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The quasiclassical equations for superfluid *He are studied in detail, with
emphasis on the equations for the A phase. A careful discussion of the
collision operators is given ; the | X VT ferm in the energy current is calculated ;
and the gradient expansion is discussed from the quasiclassical point of view.

1. INTRODUCTION

Since the development of the quasiclassical approach by Eilenberger,’
Larkin and Ovchinnikov,” and Eliashberg,” this technique has found many
applications in the theory of nonequilibrium states in superconductors (see,
e.g., Ref. 4). The reason behind this is that most superconductors are
relatively dirty, i.e., the impurity mean free path is smaller than the
coherence length, or, equivalently, the scattering rate is larger than the
typical energy kg7, (7. is the transition temperature). In such a situation,
or whenever the variation in space and time happens on too small a scale,
usual quasiparticle methods™® are not adequate.

In contrast to the quasiparticle kinetic equations,”® the quasiclassical
technique only exploits the fact that the Fermi momentum pr is large
compared to the momenta of, say, external perturbations. In this case, the
self-energies depend only weakly on the magnitude of the momentum, and
the equations can be simplified considerably by introducing the quasi-
classical or £, integrated Green’s function [£, = p*/2m™* — i =~ ve(jp| - pr);
m* is the effective mass, u =p2/2m*, and vy =pr/m*]. This leads to a
description which is only limited by Aw < u and fvglq) <« u, where w and
q are typical frequencies and wave vectors. However, cautionary remarks
should be made. (i) The quasiclassical technique uses the fact that the
normal density of states is independent of the energy, N(¢&,) =N (0), and
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integrates the Green’s function with respect to &, before doing the appropri-
ate frequency summation (to find the density, energy, etc.). This is the
wrong order, and one has to ensure sufficient convergence by considering
only the difference with respect to a suitable reference state® (most con-
veniently, the normal state in the same external field). (ii) In doing the &,
integration, approximations are made with regard to the momentum vari-
- able, and the resulting equations, in the original formulation, are not
Galilei-invariant. These difficulties Were overcome recently by deﬁning a
generalized quasiclassical approximation’ (see below).

So far, quasiclassical methods have been used for superfluid *He only
by a few authors (e.g., Refs. 7-13). One must emphasize that, although
there seems to be an initial barrier against becoming acquainted with this
technique, the equations are sufﬁcienﬁy simple to allow, e.g., the determina-
tion of strong coupling corrections,’ or the behavior of the superfluid near
walls.”

In this paper we demonstrate more details of the quasiclassical kinetic
equations for the A phase of *He and for spin-independent situations only.
Also, we work in the weak coupling approximation (however, collision
processes are included!). Section 2 contains a brief summary of the general-
ized quasiclassical equations. In Section 3 we give a careful discussion of
the collision operators in the kinetic equations for the symmetric and
antisymmetric distribution functions, and in Section 4 we consider in detail
the new terms due to the generalization of the technique. In particular, we
discuss temperature gradients. The Appendix demonstrates the gradient
expansion for the regular Green'’s functions.

2. THEORETICAL BACKGROUNDY

The starting point in the derivation of the quasiclassical equations are
Gorkov’s equations as generalized according to the theory of Keldysh.'*
It is convenient to use a matrix Green’s function G, defined by *°

o4 &)
0 G*
where G®™* are the retarded and advanced functions, and G*¥ is the

expectation value of the anticommutator of the fermion field operators.
The caret and overbar indicate matrices in particle-hole (p-h) and

(1)

*In this form, the argument is appropriate for a weakly interacting Fermi gas. For a strongly
interacting system like *He, one argues that only the quasiparticle part of the Green’s function
can be described by the quasiclassical function, and one has to correct for the background
contribution {from energies far from the Fermi surface).

tMore details can be found in Refs. 7 and 12.
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“Keldysh” space, respectively. We choose a mixed representation in which
the Green’s functions depend on momentum, energy, space, and time: p,
E, r, t; here p, E are the Fourier conjugate variables to the relative
coordinates, and r, ¢t the center-of-mass coordinates. A functional “star”
product between two functions A and B is defined by the expansion
ih (0A 3B 0A 6B
A*B=A +—-( mmmmm )
B 2 \0E ot ot oFE
'h (6A 0B 9A OB
i ( _____ ) o ?)
2 \dp or or dp
With this definition, Gorkov’s equations can be written in the form
[0-3.1+G=1 3)

In this equation, we included in 5 =__C> -1 the mean field parts of the
self-energy and the external fields, and X, describes the effects of collisions.
In particular,

Q=E#~[61+Up,r,0]+ikp,x, 1) @)
and U is the sum of external fields and Fermi liquid interactions; here
a 0 A
(23

where A is the order parameter; and 7, are the Pauli matrices. Finally, ic
is given by the usual diagrammatic expansion,'®® and arranged as a matrix
like
§ _ {ﬁ? if} (6)
“lo 32
We consider now the equation of motion (3) together with its adjoint
equation. Thenitis clear that G is also a solution of the commutator equation

[O-3.5G]1=0 (7)

One realizes, however, that the strongly momentum-dependent term fpé
has dropped out of the equation. We now define the generalized quasi-
classical function g by

[O-3.%31=0 (8)
gxg=1 ©)

Equation (9) is called the “normalization condition,” and it is evident that
this Ansatz is a solution of (8). The quasiclassical function § may be
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interpreted as the £, integrated Green’s function, with the generalization
of Ref. 7.

The equations of motion are closed by expressing in turn the self-
energies in terms of the quasiclassical function. This is simple for the mean
field parts, which are parametrized by the Landau parameters and a pairing
interaction; the Landau parameters and the strength of the pairing interac-
tion A (or 7,) are an input into the theory. In particular,

3
Rpr, 0= -2 (2 [ 4 [, B, ) (10
4\ pp v
where o.d. refers to the off-diagonal part in p-h space, and (- - -)p is the
angular average with respect to p'. Furthermore, the particle number density
and current are given by*

p=po— N f) Tr <J dE §K> (11)
i:io_NiO) Tr 7—3<m J dE K> (12)

and po and jo appear because of the subtraction procedure discussed in
Section 1. In particular,

po=pr/3T W —2NOYU®;,  jo=—0U>/dp  m*po/m

and we have introduced U = U*1 + U®#;. In addition, the energy and the
energy current are found to be¥

- Nf) Tr @(j dE ‘KE>+N(O) WD _ e, NOUT (13)
jo= —Zl}@'l‘r <{;"5-52—‘3H dE QKE>— Us (14)

The energy conservation law then has the form
é+V-j.=—j-VU* (15)

Note that (15) can be brought easily into the form where only the external
field appears in the dissipated energy. Finally, the collision self-energy will
be discussed in the following section.

*Here and in the following, Tr denotes the p-h trace, since we consider only spin-independent

problems. . .
TWe neglect terms connected with U®, Those can usually be determined by simple reasoning,

e.g., by considering Galilei transformations.
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In the next step, one connects §* with a distribution function. Writing
out explicitly the normalization condition (9), one finds

Fragt=gtegi=l RagNegNagt=0 (16)

gi=g%xh—hxgh (17)
and a certain freedom® in the choice of # allows us to choose
| h=h*1+h%, (18)
We also definet
h®=th(E/2kgT)—268f"; h°=-26f° (19)

where §f* and §f° are antisymmetric and symmetric with respect to E,
p~> —E, —p, respectively; it is now straightforward to derive a transport
equation for these quantities by taking i/8 Tr (- ++) and i/8 Tr (75 -+ ) of
the equation of motion for . For example, the “time derivative term”
follows from

ihd . .x

[Efs % §5]=E(#:8" ~ g F3) + DETAE A g5%3) (20)

by inserting (17), and (for simplicity) using the equilibrium result for g‘R'A,

namely
[§R"§A]diag=2nfv1$3 (21)

where & is the (normalized) density of states for a given energy and
direction of the momentum; then

A A . d as S A
[E#5 % 85 ting = —4iN 1 o (6 T+5f%) (22)

This also demonstrates that, in general, the equation for the regular func-
tions have to be solved in addition to the transport equation.

The most complicated part of the equations is, of course, the collision
contribution to the self-energy. It appears in the equation for ¥ in the
form [see (8); also, we may often replace the * by the ordinary product]

Z K _QRAK  AK&A ARQK |, 2K aAA
[3,8] =208 —§ 20—§"35+358 (23)
*The replacement A > A + QRA* b+b* 8* leaves ¢* unchanged, for any b see Ref. 4.

tThe antisymmetric and symmetric parts (a, s) are sometimes™’ called longitudinal (L) and
transverse(T), respectively.



494

The quantities K* and K°, defined by
{[2‘& e =K “1+K°7, (24)

then play the role of collision operators in the kinetic equauons Note that
the weak coupling approximation replaces SRand -2 by R -28)/2.

3. LINEWIDTH(S) AND COLLISION OPERATOR(S)
3.1. Pair-breaking Effects

We study first the effect of collisions on the regular functions g%
and consider a spatially homogeneous equilibrium situation. (Slow spatial
variations are discussed in the Appendix.) In this case, we have to solve
the equation

[E#;+iA(7)EE-28), §5V1=0 (25)

together with the normalization condition (9). Keeping in mind that A
depends on the direction of the momentum, we introduce the magnitude
and the phase via A = |A| exp(—i®), and

A=ATF+A7
AV =|Alcos®, AP =|Alsin®

note that {fg=cos OF;+sin OF,, Torn2, 73y form the usual algebra.
Defining also

(26)

%(ECR - i?) = _l'r3’:’13 + F1$1 + Fz’?‘z (27)
it is clear that solving (25) with collisions is no more complicated than
without. The result is of the form™

g =a s+ BT +B5 T
_(HE AT+ A +iT)A + AP +iTy)h
[(—iE + T3+ AP +iT)* + (AP +iT)*]>

the square root being defined as Re v >0. Furthermore, we introduce
spectral functions according to

=N1+iRy;  Bra=HTD +iRS” (29)

The BCS limits of these quantities (I'; small) are easily found: in the physical
region, i.e., for E>=|AJ?, one obtains

Ni=|El/g, RSP IN1=A"P/E (30)

(28)

*The advanced function follows from changing I'; » —T..
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with ¢ =[E”— AT/, The other functions are zero for zero pair-breaking
in this region, and one has to be more careful. First, in an expansion with
respect to the I';, one may define an effective linewidth I' by rewriting the
denominator of (28)

[+ ] =[(—E +T)*+|A[]? (31)
where
N T=NT3—RPT, -RPT, (32)

N1 and RS are just the density of states and the function familiar from
the BCS gap equation, respectively. (Note that R,=R3’ cos ©+
RP sin ® =|A|¥1/E.) The more unusual #5">, or rather the combination

Ny =N cos @+ N sin @ (33)

plays an important role in the kinetic equation for the symmetric distribution
function (the *‘conversion term” introduced in Ref. 17; see Section 4). One
finds

2
INUA -.--}-‘f-;-lz-mr——gz‘;’r‘l—%;” T, (34)

for E*>=|A%; note the sharp increase for £ - 0.

3.2. Linewidth and Scattering Rate

It is now straightforward to connect the linewidth with the scattering
rate of the kinetic equation. Considering the linearized version of the
collision operator, Eq. (24), and inserting the definition of the quasiparticle
distribution function (17), we may identify the scattering out contribution
of the collision operators, and define two scattering times 7£ and 7. They
are given by

h i S L A A
S Ni=gTr {EX-28), g% -8M)-

TE

h i -~ & 2 A A A A
— Ny ==Tr 73{(23““2?), (gR’fa "ngA)}+
TE 8

(35)

where {,}, is the anticommutator. We consider again the BCS (weak
scattering) limit: then, in the definition of 1/7%, we need only take into
account the diagonal part of (%75 —733")—the off-diagonal contributions
will be ~A"; and can be neglected. The result is

h/27g =T, h/2te=T4% (36)

The considerations in this section so far have been quite general, and apply
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in similar form to the B phase as well as to electron—phonon scattering in
superconductors.* Now (34) takes the formT

}a;]tﬂf‘zw [;E_ L___ls_] wy (37)

fTE TE

3.3. The Collision Operator

As a final task, we now want to derive the expressions for the scattering
rates and the collision operators. As usual, we have to study the standard
collision diagram, generalized to include the particle~hole index.®'®
Although the perturbation theory can be formulated with Keldysh matrices,
we avoid this and start with the imaginary time version, namely

3 3
P [ LBy

om0 1) =5 J 2nh? ) 2nh)
X G(pa, t', )Gps, 1, )G (pa, 1, 1) (38)

We use an obvious mixed representation, suppressmg the spatial variable;
T denotes the vertex function, which, since S. is of third order in the

T./u classification,® can be evaluated in the normal state, for zero tem-
perature and frequencies, and with all momenta fixed at the Fermi surface.
All quantities 3., T, and G also depend on spin and p-h indices (see below).
Momentum conservation takes the form p-+p.=ps;+ps, and the factor
1/3! takes care of the additional p~h index.

Following Eliashberg,” we introduce in the first step the quasiclassical

Green’s functions, and obtain

S0, 1) =LAg (0o, 1, )8 (P3, 1, 1)E(Par 1, 1)} (39)
with

Pl J= [NO)T (}7{)3 J d&ﬁ?g

31 UrPr
In the next step, this expression is connected with the real-time 2 functions,
using

7Ps(B-1) ey o)

F

A —- AT A%
888)"=87¢7¢"
*Compare with Ref. 17, or the recent discussion by Beyer-Nielson ef al.'®
tIn Ref. 12, 'y, were neglected in order to simplify the discussion. Careful consideration

shows that those terms are needed in ordsr to make the connection with the Boltzmann
equation for Bogoliubov guasiparticles.
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and we find the R, A, K, functions from

S &< ﬁ? - i?
3273 x{ o 41)
Similar relations hold for §®**; for example,
g =ag" (g% -2"] 42)

Finally, we Fourier-transform with respect to the time difference and
introduce the distribution functions according to (17)-(19). Although quite
cumbersome, it is then straightforward to derive the collision operators
from (24).

Consider first the collision operator of the antisymmetric equation,
K?, defined by :

a i L 2 A & A A
K =S—hTr[(zﬁ—z?)gK—zf(nggAn (43)

It is convenient to define

f%[l_th (252"”2 f=fof (44)

and also use the abbreviations
ff=fEmp; fi=(E,p) - (45)

withi=2,3,4(E+E,=E;+E,). Finally, introduce also the dimensionless
scattering amplitude T by T = 2N (0)T. The general structure of K is then
easily derived, with the result

K*=Z{M[(1-A-S)fsfa— 30150 -fD} (46)
where now (1= (E, p), etc.)

_wANi(1) J‘ dE, dE;d,; dQ;

Pl = .
oo 2hvepe (47)?

X N1 ()N 1(3)N1(4)8 (%}l’il_ ){° “} (47)

F

and E,, ps have to be inserted according to the conservation laws. K has
evidently the same structure as in the normal state. The quantity M?® is
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given by

5

H@nEW@M =3(3) T3

3' 2 P1P20304 GF20304
i
T LT T

X Thoyomo, 0 P25 B3, PO T o o ot (Bas P35 P2 P)

81020304 P4ap3pzpt
(48)

X[g%(1) - 8Dl 87 @) — 82 2)]os0s
X [§R(3) - §A(3)}pzpé[§R(4) - gA(A)]paoi

We used the fact that the Green’s functions are diagonal in spin space (let
o1 be 1, e.g.), and also introduced the p—h components of the scattering
amplitude.'® The symmetry properties of T follow directly from the time-
ordered two-particle Green’s function. Also, if we denote the p-h index
by (+, —), we have to remember that c,. =c,, c,,_zcip, etc. Then it is
clear that the (+ + + +) element of T is the usual amplitude of normal
Fermi liquid theory, namely

To'lcfz"'s"e;(p’ Pz; Ps, p4) = TS§ 6'10”36 ooy + Ta(a-u)a'lo'g(au)azag, (49)

A

while the others are closely related:

T i0pone, P P2 P3, P4 =T, o o (B —P4; P3, —P2)
IR .

+ 4+

T, o0 @P2 P2, 0a) =T, o, o (P, —P3; —P2, Pa) (50)
I

RN s

Ti o= T~+—+; Tio = T~++~w§ Teiwe=T____
In the normal state, M° reduces to the well-known result
M*=[TP+3[T*P, T>T. (51)

In the superfluid state, the expression for M ® is rather complicated. Working
out the p-h sum, we find

1 1., [ AﬁzAé‘Ai‘]
a__ = - . 1 o ma
M 20.23:3(,4{2 Thires EE,E;E,

A A% AA;“] }

+ + - *

E,E. EE,l ©°

- T++++T+—+»[ (52)
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where we have inserted the BCS limit for simplicity; the arguments of the
T’s are 1020304/P, P2; P3, Pa- In the limit where the scattering amplitude
can be parametrized by a point interaction of strength v, i.e.,

Tirir=v(8 010'33 azoe 851040 aros ) (53)
we obtain a result similar to Kopnin,'® namely*
VS ( L AGATAT AAT AAS +C_c‘)
2 EEE-E, E,E, EE,

On the other hand, the expression for the symmetric operator K°
cannot be brought into a simple form [like (46)]. However, if we work in
the BCS limit and also linearize with respect to 8f°, we find

(54)

s 1 s 5 5 &
K x-—f{‘z"F Y [Ti+++(¢’ +¢2— b3 —da)
AA¥ +c.c.
—7;H+T%+ﬂ4%igffw¢%—¢m]} (55)

with F = ff,(1—f3)(1 - f4), and 8f* = f(1— )¢, etc. In the potential scatter-
ing limit, this simplifies to'%,T

AAT +c.c. .
- -6 (56)

Keeping in mind the results of the previous sections, especially Egs. (32)
and (36), we can easily check the results for the scattering rates with Ref.
16.

A brief inspection of the above expressions shows that a precise
calculation of the scattering rates, for example, is hardly possible. A simple
argument shows the order of magnitude: at low temperatures the rates will
be proportional to the number of excitations, namely ~(7/ T.)%. and we
expect

K= —.:f{Foz[1

T ~78~(T./T) 't~ (T) (57)

which might serve as an interpolating formula for all T’ [75(T') is the normal
state scattering time on the Fermi surface]. On the other hand, this argu-
ment also makes clear that the momentum dependence of 7%, & will reflect
in detail the momentum dependence of the scattering amplitudes—at low
T, we have poJ|+1 to a good approximation.

As an illustration, we mention electron—phonon processes in supercon-
ductors.'” In that case, the expressions for K** are relatively simple, and

*We find the terms quadratic in A larger by a factor two than in Ref. 10.
1See preceding footnote.



500

the low-temperature limits of 7%, 7% were calculated.' Note that, due to
a coherence factor of the form

gl Ten

in the expression for 1/7%, one finds the relation 75 ~ Trg/ T..

4. THE KINETIC EQUATIONS
4.1. The Structure of the Equations

Following the prescriptions given at the end of Section 2, one derives
the kinetic equations from the equation of motion for the Keldysh function
K - « . s . . .
¢ into which Eq. (17) is inserted. For slow spatial and temporal variations,
we need only low-order terms in the expansion of the * product, and obtain

Ny avha+2Ka+V . V.N‘d‘ls

=—ZA{|Al RN U, A+ - (58)
and
ON h°+ 2K+ Ny - VR +2|AINH°

= —|AWL{@, A - N {{U®, A+ - (59)

We have defined v=p/m™*, and

fa,py=20 08 0008 408 (60)
ot dE op or Or op
and one should emphasize the Poisson bracket term in (60) which is due
to the generalization of the quasiclassical technique, as discussed above.
The dots in (58) and (59) indicate that we are not trying to be systematic
in the expansion; for example, the time derivative of the overall phase
should be considered as being “zero order.” As has been pointed out by
many authors, a systematic expansion is easiest in a gauge in which the
overall phase is time and space independent. Also, certain terms—Ilike
{®, Mh"}}—were neglected in (58) since A" is usually small; and the
equation of motion for ™ was used to simplify terms connected with #*
(see Ref. 4).
Consider first, as an illustration, the terms characteristic for the sym-
metric equation, namely the terms ~A%. Also, we insert for £° the equi-
librium solution with a finite normal fluid velocity™

" EM‘P‘““) 61
h—th( - 61)

*h=kg=1in the following.



501

and we obtain

1
{0, K™} = [5‘@ 90 3P v, 90 90 aTE}

AT X E2T) Lot op o o " op o T
(62)

We realize that the first three terms have symmetry (+ +), and the last

one has (— —), with respect to E, p-»> —E, —p. Thus, while the first three

lead to a change in the density—and have to be treated carefully, since

they are proportional to the eigenfunction with eigenvalue zero of K°—the

last one leads to a contribution to the energy current (see below).
Considering the (+ +) contribution first, we note that

0@ /a3t =dp/ot + O(o,1)
AP 00 /0p = A3(Bx D)/ pr (63)
90 /or= —2mv, + O (8l
where ¢ denotes the overall phase, |A° = AJ[1-@ - D>}, p=p/Ip|, and v, =

—Ve/2m is the superfluid velocity. Inserting these expressions into (62)
and taking the angular average,® we obtain

1 [a(p
4T ch*(E/2T) Lot

Comparing now the A, terms, we are led to define a local equilibrium
piece of the distribution function:

4®, K = 2mv, - vn——%: xv] 64

8f°=5fte. +8f° (65)
and
s _ 1 loe 1
Ofe = 1r ch*(E/2T) [2 o Vs Ve gl va”] (66)

The last term in this expression, ~1 - VX v,, has attracted much attention
in connection with rotating equilibrium solutions (see, e.g., Ref. 20). A
careful discussion of these questions was given recently by Nagai.21

4.2. The Heat Current

In the next step, we consider in more detail the (— —) mode, which
is evidently involved whenever a temperature gradient is imposed on the
*Strictly speaking, we have to study this term as it appears in the transport equation, i.e.,

multiplied by |Al¥,. However, integrating with respect to E and then taking the angular
average leads to the same result.
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. system. In the case where U® = 0, and for time-independent situations, Eq.
(59) leads to

{m(v YT+ [sz[(%%) : VT] }E
4T? ch*(E/2T)

Having found §f °, we can calculate the energy current from [see (14); the
term ~Tr ¢ 9A/ap is small, O(Ao/w), and can be neglected]

—K*+2|AWN, 8f = — (67)

j, = 2N(0)<£; J dE EN, 8f5> (68)

However, finding an approximate solution of (67) does not pose a particular
problem; we may use a simple relaxation time approximation for K*°, namely

K*»> —(1/mg)N1 6f°

(In view of the discussion in Section 3, we ignore in the following the
difference between 7z and 7%.) Then we find

8f°=8f(1y +f )
__Miv-VT)+|AN2[(30/3p - VT] E
(1/7e)N1+2|AlN;, 4T ch® (E/2T)

In the first term, which gives just the ordinary thermal conductivity contribu-
tion, we may insert the BCS limit of 5, namely 2|A\V, = |A]*/1/£>7E, and
obtain the simple result

(69)

& E
E*4T? ch® (E/2T)

On the other hand, 8f% has a finite contribution also for E*><|AJ*; the
result is

Sf(sn = —TE(Y . VT)

(70)

. 1,00 E
=5 (ap ' T) aT BT
with W =1 for E><|A> and W =|A]/E* for E* = |A]". It should be empha-
sized that 8f(;) is independent of the scattering rate (although we expect
that a more accurate solution of the Boltzmann equation might slightly
change the energy dependence of §f(,)).

The heat current calculated from (70) and (71) is then found to be of
the form

(71)

j.=—1 VT —CIXVT (72)
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with (¥ dE =d¢)

ZN(O)UFTE fz
Ky =" < J T (E/2T)> (73)

which is just the well-known result.* For low temperatures, one estimates
«f(T)~«(T)T./T and « (T)~«(T.)T/T., where || and L refer to the
direction of 1. For the second contribution, we obtain [C in (72) is the L
component of Cj]

N (0)vrAS (5 a2 E’- W/AP ) 74)

G = Tps 4T ch® (E/2T)

Near T,, C is easily evaluated, and we obtain

C=N(OwsA2/3T.pr, T-T. (75)
while we estimate the low-temperature behavior as
N(Ove T?
c-NOQueT o1 (76)

As far as order of magnitude is concerned (say, for T ~0.9T,), one finds
Clx ~(rg ) ' ~107*

Near 7., the coefficient C was also recently calculated by Nagai,23 using
the method of the matrix kinetic equation (or energy integrated Green’s
function). In that approach, the drive terms leading to the analog of 6f(
are off-diagonal in Nambu space, and special care seems necessary to solve
the kinetic equation.*

Finally, we mention that the ‘“drive term” in Eq. (58) leads to an
additional contribution in the momentum stress tensor. A simple calcula-
tion, making use of the fact that #, depends only through |A| on p and r,
shows that

d 2 oh*® dA

AL _ABIEKY 3 ot

ap ar or opJ or ap

Operating then with —N (0)(p/m [dE - - ) on Eq. (58), and making use of

the self-consistency equation for the order parameter, one obtains the
contribution to IT which was called” TI”, namely

2N (O)Ao
5

*Note that, in our technique, we may use a relaxation time approximation without difficulties
for the determination of C.

SR

H(Q)

(285~ 1)) (78)
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In fact, these considerations as well as the study of the conservation laws
are easier if the equations for §* are used before introducing the distribution
functions.

APPENDIX

In this appendix, we review the gradient expansion for the regular
Green’s function. The equation of motion, duscussed in Section 2, is given
by

[Q%*%8™*]=0 (A1)
where, in the simple approximation for the linewidth (see Section 3.1)
QFA=E™My—[g,+Ul+ih;  ER®=E(yr (A2)
In addition, we have the normalization condition

R gt =gt e gt =1 (A3)
In the following, we drop the superscripts R, A when no confusion can arise.
Working out (A1) for stationary situations, we find

(E—U"[#3, g1+i[A, g1+iv- Vg

+£{aa7~iﬁ)§g}'_i{aa?—i&)gg}+_.

2 ap ’arl, 2 or ap (Ad)

Then it is clear that the terms in the second line are O(V/pg) smaller than
those in the first line, except

__i.{aUs f’g} (A5)
21 or " opl,

which is the only one of its kind. Neglecting the small terms and similar
ones in the normalization condition, we then have to consider

(E—U™[%s, 81+i[A, §1+i28 =0
v (A6)
gg=1
with

D=y V- (VU > (A7)
op
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The significance of the VU® term was first pointed out by Mermin and
Muzikar,** who used an external potential to describe states with a spatially
varying density.
Starting from the zeroth-order solution
89 = afs+Bfe
—iE 8= |A] (A8)
[(~iE) +]APT" ~iE"

a:

it is now straightforward to iterate (A6) and obtain the Green’s function
in desired order. Also, we may then find the current j from

N(0)

i=——Tr 73<m j‘dE("R ‘A)th—E—>

(A9)
= —iwN(0) Tr $3<;% TY, g‘(wn))

where §(w,) is the Green’s function defined for Matsubara frequencies
wnlg{w, > —IiE ( )= gR(A)(E)} Furthermore, the gradient free energy
f. can be calculated using®

f, = A’;?(J' dE (z® )th%) 2wN(0)<T§z(wn)> (A10)

where the function z is introduced via

0z 9z (wy)
=T — ;e
2 e I&E‘ dw,

(A11)

In proceeding with the gradient expansion, we realize that it is con-
venient to expand the Green’s function with respect to the matrices
Te, To+n/2, 73 [DOte that ® is momentum dependent; see (26)]. We also
find, from the normalization condition, that Tr ¢ = 0; thus we introduce

g =afs+bfe+cTora (A12)

Keeping in mind that @7g=(20)fe+nn and @7'@-4-7:/2 =—(D0)fe, wWe
obtain the following equations:

2Eb —-2i|Ala +Pc =0

. . (A13)
2Ec=Db;  2ilAlc =~%a
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with £ =E - U*+%@/2. It is clear that in an expansion with respect to
the & explicit in (A13), a and b contain only even, and ¢ contains only
odd, powers in 9. This fact simplifies the algebra considerably.

Writing then

a=a%+aP+a%+... (Al4)
we find the following results:

do
Sl f AlS
a 5 ( 26/2) ( )

-l
a caE g [ (D O)*

+ V) +APT (@A)

[ da e
22 (U -U2e)] (A16)

with ida/aE = |AP[(—iE)*+|A"1>/%; from a'®, we directly read off z®
In calculating the current from (A15) we use that U®=
Fimp - §/(3m*po), po=p#/3n°, and

20 Ao(PXl)
A
ap (P | ll)ip D.. Vi (A17)
o, P HPXD)mVin

Our result is identical to the one obtained in Ref. 24, or its generalization
to finite temperatures>>*°—this is not surprising, however, since all calcula-
tions are based on Gorkov’s equations (we only have chosen to do the
momentum integral at the beginning).

As was recently pointed out by Volovik and Mineev,”” an expansion
with respect to v+ V@ might be problematic at very low temperatures.
Consider again the expression for the current (U*°= U” = 0 for simplicity),
but in the presence of a finite v,,:

= --N(O)<:% j dEN(E +v-V©/2)th g—%‘%—"—) (A18)

a(E) was used to obtain this equation. Consequently, we find the normal
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density to be given by

N(E +v- V®/2)>

)i =3 <A£A'J E
(on)i =3po\PP1 | dE ~7m sy

(A19)

This can be evaluated easily at zero temperature: [4T ch’>(E/2T)] ' » 8 (E),
and we ¢btain

i, . )
zv - VO > (A20)

(pn)ii - 3-00 <P;‘p§ [(%V . v®)2__ |A|2]1/2

this expression has to be integrated over angles such that the argument of
the square root is positive (i.e., over momenta with direction almost parallel
to l; if p + 1= cos v, then v, (y — )’ < vgl(l - V)I|/Ao). The result is>"*®

(23

3
(pn)ij =pPo ZZ(; lil}l(l ¢ V)ll (A21)

On the other hand, the order of magnitude is not unexpected. The same
calculation, using instead a finite pair breaking I', gives
(pn)i}'_ <3A A I-‘>_3ﬂw1—‘

Pipjm = 8A (8 + 1) (A22)

Po

provided I"« Aq. For scattering at the surface, we might insert I' ~vg/L,
where L is the size of the system: then (A21) and (A22) are of the same
order. '

The question of the nonanalytic contributions to the current was further
investigated by Muzikar and Rainer.?® They find that in general a careful
solution of the quasiclassical equations near the singular points becomes
necessary. As a result, the term given in Eq. (A21) receives a different
numerical coefficient.

The calculation of the gradient free energy is straightforward, given
a® in Eq. (A16). In particular, it is possible to eliminate the gradient of
U*® with respect to the gradient of the density, and find the corresponding
contributions to f, (see Ref. 21). However, some uncertainty remains
concerning the numerical coefficients of some of the terms.*
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