

{ T.-T 7{(3) A
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Fig. 2. Continued.

where y = —(r|[F)/A. The electronic part of |F) consists of two contribu-
tions, one resulting directly from the inhomogeneity [Eq. (17a)], and the
second from the scattering-in term. Correspondingly, we split y = ™"+
x*°". Furthermore, the former part can be expanded in »/T. The first
contribution yields* y™® = BG(A?/v?), which leads to the gap enhance-
ment and has been discussed by Schmid.'® The second term, X}‘z”)’, which
near T, does not depend on A, can be interpreted together with X“’" as an
effective increase of the temperature, as follows:

Tc -T* T,, -T inh colt
= —xay+tx ) (19)
T, T,
*We have B = ro Wy/(8NyvT,.).
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Fig. 3. The phonon distribution function 8Ng for the same
parameters as in Fig. 2. It does not depend on the special form
of the electronic inhomogeneity,
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We obtain x5y = 1.41By/T. and x*°" = aBv/ T, where

= {[2105(3)/774]735/‘79!1 for Tph/fes« 1
- 17¢(3)/15¢(5) for  Ton/Tes» 1

In the limit of weak escape, this temperature increase is large, since the
energy cannot be transferred to the bath. If the escape is strong, a
comparison with the result from a variational calculation'' reveals a
weakness of the reduced operator. In this limit, we find T*~T = 1.95By,
whereas (7™ — T variation = 0.7 Bv. We will discuss this deviation in Chapter
6.

(20)

4. ENERGY RELAXATION VERSUS PARTICLE RELAXATION
NEAR T

In certain experiments, e.g., in the case of electron injection through a
tunnel barrier as in the experiments of Clarke and F’aterson,2 the particle
mode is also excited. When deriving the kinetic equations of this mode, it is
important to realize that due to the properties of the superconducting
ground state, the particle number is not a conserved gquantity in collision
processes.

For definiteness, we write down the Boltzmann equation in the sta-
tionary case. In this mode, the perturbation /g is an even function of
energy; thus the total energy remains constant and nonthermal phonons
are not excited. We have

—KD(8fe)+2 AN, 8fs = I (21)

The collision integral is split into a number-conserving and a nonconserv-
ing part, which form the left-hand side of Eq. (21). The integral kernel of
K™ differs from the collision operator of the energy mode in that the
coherence factor M“XE, E') has to be replaced by the quantity M™
(E, E"Y=N(E)N(E"). The difference can be neglected near T,, but is
important at low temperatures, and this will be considered in the next
section.

In correspondence to the technique of Section 2, we replace the
conserving part K D by a reduced operator guaranteeing particle number
conservation:

KT(sf)~ K (5f)
__1 1 M {dE (1/75)N, &f
Tk N of+ ¥ ch’(E/2T) | dE (1/T§)N1/ch2(,§/2 T) (22)

The eigenfunction with eigenvalue zero in this case is the distribution
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function describing a shift in the chemical potential. It is straightforward to
solve for 6fg and calculate the relaxation time, given by the ratio of
nonequilibrium electrons to injected electrons, or

T _ | dE N, 6f

= 23
TR TOA[dEN, of (23)
Furthermore, in the injection case, the perturbation is given by"
Ie = Pg’ = const X Ny{fe- —fe+) (24)

Near T, we may neglect the energy dependence of the inelastic scattering
rate. Furthermore, there is no difference between 7= and 7% and we
reproduce the result of Ref. 4, namely

1/2

4T 1 r
(T 4]
o) = — | 1 4 ——y 25
7] 3[2] (I 270A2)] ( )

This result is valid for arbitrary pair-breaking I', for example, due to
inelastic electron—-phonon collisions and paramagnetic impurities; ['=
1/7+1/270.

At this stage, a comparison between particle relaxation, Eq. (25), and
energy relaxation is of interest, the latter in the limit of infinite escape rate
for simplicity. To lowest order in A/ T, we find, extending the investigation
of Section 3 to arbitrary pair-breaking, that

3 2.1/2
<L>x,_*"____719[ .Jl) _I 1]
TR Z373) A 1 A) TAT2An (26)

If the pair-breaking results only from inelastic phonon scattering, i.e.,
I'=1/27y, or in the gapless region Aro« 1, we have the simple result

/) =28¢(3)/ mP=3.41 7

On the other hand, when A>» ' » 1/27, there is no simple expression for
the ratio of the two rates.

5. PARTICLE MODE AT LOW TEMPERATURES

In this section, we will extend the investigation of the particle mode to
low temperatures. In this limit, we have to take into account the tempera-
ture and energy dependence of the inelastic scattering rate 1/7% and of the
quantity 2AN,/N. For reasons obvious from the last section, we call the
latter the conversion rate. The conversion rate can be represented by

20N, A 1
N1 ‘""52_A2 TE

(28)
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Notice that 1/7g, not 1/7%, enters into the spectral quantities N; and N,
and appears in Eq. (28), and that this approximate form is valid outside the
gapless region and in stationary situations. We recognize that the con-
version of electrons becomes favorable near the gap edge, and this leads
always to a decrease of the distribution function for |E|= A.

A straightforward integration (compare also Kaplan et al.'?) yields the
following results:

11T\ lE!-A)W}

72-0.82?0( a) [1+o.6( = (29)
11T\ ;E;-A)m} ,
m’"l‘?rg(z&) [1+o.43( - (29)

These expressions are valid at low temperaturest 7 « A and not too large
energies (|E|— A < A). Concentrating first on the case of thermal injection,
i.e., eV« T, into a system where no paramagnetic impurities are present,
we calculate the distribution function, applying the scheme of the reduced
operator, and find the following relaxation time:

@ = 0.8(/T) *ro=1.4(T/ A)7e-s (30)

Except for a numerical factor, this is the same result as near T, for A7y >» 1.
It is important, however, that 1/7 and not the scattering-out rate 1/7% of
this mode appears in the final expression. Due to the increase of the
conversion near the gap edge, the electrons at these energies are converted
very rapidly. Therefore, the distribution function 1is &fg~
[((E|-A)/A)exp (-|E|/T) for A<|E|<A+T. For larger energies, 8fg
decreases exponentially.

If we consider injection at a higher voltage, T « ¢V — A, a nonequilib-
rium distribution exists in a broad energy range A < |E|=< eV. Furthermore,
since the relaxation time at low temperatures [see Eqgs. (29) and (30)] is
expected to be of the same order as the inelastic scattering rate 1/7%, the
scattering processes are not able to build up an approximate thermal
distribution. Instead of being scattered, electrons are directly converted.
This means, however, that the condition imposed on K D to be exact for
thermal distributions is not sufficient anymore.

For this reason we proceed in a completely different way'> to study
explicitly the influence of the scattering processes in this case. The follow-
ing calculation relies on the fact that the scattering in term in the Boltz-
mann equation for T« A is approximately independent of temperature.
TIn the low-temperature region, scattering processes involving phonons with energy E=2A

do not contribute to 1/7¢ and 1/7% (they vanish exponentially). This is in contrast to the

energy mode, where these processes, often called recombination processes, provide the only
relaxation mechanism.
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Comparing the distribution function for 7 =0 and for 0 # T « A, we find
that 8fz differs only in the energy range A=<|E|<A+ T, which is small
compared to the injection interval. Consequently, we have K,(T =0)=
K;,(0# T « A), which leads to

[T(E)8felr=0=[T(E) 8felosT«a (31)
where
I“(E)=~1;+ . (32)

] 2
TE E-A Te

In the limit T =0, on the other hand, the integral equation can be reduced
to a differential equation with boundary conditions for |E|=eV. At T=0
electrons are scattered info a given energy level E >0 only from higher
energies, and thus the integration in the scattering-in part of the collision
integral extends from E to eV, By differentiation of the kinetic equation
with respect to |[E|}, we reduce it to the following differential equation:

i 1 s
z (E)+1'07(}EI~A)3Z(E) 0 (33)
where z(E)=T(E)8fsz. The boundary conditions are z'(|E|=eV)=
z"(|E|=eV)=0, while z(|[E|=¢V) takes some constant value, depending
on the injection current. This differential equation is of the Euler type and
can be solved easily. The solution, which is divergent near the gap edge,
can be written as follows:

{(5/2)+p
E] _a) (34)

with p =0.34, Thus we obtain, using Eqgs. (29) and (31),

[6fe]r=0=const X (

7/2 A 7/2

[5fE]o¢T«A~—v[afg]rze(lggf&) zconstX(?) (@%ﬁ)l_o (35)

for |[E|-A=<T, and

(5/2)+p

[8fiJowrca ~ [8felr—o = const>x (35)

CEY

for energies |[E|~ A= T. Then we find the relaxation time

o <eVA~ A)w}_"(%)mro (36)

The proportionality factor in Eq. (36) is of order one, and one has to solve
numerically the differential equation (33) to determine it. Compared to the
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case of thermal injection, the relaxation time is slightly reduced, since
conversion over a broad energy interval is more effective.

Comparing with experimental results at low i:e:mpe‘rature;s,,2 we find
the agreement unsatisfactory. Only some of the probes show an increase of
the relaxation time in this limit. But it should be noted that our results
depend critically on the level broadening of the spectral quantities N, and
N,, which we assumed to be entirely due to inelastic electron-phonon
scattering. Anomalies in the N-$ conductivity, on the other hand, indicate
that this ideal case is not realized in the samples, and other pair-breaking
effects are important.

Finally, we want to mention that the transverse relaxation time is
precisely the relevant quantity entering into the determination of the
linewidth of the unusual magnetic resonances'* found in *He-A and -B. In
this case, however, the inelastic particle—particle collision time, which has a
completely different temperature dependence,'® appears in the final resulit.

6. DISCUSSION AND CONCLUSION

To conclude, we want to add some comments on the approximation
scheme that we have adopted in this paper. The method has been used
before, among others by Wolfle,'® in order to treat particle-particle
collisions. In this case, the eigenvalues and eigenfunctions of the exact
operator for a normal system are known,'” which allows comparison of the
exact and approximate results. Application to collective phenomena such
as sound propagation or viscosity yields good agreement, the deviations
being of the order of a few percent only.

We wish to stress that in the approximation, the following properties
of the exact operator are preserved: (a) The conservation laws retain their
validity; (b) both operators have the same eigenvalue zero and the same
corresponding eigenfunctions, which are thermal distribution functions
with shifted temperature in the energy mode and shifted chemical potential
in the particle mode.

Therefore, the use of K, is justified whenever processes are considered
that evolve slowly in time; this means when the process is dominated by the
decay of the eigenfunction with the smallest eigenvalue. In a superconduc-
tor near T, the coupling to the order parameter leads to a considerable
slowing down of the relaxation rate; thus our results are fully reliable as
long as 1/7gr « 1/7E. In Fig. 1 this is satisfied everywhere except for the
normal state result in the limit of strong escape, which can be considered
only an order-of-magnitude estimate.

More generally, we conclude that the use of the reduced operator is
justified in the description of collective phenomena where it is essential
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that the conservation laws are satisfied. Accordingly, the approximation
scheme applies to the hydrodynamic modes in superconductors.'®

On the other hand, when we use a reduced operator to calculate the
distribution functions, the results are not always satisfactory. In this case, a
criterion can be formulated as follows: assume the eigenfunctions of the
exact collision operator to be known and expand the inhomogeneity in the
Boltzmann equation in this set of functions. Whenever the eigenfunction
with eigenvalue zero is dominant in this expansion, the approximation of K
by K, is valid. This does apply to the problem of electron injection in both
modes near 7, and becomes exact for small injection voltages. On the
other hand, it does not apply to the particle mode at low temperatures for
eV > A, since in this case the relaxation time is of the same order as the
inelastic scattering rate 7£. Thus, one has carefully to take into account the
details of the collision processes, as described in Section 5.

A further shortcoming follows from a special property of the scatter-
ing-in part of the collision operator in the energy mode. The term “‘scatter-
ing in”’ in this case 1s actually somewhat misleading: in the particle mode or
in the case of particle—particle scattering this term always leads to an
increase of the distribution function at a specified energy level due to the
decay at all other energies. In the energy mode, however, 8f¢ for small
energies is further reduced by the scattering-in term. This is due to the fact
that 8f¢ is an odd function of energy, and that the transition probability has
a maximum at energy differences of about 27. The reduced scattering-in
term, on the other hand, always causes an increase in 8fg. This property,
combined with the importance of low-energy electrons in the calculation of
the temperature enhancement by microwave irradiation, is responsible for
the discrepancy between our result and the result obtained from the
variational calculation for 7. — T*.

We thus conclude that a reduced operator cannot exactly describe all
details and will lead to errors in certain cases. On the other hand, in the
description of collective phenomena which depend essentially on the
conservation laws, its application is fully justified. Furthermore, compared
to numerical solutions, it allows a more rapid application to different
problems characterized by different inhomogeneities in the Boltzmann
equation. In addition, this method may reveal more of the underlying
physics, since the equations and solutions become transparent.
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