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Using the method of the quasiclassical Green function, we derive a set of kinetic equa-
tions which describe general nonequilibrium situations in the quasiclassical regime, i.e., when
the externai frequency and wave vector, @ and q are small compared to the atomic scale
(w <€ p, | q| <€ pr). The equations consist of a Boltzmann equation for the quasiparticle
distribution function, labeled by the energy and the direction of the momentum (pariicle
representation), coupled to a time dependent Ginzburg-Landau equation for the order
parameter. We discuss extensively the properties of these equations, and apply them to
orbital and spin dynamics. Solving the Boltzmann equation in a well defined approxima-
tion, we are able to derive the expressions for the linewidths for all temperatures, with the
correct identification of the phenomenological relaxation times. Furthermore, we discuss
the connection between various relaxation times used in non-equilibrium situations, and
we give a detailed comparison of the particle representation with the excitation representa-
tion which is used frequently in other work on non-equilibrium phenomena in superfluid
3He and in superconductors.

1. INTRODUCTION

Since their discovery [1], a lot of experimental and theoretical work has been devoted
to the new phases (for experimental and theoretical reviews, see Wheatley [2] and
Leggett [3], respectively; a more recent theoretical review was also given by Wolfle
[4]). It is now believed that the superfluid phases are a realization of a BCS-like state
in which the Cooper pairs have a relative angular momentum of / = 1, and spin
S =1, in contrast to the / = O—spin singlet pairing of electrons. Furthermore,
there is now strong confirmation that the A-phase has to be identified with the ABM-
state [5, 6], and the B-phase with the BW-state [7]. The A,-phase is believed to show
the pairing of one spin species only.

In fact, the existence of more than one superfluid phase, and also the behavior of
some thermodynamic quantities, for example, the specific heat jump in the normal to
A-phase transition was rather surprising, since the BCS-approximation {for / = 1-
pairing) leads to a unique absolute minimum, namely the BW-state. This puzzle could
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be explained by Anderson and Brinkman [6] who showed that the formation of the
superfluid state modified the pairing interaction, and that the precise nature of the
modification depends on the particular kind of state which is formed. More generally,
as shown by Rainer and Serene [8], this feedback mechanism can be understood as a
correction to the BCS-approximation (“‘strong coupling corrections”), which are of
order Te/p smalll (7% is the transition temperature, and p the chemical potential).
Although this quantity is small, ~10-3, it is still one order of magnitude greater than
it is in most superconductors, and only small energies are needed to stabilize one
phase against the other if both have the same relative angular momentum. The strong
coupling theory is now in good qualitative agreement with experimental results.

Besides the static properties, the new phases show a variety of unexpected time
dependent phenomena, for example, the behavior seen in ultrasound experiments,
where a strong increase of absorption is found due to the coupling of density variations
to internal collective modes of the order parameter, or the nuclear magnetic resonance
experiments, which show unusual resonance frequencies due to the crucial role of the
nuclear dipole energy (compare the cited reviews [2-4] and references therein). In
general, a description of dynamic situations can be done on different levels, depending
on the type of questions to be answered: A hydrodynamic description, relying on the
conservation laws and the symmetries, and introducing dissipation through various
parameters; the use of kinetic equations which are a coupled set for the quasiparticle
distribution function and the order parameter; or calculations involving the full
Green functions.

Starting from microscopic theory, i.e., from the equation of motion for the full
Green function, we derive in this paper a set of kinetic equations for superfluid
*He. As is generally accepted for time dependent phenomena, we neglect strong
coupling corrections of the type discussed above, relying thus on the model of a gas
of Landau quasiparticles [9], and introducing an additional p-wave pairing force
whose strength is a parameter of the theory. For the derivation, we use the quasi-
classical approach [10-14], i.e., the Green function integrated with respect to the
variable &, = p*2m* — u, where p is the momentum, and m* the effective mass.
This approach can be applied in the whole quasiclassical regime, i.e., when the external
frequency and wave vector, w and q, are small compared to the atomic scale (w < pu.
' q | <€ pg). A great advantage of this method is that the quasiclassical Green function
obeys a normalization condition, and this allows the definition of a scalar distribution
function (in contrast to the matrix function of Betbeder—Matibet and Nozigres [15]):
i.e., it will be diagonal in the additional particle-hole index characteristic for super-
conductivity. Furthermore, the distribution function is labeled by the energy, £, and
the direction of the momentum, pg , of the quasiparticles, which allows one to include
easily strong pair breaking situations such as superconductors with paramagnetic
impurities or the gapless case very near T .

The plan of the paper is as follows: In Chapter 2, we rewrite the microscopic equa-
tions of motion into a form convenient for the quasiclassical approach, using the real

! We use units such that # = kg = 1.
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time technique as developed by Keldysh [16] and applied to superconductors by Larkin
and Ovchinnikov [13]. After describing in detail the model appropriate for superfluid
3He, we discuss the validity of the quasiclassical approximation, and define the
distribution function. The kinetic equations near 7. are then considered and applied
to the orbital dynamics. Rotations are briefly discussed. Chapter 3 is devoted to the
spin dynamics of the A- and B-phase. We study in detail the longitudinal and transverse
resonance of the A-phase, and the longitudinal resonance of the B-phase, with empha-
sis on the damping of the collective modes for all temperatures. The equations (and
their solutions) are easily extended to higher frequencies (arbitrary wrg), where 7
is a typical inelastic scattering time). The non-linear ringing equations are derived
[17, 18], with the correct identification of the phenomenological relaxation times. In
Chapter 4, we discuss different relaxation mechanisms and times (compare also
{19, 20]) and connect our approach to kinetic equations with the more common one,
namely, the concept of Bogoliubov quasiparticles which we call excitation representa-
tion (a very complete presentation of this concept was given by Aronov and Gurevich
[21]). Final conclusions are found in Chapter 5.

2. FrRoM Microscopric THEORY TO KINETIC EQUATIONS

(A) Equation of Motion

The well known perturbation theory is based on a diagrammatic expansion of the
Green function with respect to the interaction. At finite temperatures, one has to deal
with a Green function which is defined for “imaginary time” or, after Fourier expan-
sion, for a set of discrete points in the complex plane, and physical quantities are
obtained through an analytic continuation. If we apply a time dependent external
perturbation, the Green function depends on two frequencies with the result that also
so called “anomalous” contributions appear [11], besides the usual retarded and
advanced quantities. This procedure has been successfully applied; however, it seems
generally prefereable to avoid this process and start directly with the “‘physical”
quantities defined for real times or real energies. At the cost of introducing a slightly
more complicated path formulation of the time development (compared to the zero
temperature formalism), or, equivalently, by introducing matrix functions [16], one
may describe the theory in an elegant way.

The Green function appropriate for a description of the superfluid phases is a
4 x 4-matrix function. We define:

%21, 2) = —i(Baa b (1) $5(2));
Gil1,2) = i(Pe)uP(2) Y, (1)),

2.1)

where the fermion field operators are in the Heisenberg picture; their arguments
given by 1 = (r;, £), 2 = (r,, %,); and { > denotes the average with the free density



393

matrix. Furthermore, «, B, y = 1,..., 4 (implicit summation over y), and the field
operators are connected with the usual ones by

i = Py, b = by, g = Yy, by = ¢,
and

P = (B1)astle -

We also use the direct product notation between Pauli matrices in particle-hole
(f1 » P2 » P3) and spin (6, , &, , 6;) space. For example, 5, = p, - 1 is the direct product
of the first Pauli matrix and the unit matrix in particle—hole and spin space, respectively.
Compared to the usual definition, Eq. (2.1) is “rotated” in Nambu space which is
essential for the quasiclassical approach. From the Green function, one may obtain
physical quantities in the well known way. For example, the particle number density
and the current density are given by

p(1) = —i} Tr, <1, 1);
i (2.2)
j(I) - ~7(1/4””) Tr!l ﬁa[(vrl - Vrz) g<(ls 2)]]=2 »

where m is the mass of a *He atom, and Tr, denotes the trace in the direct product
space. In the rest of this chapter, we consider only situations in which the spin is not
important; applied to spin independent functions, Tr, = 2Tr,, where Tr, denotes
the trace in particle-hole space (which we write Tr for simplicity).

In constructing the equation of motion for the Green functions, we follow the
method of Keldysh [16], as it was also used by Larkin and Ovchinnikov [13] for super-
conductors. In this formalism, one introduces the concept of time ordering along a
certain contour C, which runs from —oo to + oo and then back to — oo, along the
real axis, and defines the corresponding path ordered Green function. This Green
function obeys a Dyson equation of usual type, however, with time integrations
performed along the path C. For practical calculations, it is more convenient to have
all integrations from —oo to + oo, and this leads to an additional 2 x 2-matrix
description since one has to indicate whether ¢, , #, are on the forward or on the back-
ward branch of the contour. It is most convenient to introduce a matrix of the follow-
ing form
GR(1,2) “4X(1, 2))

(v == -~
HD=1 0 gaq )

(2.3)

where we defined the retarded, the advanced, and the Keldysh function %X through
the relations:

GR — (1, — tz)({?> — ??);
Gr = —0(t, — )G — 49); (2.4)
GK — G> | g<,

where @(t) is the usual step function.
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In deriving the equation of motion for % from the Dyson equation for the path
ordered Green function, some identities are useful [22]. Consider, for example,
expressions like

Dit, , t,) = §C dt Az, , ) B, 1)

and define D> and D< as usual. Then one finds immediately

DXy, 1) = [ diAR(, ) BG 1) + 450, D BMG )], (2.9)

—00

and similarly for D> by interchanging “ <<’ into “>" in the above expressions. The
equation of motion for % then has the form

(0~ 2)*F =18(1 —2),
. o (2.6)
G x (0, —2) =180 — 2).

In these equations,
B R B
041, 3) = [IE fat 5 Vi +p— Uext(l)] 81 — 3) 2.7)

is the single particle Hamiltonian with energy measured from the (unperturbed)
Fermi level, and 2 denotes the self energy matrix defined analogous to Eq. (2.3). A
“transposed” differentiation of the form (1, 2)(¢/22) is meant to be equal to
—(2/82)%(1, 2), and the =-product is defined by:

AxB = d34(1,3) BG,2. (2.8)

Furthermore, the notation Q, implies that this quantity is a unit matrix in the Keldysh
index, as well as the kinetic energy and the external potential Uext are unit matrices
also in particle-hole space. From Eq. (2.6), we immediately conclude that the equation
of motion for Z can be written in the form of a commutator, namely,

[Qo — 2* 4] =0, 2.9)

which is very essential for the following.

Finally, it is more convenient for most applications to consider the Green function
as a function of the variables momentum p, energy E, space r, and time #, where
r = (r, + 15)/2, t = (; + 15)/2, and p and E are obtained by Fourier transformation
with respect to the relative coordinates. Then we find

OuD, E, 1, t) = Epy — (p*2m) + p — Uexd(r, 1), (2.10)
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and the *x” 15 in this representation given by
A x B = {exp((/2)[oe" * 05 — 0,1+ 05 — 8 - &7 + 0 - G.°DH(AB), (2.11)

where 4 and B are functions of p, E, r, ¢, and J4 means differentiation with respect
to £ of A only, etc. Up to first order, one finds:

04 ¢B _ 04 ¢B
JF ot ot oF

A*B=A-B+ % [ —(V,A)V,B) + (v,A)(v,,B)], (2.12)

and it should be noted that this product is associative which follows also from Eq.
(2.8):

Ax(B+xC) = (4% B)xC, (2.13)

where A, B, C are three arbitrary functions.

Up to now, we only have rewritten the microscopic equations into a form which will
be convenient for the following argument. Like the original Hamilton operator, the
equation of motion, Eq. (2.9), possesses the full symmetry of the system under consi-
deration, and one may easily deduce all conservation laws, provided one chooses a
conserving approximation for the self energy. Particularly, the equations are transla-
tion and rotation invariant. As an example, we study now the latter case in more
detail.

We consider time dependent rotations of the coordinate system characterized by a
vector ©(t), whose absolute value is the angle of rotations around an axis given by
9/ | @ |, the corresponding rotation matrix is denoted by Z(t), with the property

%%a — w X (#2) (2.14)

for any time independent vector a, where «» = ©. The unitary rotation operator is
then given by

T = exp[—i(r X p) - O] (2.15)
and, from the definition, Eq. (2.11), we immediately find:

E=T++«E+«xT=FE-<+ o xp),

(2.16)
p=TrxpxT = %p, f = %r,

and we denoted the quantities in the rotating frame by E, etc. Furthermore, it is clear
that the self energy, although a complicated functional of the Green function, has the
property

2, E, v, 1) = 51%) = 5, B, &, 1),
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which can be studied explicitly for the model to be discussed below, and we conclude
that the Green function in the rotating system, &, is connected with the function in the
rest frame, ¢, by

&(p, E r, 1) = 9, E, &, 1). 2.17)

We want to stress at this point that we need the equation of motion for the full Green
function for these considerations, with the full expansion in d, and &, ; similar consi-
derations apply for Galilean transformations. We return to a discussion of this
question after introducing the quasiclassical approximation.

(B) The Model

Although 3He is a system of strongly interacting particles, most of its properties
at low temperatures 7 <€ p may be understood in the independent quasiparticle
model derived by Landau [9]. The key to its success is the observation that, in the low
temperature region, and provided the external perturbation varies slowly in space
and time (w <€ p, | q | <€ pp), all excitations are located near the Fermi surface. All
high energy contributions may be absorbed into a set of parameters to be taken from
experiment, and into effective vertices.

Below the transition temperature, the situation is more complicated, and strong
coupling corrections (deviations from the simple BCS-approximation) are known to be
essential for the qualitative and quantitative understanding of static properties. It
seems, however, that these corrections are less important for the description of dyna-
mic phenomena, provided one performs the “trivial” correction, namely inserting
the correct (experimental) temperature dependence of the absolute value of the order
parameter. Consequently; to construct a dynamical response theory, we rely strongly
on the quasiparticle concept of Landau, and assume that the Fermi liquid interactions
and the scattering amplitude are not changed by the superfluid transition. Furthermore,
an additional effective pairing interaction depending only on the momenta near the
Fermi surface is introduced.

Consequently, the equation of motion for the (normalized) quasiparticle part of the
Green function assumes the form:

[0—-2.¥9] =0, (2.18)
where Q is given by
0 = Epy — @*2m®) — Op, v, 1) + id(p, r, 1); (2.18a)

m* is the effective mass, and U includes the external field as well as Fermi liquid inter-
actions

0(1’5 r, t) = Ue}d(rs t) + IjF.L.(p’ I, t) (218b)

and the parameters F, , F| ,..., are defined as usual:

z‘f“(p,rt)mFo( )Sp(r t)+ i DI Dt (2180
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where (9u/Cpy)~t = 2N, , N, is the density of states at the Fermi surface for one spin,
N, = m*pg/272, and p, is the equilibrium number deunsity given by p, = pg®/37°.
Furthermore, 8p == p — p, , where p is the density, and j the current density. The
order parameter A(p, r, ¢) is by definition off-diagonal in particle-hole space, and it
has to be determined self-consistently (see below). Finally J, describes collision
processes between quasiparticles, and the scattering probability is connected with the
Landau parameters in the usual way. We will not give a detailed discussion of the
collision operator and refer the reader to Ref. [11] (for some details of the derivation
in the Keldysh technique, see also [23]). We remark only that the structure of the
collision operator is very much the same as in the normal state, the most important
quantitative corrections arising from the singular character of the density of states
below T, . Approximations to the collision operator will be guided by the conservation
laws, and in all situations we consider in the following, we may replace the x-product
by the usual product:

[Ze¥ 4]~ 2., 9] (2.19)
in the collision part of the equation of motion.

(C) The Quasiclassical Approach

Crucial for the quasiclassical approach is the observation that the quasiparticle self
energy, more precisely: Up . + 2, is approximately independent of the absolute
value of the momentum (the scale for variations is set by pg). We realize, furthermore,
that the direct kinetic energy term has dropped out of the equation of motion;
namely,

[21’::* f@} = —iP .va. (2.20)

and that we may neglect the space derivatives in working out

provided | q | <€ pr (see below). In the resulting equation, we may then replace p by
Pr (a vector in direction of p with length pg): this is what we call the Eilenberger
approximation {10]. Obviously, we then have obtained the equation of motion for
the quasiclassical or £ -integrated Green function, where its precise definition is?

G (E, 1, t) = (il7) fﬁ“ dé, 4(p, E, 1, 1), (2.21)

where ¢, is an intermediate cut-off between T and the Fermi energy. Defining also a
o-product which is the expansion Eq. (2.11), neglecting the r-derivatives,

AcB — gexp 5 [(es%02 — 0,49,7)]{ (4B), (2.22)

? The index p indicates that G, depends only on the direction of the vector p.
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the equation for the quasiclassical function has the form
[Q(pF yE 1,1) — Z‘(:(pF S E,1,1)¢ ép] + l.ap%‘ : Vrép = 0. (2.23)

To study in more detail the range of validity of the Eilenberger approximation, we
discuss, as an example, the external potential. In Eq. (2.6), this contributes a typical
term Uext(r)9(T, , r,), concentrating for the moment on the space coordinates.
Analyzing this expression with respect to the momenta: r, —p + q/2, r, —p — q/2,
we arrive at

Gy Ven® & (p— 5 4 — K),

which, integrated with respect to &, , results in

[k G Uon® Co@ =1, P =p— k]2 (2.24)

In the quasiclassical limit, | k | < pg , the vector p’ almost points in the same direction
as p, and it may be replaced by the latter. Actually, we have neglected the change in
the direction of the trajectory of the particle: For example, the Lorentz force in a
system of charged particles is not included in this approximation. We recognize then
that (2.24) is a convolution integral, and we find in coordinate representation:

Uext(r) é,,(l'),

in the quasiclassical regime; the same approximations are used to simplify the expres-
sions for the self energy, with the result indicated above.

For consistency, we must show that we may in turn express Up.., 4, and X, as
functionals of the quasiclassical Green function. First we present the expressions for
the density and the current which are connected with the Keldysh function:

o= —N, Tr <f—~—GK+ t‘/>,

(2.25)
=N Te (B [[ 2 6%+ 0]),

where ¢ > denotes the angular average. Note the appearance of U in these expressions,
which results from contributions far from the Fermi surface not correctly described
by the £,-integrated functions [11]. In other words, before performing the £ -integra-
tion (thus assuming a constant normal density of states, N;), one has to ensure suffi-
cient convergence of the expressions by certain subtractions. We may rewrite Eq.
(2.25), using Eq. (2.18¢), and obtain
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SPM_I%—F‘)T <IWG +Uext>

(2.26)
. Ny ~ / PF @ K>
I=—T7Rp P < G
) dE
- —NOTrp3<—%— =6, K>

Eqgs. (2.26) are valid to a linear approximation in the external potential. For the con-
siderations concerning the collision self energy, compare [11]. Finally, it is straight-
forward (in the considered model) to express the gap equation in the quasiclassical
function, with the result:

A v, 1) = Alpe, 1, 1) = Af 3" P de[Gk(E r, Dl ;
(2.27)

A(>0) denotes the dimensionless coupling constant, and “o.d.” indicates the off-
diagonal part in particle-hole space.

An important consequence of the commutator-like equation of motion, Eq. (2.23),
is that the quasiclassical Green function is normalized in the following sense: We
directly conclude that G, - G, is also a solution of (2.23) provided G, is a solution.
A special solution is then G, G, = const; furthermore, since the equation is a
first order differential equation in the space coordinate, its solution is uniquely
determined by the boundaries which we may choose in thermal equilibrium. An
explicit calculation for this case shows that

GyoG, =1, (2.28a)

and we conclude that this condition holds everywhere. In components:
R (’;pk — (’;‘pA o GDA — ’1“,
. ) . ) (2.28b)
GReo G X+ GXoGA =0

Obviously, the normalization condition allows to define a quasiparticle distribution
function f (pr, E, 1, t):
GX = G R oh —ho Gy
’ o 7 (2.29)
h=1-—2f

Such a KeldysAh function G,X fulfills the normalization condition for arbitrary f.
Furthern}ore, f agrees with the usual convention since in equilibrium, we find & =
th E/2T 1. In general, & will be of the form

b= 1 + k5, (2.30)
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where A#* and #® correspond to the antisymmetric and symmetric part of the distribu-
tion function upon interchanging E, pr — —E, —pg , respectively.

In summary, the equation of motion Eq. (2.23), together with the self-consistency
relations for the molecular fields Ug... and the order parameter 4, Egs. (2.18¢, 2.26,
2.27), and the expression for the collision self energy form the basis for a description
of superfluid *He in the quasiclassical regime, i.e., in lowest order in Te/u, w/p,
| q |/ge . An equation of motion for the distribution function, defined by Eq. (2.29), is
found by studying the equation for G,X.

As is clear from the above derivation, an essential feature of the resulting kinetic
equation is that the momenta are fixed at the Fermi surface, and that time and space
derivatives are not treated consistently. Consequently, this equation is not Galilean- or
rotation-invariant; equivalently, the equation for the quasiclassical Green function
does not imply momentum or angular momentum conservation (although number
conservation is a direct consequence of Eqs. (2.23, 2.26)). This is clear since, as we
discussed above, the conservation laws in general are found by a consistent treatment
of space and time, i.e., the equation for the full Green function. To resolve this
difficulty, we suggest the following (more intuitive than rigorous) procedure: Study
the system of equations defined by

[0, E,x,t) — Ze(p, ET, 1) FG,] =0, G,xG, =1, (2.31)

which is the equation of motion for the full Green function supplemented by a normali-
zation condition. This system has obviously the same symmetry properties as the
microscopic Hamiltonian, the solutions, however, are expected to be “close” to the
solutions found in the Eilenberger approximation except that they are depending
weakly on the absolute value of p. Thus we obtain kinetic equations which have all the
invariance properties and, treating the | p |-dependence somewhat intuitively (and
putting | p | ~ pr at the end), this system implies the conservation laws; an illustra-

tion will be given below (see also [24]).

(D) The Kinetic Equations Near T, , and Application to the Orbital Dynamics

In this section, we study in more detail the structure of the kinetic equations in the
Eilenberger approximation, restricting ourselves from the beginning to low frequencies
(w <€ 4, T) and wave vectors (| q | <€ &" ~ Tefvr). The following considerations
apply to the A- and the B-phase, the A-phase having a momentum dependent absolute
value and phase of the order parameter. Although the calculational details are more
complicated for the B-phase, we remark that it may be treated formally similar to a
s-wave superconductor for the cases considered here.

In the low frequency regime, we may expand with respect to the external time varia-
tion in definition (2.22), collecting terms up to the order under consideration. A
formal prescription, however, cannot be given easily since the solution of the kinetic
equation may also be proportional to a derivative. For consistency, one must also
treat the time derivative of the overall phase as a zero order quantity since it is connec-
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ted with the chemical potential of the pairs. We introduce the following notation:

0 4, (2.32a)

4=l b

and 4, = | 4, lexp{—i®,} is the order parameter. Furthermore, the absolute value
| 4, | has nodes in the A-phase for p pointing in certain directions on the Fermi
surface characterized by a unit vector I:

4y | = doll —(n- 17 (2.32b)

where n =p/|p|, and 4, = 4,T) is the maximum gap over the Fermi surface,
connected with the angular averaged gap by

(dy By = 4% = 34,2 (2.32¢)

On the other hand, | 4, | is independent of the momentum in the B-phase. Finally,
we denote the overall phase by ¢; the pair chemical potential us is thus given by
Hs = ‘P/ 2.

Consider first the equation of motion for the regular (retarded and advanced)
Green functions. Working out the ““o”” in Eq. (2.23) up to first order in the time deriva-
tive, we find

(E + iD)[p,, GR*) — [U, GR] + i[d, G¥) )
+§[ﬁs,£gk—]+ i[aff aéR] L [aA aGRL

{

2

o’ oOF

2

¢t ’ oE §, 2

+ 5 ve - V,GR 4 0(@2) = 0, (2.33)
where [, ]; [, ], denote the commutator and the anticommutator, respectively,
and vp = pg/m*. Furthermore, the equation for G is given by reversing the sign of
the pair breaking parameter I'. In the simple situation under consideration, I is
connected with the self energy and the inelastic scattering rate 73 by

I = ifRp, = —iZApy = 127 .

Treating U = Us + U23, , where Usand U# denote the symmetric and antisymmetric
parts of U, respectively, as first order, we find in zero order the well known result:

GR = oRpy + BR(4,]1 4, ), (2.34)
where we introduced
—iE+ T )
YT TR T 4, s e
(2.35)
r = —— A i = (B

[(—iE 4 )+ 14, F]?
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the square root defined such that Re 4/ > 0. .45 , for example, is the reduced density
of states, including pair breaking. In first order, the corrections due to U are taken
into account by replacing E— E — U? in « and B (note that Us - T drops out of the
equation). Furthermore, one finds that in the diagonal part of GR-4, E has to be
replaced by E — ©,4,/2; this could be expected for general reasons, since it is always
possible to choose a gauge in which the overall phase is zero. Equivalently,® one can
measure the energy relative to the actual pair potential which results into £ — E +
(us — ©,/2) B, , canceling just ¢/2 as expected. In this gauge, GR has the simplest form
(note, however, the additional contribution if 1 is time dependent: ¢ — @, ~1);
finally, there are no corrections to G®-4 proportional to | 4, |. The expansion in the
space derivative 1s straightforward: for example, if we assume for simplicity that
¢ = @(r) only, we find in first order E— E — pg - Ve m/m* in o and B, where the
superfluid velocity vg is given by vy = — Vp/2m (note that in such a case U2 also has
to be calculated consistently). '

Using now the expansion of the Keldysh function, Eq. (2.29), with respect to the
time variation, we may easily derive from (2.23) the equations of motion for A% and
h8, the antisymmetric and symmetric parts of the distribution function (recall that
h =1 — 2f). Inserting the regular Green functions in zero order, we derive the Boltz-
mann equation by taking the trace of (2.23) and taking the trace after multiplying
by ps ; it is convenient to use the equation of motion for G®-4 in terms connected with
A3, Then we find (see also [13]):

oh® oha .. Ohe
Mgy — Ko+ Ve VM = =Ry | A, | 5 — MU, (2362)
8 1 0k, ©
a—taﬁhs—Ks+Jiqu-Vha+2[A,,1(w;_§_aE_23_t);,s
oho 1 6% . Ohw
= — 14,1 55 (41, — 3572 6,) — MU 2, (2.36b)

and we neglected certain coupling terms in these equations since A8 is typically small.
K® and K® are the symmetric and the antisymmetric part of the particle-particle
collision operator (for some details of the corresponding K® and K? for electron—
phonon collisions, see [25]). Also remarkable is the appearance of a ‘“‘conversion
term” which is in lowest order given by 2 | 4, | A3A%, and the corresponding expression
on the r.hs., namely, — | 4, |(8h*/3E) #3@p. We realize that for

he - Qzag_;’; 2.37)

both terms cancel each other, and for h* = th(E/2T) and @, independent of the
momentum, such a 4* describes a shifted Fermi function and is an eigenfunction of the

3 In this form, the argument is valid for spatially homogeneous situations only. In general, we
are faced again with the problem of a consistent expansion in &, and V,.
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linearized collision operator, reflecting again the gauge symmetry connected with the
overall phase (of course, the argument is not restricted to the linearized theory).

The two Boltzmann-like equations (2.36) are supplemented by the self-consistency
equation (2.27) which we consider for the moment only near 7, and in the case where
the deviations from thermal equilibrium are small. If we define 8fs = —A8/2, §f2 =
—(h® — th(E/2T))/2, we are able to rewrite (2.27) into the form of a time dependent
Ginzburg-Landau equation:

v

87¢

| /8FaL\’

A 521;{ . {(2.38)

A, + < | dEL, 8% + iy 31 e—f@v'> —
where F; is the usual Ginzburg-Landau free energy, and (" = <3p - p'/Ip| | p'| - ./ p
implies that the quantities in the brackets depend on p’. As is well known, the addi-
tional time derivative is of special importance for fluctuation effects above T..
Other orientation energies, like the dipolar interaction, have to be included on the
r.h.s. of this equation. Of course, the TDGL equation together with the Boltzmann
equation directly implies particle conservation: Separating from (2.38) the equation
for the overall phase, we find that the r.h.s. will be proportional ~div js, while the
gradient term in the Boltzmann equation will contribute the divergence of the normal
current (upon integration).

As an example, we discuss now the viscous motion of the l-vector near To(| 4, | <
Te, wrp < 1, q = 0). In such a situation, the deviations from equilibrium are small,
and we may solve the Boltzmann equation in a relaxation approximation [12, 26],
since the inhomogenities are rapidly decreasing in £ over a scale given by | 4,

_....Ksz_]_‘/’/iSfS, _Ka/:g_}__‘(/’/;&fit
TE TE

where 7 is the inelastic scattering time (taken for 7 = T, and £ = 0). Then we can
solve (2.36) directly and find (Fermi liquid effects are not important!):

I
ATCRERT

_ |ApITE'/Vé > 1
N+ 2 A, Tepghy  ? ATchERT

. &
bfﬂ. == Tg

Ry . g
WIIAD‘

(2.39a)

ofs

As tong as dy7g > |, one may insert the BCS-limits of the special quantities, namely,

M = ElE, Ry, =(4,][E)A,
| | Ay = (14, 1}E) AT .

more precisely, these forms are valid for & = F* — | 4,23 1 4. T". Then we find:

. 4,114, 1
Oft o 7p ATH(E2T)
st ~ il »

= 2E*  4TchERTY
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Obviously, 8f# (parity (— ) for interchanging E, pg -> —E, —pg) describes the
Cross—Anderson mechanism [27, 26] for the damping of the Fmotion. This is well
known and does not need to be discussed further. On the other hand, 3f% (parity
(+ -+)) results partly from the type of disequilibrium connected with the ““pair angular
momentum” as considered in detail by Leggett and Takagi [28]. In other words, 8/’
describes a local (on the Fermi surface) difference between Cooper-pair and quasi-
particle chemical potential. (This will become clearer in the case of the spin dynamics
where the interpretation is more straightforward.)

Inserting these results into the time dependent Ginzburg-Landau equation (2.38),
we derive the expression for the orbital viscosity. Some integrals are useful:

dE‘/V';Z"TIADI;
J

de%ﬁJGZﬂﬂAﬂ”+FW“—wF; (2.40)

[aE __wld, | T
PR A e A e e i

note that I' = 1/27, in the situation under consideration. Inserting these results, we
then find the equation of motion in the usual form:

oF

=7 (2.41)

wl x =1 x

where F includes all orienting energies. There are three contributions to the oribital
viscosity p: from the antisymmetric and the symmetric part of the distribution func-
tion, and from the additional time dependence in Eq. (2.38), which represents some
sort of quantum-mechanical coupling between pairs and quasiparticles. It is, however,
not convenient to discuss these contributions separately. Indeed, we consider first the
limit 4,7z > 1, and we find, upon expansion in the inverse of this quantity, the two
first terms of the form:

p=pca +222, Az, (2.42)
E

where uc._,. is the Cross—-Anderson viscosity [27]
pe.a, = Ny(m24364T)) 7¢ (2.42a)

and the “orbital susceptibility” [28] xorp is given by:

3m? A4,

XOl'b N[) 128 T ] (242b)
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in agreement with Nagai [29].* On the other hand, the time derivative in the TDGL
dominates in the gapless region,

= ND(WAQZ/IZTc)s AnTE <1, (2.42¢c)

and the viscosity is independent of the inelastic scattering rate in this limit. In the
intermediate range, both expressions join smoothly.

It should be noted that the corrections to (2.41) in second order in the time deriva-
tive are easily found in the linearized regime (and near 7. ; d,7p > 1) by taking the
time derivative of the distribution function in (2.36) into account. This leads to the
replacement 73> — —iw + 75 in (2.42), in agreement with the phenomenological
treatment [28].

Finally, we consider briefly rotations of the system, and we use the generalization
of the Eilenberger approximation as outlined in part (C) of this chapter, i.e., a consis-
tent treatment of time and space derivatives. In this scheme, the distribution function
is defined by (note the - instead of the o-productj:

GX = GRxh — h« G2,
(2.43)
1 —

h = 2f.

As an example, we consider again the oribital dynamics, and the antisymmetric part
of k only (Eq. (2.36a)). The r.h.s. of this equation has to be modified into

o14,| ok | 8|4, 8 5|4, @]

at  JF op or or op (244)

mggz[

From expressions of this type, one may draw several conclusions: If the Fvector is
constant in time (= I;), and A* has its equilibrium form, 2 = hy = th(E[2T), expres-
sion (2.44) 1s obviously zero. Looking then onto this system from a rotating reference
frame (compare Egs. (2.14)«2.17)), we find that

| A = | A, I) = | 4(p, K1),

where p = #p, l(t) = #'1,, and Z is the rotation matrix as discussed (part (A) of
this chapter; a ‘““~" denotes the quantities in the rotating frame).
Furthermore,

;;O(E) = h(E) = ho(E + w(r x pp;

note that a(E) as well as h(FE) is an eigenfunction of the collision operator, due

* Apparently, Kopnin [30] has calculated the contribution to y,., resulting from the higher order
terms neglected in (2.38). This contribution is a factor 4,/7, smaller than (2.42b).
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to energy and ‘momentum conservation. Then we obtain a cancelation in (2.44) as
expected, since

o214,

(0w X p)- %p

Consider now a situation, in which 7 is moving in the rest frame. If we look onto
the system from the rotating frame with the same (possibly time dependent) angular
velocity, we find obviously that | 4, | is time independent, and the second term in
(2.44) is the drive term in this situation:

o1 4,1 ok, 214, ok,
op o —(@ xp) ap ©OF

(the third term is important if [ varies also in space); of course, the physical
content is the same.

Another interesting question is the conservation of anguiar momentum, and, for
simplicity, we consider a situation where the system is not influenced by the walls of
the container. Then, if [ is time dependent, there is an angular momentum input
given by

oF

6—[= le'VOl.,

which leads, if { is rotated at constant angular velocity (by an external force), after
long times (of order ~pR2/u ~ hours, where R is a typical dimension of the con-
tainer) to a solid body rotation of the normal component, and, in thermal equilibrium,
a vortex lattice will be found-in the superfluid component. As in the case of momentum
conservation, the conservation law for the total angular momentum is only found in a
consistent treatment of space and time derivatives, i.e., by going back to the equation
for the full Green function or by generalizing the quasiclassical approach as discussed
above.

3. SpIN DYNAMICS OF THE A- AND B-PHASE

(A) Generalization of the Kinetic Equations to the Spin Dynamics

In this chapter, we want to study in more detail the spin modes of the A- and B-
phase in the low frequency (w <€ 4, T) and homogeneous limit. As is well known, the
order parameter is a 2 X 2-matrix in spin space, and it is parameterized conveniently
by a complex momentum dependent vector d(m) (n a unit vector along p):

4, = MNT)i6,6.d,, (3.1)

sum over indices implied, where d has the property {|d[®>) =1, and d X d* =0
for unitary states (like the ABM- and BW-state). Consequently,

4,4,% = MTH .
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in the A- and B-phase (ABM- and BW-state), the vector d is given by

A d = dyf(e; + ias) - ],
B: d = (%n) ¢°,

(3.2)

where d, , «; , a, are real unit vectors, and # is a rotation matrix, characterized by an
axis w and an angle ®. Furthermore, «, - @, = 0, and the [-vector is defined by
[=o X a,.

As above, a distribution function may be defined through the normalization condi-
tion (2.28) by:

G = G,Roh — hoG A, (3.3)

where summation over spin indices is now understood. Thus, £ will be a matrix in
spin- and Nambu-space, and we define the 4 x 4-spin matrices o, {31, 32]:

051 - ﬁ36‘]_ ) 112 == 16'2 . Q’.3 — ﬁ3&3 . (34)

In the following, we consider only the symmetric part of the spin distribution function
which we denote by 8f. 1t is defined by (compare Eq. (2.30)):

b= —28fx, . (3.5

With these generalization, the kinetic equation can be derived following the same
lines as in Chapter 2; the result is, however, still a matrix equation in spin space,
and we transform (similar to Eq. (3.1)) to a vector notation. Then we obtain the follow-
ing Boltzmann equation, in the homogeneous case, and neglecting second order time
derivatives which can be justified near T¢ :

é N r - ,
??JViSf—K(bf)+2‘Ap‘/v28fl e 'y'/‘/;lHeff X Bf

d* x d

[d?

l

= GERERT [ 40 Re

4 /th]. (3.6)

As above, 47, 4, denote the spectral quantities which are connected with the (time
independent) zero order regular Green functions (2.34), and K(8f) denotes the (linear-
ized) spin conserving collision operator. An external magnetic field H is taken into
account in (3.6) by

Hernr = H/(1 + Z,/4), 3.7

where Z, (=~—3) is the usual Landau parameter, and

U= Uext -+ UF.L. s

Uey = —iyH Upy = (1/4N,) Z,S: 3.8
ext syn, F.L. (X D) 07
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S is the total spin, and y the gyromagnetic ratio. Near T¢, the spin is connected with
the distribution function by:

S — N, [<dem13f> —

= +ZO/4 [<dem 8f> Uews]-

Finally, it is remarkable that only the part of the distribution function “perpendicular
to d,” of, , appears in the conversion term in (3.6):

(3.9)

of — of, + of,;  Of, = d* x (5f x d)/|d 2. (3.10)

This is clear, however, from an intuitive point of view: At any given point of the
Fermi surface, the pairs are condensed into a spin state which is an eigenstate of the
spin projection along some axis with eigenvalue zero, and d represents this axis.
Consequently, we can convert quasiparticle spin “perpendicular to d” only.

The Boltzmann equation is supplemented by a time dependent Ginzburg-Landau
equation, which has in the present situation the form (near 7¢):

v H ' _ I SFD !
a4 - <de./V2(8f % d)| AM) - — w5 5t > 3.11)

where we included the dipole energy on the r.h.s. (Fg. is minimized since 4 = 4(T)
assumes its equilibrium value). A direct consequence of this coupled system is the
spin conservation law: Integrating the Boltzmann equation and noting that

< [ e K(Sf)> — 0, (3.12)

we find immediately
$+yH X S =N, <(17A2/4Tc) Re(d* x d) —214,| [dE A, SfL>;

on the other hand, from (3.11), we obtain

a2 « . OFp
B dr x d - <| p|deJV3f>m N0<d <4 NN RE)
which gives the final result:
St yHxXS=— Kd* % gﬁz +c.c.}, ' (3.14)

namely, the first of Leggett’s famous equations [3, Eq. (11.35)]. For completeness,
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we add the expression for the dipole energy. Up to an additive constant, it is given by
Fp = gp(3 0 - d(m)*, (3.15)

where gp 1s temperature dependent (~A4%T)). In the A-phase, the dipole energy
depends on the orientation of d, relative to /, namely,

Fp* = —igp(d, - 1), (3.16a)
while in the B-phase, it depends only on the angle of rotation @ (see (3.2)):

Fp® = #gp(cos © | 2c0s26), (3.16b)

which is minimal at &, ~ 104°. Of course, g, differes in the two phases due to the
different temperature dependence of A(7). In the following sections, we study in detail
the solution of the kinetic equations.

(B) Longitudinal A-Phase near T, : Resonance in the Hydrodynamic Limit

In a longitudinal resonance experiment, one applies a time dependent magnetic
field parallel to the static field H, , which defines the z-direction in the following, and
measures the absorbed energy for a given external frequency w. For a description of
the observed collective mode, we may assume as usual that the static external field
has oriented the spin quantization axis d, , which is for the A-phase independent of the
direction on the Fermi surface, such that it lies in the x—y-plane. Furthermore, 1 is
assumed to be fixed (for example, in the y direction), and we consider the hydrodynamic
limit wry << 1, where 7 is the temperature dependent inelastic scattering rate. For
simplicity, we neglect the time dependent field and restrict ourselves first to tempera-
tures near 7 .

We parametrize the spin quantization axis by an angle ®:

d, = (sin O, cos O, 0), (3.17)
and since of has in this case only a component in the z direction, namely,
of = (0, 0, 5f%), (3.18)

the dynamics is described by equations similar to the phase modes of superconductors.
From Eq. (3.6), we obtain

1 .
N 87 — K(Bf?) + 21 4, | A; 5f* EWT{%IAH@-FJVEUZ}Q (3.19)

note that the static field does not affect the equation for this component. The Ginzburg—
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Landau equation has also a simple form, since we may get rid of the momentum
dependence by averaging (3.13) over angles. Then we obtain:
aFD

O ’A“ de/Vchf>

o7 (3.20)

The solution of the Boltzmann equation represents, as usuali, a rather complicated
problem since it involves an unhandy collision operator. In fact, exact solutions can
only be found in the normal state [33]. On the other hand, there is a well defined
approximation which was already used by Abrikosov and Khalatnikov [34] and which
we elsewhere called the “reduced operator” [25]. Wolfle used this approximation
extensively [35], and the agreement with exact results is excellent.

To explain the reduced operator, we discuss some properties of the collision opera-
tor. As can be easily seen, K (67 is a negative semi-definite integral operator, i.c.,
defining the usual scalar product and denoting 8f# by | F),

(FIK|F><0 (3.21)

for any function | F). Furthermore, K is Hermitian; i.e., for any two functions | F}>,
| Fo),
F K| Fy =<{FR|K|F), (3.22)

and it has one solution with eigenvalue zero which corresponds to a shift of the chemi-
cal potential of the spin-up-particles relative to the spin-down-particles, reflecting
the conservation of spin in collision processes.

Quite generally, the collision operator consists of two parts which we call “scattering-

in” and “scattering-out” contributions. The scattering-out term is given by
Kowl® ) = —(1/rs) 4 8%, (3.23)

while the scattering-in is an integral operator.

The reduced operator is then defined as the integral operator, which agrees with the
exact operator in the scattering-out contribution, and which has the same eigensolu-
tion with eigenvalue zero. A possible choice is: -

N T dE N, 35>
Kreadf?) = — M o7 ATCHE2T) [ dE(N; [ ATchERT)>

]. (3.24)

From the above discussion, it is clear that the reduced operator will treat the lowest
eigenfunction correctly, while “higher” eigenfunctions are treated in a relaxation
time approximation.

In contrast to the normal state, however, the energy and temperature dependence
of the inelastic scattering rate cannot be calculated analytically. Furthermore, a
numerical calculation in the A-phase will hardly be possible, and we can give only an
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estimate for the temperature dependence of 1/7g on the Fermi surface. At low tempera-
tures, the quasiparticles are located in small regions on the Fermi surface along +/,
since in these directions the gap is zero. Furthermore, the inelastic scattering rate will
be roughly given by the number of quasiparticles available for scattering processes.
and this number is proportional to the occupied area on the Fermi surface relative
to the total surface, namely (77/4,)% Thus, we obtain

| ] T2 ,
~ <
TE~0 o "'N(T) (Ao) ’ I'< A“ ’

where 7(7') is the normal state scattering time at the Fermi surface. Near 7., on the
other hand, we find from a comparison with experimental results (see below) that the
inelastic scattering rate is to a good approximation equal to its normal state value

] 1 !

Tg~o TN(T) - (T

(/T (3.25)

for temperatures 0.87, < T << Te.

In view of the uncertainties in calculating 7, we will use the reduced operator
with energy independent scattering rate. We remark that the general trend of this
approximation—neglecting the energy dependence—is to underestimate slightly the
collision processes.

For the solution of the kinetic equation, Eq. (3.19), we have to remember that
©/2 is the chemical potential of the spin-up pairs, and —@/2 the chemical potential of
the spin-down pairs. Consequently, we will separate in 6f# the part corresponding
to a gauge transformation, and we redefine the distribution function:

02 .
df * now describes the non-equilibrium between pairs and quasiparticles. By inspection
of the kinetic equation, where K is replaced by the reduced operator, we find imme-
diately (w7, << 1):

Ny U
f = o)
of N+ 214, | TNy ATehE2T) (3.27)
and the constant n can be determined by integration. Defining further:
o= v ([ dEH; 37%);
247, — 1/n <2 4, de/i@Sf">; (3.28)

Tp — J]_/z AJQ "
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we obtain from (3.19), after Fourier transforming with respect to the time:

w?®/2

[T—__—}_i%l;z—l-l]ZAJgn =

Note that all quantities are defined analogous to the case of a superconductor; near T,

Jy~1
1 4 1 e (3.30)
~ (T4 N
245~ (e 1+ IERERS )
Explicitly, we find for the relaxation time
S %%, Agrs < 1, (3.31a)
_ 16T 4T, Agre > 1. (3.31b)

i, F T w4,

Equation (3.31.b) differs slightly from the result in superconductors, since | 4, |
depends on the direction; note that 7z ~ 7n(T6). In the limit of a well defined gap,
the distribution function is of the form

A 52 n 2 2
8f % = E? ATcH(E2T)’ E2 > |4, (3.32)

which describes indeed a chemical potential difference between pairs and quasi-
particles (see Chapter 4). The result (3.31b) is found with equal success using this
expanded form.

Inserting the above results into the time dependent Ginzburg-Landau equation,
we realize first that the gauge transformation cancels the first order time derivative
term (which is, in fact, true for all temperatures), and the TDGL equation assumes
the form

2 A0, m = N (—aa%)w, (3.33)

from which we obtain the following equation:

—inR 2(1 + 20/4) EFD L
@@ — (1 TTE 20/4) N, ( 20 ) =0. (3.34)

Linearized around the equilibrium position, ® = 0, we find the well known collective
mode at a frequency w, , where

2 8F,

wnt = (1 + Zo) 5 ggm | = (1 + zy) 22, (339)
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Fic. 1. Total line width of the longitudinal A-phase resonance (solid line), and that under the
assumption of a fixed /-vector (dashed lire), at the melting pressure.

and a line width given by

_ wAzTR
Aoy = 1255 77 (4, < 7). (3.36)

In the case of a well defined gap, this result is well known [36, 37]; we emphasize,
however, that we obtained (3.34) directly from microscopic theory, with the correct
identification of the relaxation time.

Finally, we study the influence of the orbital viscosity on the line width of the longi-
tudinal resonance by relaxing the assumption that / is fixed in a NMR experiment. We
write ® = s — x, where ¢ and y are angles chracterizing d, and I, respectively, and
consider the equations linearized around the equilibrium position ¢ = y, and in the
temperature region near 7. where this effect may be of importance. Instead of (3.34),
we have to consider then a coupled system of equations, found from (2.41) and a
generalization of (3.34) (compare [28]):

iw(l + Zo/4) 2uNJly = wp (x — ),

(3.37)
5 iw - dw, Y
(w + w) = wp P~ x)
Then we find the total line width to be given by
tot wy? ) _&
Aoy =77 Zo/4 ("“ T 2,u)‘ (3.38)

and, as expected, g >> Ny/2u for the case of a well defined gap (4,7 > 1). Very
near T¢ in the gapless regime, however, the orbital viscosity contributes twice as much
as the intrinsic mechanism to the damping, as can be seen from Fig. 1, where we plot

Aw'®, taking the data for the melting pressure. In the limit 7 — T, , we obtain from
Eqs. (2.42c, 3.31a):

- ot . wa® 9T
lim Ao = T Z A ndg

T-Ta

(3.39

which is ~27 < 0.6 kHz. However, we do not find an increase and a final decrease
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in this regime (Te — T ~ 10-37¢) as discussed by Leggett and Takagi [28]}; instead,
the theoretical temperature dependence is rather undramatic and cannot explain the
experimentally observed increase [38].

(C) A-Phase Resonance at Lower Temperatures and for Arbitrary wry

To extend the results to low temperatures and the collisionless regime, wrz > 1,
we have to include higher order terms in the Boltzmann equation (3.6), and we have
to use the regular Green functions expanded up to second order in w in the Ginzburg-
Landau equation. The most important correction to (3.6) is, however, of a simple
type, provided we have performed the transformation (3.26). As long as w <€ 4, it
consists of including in .#; the external frequency [12] by replacing 1/7z by —iew + 1/7g.
This can be seen as follows. From (2.36), we realize that the conversion term, for
example, is modified into

| 6By &7,

214, | [
which is written (after Fourier transformation, d/dt — —iw) as
214, | Hyw) ¥, (3.40b)
where A(w) is given by
No(w) = 3BNE + w/2) + BAHE — w/2)].

For a well-defined gap, we may again use the expanded form of .4; , namely,

|4,
52

214, | Hyw) ~ A, (—-iw + ) (3.40¢)

|
TE
and the distribution function will be of the same form as above, (3.32), for arbitrary

wrg , provided w, 75t <€ 4, T. Consequently, the non-linear longitudinal resonance
equation near T, is directly given by replacing 7z by 7g(w) in (3.34), where

a(w) = 7R/(1 — iwTg), (3.41)

and the resulting equation is easily transformed back to the time variable after multi-
plying by 1 — iwrg .

Furthermore, including the corrections of the regular functions in the Ginzburg-
Landau equation, we find that the non-linear longitudinal resonance for all tempera-
tues is described by

. _ YZo/4 1)\ Y2 0Fpy
?@ — jw’rp(wll — 1) @ — |1 — iwTp(w) [1 N I_:OZJZ” ?( 20 )w -



which is transformed into a third order differential equation of the form:

1 2 )/2 82FD 1 ))2 EFD
—— AP —_— = . 2
@ + T @ X Yo @ 8@2 + X 6@ 0 (3 4 )

In this equation, y is the magnetic susceptibility of the normal state, given by y

xoll + Zo/A)™ xo = Nyy?/2, and y,, is the “Cooper-pair susceptibility” as introduced

by Leggett and Takagi [17]. Our result is in complete agreement with the more or

less phenomenological treatment of the nen-linear spin dynamics with dissipation

[17, 18, 39] since we find ;' = x™* — 5" + (1 — Z) x,)~L and the connection with

the phenomenological time 7, and the inelastic scattering time 7, is given by
(1—-2)Y

T LA (3.43)
Y and Z are defined below (see also Fig. 2). We emphasize strongly that we obtained
this result directly from microscopic theory, solving explicitly the Boltzmann equation
in a reasonable approximation, and the equation is applicable for all temperatures
and arbitrary wrg , provided , /r; <€ 4, T. On the other hand, 7 may be regarded
as the typical time in which a non-equilibrium distribution decays in a closed system,
and we will discuss this further in Chapter 4.

Finally, by linearizing (3.42), we obtain as usual the collective mode. The resonance
frequency, (3.35), is not modified, and the line width is given by

L wptY
AwH * ] + 20/4 TR » (344)

where ¥ = Y(A/T) is the Yoshida function defined by

V= <f dE 4Tch;35/2T)>' (3.43)

For a well defined gap, we calculate then 7¢ , using the distribution function Eq. (3.32).
and obtain

R = (Z(Y — Z) 1. (3.46)

Furthermore, Z = Z(4/T) is defined by
_ g
Z= <J aE ATch¥(E2T) E*

(which was denoted f(T') in [36]). A plot of ¥ and Z is given in Fig. 2, and one easily
finds the high and low temperature limits:

(3.47)

3

) 4y
Yol =5 ()
4
16T

(3.48)

+—7—€@(~4—)2, 4<T;

~ 1 — (3)1/2
Z ~1] (2) 472 T
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FrG. 2. The characteristic functions ¥ and Z for the A-phase vs 4/T.
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Y~ (-—f) ,
9 \ 4

(3.49)
Z ~1Y, T<LA.

The unusual temperature dependence for 7 — 0 is due to the non-singular behavior
of the angular averaged density of states and its inverse, which appear in the definition
of Y and Z. The result for the line width is, of course, in complete agreement with the
result of Leggett and Takagi who find

UJA2 Z

1+ ZJd1 —2Z 7>

Ao, = (3.50)

provided the above identification. In the low temperature limit, =7 is equal to 37g/2.

An experimental determination of the longitudinal Jine width has been performed
by Gully er al. [38] at the melting pressure (T, ~ 2.6 mK, AC|Cy ~2.0, Z, ~ —3).
For a comparison of the results (see Fig. 3), we have to calculate the temperature
dependence of A(T), taking approximately the strong coupling corrections into ac-
count through the relation

a0 = a7 (52 (T2 )"

which gives the correct specific heat jump near 7, and tends to the weak coupling
limit for T — 0. We then find that the temperature dependence of the line width is in
good agreement with the experiment if we choose 7z = 7n(T), and 7n(Te) ~ 3.8 X
10-® sec; this is in good agreement with the result of Gully et al. who extracted a value
of 4.8 x 10-® sec using the phenomenological theory. Very near T., however, the
agreement with experiment is not satisfactory—the limiting value for the line width
is given by dw, /27 ~ 0.6 kHz. Of course, the finite limit for 7 = T, is in better
qualitative agreement than previous theories.

With the described methods, we are able to handle in the same way the transverse
resonance. As long as w7z € 1, where w; = yH, is the Larmor frequency, the distri-
bution function is not modified, and we find, besides the usual shift of the resonance
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FiG. 3. Line width of the longitudinal A-phase resonance at the melting pressure (solid line),
compared with experimental results {(dots) from {38]. The arrow indicates the limit for 7 = T, .

frequency, that the line width of the transverse mode, for all temperatures, is given by
dw, = ((v* — o ))|w?) do, , (3.51)
in agreement with other calculations.

(D) Longitudinal Resonance in the B-Phase

Before applying the framework of the kinetic equations to the B-phase resonance,
we want to discuss briefly the concept of splitting the distribution function &f into
“parallel and perpendicular to d(n).”” In the A-phase resonance, the spin-quantization
axis 4, is independent of the direction of the momentum, and the splitting of 6f and
the kinetic equations is, since independent of n, straightforward (compare (3.6, 3.11)),
and note that for the A-phase 8f, = d, x (6f x d,), of, = d,(d, - 8f). This concept is
very convenient in analyzing the structure of the solutious, since the *“‘conversion
term,” 2 4, .45 3f, , appears only in the equation for the perpendicular component:
quasiparticle spin can only be converted perpendicular to d, . Consequently, the dis-
tribution function has the typical energy dependence given by (after the gauge trans-
formation):

L §i N,
o = BarariEnn  Ame>

(3.52)

. Ny
M = TramERT) "

where n, , n, are constant vectors perpendicular and paraliel to d, ; note the “hole™ in
of | compared to of, .

In the B-phase, however, the spin-quantization axis is different for each mn, and we
must perform a local splitting of f. Within the approximation of the reduced opera-
tor, this can be performed easily, and we consider then the angular averaged distribu-
tion function whose energy dependence will be similar to (3.52).
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We consider now in more detail the longitudinal resonance, in which case we may
neglect the external field from the beginning (it only defines the z-direction in the
following). As mentioned agove, the spin-quantization axis d(m) is given by (w =1z
can be assumed, and ¢ = 0):

d(n) = #(w, @)n
and we only have to consider oscillations of @ (around its equilibrium value, @, ~

104°).
We start then from the Boltzmann equation (3.6) and redefine of by

672

o~ Seh (ET)

z+ S, (3.53)

z = (0, 0, 1), which leads, since
Od x(z xd) =d xd,

to the expected cancelation. In the resulting equation, we replace the collision operator
by the reduced operator with energy independent scattering rate, split the equation in
land | , and consider the angular average of the z-component (which only is relevant).
Note that for any momentum independent vector a = (0, 0, a),

{a)> =a/3, <{a)> =2af3.

Defining further, for simplicity,
Bf =8fy + 8., oy = (&f,)%,
8. = (1),

we obtain the Boltzmann equation in the form:

_ 1 JdE A 3f\ + &) ]
4Tch*(EJ2T) 3Y

1 1 w?@

"~ 3 4Tch(E2T) [ 2
2 JdE M (3fy + 8f)

ATch¥(E2T) 3Y

2 1 W@

T 3 4Tch*(E[2T) [ 2

(3.54)

. N
—iwA) 8fu + —TE_I [an

— inz]
(3.55)

) A
—iwHy 8, + 2 — | +244.5,

— in"'],

where the molecular field, U?, is connected with the distribution function by

N (CTorLTE a——
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and y, = 2/3 + 1/3 Y is the normalized magnetic susceptibility of the B-phase, without
Fermi-liquid corrections. Finally, the Ginzburg-Landau equation is of the form:

20— Y)

(— w?@ + 2iwlU?) 3

44 [dEHpf, - A% (ag'@DB)m (3.57)

According to the above discussion, we can immediately find the solution of the Boltz-
mann equation:

- UE
N = FTeERT)

TL T W F 2 ATl — dwrg)y LA, ATCR(ERTY

(3.58)

and then it is straightforward to solve the system of equations. First of all, we find the
usual result for the frequence of the collective mode which is given by

2 02 B
wg_?_é’FD
B PR :
X 4 “h

(3.59)

where y 15 the susceptibility of the B-phase

Noy® Xo
2 1+ xeZof4

For the determination of the line width, we restrict ourselves first to the hydrodynamic
regime wt, <€ 1, and obtain

sz Y

dwy = 10— 77 3, Gre 7 70) (3.60)

where 1y is defined as above (and is now identical to the 7g discussed for super-
conductors). This is in exact agreement with the result of Leggett and Takagi [17]
(for A= > 1) provided we identify:

SR I
LT%XQY—Z E -

(3.61)

The temperature dependence of 7 , taken for typical energies £ ~ 4, is quite differ-
ent from the A-phase behavior since the probability of finding a partner for a collision
process 1s decreasing rapidly at low temperatures. The result is {40]

1 1 3 A \3/2 i
s =) (3.62)

and a numerical calculation by Einzel and Woélfle [41] shows that the low temperature
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limit is reached for T < 0.5 T,. Since Z ~(T/4)Y for T<€ 4, we obtain in this
limit

3
LT ™~ 3TE

which was also recently reported by Einzel and Wolfle [42]. It is amusing to notice
that the relation between the phenomenological relaxation time of Leggett and
Takagi, and the inelastic scattering time appears to be the same in both phases for
low temperatures.

It 1s, however, not realistic to neglect the external frequency in the expression for
the line width at low temperatures, since w = 75" for temperatures below <0.47%, .
Thus, we have investigated also this case, and we find (T < 4)

. wg’ K LT
Aws = T3 78 2 TF (wmay (3.63)

with the above identification of 7,¢. This is also in agreement with the work of
Combescot and Ebisawa [36] since the relaxation time introduced by them ad hocin a
kinetic equation is connected with v 1 by

24+ Y
Tce — 2(1t Z)TLT =TT, T< A

(see, for example, the discussion in [17]). The temperature dependence of the line
width at low temperatures has been measured recently, and it is in good agreement
with the theoretical result [43], for intermediate temperatures. The reason for the
temperature independent plateau for T — 0, however, is stiii unclear.

In concluding this section, we want to remark that we have, also for the B-phase,
given a complete justification of the phenomenological description of the damping of
the longitudinal magnetic resonance, and of the proper identification of the pheno-
menological relaxation times. We must remark, however, that we found such a simple
result only by the approximation of the reduced operator with constant inelastic
scattering rate. We know, in fact, from work on similar problems in superconductors
[25] that this introduces possibly an error of some 10 9%, in the final results (at lower
temperatures).

4. CONNECTION WITH OTHER WORK ON NON-EQUILIBRIUM PHENOMENA

(A) Spin Dynamics and the * Branch-Imbalance™ in Superconductors

Typical “branch-imbalance” situations have been considered several years ago,
experimentally as well as theoretically [44, 45]. In these experiments, a tunneling
current from a normal metal into a superconducting film generates a potential differ-
ence between pairs and quasiparticles in the superconductor, and this difference can
be sensed by a second normal metal film, coupled via a tunnel barrier to the reverse
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side of the superconductor. The theory was developed further by Schmid and Schén
[12], near T., and extended to low temperatures by Schon and the author [25].
Reviews were given recently [19, 20, 46]. We want to clarify in this and the following
section the connection between the two approaches, which may be called “particle
representation” and ‘“‘excitation representation,” since this is actually also the
difference between our approach to superfllid ®He, and other work using kinetic
equations.

As was shown by Tinkham and Clarke [45], the voltage V/, in the detecting probe
1s given by

Vi = Q*2eNogns » (4.1)

where gws(7) is the measured normalized conductance of the probe junction in the low
voltage limit, and the ““quasiparticle charge” Q* is given by

0* = 2N, <f dE 4, 8f%) (4.2)

The quasiparticle distribution function has to be calculated from the stationary
Boltzmann equation, which assumes for this situation the form (compare [12]):

—KGf) + 21 A1 A 85 = P, (4.3)

where —K(6f%) denotes the collision operator for electron—phonon collisions, and
PT describes the symmetric part of the rate of change of &% due to the injection.
Recall that 8f® is even with respect to the energy. The injection term is connected with
the injected current 7 in the usual way,

I = 2N, - Vol - f dE P (4.4)
thus we are led to define g by:

TR = 2Ny - Vol - eV, gns!T, (4.5)

and it follows from the above definitions and the kinetic equation that

TRa<de/V;8fS>/<21Alde/fGSfS); (4.6)

thus 7 1s directly related to the measured quantity. Comparing this result with Eq.
(3.44), we realize that vy determines the damping of the nuclear magnetic resonance.
In fact, the Boltzmann equations are identical for the tunnel injection in the low
injection voltage limit, and for the determination of &f# in the longitudinal A-phase
resonance, and the result corresponds in both cases to a chemical potential difference
between pairs and quasiparticles.
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We remark that 74 is, in a strict sense, not a relaxation time which can be measured
directly in a real time-dependent relaxation process. To show this, we consider again
the branch imbalance experiment and assume that the current is turned off suddenly,
keeping, however, the chemical potential of the pairs (= ©/2) fixed—which corre-
sponds thus to a situation where the superconductor is part of an open system.
Recalling further that .4; is frequency dependent, and using the approximate result
Eq. (3.40c) which is valid for | 4 | 7z = 1, namely

1

TE

20414 =155 (ot ) m, mzian @)

we may calculate the relaxation time by assuming that &f8 will not change during the
relaxation process. Following Clarke et al. [46] in notation, we realize that the relaxa-
tion time for fixed pair potential is given by 7o. :

Tor = (¥/Z) 1 ; (4.8)

in fact, 7o+ was denoted 7, by Pethick and Smith [20], and, from the above discussion,
it has to be identified with the relaxation time introduced by Combescot and Ebisawa

[36]:

Tox = TCE -

For low temperatures, 7o« is equal to the inelastic scattering time for £ ~ 4. The
above situation was also considered by Einzel and Wolfle [41], with the same result
(remember that we neglected the energy dependence of rg throughout).

A rather different situation arises if we consider a closed superconductor such that
the pair potential can rise during a relaxation process. Thus, the scattering processes
only have to fill the “hole” of the distribution function [12]. The resulting time
measures thus the time of establishing local equilibrium between pairs and quasiparticles,
and has thus to be identified with the phenomenological time of Leggett and Takagi
[17]. The result for all temperatures is [41]

e = —Z) 790 = (1 — Z)YI(Y — Z) 7¢, (4.9)

which we also found above in (3.43). The temperature dependence of this quantity
is different, however, in a superconductor and in ®He-A. The above relations clarify
further the interrelation between different relaxation times used in a variety of non-
equilibrium phenomena in superfluid *He and in superconductors, and their
relation to the inelastic scattering rate.

At this point, we would like to add a comment on the procedure we use to solve the
kinetic equations, i.c., approximating the exact by the reduced collision operator
with constant inelastic scattering rate. Although the eigenfunctions and eigenvalues
of the exact operator are not known in the superconducting state, one may believe
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that its spectrum has the same properties as in the normal state [33], namely the eigen-
value zero (connected with the conservation laws), and a continuous spectrum with
eigenvalues << — 1/, with E ~ 0 and E ~ 4 for the A- and B-phase, respectively.
Within the reduced operator, we treat the lowest eigenfunction exactly, and the
higher eigenfunctions in a relaxation time approximation, with the lowest rate of the
continuous spectrum. Thus, we believe to slightly underestimate 1/rg , in contrast
to the variational principle which always gives an upper bound for 1/74 .

We remark finally that =y determines also the damping of fourth sound [47, 48]
and is directly related to the second viscosity [48] which determines the dissipation
in the acceleration equation of the superfluid velocity.

(B) Particle Representation—Excitation Representation

In this section, we briefly present the relation between usual kinetic equations for
excitations (excitation representation), and the kinetic equations in the particle repre-
sentation which we used throughout this work.

A very complete presentation of the kinetic equation in the excitation picture was
given by Aronov and Gurevich [21], and we repeat some of their arguments here. The
application of the excitation picture is restricted to situations for which the space and
time variation of the various physical quantities is sufficiently slow such that

qle<id] w4, (4.10)

where the first condition is necessary to ensure the existence of a local Bogoliubov
transformation to almost stationary quasiparticles, while the second condition guaran-
tees that the energies of the excitations are well defined. Actually, one has to require
for the same reason

Vrg €1 4. 4.11)

If these conditions are satisfied, the local spectrum is of the form (assume v, = 0):
EI} = (‘Epz + !A 12)1/2§ Ep - é‘:p - @/22 tfp — p2/2m* — [ (4.]2)

for simplicity, we consider only situations which can be characterized by one phase.
Furthermore, the Bogoliubov amplitudes @, , &, assume the form

i Bt&
T RE(E, + &

’ [2ED(ED + Ep)]l/2 |

(4.13)

note that 4 can be a matrix in spin space (we avoid the index p here since the considera-
tions apply also to superconductors).
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In the following, we denote the distribution function of the excitations by n,,
and we consider now, as a formal introduction, the correlation function

(@i (0) ap o(t)> = e B (iignyiiy)es + e FH(Gy[1 — nTo) B as » (4.14)

where ayf, , aps are the usual Fermion creation and destruction operators for particles.
Realize the different time dependences of the two contributions on the right-hand side
of this equation; we may interpret this difference such that these two terms refer to
particles in the upper and lower band, respectively, of a semiconductor model. Hence,
we may introduce particle states which are labeled by the energy £ = +E, in the
upper, and £ = —E, in the lower band as well as by the direction of the momentum,
pr - Then it is consistent to define a distribution function f(E, pg) of these particles by:

ME) f(E, pr) = fdfn{ﬁpnpﬁp S(Ep — E) + gy[l — nzp] Up" S(Ep + E)}, (4.15)

where T = transposed, and the £, integration has to be performed for fixed py . The
Green function technique has led us to such a description in a very natural way. The
description of a superconductor by f(E, pr) and by n, = n(&, , pr) are denoted particle
representation and excitation representation, respectively. We will work this out more
explicitly, and linearize (4.15) around the local equilibrium Fermi function. Writing

1y = no(E) + 8ny (4.16)
and omitting the bars for convenience, we find (¢ = §£,)
‘/Vi(E) Sf(E, pF) = fdf{up Snzrup S(E'p - E) — Uy Snzpvp"}- S(Em + E)}a (417)

and we consider first the spinless case; i.e., dn, is assumed to be proportional to the
unit matrix in spin space. Then it is convenient to split the distribution functions
according to their parity with respect to interchanging E, pr — —E, —pr in f(E, pr)
and with respect to £, pr — —¢&, —pg in n(¢, pr). We introduce the notation §f &+
and on'=¥, In a straightforward way, we obtain from Eq. (4.17) the following
relations:

Sf+ = (&/ E|) 8nt—1); §fi+) = Spt+-);

(4.18)
§f— = sgn E - Snt+1); 8f ) = (¢/E) dn'—).
Clearly, a branch imbalance situation is connected with 8n‘—+, i.e., with the part of
dn odd in £ and even in pg [20]. Furthermore, in the low voltage limit, én‘—* is very
well characterized by a chemical potential difference du between pairs and excitations.
Consequently,

8= = ny(E(p + 6u)) — n(E(w)),
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from which we obtain

= = (—ny) % S, (4.19a)
and
S = (—nNEYE?) By, (4.190)

in agreement with our result (3.32). Thus, with the above relations, the particle repre-
sentation and the excitation representation can be brought into correspondence to each
other. The conversion term in the particle representation is, in fact, connected with the
peculiar form of the coherence factors in the excitation representation, which, for
example, for electron-phonon collision processes in superconductors, are given by

[1 £ (¢ — AH/EE"].

Consequently, the scattering-out and scattering-in part of the excitation collision
integral do not fit together, leading to conversion of excitations.

Finally, we discuss Eq. (4.17) for the spin case, and, restricting ourselves to distribu-
tion functions which are even with respect to pg . we find it again convenient to split
them into parts parallel and perpendicular to d(m), namely

én = om, - dn, ;

on, = d(d* - Sm)/| d |2,

and in the same way for 8f. Then we find the following identification (positive parity
with respect to pr — —pg understood):

St == (&1 E )y dn' 5t = 8n'’;
(4.20)
7 =sgnE-oni 87 = (&E)om!”.

This again reflects physically the fact that d(m) is the spin-quantization axis with eigen-
value zero: the consequences have been discussed in detail in the previous chapter.

5. SUMMARY AND CONCLUSION

In this paper, we described and applied the quasiclassical method to dynamical
processes in superfluid 3He. The basic quantity of this concept is the quasiclassical
Green function, i.e., the Green function integrated with respect to &, : The enormous
advantage is that a normalization condition allows the definition of a quasiparticle
distribution function, labeled by the energy and the direction of the momentum (and
by space and time). Consequently, one is able to treat non-equilibrium phenomena in
the whole quasiclassical regime w <€ u, vr | q| << u, for example, one may study
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strong pair breaking situations such as temperatures very near 7¢ or the influence of
the walls of the container [49]. In the original Eilenberger approximation, however,
the resulting equations are not Galilean and rotation invariant, since the derivation
relies on a non-consistent treatment in the expansion with respect to the time and
space variation (the latter being neglected in the self-energy part of the equation of
motion; compare Chapter 2C). We propose to solve this problem by studying the
equation of motion for the full Green function, supplemented by a normalization
condition modified in the same way (see Eq. (2.31)). Obviously, this system has the
required symmetry properties, and we expect that the solutions will depend only
weakly on the absolute value of the momentum (compared to the strong &,-dependence
of the full Green function). Transformations are then easily performed by unitary
operators like (2.15). In deriving the conservation laws from this equation of motion,
we must, however, treat the | p |-dependence somewhat intuitively, allowing for partial
integrations and setting | p | ~ pg at the end of a calculation. This procedure seems
somehow artificial; we do not believe, however, that difficulties resulting from an
inconsistent treatment of an expansion with respect to space and time can be overcome
in the general case by choosing a certain reference frame [30, 50] —although it can be
convenient in certain situations, of course.

In the preceding chapters, we applied the kinetic equations to the orbital and spin
dynamics, in the homogeneous and low frequency (@ <€ 4, T) limit in which most of
the underlying physics is well understood: We have chosen these examples to illustrate
the structure of the quasiclassical equations, and to show how they can be solved in a
reasonable approximation for the collision operator. Thus we could give, directly from
microscopic theory, a complete justification of the phenomenological theory, with the
correct identification of the phenomenological relaxation time, for all temperatures
including the gapless case very near T, . Furthermore, with the generalization of the
quasiclassical approach, we were able to study the properties of the equation under
rotations (which have been of considerable interest recently [51, 52]).

In the last few years, a large amount of work has been done on kinetic equations for
superfluid He. In contrast to the quasiclassical approach, most of this work
uses equations derived along the lines described by Betbeder—-Matibet and Nozicres
[15]. In this technique, one also starts from the microscopic equation of motion, and
then defines the distribution function by integration of the Green function with respect
to the energy. In this case, one has to require that the inelastic scattering rate is small
compared to the temperature (which is very well satisfied for superfluid ®He), and
that w << Te, vp | q | <€ Te [53]. The resulting equation is a matrix equation in the
additional particle-hole index characteristic for superconductivity. Furthermore,
under the additional assumptions w < 4, ve | q| <€ 4, 47> 1 which guarantee
the existence of a local Bogoliubov transformation to almost stationary quasiparticles,
a scalar Boltzmann equation for the excitations can be derived [21]. The system of
equations is closed by the gap equation and the conservation laws. In this picture, the
coherence factors in the collision operator play a crucial role in the relaxation of
branch imbalance [20] and have to be handled very carefully. The connection of the
excitation representation with the quasiclassical approach (which we also call particle
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representation) has been discussed above, and we want to stress that in our approach,
the crucial scattering processes appear in a natural way as a “conversion term” in the
Boltzmann equation and are handled easily.

In conclusion, the quasiclassical approach to kinetic equations represent a very
elegant and powerful method to study static as well as dynamic properties of superfhmd
3He. For example, since experiments in restricted geometries [54] become more and
more important, we expect further application of this approach in the future.
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