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We develop a generalization of the quasiclassical Green's function which allows us
to include the transfer of even small amounts of momentum to the particles., We
explain the general principle and add a few illustrations.

The pairing theory of Bardeen, Cooper, and
Schrieffer has been found extremely successful
for superconductors as well as for the low
temperature phases of 3He. In general terms,
this theory owes its success in quantitative
predictions to the fact that nature has made
the pairing energy so much smaller than the
Fermi energy. Yet, another reason for its
success results from the ease - comparatively -
by which calculations can be performed. Indeed,
most calculations can be simplified by means
of approximations which exploit the fact that
the Fermi-momentum is extremely large in com-
parison with the momenta of, say, external
perturbations; in other words, it is possible
to simplify calculations since the Fermi wave
length is negligibly small compared with any
other lengths.

A theory which incorporates systematically
such approximations from the beginning can be
developed on the basis of the Green's function
G(Z,E) as introduced by Gorkov. The fact that
the Permi-momentum 1§ extremely large can be
understood in the sense that the length of the
momentum P in the Green's function is of no
importance, Consequently, one may arque that
it is possible to integrate G(B,E) with respect
to |B| with no loss of information. Thus, we
cbtain the standard quasiclassical Green's
fungtion which depends only on the direction
of p.

The quasiclassical theory in this form,
however, seems to neglect a transfer of momen-
tum to the particles entirely. Such a neglect~
ion has most severe consequences in cases where
the transfer of momentum occurs in a systematic
way. An example for a systematic transfer is
the motion of a charged particle in a magnetic
field which, no matter how small, leads to
closed orbits. Another example is provided by
the trangition to a moving frame of reference
where each particle acquires an additional
momentum which leads to essentially different
trajectories.

Thus, we have developed a generalized
quasiclassical theory where the Fermi energy,
that is to say, the chemical potential p is

considered as an irrelevant variable. Conse-
quently, we define the generalized quasi-
classical Green's function as follows
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Let us now recall that the Green's function
generaily depend on the center-gf-mass coordin-
ates (r,t) and that formally, (p,E) are the
Fourier conjugate variables of the coordinate
difference. Therefore, quantities which are of
the same formal structure as the Green's func-
tion are multiplicatively connected by means of
a star-product which is explained as follows
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The quasiclassical Green's function is
normalized in the sense that

grg =1 . (3)

Furthermore, it obeys an equation of motion in
the form
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where I is the self-energy. Egs. (3)and(4)
determine g completely.

It is known from Gorkov's theory, that the
Green's function is properly speaking, a matrix
in particle~hole space and possibly, in spin
gpace too. This property requires minor modi-
fications, for instance, in Eq. (4). Less
known is the fact that the discussion of time-
dependent phenomena is greatly facilitated if
one introduces in addition to the modifications
mentioned above a Green's function which is a
matrix in, let us say, Keldysh's space, namely
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where g and g are the retagded and advanced
Green's function and where g has been intro-

duced by Keldysbl).

659



660

It follows from Eg. (3), that gK can be
written as

K
g = g"#h - hag’. (6)

Further inspection shows that £ = (1-h)/2 has
the meaning of a quasiparticle distribution
function. These relations allows us to con-
struct & Boltzmann equation in a rather straight
forward way from Eq. (4).

The generalized quasiclassical theory
possesses the same symmetries as the original
problem. This has been demonstrated explicitly
for Galilei transformations, rotations, and
gauge transformations.

We have also studied the gquasiparticle flow
pattern during the motion of the orbital vector
in an anisotropic pairing state which is
commonly known as the ABM state. We also learn
in what meaning one may assign an intrinsic
angular momentum to the Cooper pairs.

We have alsc derived a Boltzmann equation
for a superconductor which should allow us to
calculate the Hall effect on moving vortices.
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