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We study a generalization of the quasiclassical Green’s function which allows
us to include the transfer of momentum to the particles. In this approach, we
may handle Galilei transformations, rotations, and gauge transformations
in a systematic way. As an example, we calculate the quasiparticle flow
pattern which arises during the motion of the orbital vector in the ABM phase,
and discuss the meaning of the intrinsic angular momentum of the Cooper
pairs. Finally, we consider charged particles in a magnetic field, and derive
a Boltzmann equation for a superconductor which applies to the Hall effect
in the case of moving vortices.

1. INTRODUCTION

The pairing theory of Bardeen, Cooper, and Schrieffer has been found
extremely successful for superconductors as well as for the low-temperature
phases of He. In general terms, this theory owes its success in quantitative
predictions to the fact that nature has made the pairing energy so much
smaller than the Fermi energy. Another reason for its success results from
the ease (comparatively) by which calculations can be performed. Indeed,
most calculations can be simplified by means of approximations which
exploit the fact that the Fermi momentum is extremely large in comparison
with the momenta of, say, external perturbations; in other words, it is
possible to simplify calculations since the Fermi wavelength is negligibly
small compared with any other lengths.

A theory which incorporates systematically such approximations from
the beginning has been developed independently by Eilenberger' and

*On leave from Institut fir Théorie der Kondensierten Materie, Universitit Karlsruhe.
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Larkin and Ovchinnikov.> Let us call this approach the theory of the
quasiclassical Green’s function; and, as a short introduction, let us remind
the reader that, as Gor’kov’ has shown, the BCS pairing theory can be
formulated most conveniently in terms of Green’s functions, say, of G(p, E).
The fact that the Fermi momentum is extremely large can be understood
in the sense that the length of the momentum p in the Green’s function is
of no importance. Consequently, one may argue that it is possible to
integrate G(p, E) with respect to the magnitude of p with no loss of
information. Thus, we obtain the quasiclassical* Green’s function g(p, E),
which depends only on the direction of p. This theory has been found
extremely useful in nonequilibrium problems of superconductivity? and
of superfluid *He. A survey of this quasiclassical theory is presented in
Section 2.

The quasiclassical theory in this form, however, seems to neglect a
transfer of momentum to the particles entirely.f Such neglect has most
severe consequences in cases where the transfer of momentum occurs in
a systematic form. An example for a systematic transfer is the motion of
a charged particle in a magnetic field which, no matter how small, leads
to closed orbits. Another exampie is provided by the transition to a moving
frame of reference where each particle acquires an additional momentum
which leads to essentially different trajectories. Thus, there are cases where
the standard quasiclassical Green’s function fails to give an adequate
description. Therefore, we have developed a generalized quasiclassical
theory, which is presented in Section 3. There, the Fermi energy, that is,
the chemical potentizal, is considered as an irrelevant variable and con-
sequently the generalized quasiclassical Green’s function g{p, E) is obtained
by integrating G{(p, E) with respect to the chemical potential. It is shown
at the end of that section that the classical Boltzmann equation can be
derived easily with this new technique.

The generalized quasiclassical theory possesses the same symmetries
as the original problem. This is demonstrated in Section 4 explicitly for
Galilei transformations, rotations, and gauge transformations. In addition,
energy and momentum conservation are investigated in that section.

As a specific example, we study in Section 5 the quasiparticle flow
pattern during the motion of the orbital vector in an anisotropic pairing
state, which is commonly known as the ABM state.® We also learn in what
sense one may assign an intrinsic angular momentum to the Cooper pairs.

We show in Section 6 that we are now able to recover the Lorentz
force on a charged particle in a magnetic ficld. Eventually, we derive a

*This term is meant to indicate that the de Broglie wavelength of the particles is unimportant.
+For a review sec Ref, 4,
tExcept perhaps, for a sudden transition during a collision.
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Boltzmann equation for a superconductor which is expected to provide a
proper basis for the Hall effect in the case of moving vortices.

The Appendix gives results on the quasiclassical Green’s function in
some simple cases.

2. QUASICLASSICAL GREEN’S FUNCTION

Our starting point™® is the BCS pairing theory in the form of Gor’kov’s
equation, which is an equation of motion for a system of Green’s functions
including anomalous expectation values. In its conventional form, however,
this equation of motion can only be integrated for thermal equilibrium.
Since our main concern is with nonthermal states, we have to generalize
Gor’kov’s equation according to the theory of Keldysh such that it contains
an enlarged set of Green’s functions. Thus we are led to define a matrix
Green’s function

(1)

A

0o G*

where éi{*“‘) is the retarded (advanced) Green’s function and where we
may call G* Keldysh’s function. These quantities are defined by

(}R(Xh X2) = [é>(x3, X3)— é<(«‘fl> x2)10(t,—12)
GMx1, x2) = —[G7 (x1, x2) ~ G=(x1, x2)10(t2— 1,) (2a)
G¥(x1, x2) =[G (x1, x2) + G =(x1, x2)]

In thsa case of s-wave pairing (which we consider here for simplicity),
G~ and G~ are matrices in particle hole space as follows:

iy (x)7 (x2) () (x2) )>
"‘%fff(xl)‘f’;(xz) _fﬁr (x )y x2)

W7 (x2)dp(x1) Yi{x2)dry(x1) )>
—g1 (x2)y (x1)  —¢ )] (x1)
where i, (x) = y(r, t) are the fermion destruction operators.

Using these definitions, we may write the generalized form of Gor’kov’s
equation as follows:

S

é>(x1, Xg) = —i<(
(2b)

éq(xi,xz)= z<(

fritm itﬂowoumfﬁ(xa}é(xl, w)=16i—x) ()
1

In this relation, Ho(x1)=~(1/2m)82/ar§+ U(x,) is the single-particle

*For a broader presentation of the contents of this section, see Ch. II of Ref. 4.
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Hamiltonian and 7 =1®+,, and 7, denotes the Pauli matrix. Fur-
thermore,
A=1®A; A= ( )
& \A* 0 (4a)

is the matrix system of the complex order parameter A, which has to be
determined self-consistently according to

Alx) =2 {G (x, X)}ou. (4b)

Above (and in the following), the subscript 0.d. means the off-diagonal
part and denotes the strength of the (attractive) interaction potential.

The quasiclassical approximation is based on the fact that in a degener-
ate Fermi system, the range of spatial variation in the physical guantities
is much larger than the Fermi wavelength. This means that, as a function
of the space coordinates, G(r1, r») is equal to exp [ip(r; —12)}, where |p| = pr
is the Fermi momentum, times a slowly varying amplitude. Consequently,
in the equation of motion (3) we may approximate

3 R R ,
Hox)=L——i -2 U@y, A=A, 1) (5)
m »i or

where r= (r; +r;)2 is the center-of-mass coordinate. In other words, the
quasiclassical approximation (5) can be justified by the fact that G is arather
compact object as a function of its relative space coordinate ¥’ =r; —r,.

For a further development of the theory, itis advantageous to introduce
a mixed representation which displays the center-of-mass coordinates r
and 1 = (¢, + 1)/ 2, together with momentum p and energy E, which are the
Fourier conjugate variables to the relative coordinates ¥ and ' =1 —1,.
Therefore,

Gp, E;r, 1)= f d’r' dt' [exp (—ipr +iE?)
x Gry, t: £, 1) (6)
where r1(2)2r+(-)r’/2: £1(2)=I+(—)£'/2.
In contrast to the approximation in the spatial coordinates, no simple
procedure is possible with regard to the time coordinates. From a general
point of view, the equation of motion for the Green’s function connects

two quantities in the form of a matrix multiplication. Hence, this connection
is of the type

j dts Alty, 13)B (b, 12)=> A(E; 1) o B(E 1) (7a)

where the transition is from the coordinate representation on the left side
to the mixed representation on the right side. The “dot product™ which
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we have introduced above in the mixed representation is associative and
it can be expressed as an infinite series of differentiations,

Ao B=(exp {% {a’é&? -—a?a§} })AB (7b)
i[aA 8B aAaB]
= A B | e
A-B 2{3531‘ at OE

where 3% means a differentiation with respect to E which acts only on A,
etc. ~
It is a consequence of the approximation made above that the momen-
tum appears only as a parameter. This allows us to introduce a quasiclassical
Green’s function g as follows:

§p, Esn, ) —i{ dt, G, Esx, ) (8)

where r = (r; +1,)/2 is the center-of-mass coordinate. In other words, the
taken. The momentum variable on the left side has to be interpreted as a
dependence on the direction of the momentum only; the magnitude of p
is understood to be fixed at |p| = pr. One expects no loss of information;
for instance, it is known that the transitions in a Fermi system always occur
close to the Fermi surface such that it is only necessary to specify the
direction of the momentum.

The equation of motion for the quasiclassical Green’s function can be
obtained as follows. We form the difference between the equation of motion
(3) and the adjoint equation,

9 = L x
[1’5355; st iA(xl)]G(X1! X2)

1
x x » a . X
~G(x1, Xz)[’é"sl""_'*“ ‘ ‘+IA(X2)] =0 9)
ola

where G (9/3t,) means —(9/3t,) G. Then, we realize that the stron gly momen-
tum-dependent terms (p>/ 2m)G cancel. Furthermore, p(@é/ or) depends
only weakly on the magnitude of the momentum, and we are allowed to put
[p|=pr. Thus, an integration of Eq. (9) with respect to ¢, leads to the
equation for the quasiclassical Green’s function, namely

[Qolp, E; 1, 1)3 §(p, Esr,0)].=0 (10)

where we have introduced the notation

Op=HE+1 (z’;%g;-lﬁ](r, n)+iden=100, (1)
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Note that the commutator in Eq. (10) is based on the dot product; this
means, for instance,

[%E 3 g1=E[#s, §1-+3il%s, §)-
Furthermore, the space differentiation acts as an operator of the usual
type, that is, [3/dr¢ §]= 2(0&/or).
The following remark is most important. Since Eq. (10} is homogeneous
in g, it cannot determine the quasiclassical Green’s function completely.
The necessary information is supplied by the normalization condition

gog=1 (12)

One may convince oneself that this condition is valid by the following
arguments. In thermal equilibrium, and in a spatially homogeneous state,
one finds by explicit calculation that Eq. (12) is true. In the general case,
we consider the equation [Bo, 58 £1]- =0, which can be derived from Eq.
(10) by an obvious algebra. Evidently, ansatz (12) solves this equation;
and since this solution joins up smoothly to the equilibrium solution, we
conclude that this is the only possible solution.

The formal aspects of the normalization can be illuminated by the
following considerations. In the quasiclassical approximation, the solution
of Eq. (3) can be written as

G=[0,—-1¢1" (13)

Clearly, G can be considered as the resolvent of the operator Qo. In the
definition (8) of &, the principal value integral along the real £, axis is equal
to the sum of two integrals along contours which consist of the real axis
(from —co to +00) closed by semicircles in the upper and lower half-planes,

iy e

§=P,—P_ , (14b)
where }’i{_) are projection operators such that
Bo,oPiy=Puy, PooP.=0, PB.o+P =1 (14

This means that

provided that the spectrum of Q, is separated from the real axis and from
the infinite points.? In general, quasiparticle collisions (which will be
included later) and the restriction to slow changes in space and time will
guarantee that O, satisfies this condition. Clearly, it follows from Eq. (14)
that the normalization (12) is valid.
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The quasiclassical approximation is self~contained in the sense that ail
physical quantities can be calculated once the quasiclassical Green’s func-
tion g is known. There appears, however, one peculiarity which can be
understood best if one recalls how one calculates these quantities (which
are as a rule equal-time expectation values) from the Green’s function G.
Due io their slow decrease for large values of E and £, it is necessary to
observe the correct sequence of integration, which is E first and then &.
Obviously, we have reversed this sequence when introducing quasiclassical
Green’s functions. We can repair the error which arises from this procedure
if we improve the convergence of the integral by calculating difference
quantities between the superfluid state of interest and say, the normal state
in equilibrium.

Therefore, the following formula for the mass density p and the mass
current (momentum) density j are meant to be valid for the calculation of
just this difference.™ 1 With this interpretation

pte, ) =-2mN () {3 j 4E Sp(E“@, E3x, 1)+ U, 1)}
itr, 1) = ~AN(0) [ dE Sp 2080, B v, 1)

where (- - -) denotes the average with respect to the directions of p, and
where N(0) is the density of states at the Fermi level. Note the potential
energy U, which anticipates results of the subtraction procedure discussed
above.

For the sake of completeness, we also rewrite the order parameter
self-consistency condition (4b) valid for s-wave pairing,

A, 0 =T [ 4 (%@, B v, Do (16)

(15)

The quasiclassical Green’s function allows us to define the particle
distribution function as follows. Consider first the normalization (12) in
the detailed form gRo g% =% %=1 and g%+ g%+ 5% §* = 0. One rec-
ognizes that the last relation can be solved by the ansatz

gh=gRh~hog*  (17a)

*The calculation of difference quantities is an important concept of the present theory, and
it serves to justify one or the other procedure later. As a rule, the values of the quantities
in the normal state can be found by direct reasoning, For instance, there are cases where
obviously the mass density is uniform and where the currents are zero.

tLandau’s Fermi liquid theory shows some resemblance to the features discussed above.
There, one may distinguish between a direct contribution of the quasiparticles to the physical
guantities on the one hand and an indirect contribution which may be attributed to the
molecular fields arising from the quasiparticle interaction. Generally, the latter does not
depend on minute details of the quasiparticle distribution and hence this contribution is the
same in the normal and superfluid states. Thus, superfluid and normal state differ by the
direct quasiparticle contribution.®
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Furthermore, it is possible to require that h be a diagonal matrix in
particle-hole space. Therefore, we put®

h=1r"+74T (17b)
and simultaneously we introduce f = (1 - £)/2, where
fzf(L)+f(T). f<L}:%(1“k(L))' }C(T)ﬂ “'?)l'k(T) (183}

has the meaning of a distribution function. By explicit calculation, one can
show that in thermal equilibrium, f = f,;,, where

1 .
ﬂh“w (hm th -_*) (18b)
and where f = 0. We interpret f such that f= f(p, E;r, t) is the number
of particles in a statet labeled by the momentum direction p and energy E.

The Boltzmann equation for f can be established as follows. In the
equation of motion (10), we insert the ansatz (17) for *. Using the relation

[AsBeC]l.=Be[AsC].+[AsB]l.~C
as well as [Qg 3 £7]- =[Q0 3 §*]- = 0, we obtain
[Qo98"] =88 c[Qo9h)-—[Qoshl =g*=0 (19)

Of this equation, only the diagonal part is needed. Its detailed structure
depends very much on the form of ¥ and g* and therefore we will only
write it down schematically. At the same time, we will also add a term
which takes care of the inelastic collisions, on which we will comment in
a moment. Thus,

%{ (¢3f~r~—-—f+[1v+a f})
(20)
M(v"af+"')°gA}d'~f€'==0

where K = 1K™ + 7K™ is called the collision integral.
At this point, we should recall that Eq. (3) is only a special case of
Dyson’s equation

[Go'-31G =1 21

*(L) and (T) are abbreviations for longitudinal and transverse, respectively. This terminofogy
stems from the interpretation of the complex order parameter A as a vector in the complex
plane. The changes 84 are then parallel and perpendicular to A in the (L) and (T) modes,
respectively.

+This state is not a quasiparticle state of the Bogoliubov type, but rather a weighted sum of
such states.
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where 3 is a matrix of the same structure as G defined by Eq. (1). In general,
the diagonal part of (ER+3%)/2 can be absorbed by defining suitably
renormalized quantities, whereas the off-diagonal part contains the pair
correlations and equals —i A in the weak coupling limit,

Inelastic collisions are contained in £¥—3%4 (scattering out) and in
$¥ (scattering in). In the spirit of Boltzmann’s “‘stosszahlansatz”” we may
calculate K by replacing the dot product by simple multiplication. Thus,
we obtain ‘

K =48R -84 g% + S5~ - gR8%), (22)

In general, the collision integral is such that it conserves mass, energy, and
momentum,

3. GENERALIZED QUASICLASSICAL APPROXIMATION

We will now remove some of the restrictions which the standard
quasiclassical approximation imposes on the momentum variable. Let us
first rewrite Gor’kov’s equation (3) in the mixed representation defined by
Eq. (6) Then it will be necessary to generalize the dot product of Eq. (7)
such that it also includes the momentum and space variables. It will be
called the star product and it is defined by

A * B = (exp {-;— [9pal—anal—alap+ a;“a;?]}

A-B
i[eA3dB 0AdB JA OB 0JAIB
=A B+ [ mmmmmmmm e -—--—}
218E ot dp dor 9t dE or dp
R (23)

Note that the above expansion in powers of derivatives means in conven-
tional units an expansion in powers of 4 ; for convenience, we will henceforth
refer to it in this sense. For instance, the terms that are explicitly written
down in Eq. (23) mean an expansion of the star product through first order
in A.

The notation of the star product allows us to write Gor’kov’s equation
in the form

[Qp, E;r, ) +1u]* Gp, E;xr, 1) =1 (24)

where

éTmT3E—i[p2/2m+U(r, O]+ iAlr, t)==T®é (25)
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replaces Qp of Eq. (11). Formally, the solution of Eq. (24) is given by
G=[0+1u]" (26)

For our purposes we find it is necessary to define the quasiclassical
Green’s function, different from Eq. (8}, as follows:

£, B0 == { du Gip, 31,1 @)

Roughly, the w integral collects most of its contribution at g ~p°/2m
where G has a pronounced maximum. This will lead to a result similar to
the previous one if |p| is about the Fermi momentum. In particular, for
spatially homogeneous states, both definitions agree. Further illustrations
are given in the Appendix. In general, however, g will now depend weakly
on the magnitude of the momentum, though we expect this dependence
to be weak. Of course, there will be some (subtle) effects which rely on
this weak momentum dependence and which are of concern in the present
paper. Nevertheless, we will continue to use the symbol 2, since no confusion
may arise. ‘

The difference between Eq. (24) and its adjoint equation leads, upon
w integration, without further approximation to the equation of motion

[Qp, E;x,0) ¥ §(p, E;r, 1)]-=0 (28)
which has to be supplemented by the normalization condition

grg=1 (29)

The arguments which show that this condition is valid are similar to
the ones discussed in connection with Eqgs. (12} and (14), and only a few
obvious replacements have to be carried through. On the other hand, it
might be possible that the increased complexity of O may require more
restrictions on the states for which Eq. (29) is valid.

As far as the expressions for the densities of mass and current are
concerned, we could almost adopt the formulation of Eq. (15), where
averages with respect to the directions of p occur at fixed length |p| = pr.
However, we need more flexibility with respect to small changes in the
momentum of the particles, particularly with respect to the shift p—»p-+mu,
Therefore, we define

p(r, 1) =—sm J da, f dE Sp g%(p, E; 1, 1)
(30)
jr, 2)= —% J do'pj dE Sp 7sp8(p, E; 1, 1)



147

where the o, integration acts on the momentum according to
ad
[ doa@=NOa@): [ doysam=0 31)

In particular, the last relation means | do, a{p+mu) = | do, a(p). It can be
justified if one goes back to the original definition of the densities in terms
of G*. There, the three-dimensional p integration extends over the whole
momentum space and a shift in the integration variable is possible if the
integral is sufficiently convergent. This condition requires the subtraction
of, let us say, a background contribution which is insensitive to the details
of the state and which we take as the normal state contribution as discussed
in the previous section. Consequently, Eq. (30) is valid for the evaluation
of difference quantities.* This rule has to be observed in a somewhat stricter
sense than before, and therefore we have not included the potential energy
correction to the mass density p. With the present notation, the self-
consistency condition (16) assumes the form

AG, t)z%f do, j dE (8%, E; ¥, Dou (32)

We define a distribution function similar to relations (17) and (18),
with the difference that the star product now replaces the dot product. For
instance, we have

gh=gRxh-H =g (33)

and f =(1-4 )/2. The distribution function, specifically f= {f}m =
f(p, E;r, 1), is expected to depend weakly on the magnitude of the momen-
tum. However, we interpret f as before, namely as the number of particles
in a state labeled by the momentum direction p and the energy E.

From the definition (2), one may deduce symmetry properties of the
Green’s function with respect to the interchange of the arguments. For
instance,

{85(—p, —E)}22 =18, Ed}11 (34a)
From this and related relations, it follows that
R (-p,~E)=—-h"(p.E), hP(-p,-E)=hP(p,E) (34b)

The symmetry properties of £ and O differ only by minor changes.

*See footnotes cited just prior to Egs. (15).
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For sake of completeness let us note that the Boltzmann equation (20)
appears now in the generalized form
L m (a2, PO o 2us
— {8 | Faf+—=+[1IU+A* rj
2{5{ (T3f m or [t /] A
(35)
—f gt —R=0
d.
Again, the contribution K of inelastic collisions may be evaluated in the
approximation of simple multiplication, and hence its expression agrees
with Eq. (22).
As an example, we consider a system in the normal state where A =0.
It follows from Eqs. (25)~(27) that

SR Eir 1)=745 (36a)

and that §* = —2® (see also Appendix A). It follows from this relation and
from Eq. (33) that

g5, Eix, £)=2%A(p, E; 1, 1) (36b)

We note in passing that this is an example of how condition (34) can be
satisfied.

The normal state Boltzmann equation can be derived from Eq. (35)
as follows. First note that the equations for f& and £ are formally
equivalent, since no off-diagonal quantities appear. This fact allows us to
write down one equation for the total distribution f = &+ 1" at once. If
we expand the star product [U ¥ f]. through first order in #, we obtain
. pof . df oUGdf B

f+m ar+baE or ap Klf1=0 37)
In this Boltzmann equation, each term is already proportional to # and
therefore it is exact in the classical limit # - 0.

A peculiar feature in the Boltzmann equations that can be derived
from quasiclassical Green’s functions is that the energy variable E always
measures the Jocal energy. In the present case, this means that

E=p*/2m+U—pu (38a)

and one obtains the conventional type of Boltzmann equation if one
mtroduces the distribution function

foir.)=fp, E=p*/2m+U—p;r, 0 (38b)

It follows from this relation that f+ U7 9f/3F = f (and further relations).
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Thus, we obtain the conventional result
= K[f]1=0 (38¢c)

Clearly, | do, | dE f is equivalent to | Q#) " d’p F and therefore, in terms
of ﬁ the densities of mass and current assume their conventional form.

In the superfluid state substitutions of the type (38) are of little value
since in general they lead to more complicated expressions.

4. SYMMETRIES AND CONSERVATION LAWS

The theory of the generalized quasiclassical Green’s function possesses
the same symmetries as the original problem from which it is derived. We
will demonstrate this explicitly for Galilei transformations, rotations, and
gauge transformations. Quite generally, conservation laws follow from the
symmetries with respect to these transformations, but we will study
specifically energy and momentum conservation in order to obtain explicit
expressions for the energy and momentum currents.

As a rule, the collision integral is of a structure which allows a direct
interpretation in physical terms and which displays clearly the symmetries
and the conservation laws under consideration. Therefore, and for the sake
of convenience, we will neglect it in this section. This means also that we
do not need to make use of the representation (33) of g* in spectral
quantities 2% and £ and in the distribution function f. In addition, the
normalization to ¢ will not be used here. As a consequence, most relations
obtained in this section are valid if § is replaced by G.

4.1. Galilei Transformation

Consider a new reference frame which moves with velocity u with
respect to the rest frame, and mark the physical quantities in the new
reference frame by a tilde. Then,

F=r—ut; pP=pFmu

=t E=F—-pu¥;mu
where the upper and lower signs distinguish between particles and holes.
Note that +F —,~pz /2m is an invariant. Furthermore, this transformation is

unitary; it can be written as™
b=S"+h=*§; §:exp (iA); f’{zpur~?gmru (40)

*A different but equivalent expression, which is easily obtained by applying the Baker-
Haussford formula, is § = {exp [ipuf + ifsmu’t/ 2]} # {exp [ - ifsmrull. .
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where we have employed a notation which allows us to operate directly
on matrices in particle-hole and in Keldysh space. We recall that a unitary
transformation of this type can be expressed as a series of commutators,

(n

{5613+ (41)

Later, it will be necessary to use the fact that this transformation commutes
with p and E integration. This statement can be demonstrated as follows:

f dcrpj dE {S" x b(p, E;¥, 1)  §}
:J‘ do-pj‘ dEg{pﬂ?gmu,Empu-%%»?gmuz; r—uf)
:J.dcrp‘[‘dﬁ’g(psﬁ';r-ﬂf, 1) (42)

=§+*{Jdirpjdﬁg(p}5;r, z)}>}=§

We remark that, strictly, the transition to the third line is possible only if
the integral is convergent. This condition may necessitate the subtraction
of a background contribution™ as explained in the discussion following Eq.
(14). In this sense Eq. (42) is consistent with the previous interpretation.

Suppose that in the rest frame the motion of the system is represented
by the Green’s function g(p, E; r, ). Then Galilei’s relativity principle is
equivalent to the statement that

g=8"%g+8 (43)

also represents a pessible state of motion of the system. There are two
ways to interpret this relation. Namely, this state differs from the original
state merely by the superposition of the constant velocity u; that in a
reference frame moving with velocity [—u], the original state of the system

is described by &. Thus, we assert thatt
[#E —p*/2m+ik' % §).=0 (44)

provided that the order parameter A’ is determined self- -consistently by Eq.
(32) with g replacing g Now, it follows from Eq. (42) and from the
self-consistency condition for A in the original problem that

SA* A+ § = Ag) (45)

which concludes the proof. We emphasize that the simple quasiclassical

*See footnotes cited just prior to Egs. (15).
tClearly, the external potential has to be put equal 1o zero.
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Green’s function of Section 2 violates Galilei’s relativity principle since
there the momentum appears only as a parameter.

Let us now calculate the current density j for the new state, which is
obtained from Eq. (30) by substituting §¥ for §*. We encounter an integral
of a type similar to Eq. (42) where the variables p, E, etc. appear exclusively
except for a prefactor p =p+73mu. Thus, we obtain

i, )=jr—wus, ) +uplr—ut, 1) ( (46)

where j and p are the densities in the original state. It has been emphasized
repeatedly that the densities when calculated according to Eq. (30) may
necessitate corrections for background contributions. In the present case,
it is evident that these contributions must cancel.

A comment is in order on the self-consistency condition in the case
of a pairing different from the s-wave type. Then, we have to generalize
the self-consistency relation (32) by the Galilei-invariant form

Mpsr, 0= [ doy [ dBw -p)EW, Bir s (47)

where the matrices may now include spin indices. In a most common
approximation, one replaces the interaction potential (p—p’) by an
expression which factors in p and p'. Clearly, such an approximation is not
Galilei invariant and one must carefully examine the problem of whether
1t allows such a simplification.

4.2. Rotation

Consider a new reference frame which is obtained from the rest frame
by a rotation 6 with axis parallel to 6 and of angle 8. The angle of rotation
may depend on time, but for the sake of simplicity, we assume a constant
axis of rotation, hence w = d8/dr is parallel to 8. We mark the physical
guantities in the new frame by a tilde; then

I=®Rr; b = R[p—Fam(wxr)]
) ~Pk [p—73 48)
t=1t; E=E—{wXr)p

where Z denotes the matrix of the rotation [—0]. This transformation is
not unitary. Here p, is the kinematic momentum, which is connected with
the canonical momentum p by

Pi =P — Tam{wX¥) (49)

With the appropriate substitution in Eq. (48) the transformation is unitary
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and of the type (40), where
S =exp [i(0%r)p] (50)

It is evident that these are relations similar to Eqs. (41) and (42).

As previously, let g(p, E; r, t) represent the state of motion in the rest
frame. Next, we construct ¢ as shown in Eq. (43). There is, however, in
the present case only one physical interpretation of this state, namely, that
in a reference frame rotating with angular velocity [—w], the original state
of the system is described by §. The invariance of the forces under a rotation
snd the transition to a noninertial frame now require that [Q = £]-=0,where

Q' = 13[E ~(wxr)pl—p°/2m+iA’ (51)

Clearly, the order parameter A’ has to be determined self-consistently from
§K‘, and we find by the same reasoning as before that an equivalent of Eq.

{(45) holds, and that S » Q' = §* = 0. This concludes the proof.
In the case of a general type of pairing force, say » = (p, p), rotational
invariance requires

»(Rp, RP) =+ (p, P) (52)

Thus, in the case of rotations with p-wave paired states, we may use the
facterized form » ~ (p « p')/(jp| |p’|) without difficulties.

The current density ¥ that results from § is identical to the current
density in the state § when it is observed from a frame rotating with [—].
Note that the factor p in Eq. {30) has to be replaced by the kinematic
momentum p+ 73m (e Xr) in a rotating frame. Thus, we obtain

i, =R (Rr, )+ (wX0)p(Rr, ) (53)

as should be the case.

4.3. Gauge Transformation

We consider a system characterized by
x 1 x
Q=FHE—co—5— (p—7Fse AV +iA (54)

where (¢, A) are the electromagnetic potentials. A gauge transformation
o>’ =@p+x/e, A>A'=A—Vy/e, where xy = x(r, t), can be understood
as a transformation of the form

i=r; p=p+hVy: =1, E=E-fxy (55)
This is a unitary transformation of the type (40), where

§ = exp [iTsx(r, 1)] (56)
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Clearly, the two equations
[0,8]-=0; [Q,8l-=0 (57)

imply each other; thus the equation of motion is gauge covariant. The same
is true for the self-consistency condition in the form (47). It is not difficult
to show that the densities p and § are gauge invariant if we replace in the
integrand of the expression for j the factor p by p—7s¢A, that is, if we
replace the canonical momentum by its kinematic counterpart.

For the sake of completeness, we remark that the theory of the simple
quasiclassical Green’s function is, in a proper formulation, also gauge
covariant.

4.4. Continuity Equation for the Energy

We consider the diagonal part of the equation of motion for g%,

{—i[0 %85 )

3
“K+.B~.,._
={72§ et
A28 4]
2Lar  op 2 oF 1,
17d°A azg‘j 1[:: azg““]
—— =, —— A, =25 +-- 3 =0 58
S[arz op-1_ 8 &, 57| T (58)

and we operate on it by —1/4 { do, | dE Sp E - - - . We recognize that the
integration renders to zero all terms except a few. For instance, a nonvanish-
ing contribution results from the last term in the third line of Eq. (58);
integrating by parts with respect to E and using the self-consistency
equation (32), we obtain a term CSp AA Eventually, we cast the result
in the form

é+divi, =0 (59)
where

e=—7 J do, f dE Sp #:E4%(p, E; x, 1) +~}—~} (60)

obviously has the meaning of an energy density and where the energy
current density is given by

1
o= J da, | dE SppEE“®, E:x, 1) 61)
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The above results have been derived for the case of an s-wave superfluid;
however, a similar result is obtained in the more general case.

4.5. Continuity Equation for the Momentum

Considering the expression (30) for the momentum density j, we
operate by —1/4 { do, { dE Spp - - - on the equation of motion (58). Again,
most terms are of the form of a total derivative and vanish upon integration.
There is an interesting contribution from the first term in the third line of
Eq. {59). Integrating by parts with respect to p and using the self-consistency
equation, we arrive at the centinuity equation

i II 0 62

o7 ~Ja 8 P = (62)
where the momentum current density (stress tensor) I,g=TI\3+115) is
given by

(63)

The case of an anisotropic superfluid requires a little bit more care. The
p dependence of A leads to terms containing dA/dp, etc. and also keeps
the expressions from being of the form of a total derivative. Nevertheless,
one can show that only the terms that are first order in 9/dp yield important
contributions. Thus, we find

nG=3 J dapj dE Sp [ Pa i‘ﬁ +Dpg §é+ ac,,gz&] g* (64)
Pa Peu
where, if necessary, spin averages have to be included.

Consider now in particular the anisotropic ABM (Anderson—
Brinkman~Morel) pairing state (p-wave pairing), where the orbital vector
I points along the axis of anisotropy.®* Furthermore, let us assume that
the interaction potential in the self-consistency relation (47} can be
replaced, with sufficient accuracy, by the factorized form
—{vo/3)p - p'/lp| [p’)). Then we obtain for a thermal distribution

13 = ~(245/500)(28as — lule) (65)
where Aq is the value of the gap perpendicular to 1. It appears that other

*See also Eq. (69).
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plausible approximations to the interaction potential lead to similar results
with only a change in the numerical coefficient,

S. ORBITAL MOTION AND QUASIPARTICLE DRAG

In this section, we will study the quasiparticle flow pattern generated
by the motion of the orbital vector 1 in the ABM superfluid state (realized
in the *He-A phase).

It is known (and it will also be confirmed by the following consider-
ations) that the motion of i is hindered by viscous forces such that

ulxi=—-1%3E/a (66)

where dE/dl represents the torque which drives the orbital vector L. Close
to 7., the coefficient of viscosity is given by

3 {psc =7 N(0)AIT/64T,;  Aor>1
g =wN©)AY/12T,; Ao < 1

where 7 is the inelastic quasiparticle scattering time. This result can be
obtained from a time-dependent Ginzburg-Landau equation, valid for
changes in the modulus of the order parameter if one incorporates quasipar-
ticle relaxation by replacing the “simple” time derivative according to the
rule®

(67)

w

’ w . N
STA—,"g?(i*‘i‘ZTAb)& (68)

where the two terms on the right-hand side correspond to the two limiting
expressions for u.

What concern us in the following are the details in the quasiparticle
dynamics that do not appear explicitly when only forces on the order
parameter are considered. Indeed, the result for u has been obtained within
the simple quasiclassical approximation, which, as we will see, fails to give
the right answers to the quasiparticle problem.

We briefly review the basic properties of the ABM state in thermal
equilibrium.>® In this state, only fermions with parallel spin are paired;
this property allows us to eliminate the spin indices and we are left only
with the particle~hole index similar to an s-wave superfluid. Thus, Ais of
the form (4a), where A = A(p) = |A(p)| exp [—i6(p)] now denotes the momen-
tum-dependent order parameter. In the ABM state, we have

A() =Aday+iazlp/lpl, A =A5[1—@D*/p°] (69)

where ey, oy, and I=oy X0y are a triad of orthonormal vectors. The

*See, for instance, Section IILI of Ref. 4. The numerical coefficient b depends on some
angular averages.
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equilibrium form of the Green’s function is given by™

AR(A) (B(Lyi/27)%:+iAp)
ge ( 3 E) = " 5

P EE 2 AT
. }1/2

(70)

where the square root is defined by Im[ - - > (. Various expressions
can be derived from gR"“; the most important are

B E+i/2r
Nl B =R (17277 - AT

_ {|A(p)|
Nale )= Re (3 372y - s T 7y
Ri(p, E)=Im ot

[(E+i/27) —|A@pf]Y?

All these quantities are even functions in p; in their dependence on E,
however, R; is an odd function and N; and N, are even functions, In the
limit 1/7 - 0, the quantities N; and R vanish in the gap region |E| < |A(p)|,
whereas N, = 0 in the accessible range |E|>|A(p)..

In the case of slow orbital motion, the structure (69) of the order
parameter remains unaffected; only the triad of vectors become space-time
dependent. If o= w{x, ¢) is the angular velocity of the local rotation, then

i=wxl (72)

etc., and we may calculate A(p) accordingly. We will assume that s is given;
then the time-dependent order parameter appears as a drive in the
Boltzmann equation (35).

This equation is considerably simplified if we restrict ourselves to the
linear regime, that is, to the response linear in w. It is easy to see that in
this case, only the equilibrium form (70) for g*™ appears in the kinetic
equation. In this approximation, the collision integrals assume the form of
linear operators which operate on the deviations 8f™ =" —f,, and f'*
of the distribution functions from equilibrium. It is important to note that
conservation of energy, mementum, and particle number implies that there
are eigenfunctions of zero eigenvalue as follows:

i) &Y =E - afu/3E
@) 8" =p-ofu/oE (73)
(iii) O = ofn/0E
*Inelastic collisions are responsibie for the damping terms (+)i/27. In these expressions it

has been taken into account that close to 7, the collisions affect mostly the diagonal parts
of the self-energy, whereas their off-diagonal contributions are negligible.
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It is possible to approximate the collision operators K by a reduced form
K, which incorporates the conservation laws on one side but which reduces
to the relaxation approximation otherwise.” This reduced form is of
sufficient accuracy for the present problem. Specifically, only momentum
conservation plays a central role, and therefore we may put™®

N - Polfap) }
a 11 Ly 1 ap/B
Kom r [6f (T )“‘3’4:‘( ch*(E/2T)
N (74a)
M _ V1 (D
Krm T f(
where
- papﬁ >
Tap =2N(0) .[ dE <N Y4T ch®(E/2T)
(74b)

joo = 2N (0) [ dE (Nipof®)

Clearly, the form (ii) of Eq. (73) is an eigenfunction of K ', with eigenvalue
zero. We will call j,,, the quasiparticle contribution to the current density.

The separation of the physical quantities into a pair and a quasiparticle
contribution is formally equivalent to an appropriate decomposition of
gE=p5h— 1 = £%. In general, there may be no meaningful answer to
this problem; in a linear approximation, the definition

(88°), = 88" * hu— hun = 687

A (75)
(ng)qu §§q * 8h —&h * gf:;
seems to meet the intuitive expectations. For instance, the quasiparticle
contribution depends in an essential way on the non-equilibrium part of
the distribution function.

Concerning the star product, we should note that in a linearized form,
there is only one factor in such a product which depends on space and
time. Therefore, it is possible to express the star product in a closed form
if one chooses a Fourier representation.t However, it is more instructive
to proceed on the basis of expansion (23) in powers of #.

In terms of this expansion, the leading contribution to the quasiparticle
current is the expression g, of Eq. (74b). There is a similar expression for
the quasiparticle mass density p,,. These approximations are sufficient,
since we will calculate the distribution function only to leading order.

*The additional subscript m means that this reduced form includes only momentum con-

servation. _ ‘ . .
For instance, §§q * 8h - Geq(p+k/2; E+Q/2) sh(p, EY, if 8k oscillates in space—time

xexp(ikr— Q)]
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5.1. Classical Quasiparticle Drag

In the limit Aor » 1, it is only necessary to expand the star products
in the Boltzmann equation through first order in #. Thus, we obtain®

(T
Niﬁf&'} + Ny E.@:&_
Wi or

+ R

[am 8 , 1A a@f(“}] K —p
9t 9E  ap or
(76)

) asF
A\rl f (n -+ 1\71 2* f
m or

+ NojA| [%?%%4«2%“] KT =0

We wish to emphasize that the second term in the square brackets of the
(L)-mode equation is decisive in what follows; it owes its existence to a
generalization of the quasiclassical theory. In the (T)-mode equation, some
terms of O(#') have been omitted, as they are unimportant.

In this (and in the next) subsection we consider the case where w is
perpendicular to 1. Then the time derivative of the phase may be neglected.
Furthemore, in the accessible range we approximate N; by N H (Al/27E B
replacing K D by K . we solve the (T)-mode Boltzmann equation with
the result

T o p asf
FO N2 P
m or

{(77a)

which holds if the time variation is sufficiently slow.

We choose a coordinate systeme; = (1,0, 0), 2. =(0,1,0),1=(0,0, 1),
where T, = T,8.5; and in approximation (74) the (L)-mode equation
assumes the form

2 ! 12 1 )
[..‘?_M,( P EL) +i@§;£+h}5fL>
ot mN; or 2E 9p or 7
1 8P 1 ] 1
A e oy 776
[25 or e Pellwde | o T (77b)

*So far, we have not considered Fermi liquid effects, which are important for *He. They can
be taken into account systematically’ and do not affect the general discussion, except for
trivial modifications: for example, the rhs of (80b} has to be multiptied by m/m*, where
m* is the effective mass; p has to be calculated with the true density of states, and A is the
mean free path rp/m*.
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The following steps are straightforward. We assume a space-time
dependence cexp(ikr—iQ)¢), solve Eq. (77) for 8 L and then establish
an equation for jq,. For the sake of convenience, we restrict our attention
to the hydrodynamic regime where 71« 1 and kA « 1, where A = 1p/m is
the mean free path. Furthermore, we have

N f NS
J dEchz(E/E T dE ch*(E/2T) =4T
E — w
deNl(EchzT) =T

provided that |A] « T. For simplicity, we assume that w = (0, w, 0); and we
obtain™

1 —ir’ 7w AGN(0)
—irQ+3A P +2k%)  128T

(Jap)a = (k2, 0, —ke)aw  (78)
Let us first examine the behavior of the total angular momentum of
the quasiparticles,

M, = J d’rr X jap (79a)

which in terms of Fourier transforms is My, = i[{3/0k) X jopJk-0. Hence, it
follows from Eq. (78) that

d
—~Map = pe f d’ro> - (79b)
where . is the classical viscosity coefficient of Eq. (67). Comparing Eq.
(79) with Eq. (66), we conclude that the angular momentum initially
imparted to the pairs will be transferred to the quasiparticle system.t

For illustration, let us consider an angular velocity with the following
profile: '

wo if Iz| <L
0 else

w(z) = { (80a)

In the quasistationary limit |z]« p/m(, we obtain a quasiparticle flow
parallel to the x axis of the following form:

) ‘Sfmc{ z if |z{<L
Joo =3 \L - sgn z else.
*Since div jgp # 0, there are fluctuations in the phase of the order parameter such that particle

number is conserved. These fluctuations contribute little to jq, and thus we may neglect them.
+Obviously, Eq. (66) neglects the angular momentum of the pairs.

(80b)
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This result demonstrates that quasiparticle diffusion carries the transferred
momentum quickly away to distant regions. Such an interpretation is also
confirmed by the fact that the rotation of the quasiparticle flow velocity,
namely jop/p, is smaller by the extremely small factor A}/ TEf than the
local angular velocity.

5.2. Quantum Drag

As a result of the orbital motion, the value of the gap in a given
direction changes with time. This fact necessitates a redistribution in energy
of the quasiparticles, which is ultimately responsible for the drag in the
classical region. However, if collision broadening ~1/+ becomes larger
than Ag, an energy gap ceases to exist, and the classical drag is zero™
the limit Apr < 1.

On the other hand, since A, # 0, there are still pair correlations which
have to be adjusted if the wave function of the pairs changes in time. The
quasiparticle drag due to this effect can be recovered from the Boltzmann
equation if the star product is expanded through second order in . An
inspection shows that most of the terms of this order lead only to a correction
of the previous result; thus it is sufficient to replace the (L)-mode equation
(76) by the following expression:

(L)
Ni 5f‘“+N P 9o~ ~-K®
ar
1. 8/3 8fn m}
2Rear(apNze )[ o5 A (81)

We are still considering the situation where @ = (0, w, 0) is perpen-
dicular to 1. In such a case, the second term f in the square brackets of
Eqg. (81) can be neglected and the solution (77a) for fm is still valid.
Therefore, we may solve the Boltzmann equation in the same way as before
with the result

1 —irr AN (0)
~irQ+IN K +2k2) 60T

(jqp)a = (kze 0: “4kx)aw (82)
The rate of change of the quasiparticle angular momentum assumes
the same form (79b) as previously; however, the quantum viscosity
coeflicient i, now appears in this relation.
Comparing the flow pattern, we conclude that in the classical case, .
the directions a; and 1 perpendicular to @ are essentially equivalent,
whereas in the quantum case, the flow parallel to 1 is much stronger than

*Such a result would have been obtained in the previous calculation if spectral quantities
{71) of finite 7 had been used.
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the flow parallel to a;. This peculiarity can perhaps be explained by the
fact that the pair correlations are largest in the direction perpendicular to
I, and that small oscillations in A(p) rock these correlations up and down,
with a subsequent increase in momentum transfer in the 1 direction.

5.3. Gauge Wheel

We consider here the peculiar case where o = (0, 0, w); i.e., where the
axis of rotation is parallel to the orbital vector. Clearly, I = 0 and no orbital
motion takes place; however, since there is an interesting transfer of angular
momentum between pairs and quasiparticles, we will study the ensuing
phenomena in this section.

With @ parallel to 1, the two basis vectors a; and o, rotate in their
common plane and the order parameter changes only by a phase factor
according to A(p, 1)=—i®A(p, 1), where ® = w. These features have led to
the name'® which heads this subsection.

We will not determine here the details of the quasiparticle flow, since
this would require a more careful solution of the (T)-mode Boltzmann
equation. It suffices to say that it is of the same form as in the classical
case except that now the flow takes place in the x-y plane. Thus, we
consider only the angular momentum balance. We operate on Eq. (81) by

2N(0) f dzrrJ‘ dE(p---)
and obtain in a first step
-3-qu- _IN(0) J &r f dE<|AlNg[ Zg-}—z D (83)

where we have used momentum conservation of K “ and a symmetry of
P which implies that

J. d’r f dE ((p.p/ p)AINF Ty =0

We consider now the (T)-mode equation of (76) and operate by
2N(0) [d’r {dE (- - -). In the present case, it is absolutely necessary to
observe particle conservation, which means that { dE (K™) = 0. The result
allows us to cast Eq. (83) in the form

1,9
2 at
where Ny, =2N(0) [d’r jdE (N,f™y is the quasiparticle number. Since

the total angular momentum and the total particle number are conserved,
we may equally write

o MQP — Ngo ) ' (84a)

0 1,9

— 2 e § e
ai!Mp 5 ath (84b)
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where M, and N, are the angular momentum and number of particles
bound, respectively, in the Cooper pairs. In other words, this result means
that in the ABM state, the formation of a Cooper pair requires an angular
momentum equal to #l (in ordinary units) which is supplied by the quasipar-
ticle system. Obviously, this statement has a local character and does not
allow conclusions on the total angular momentum of the ABM state.

In concluding this section, we remark that most calculations on the
transport properties of superfluid *He are based on kinetic equations which
can be derived'*” if one chooses to integrate the Green’s function G{p, E)
with respect to the energy E. In this technique, it is not possible to deal
adequately with the case of strong collision broadening. On the other hand,
this theory requires no a priori approximations in the momentum variable.
Therefore, if there have been questions on the correctness of some results,
one has to put the blame on inadequate approximations in the course of
the calculations. It seems to us that Nagai in his recent calculations™ has
overcome such difficulties, This remark applies in particular to his results
concerning the gauge wheel effects.

6. BOLTZMANN EQUATION AND LORENTZ FORCE

We consider here systems where the external dynamics is governed
by electromagnetic forces. Thus, there are electromagnetic potentials (¢, A)
which generate the field strength

*

&=-Vo—A; H = curl A (85)

We recall that gauge transformations on such a system have been studied
in Section 4. |

Let us first discuss the case of a normal metal, where A =0 and where
"™ =(x)#,. This case is very similar to the one discussed at the end of
Section 3 and we will now obtain a generalization of the classical Boltzmann
equation (38). As before, it is possible to consider only one diagonal
component of the particle-hole matrices; therefore, we may write

—i[E—e@—(1/2m)(p—eA)* ¥ f.-K =0 (86)

In the classical limit, it is sufficient to expand the star product only through
first order in #. Furthermore, we introduce the kinetic momentum

P =p—¢A (87a)
and the distribution function

fpr:r. ) =fp=px —eA, E=pi/2m+eg;r, 1) (87b)
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Then we obtain from (86)

f+?—’i§f+e(g+95‘-x%) Y k=g (87¢)
m or m P«
which is obviously of the standard form.

We turn our attention now to the case of a superconductor with s-wave
pairing. Vortex motion in a type II superconductor is a prominent example
of a situation where electromagnetic fields are present. In order to simplify
matters, we will restrict our attention to the regime of linear response; this
means in the example mentioned above that we wish to calculate the
nonequilibrium quantities only in first order of the vortex velocity. Gen-
erally, the equilibrium state will be spatially inhomogeneous, and therefore
we have to evaluate the star product by expansion. Such an expansion is
better, the slower is the change in space-time of the quantities. Fortunately,
we may choose a gauge such that the order A is of least variation, which
is the case in a gauge where A is real (@ =0). In other words, we select
new potentials such that-

—ep > —ep =D =30 —¢p
(88)

At Al =v, L (VO+2¢A)
m m 2m

We will call ® the pair chemical potential and v, the superfluid velocity.
Concerning the properties of the equilibrium quantities, it seems that
an ansatz of the form
§R=’?'3C!R+'§:1BR+’?2’}'R (893)

is sufficient and that the functions «, 8, and y can be determined from the
equations

2 .
E(B (+) z'y)“—-ma%ﬁ[(t)zé;_zmvs](s (+) iy)R=0

@+ (B +(y*)* =1 (89b)
Note that these equations are exact in the ordinary quasiclassical theory.
In the present case we should in addition require that* ®=®—mv2/2 is
constant in space. There are similar equations for the retarded quantities;
and the generalized densities of state N; and R; are defined as follows

"V =(HN +iR;,  BEV =N (B)iRy, v =N;(3) iR,
(89c¢)

*In a more refined terminology, one should call ¢ the mechanochemical potential, whereas
& stands directly for the chemical potential.
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When deriving the linearized Boltzmann equation, it is of some advantage
to rewrite Q in the form

O =#(E—pv,)—p*/2m+d+il (90)
and exploit the fact that & is constant in equilibrium. Then we obtain
asf™  opv,asf™ 3

or ér  op oE

J {T}
:;’; }+R2&-f—t3+2&R SP-K® =

affT) B apvs Bf(ﬂ+£ 8§f(L)
or or p m or

o
oFE

Ni{ SF™ + v,

(91)

AT

—-@-%1} +2AN D= N

gy
E

These equations differ from the form which one obtains in the ordinary
quasiclassical theory by the additional terms in the form of a classical
Poisson bracket between pv, and 8", /' and by the appearance of a
modified pair chemical potential ®.*

APPENDIX. QUASICLASSICAL GREEN’S FUNCTION IN
SIMPLE CASES

Let us consider first the retarded Green’s function for a noninteracting
system. There it is necessary to study only the component

GR(«’Cl, x2) = ~i{{p(x1), lf’? (x2)]6(t:1 — 1)

It is known that for free fields the expectation value of the anticommutator
does not depend on the state of the system. This means that the chemical
potential p enters in G* only through the time dependence of the field
operators; for instance, we have ¢(xq) = e (xy; w =0). Now,T

J‘d,u, e™ =m[8(t+0)+8(r—0)] (A1)

and therefore we obtain

£, 1) = [ du G (x1, x2) = 51— x2) (A2)
w

A similar result can be derived for gA, which is just —g~.

*See preceding footnote.

tIn terms of Fourier transforms, Eq. (Al) is equivalent to the following statement: If
Fw)=| dt e™f(t), then | (dw/2m)F(w) e~ = Hf(1+0)+ f(z— 0)].
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In the case of an interacting system, one expects similar relations if
the self-energy depends only weakly on the chemical potential.

Next, we study the properties of Keldysh’s function for a noninteracting
system. For the sake of simplicity, we assume that the simple particle
Hamiltonian Hy and the state of the system are 1ndependent of time.
Accordingly, there is a complete set of eigenstates,

Holn)=¢e4|n) - (A3a)
and it will be convenient to introduce the field operators
b= [ &1 i) (A3b)

Using this notation, we obtain the following representation:
GK(xl, X2)=—i2 (Tﬂ“}
(3

X fe TR (g — YK o)

Clearly, (Y. —¥nth,)=1-2f,, where f, = (..} is the occupation num-
ber. In the case where f, = f(e, — i), we find the expected relation

G*(p, E;x, ) =2[1-2f(E)] (A5)

In thermal equilibrium, the dissipation-fluctuation theorem connects
G" and G® —~ G* in asimple way for any interacting system. There, we have

G*=[G® - G*[1-2fu(E)]

where the argument of the Green’s function is (p, E;r). Obviously, the
same relation is valid for the quasiclassical Green’s function.
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