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We develop, on the basis of the self-consistent mean-field approximation, the
kinetic theory for a dilute Bose gas below the Bose-Einstein transition tem-
perature. The collision operator in the Boltzmann equation is calculated by
golden rule arguments, and the momentum and temperature dependences of
the scattering rates are determined. As an application, we consider the relaxa-
tion of a nonequilibrium distribution of the quasiparticles. We discuss the
relevance of our calculation for the (hypothetical) condensed state of spin-
polarized hydrogen.

1. INTRODUCTION

Since the recent experimental stabilization of spin-polarized hydrogen,'
theoretical attention has focused on the bosonlike nature of such a fluid at
low temperatures and low densities.”* Should it be possible to stabilize
about 10" atoms/cm?, one expects the system to undergo a Bose-Einstein
transition at a temperature of about 70 mK. In a large magnetic field, say
of order 10T, atomic hydrogen will behave in many ways like a two-
component spin-1/2 Bose fluid, the two states being the two lowest hyperfine
states. Consequently, attention has been devoted mainly to the magnetic
properties. For example, if both states exhibit long-range order, one expects
the perpendicular magnetization to acquire a spontaneous value. However,
the stability of such a state is a delicate question.*t

In the construction of hydrodynamic equations for the condensed
system, the question of the microscopic time scales arises: these determine
the limit of any hydrodynamic theory, while on the other hand, valuable
information about the microscopic nature of the state under consideration
can be obtained by comparing experimental and theoretical results for the
parameters in the hydrodynamic equations. In this article, we want to study,

*Zur Erlangung der Lehrbefahigung fiir das Lehrgebiet Physik der Fakultét fir Physik der
Universitit Karlsruhe vorgelegte Habilitationsschrift.
tFor a review of spin-polarized hydrogen, see Ref. 5.
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as an important example, the relaxation rate of a nonequilibrium distribution
of the quasiparticles. For simplicity, we consider a one-component Bose
system.

The microscopic theory of the phase transition in a dilute Bose fluid
has been investigated by many authors, for example, Bogoliubov,’ Belyaev,’
Martin,® and Hohenberg and Martin.” As in the ideal gas transition, a special
role has to be assigned to the zero-momentum occupation number, which
has a macroscopic value below the transition temperature T,. The quantity
¥ (r) = ((r)), where (r) is the usual annihilation operator and the brackets
denote the thermodynamic average, appears as a kind of external field in
the equations of motion; ny = |¢|? is the number density of condensed atoms.
Basically, two approximation schemes have been developed: the gapless vs.
the conserving approximation. In the equilibrium calculations of
Bogoliubov® and Belyaev’ it is guaranteed that in the considered order in
perturbation theory the single-particle excitation spectrum is gapless (which
is a theorem due to Hugenholtz and Pines'®). Note also the more recent
investigations,'"'> which identify and resolve certain difficulties of the
perturbation expansion connected with the long-wavelength behavior of
the spectrum. In a nonequilibrium calculation, on the other hand, it is
preferable to use the self-consistent (and thus conserving) scheme in the
sense as described by Hohenberg and Martin.* In this approach, the single-
particle spectrum has a gap,'” the magnitude of which is, however, always
smaller than the order to which the calculation is valid. We use this approach
in lowest order (mean-field approximation) to construct the quasiparticles
of the kinetic theory.

The concept of kinetic theories/kinetic equations has been discussed
by many authors, but especially with applications to superfluid helium by
Khalatnikov.'* The kinetic equation (or Boltzmann equation) can be derived
from the equations of motion for the Green’s function, as outlined, for
example, very clearly by Aronov and Gurevich!® for superconductors. The
resulting equations apply to situations in which the space and time depen-
dence of the various physical quantities is sufficiently slow, and provided
the quasiparticles are well deflned. To be more concrete, consider a Bose
gas interacting via a repulsive pointlike potential V(r)=+6(r). It should
be noted that an expansion with respect to the potential has a very limited
range of applicability; however, certain summations can be performed,’
which essentially replace « by the scattering length a, throught

m _47wh’a

v*vzzmi+' a
p P m

(1)

*Ref. 9 contains a detailed discussion of the two approaches.
TSee also, for example, the discussion in Ref. 16, Chapters 1 and 5.



335

where m is the mass. The expansion parameter then turns out to be a/!
where ! is the average distance between particles (p = I3 is the total density).
Although we often keep » to simplify some notations, Eq. (1) should be

understood. In the Bogoliubov approximation, the single-particle spectrum
has the form

EY =(&+28nw)%,  &=p*/2m (2)

which may be considered temperature dependent through n,. We then
estimate the kinetic theory to be applicable provided™*

fhw < ngv; h]q] « (mnov)”2 (3)
where w and qare the characteristic frequency and wave vector, respectively.
Assuming that the critical temperature is given by the ideal gas formula,

ke T~ 3.30%/ ml? (4)

we can write Eq. (3) in the form
1/2
o<t LkyTy; g« (E 3”—) r
I p I p

The requirement of well-defined quasiparticles leads to the condition #/ 7«
ngv, where 7 is a scattering time. Anticipating some of the following results,
we find from this condition

T.—T a

(5)

in agreement with Ref. 17. Thus we have to exclude a small temperature
region near T, and this turns out to be just the critical region as given by
the Ginzburg criterion,"®

Ecrit ™ k%/[f(ﬂ)?’ﬁC]z

where we estimate the coherence length £(0) from the Gross—Pitaevski'’
equation, £(0) = I(l/a)"/?, and the specific heat jump by AC = ky pa/l We
keep in mind applications to spin-polarized hydrogen, for which a/I~ 107>
for the discussed density.*”

The remaining sections are organized as follows. In Section 2, we
outline the kinetic equations. Section 3 contains a discussion of the collision
operators, and we calculate the temperature and momentum dependence
of the scattering rates. The relaxation rate of a nonequilibrium distribution
in a spatially homogeneous situation is determined in Section 4, and Section

*Note, however, that the kinetic theory in addition ignores certain effects that happen on a
scale given by the gap in the spectrum (see Section 5 and Appendix B).
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5 contains some concluding remarks. Appendix A demonstrates the deriva-
tion of the scattering rate with the Green’s function technique, and Appendix
B contains a discussion of the mean-field equations in the collisionless
regime. Some of the results were reported earlier.”!

2. THE KINETIC EQUATIONS

For illustration, we repeat a few well-known microscopic consider-
ations. Consider the Hamiltonian of a system of bosons in an external
potential U,, interacting via a repulsive point interaction »:

K = J d’rh
2 (6)
= (W)*(VJ)W*U,;%% a7y

2m

where §(r) and ¢*(r) are the usual field operators. In the first step, we
perform a gauge transformation,

g=de,  Gr=gte™ (7)
where y is in general space and time dependent. We define

h
S:-—-—V 3 c=_ﬁ'
Vo=V p X (8)

and obtain the new Hamiltonian £ (only the term quadratic in the field
operators is modified):

2 -+
E=~f‘-—[(v+im"~‘)¢7] [(v+i”;"~‘)(§]+¢7+(ux—pc)&+- (9

2m h
As a direct consequence of the definition in (8), we find mv, =—Vu,, and
m{vs + (vs : vr)Vs] = -V(f) +F, (10)
where F, =—V U, is the external force, and we introduced
o=~ 3= U (11)

Also, the current operator transforms to
- iﬁ A - -~ A A A
R CAL AR AR R A A (12)

In the second step, we take care of the special role of the condensate by
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introducing
b=()+é (13)

and we choose the phase in such a way that () is a real quantity. Then it

is clear that ¥V, becomes just the superfluid velocity, and ¢ may be called

the chemical potential of the condensate (we do not want to discuss whether
the %mgi should be included within such a notation). Clearly, we may
write () =~/n—0, where ng is the density of condensed particles. We now

insert (13) into (9), treat the interaction in mean field approximation, and

neglect small gradient terms. Then it is straightforward to derive the

expression for the local energy density e.

The result is*

1 i
e=—nedp +=eng—— (01— 2ngw)’ —— (012~ ngv)’

2 4o 2v
1 {[8p+p'vs T1o :]A }
+=tr alp,r, t) (14
2 % T2 E,m PV (p )

Here, we defined the diagonal part of the self-energy o;; =2up, where the
total density p is the sum of the particles in the condensate and the excited
particles,

P=n0+z ﬁll(psr)f) (15)
p
and the off~diagonal self-energy oy, is given by

O1/v=ny+Y Aa(p,r, 1) (16)
P

Also, we introduced the center-of-mass coordinate r and the Fourier trans-
form of the relative coordinate p; A(p, r, t) is directly related to the equal-
time (““ <”’) Green’s function of the excitations, expressed in these variables
(7 is a 2 X2 matrix). Finally,

8p=§p+0'11"-q5 (17)

Clearly, Eq. (14) can also be derived with the help of the Green’s function
technique.

Now it becomes evident how to proceed. In the usual way, we perform
a Bogoliubov transformation, and introduce the amplitudes u,, v, given by

u?, =%(sp/Ep+1), vim%(ep/Ep—i) (18)

*We omit the inverse of the volume in front of every momentum summation.
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with u2—v2 = 1. The last term in (14) then takes the simple form

Y E,(n,—v}) (19)

where n,=n(p,r,t) is the scalar distribution function of the excitations.
The spectrum is obtained as

E,=E,+p-'v,, E,=(ei—0o})"? (20)
which can also be written in the form
E, = (A*+2még,c*+ £)"? (21)

with AZ= (o, — ¢)*— 03, mc* = oy, — ¢. Furthermore, particle and current
density are given by
p=no+¥ [uin,+vi(1+n,)] (22)
P

- ] . p
i=oviti, hiFloom (23)
s m
Finally, the distribution function of the excitations n, has to be calculated
from the Boltzmann equation:

O, ony 9E, n

——L —E=1{n} (24)

n,+
ap or or Jp

where the collision operator I describes the change in time of n, due to
scattering processes. I{n,} will be discussed in detail in the next section,
and we mention here only that it conserves momentum and energy, namely

L E,I{n,}=0=Y pI{n,} (25)

Note that particle conservation is not a consequence of the equations, but
is an independent equation of the theory, reflecting the fact that we had to
choose a certain gauge to be able to derive the transport equation (only in
the gauge in which the order parameter is real is a gradient expansion
possible). Thus we have to add the continuity equation:

ptv-j=0 (26)

We study now in more detail the energy as given in Eqgs. (14) and (19),
and consider it as a function of @, v,, o1y, 012, {n,}, and n,. If we minimize
e with respect to oy, and oy, we obtain just the correct mean field
self-energy equations; p = —de/d¢ leads to the correct expression for the
total density, as given in (22):

o011 =2vp; oo/ v=he— Y Uyt,(2n,+1) (27)
P
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As an important point, we emphasize that the number of condensed particles
ng is still a free variable. From the condition that e should be minimal with
respect to ny, we obtain the last equation:

G']1+012 ¢’+2RO’U (28)

Of course, the above considerations remind one of typical equilibrium
arguments, where in addition n, should equal the Bose function (which
follows from the requirement that e — Ts must be minimal with respect to
n,). However, we may turn the argument around: Consider any nonequili-
brium situation (within the limits of the theory, of course), and start from
the Boltzmann equation, Eq. (24), the continuity equation, and the
expression for the energy. From the requirement that the conservation laws
are a consequence, we find that the self-energy equations are of the correct
form, and, in addition, that (10) and especially (28) must hold. Con-
sequently, Egs. (10), (22)-(24), and (26)-(28) form the basis of the kinetic
theory.

Finally, the momentum and energy conservation laws are obtained in
the following form:

3:fi+VjTTsj =p(F,):/m (29)
d,(e+pdo)+V - (doi+i.) =] Fx (30)
with (bo ¢3+2m03, and
7y = p(05)i(05);+(0,):(j); + (v);(Jn): (31)
dE, b i
+y —= 2 m - S,J(ZE n,— )
. . oF
1e=§ p-g;f ny (32)

The kinetic equations can be generalized to include, as a formal device,
an external field n, which couples directly to the order _parameter In Eq.
(6), this will introduce an additional term of the form n, 4" + n}¢; proceed-
ing in the same way as above, we then find an additional term in the energy
density, Eq. (14), given by 2n{/*n%, where

=Ree ™n;  nx=Ime n, (33)

™ may be called the longitudinal (transverse) part of 7, with respect to

the direction of the order parameter considered as a vector in the complex
plane Consequently, the conservation laws appear in slightly modified form,
since e and thus m; via Eq. (31) are modified. In Eqgs. (29) and (30) we
find additional terms on the right-hand side, given by —2n{'* Vx%/m and
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2ny'? 9%, respectively. Minimizing e with respect to ng, furthermore, leads
to the condition [instead of (28)]

oyt ot Ui‘/ﬂtl)fzzﬁb"‘zno” (34)

The transverse part of the field, however, appears only in the continuity
equation, which now has the following form

pHV - j=2n5*n; (35)

3. COLLISION OPERATORS AND SCATTERING RATES

The collision operator in the transport equation, Eq. (24), can be
derived using standard golden rule arguments. As a consequence of the
special treatment of the zero-momentum states, Eq. (13), we have to
consider two contributions in the interaction, which we denote by h; and
h,, namely

hs=wvnl?¢*¢é+H.c. ’ (36)
and

A A4 A A

hy=0¢" ¢7 ¢ (37)

h; describes processes in which the excitations interact with the particles
of the condensate, while h, is just the scattering of excitations. Accordingly,
we find

I{np} = IS{np}+ Itdnp} (38)
and we are able to define two scattering rates 75" (p) and 75" (p) from the
linearized form of I; and L.

3.1. Three-Excitation Processes
We find I to be given by*
Lf{n,}=—4mne® ¥ {|A(1;2,3)]

P2.P3
X[ny(1+ny)(1+n3)—(1+ny)nn;]6(1-2-3)
+2|A(3;1,2)
X[nyny(1+n3)—(1+n)(1+ny)ns18(1+2-3)} (39)

where n, = n(p,), etc., and

3(1‘2_3)="(277)33(91“Pz"P3)3(E1‘Ez_Es) (40)

*We use units such that #=kg=1 in the following.
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The scattering amplitude A is obtained in terms of the coherence factors
u and v, with the result

A(l, 2, 3) = UgUsUz— U U U3 — Uy UaUs+ Ulvzug“" Uil U3 — D1 U404 (41)

As an illustration, consider the Bogoliubov approximation, and define
p6=2mngv, i.e., py is the characteristic momentum for the crossover
between the linear and the quadratic part of the spectrum. Then it is clear
that A - 1 if all momenta are > p,, in which case ¥ > 1, v >0 (normal state
limit). On the other hand, if all three momenta are small, « p,, we find

A1;2,3)=AG; 1, )~ ("1;’%?3) (42)
provided the energies of the excitation are related by the appropriate
conservation law, E; = E,+ E, and E, + E, = E,, respectively. In addition,
we also have to consider the scattering of low-momentum excitations
(““phonons”) with high-momentum excitations (‘“‘particles”). The corre-
sponding amplitude is given by

A(152,3)=2%%(ps/ po)"/? (43)

for py, p2>» po; P3< po.
In the limit of low temperatures, T < nge, and in the Bogoliubov

approximation, the scattering rate can be evaluated. We find

iy 3 s 3mm’T
7 ¥V " 320mmn, Y T 320n3a2F
Oom*T>
+256777/2 572772 [2°Dy(z) - 2zD5(z) + Dy(z)] (44)
E,, T< ngv
with z=E,/T, and
Dn(Z)=J dx— (45)
0 1

We easily identify the first two terms, which dominate for E,» T and
E,« T, respectively, as the terms calculated already by Belyaev’ and
Mohling and Morita,?* For E,=< T, we find that the Mohling-Morita term
dominates (numerically), and thus obtain the rather simple approximation

1 N/ T\*
;;(p)~(;) (—j—:) (PDT. (46)

provided E,< T and T « nye. Note that the latter condition corresponds
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to T/T.«a/l, ie., to very low temperatures; also, E,= cp, where c*=
nov/m is the phonon velocity in the Bogoliubov approximation; and we
have used p = [ 7> = n, since we can neglect the small ground-state depletion.

We emphasize that in arriving at the above result, we have to evaluate
very carefully the energy &-functions, and to take the deviation from the
linear spectrum into account. Consequently, the change in the momentum
of the colliding phonons turns out to be very small, of order T/ ny» only.
We thus have to interpret the above result as the energy relaxation rate,
and the momentum relaxation rate will be even smaller.*

In the high-temperature limit, T > nge, on the other hand, the scattering
rate cannot be determined exactly. In evaluating certain integrals, we use
the following approximate procedure: We split the range of integration into
“high” and “low’” momenta, i.e., p= p, and p < p,, and use the expressions
for the scattering amplitude and the spectrum as obtained in the limits
P> po and p< p,, respectively (in the Bogoliubov approximation). It turns
out that, apart from numerical factors, the integrals over high and low
momenta give the same answer, giving us some confidence in the following
results. Also, as far as the momentum dependence is concerned, we find
that different regimes join smoothly. We obtain

T>» nyv:

(8 Tm a

vp'”;T(pi), P< pg
ko

1 Tmzﬂg'vz Ny (ﬂ)2 T
il el eI AL D) K p&K 47
7_3(;7) ) A o\1) o Po< p< pr (47)

mnge>  no {a\®

————p~—| = DT, «

. P p(l) (pl) pr<p

We define here the thermal momentum pr by E(pr) = T, and the quantity
A is given by

A=~—+—l]og—* (48)

Although for detailed calculations the momentum dependence of the
scattering rate has to be taken into account very carefully, it is often
convenient to discuss relaxation processes in terms of the scattering time,
evaluated for certain characteristic p. Clearly, the important momenta at

*Compare with the results for the scattering of electrons by phonons in metals at low
temperatures. In that case, the momentum relaxation rate is smaller than the energy relaxation
rate by a factor (T/9p)?, where 6y, is the Debye temperature.
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low temperatures are given by pr = T/¢, and Eq. (46) leads to

1 1\*? T)5 a._
T—a(pr)"-(g) (E T., T<<ch (49)

which leads to the numerical value r3(pr)~ 107" sec for a/l=107%, T=
107*T,, T.~70mK. For high temperatures, we find two characteristic
times, 73(po) and 7;( pr), the former determining the time for relaxation
processes in the phonon part of the spectrum, and the latter giving the time
for thermalizing the quasiparticles. We obtain from (47)

s () () T o0
L (pr)~10222 (9)2(1)1/211 51)
T5 p \1l/] \T,
?R«T
and realize that
st~ £ 5) " (52)

i.e., 73(pr)» 73(po). For T=T,=~70mK and a/l~107>, we find m:(pr)=
107%(p/n,) sec. Note that Eqgs. (49) and (50) agree for T/ T, ~3a/l.

3.2. Four-Excitation Processes

As an illustration, we consider first the collision operator in the normal
state. The result is well known:

Nn,t=—4m® ¥ 8(1+2-3-3)|A(1,2;3,4)

P2:P3:.P4

X[nayn(1+n3)(1+ny) — (14 n) (1 + ny)nsngl (53)

and we use an obvious generalization of our previous notation. I describes
scattering processes of the form 1+2-3+4, and |A]*=1 in the normal
state. Below the transition temperature, we obtain, in addition to a contribu-
tion of the same structure as (53), also terms describing processes like
1-2+3+4 and 1+2+3->4. We again use the approximate procedure
described above to calculate the corresponding scattering rates. The transi-
tion probabilities in the limit where all momenta are > p, are easily calcu-
lated, and we find |A(1, 2; 3, 4)|*~1 (as expected) and |A(1, 2, 3; 4)]*= v3,
which is of order (nye/ T)? for thermal energies. We thus conclude that the
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contributions to I, besides I are small and can be neglected compared to
;. (In the low-temperature regime, it has been assumed by many authors
that four-phonon processes can be neglected compared to three-phonon
processes.) We point out, however, a difficulty that arises in the phonon
regime, If all momenta are much less than p,, we find the unphysical result
|A]>~ (p1p,psps)”~", while phenomenological approaches'* predict, as in
(42) and (43), the behavior p*' for every phonon. This behavior may be
connected with the divergences discussed in Refs. 11 and 12, and the correct
result for three-phonon processes seems surprising at this point. An investi-
gation of this question is not intended here, and we use in the following I}
with |A]?=1: namely, it turns out that we need to consider I, only in the
high-temperature region where n,« p, and in addition only for thermal
momenta, p= pr.

The scattering rate, as calculated from I} with |A|>=1, is obtained as
described in the limit T >» nye. We find it to be roughly independent of
momentum in the range p,< p =< pr, and to increase linearly in p for p= pr.

The result is
~o~2(7) (1) (1+2)
— ~ -} | = +—|T. 4
74([7) 20(1) T, ! Pr T (54)

provided p> po. For T~ T, and the considered parameter values, we find
as the characteristic time 74(pr,) = 1077 sec. We also conclude from (51)
and (54) that 7,(pr)= m3( pr) provided 2no/p = (T/ T.)*2. This result has
the simple interpretation that I; dominates over I, (for thermal momenta)
when the number of the condensed atoms is larger than the number in the
excited states. Using the ideal gas result for no(T), we estimate that the
three-excitation processes (I;) dominate for T=<0.7T..

4. RELAXATION OF NONEQUILIBRIUM STATES

An important feature of the conserving approximation is the appear-
ance of a gap in the excitation spectrum, Eq. (21). As an illustration,
consider the equations in equilibrium. With the help of (28) and o,; =2vp
we find

A2=4n0?)(no'v""0'12) (SS)

i.e., the gap is related to the difference between oy, and nye. Inserting the
equilibrium distribution function into (27), we obtain

1 E, m
Hov— 0y = w0 Z(-—cth-——”—-——) (56)
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where we subtracted m/ pz to regularize the divergence for largesmomenta
[which can be interpreted in the sense of Eq. (1)]. Since nov— oy, is expected
to be small, we put A=0 on the right-hand side of Eq. (56), and obtain

1/2 1/2

( A )2 (z Tc g
Ry

3/2
(3) , T« nov
[

So we certainly have A < nge provided ny/p = a/l, i.e., except in the critical
region close to T,. We also find that A« T as long as the temperature is
not extremely small, T/ T, (a/1)”/*. Consequently, we will exclude very
low temperatures as well. For later use, we define py=A4/c, i.e., pa/po=
A/ngv. Note that, for A-0, the spectrum is phononlike with velocity
c?= nyv/ m, the Bogoliubov result.

We want to determine now the relaxation rate of a nonequilibrium
distribution and imagine a time-dependent process in which initially the
equilibrium between condensed atoms and excitations is slightly disturbed.
We consider a spatially homogeneous situation, without any currents, and
assume the deviations from equilibrium to be small. We then linearize the
equations according to n, = b(E,)+ 8n,, where b(E,) is the Bose function
at the unperturbed energy, ¢ - ¢+ 8¢, ny—~> ny+8éng, p->p+8p; and we
will use in a moment that the total density is constant in the present situation:
8p =0. From (24), (22), and (27) we find, after eliminating 8o, by (28),
the following equations {3/9t » —iw):

(57)

—iwdn, = I{b+8n,} (58)
%
w(8rg—8p)+ Ky =—v 3,2 8n, (59)
r B
vdny+ 8¢ —2u §p+sz—ng}2‘-8np - (60)
r Ep

with
K=Y 8(u3)cth (E,/2T)
P

Ky=vY 8(u,v,) cth (E,/2T)
P

8(u3) and 8(u,v,) can be calculated easily from the definition of the
coherence factors, Eq. (18). Equations (58)—(60) form a closed set of
equations: It must be emphasized that I has the property that it relaxes
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én, to a local equilibrium function, i.e.,
8E, = (0E,/ono)8ny+(3E,/3¢) 8¢+ (3E,/ap) 8p

appears as a “‘drive term’’ in the Boltzmann equation. This becomes more
evident if we linearize in a different way, namely according to n,=
b(E,+ 8E,) + 81, (67, describes the deviation from local equilibrium). In
principle, we can determine now 8n, in terms of dng, 8¢, and 8p from (58),
and then solve (59) and (60) to find the relaxation rate iw = A.

However, things can be simplified a bit more. First, we consider K,
and K,; we notice that the integrals are infinite due to the long-wavelength
behavior if we use the Bogoliubov approximation (the divergence is of the
form ¥, p™). In the approximation with a gap, on the other hand, we find
that K, and K,, although proportional to p,’, are negligible in (59) and
(60) except close to T,. Second, we find it convenient to use the gap and
the phonon velocity as variables [see Eq. (21)}:

méc? =208 p— 8¢

1 (61)
_"jA tSA = 0’12‘2) 5?10“[*‘ ng’b‘(s(}‘)— 2'?) §p)
Note that
ASA ¢
=——+=E m §c* 2
SE, E 'E, m 8¢ (62)

Neglecting K, K,, and small corrections ~A?, we can rewrite (59) and
(60) in the following form:

2
méci—v dp=~—0Y é’-’-— on, =~ 2ny)™' Y %’- on, (63)
p Lp pLp

%vzw— 3?1;, (64)

We used the fact that energy is conserved in collisions, i.e., },, E,6n, =0,
to establish the second equality in (63). The last expression in (63) is
convenient at low temperatures, and the other one at high temperatures:
Namely, it is straightforward to establish the following inequalities (8p = 0):

mscr< 228 por TOT (65)
Rov !

méc*>» L for T»2 T. (66)
Hov )

since the relevant energies turn out to be of order T in the integrals. In
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addition, we then conclude that A §A/2ngw = —v 8ng and m 8¢*=w 8n, for
low and high temperatures, respectively. Consequently, we arrive at two
equations, which can be combined into a single one, namely

Srg~—Y @5’393 on, (67)
P P

since £, < nge (&, » nge) for low (high) T. Equation (67) agrees with the

naive use of the Bogoliubov approximation, i.e., Eq. (2) together with Eq.

(22), in which case it is obvious that m 8¢?=uv 8n,. Note also that, in a

situation where &n, describes a shift in temperature, i.e.,

on,=(—b') %{-’ 6T (68)

Eq. (67) reduces to the equilibrium relation between the number of con-
densed particles and the temperature, at constant total density. Clearly, in
the Bogoliubov approximation, we find on,/8T ~—T at low temperatures,
and an,/9T ~ —T"* at high temperatures, which is just the ideal gas resuit.

4.1. Relaxation at Low and Intermediate Temperatures: T< 0.7T,

To determine the relaxation rate, we finally have to solve the Boltzmann
equation. We introduce an approximation for the collision operator I that
takes into account that (a) I relaxes toward local equilibrium while (b)
conserving energy. A relaxation time approximation taking care of these
properties is usually a good approximation for low frequencies (and long
wavelengths), i.e., in the hydrodynamic regime, although we expect reason-
able results for w of the order of the scattering rate. However, the situation
seems to be more complicated for T - T,, where I5 and I, have to be taken
into account (see the following section).

In this approximation, the Boltzmann equation reduces to

—iwdn, = —%{5;@,,—(—19’)[% aT—a,Ep]} (69)
p

where b'=08b/9dE,. The change in temperature 8T is determined from
energy conservation. Evidently, we can solve (69) easily for n,: As a
formal device, we introduce af - ] by (A = iw)

af - 1=0 % (1=Ar) (=B ] (70)
14
and obtain from (67) and (69)

oT £
v 8n0=-a[sp]?+a[§g SBP] (71)

P
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a[E} }-‘? =a[E,- 8E,] (72)

Being a bit more careful, we have to replace ¢, by ngv(£,) for low (high)
temperatures in Eq. (71). In addition, we emphasize that 8E,=
—(2nov/ E,)v 8ny and 8E,=(¢,/E,)v én, in the respective regimes. We
realize now that we may put A=0 except in a[E,?], where we obtain a
logarithmic dependence on p,. Due to the smallness of af - 1, e.g., for A =0:

3 3/2 2
Py E...'..T.N (E) (l) , T<< nov
T ) Hoe

o[1]~ | S g (73)
(’—) — T » nge

3
v ——— g}
L po (no’v)z ! Rov

we conclude that the solution of (71) and (72) is characterized by 8T >« 8ny,
i.e., the eigenfunction is dominated by a shift in temperature. The eigenvalue
A is thus determined by a[ E2 ]~ 0, and will be of the order of the quasipar-
ticle relaxation rate evaluated for thermal momenta. Using the expressions
for 7, we obtained earlier, i.e., Eq. (46) and the intermediate range result
of Eq. (47), v, ~ p, respectively, we find (numerically) the result

e {5/73(;’14, T<(a/DT.

(74)
0.6/7’3(17*1“), (a/l) Tcg T=< 07Tc

pr is defined by E(pr) = T'; note that 73( pr) is different in the two regimes.
Physically, this result expresses the fact that the long-time behavior is
dominated by the time characteristic for the thermalization of the quasiparti-
cles, which thus sets the scale for the time in which the number of condensed
atoms ngy approaches its equilibrium value. However, we hesitate to call
this time the “order parameter relaxation time’” since no characteristics of
the order parameter are involved. To substantiate this conclusion, we
consider the linear response to a field that couples directly to the order
parameter, 1,, as introduced in Section 2. For frequencies not too close to
the one given in Eq. (74), we find that the coupling to the quasiparticles is
negligible (af - ]« 1), and obtain

mbéct=~—nk/n¥?*+2un*nT /(- iw) (75)
A 8A/2ngw =~ —8nL/2nk? (76)

in agreement with the results of Appendix B, since (75) and (76) can also
be written as

8d=n5/ni?*+« 8p, dngy = 8p (77)
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with 8p related to the transverse part of the external field, 6p=
2ny' %0} /(— iw). Of course, the relaxation rate calculated above appears as
a pole in the order parameter susceptibilities; it turns out, however, that
the residuum of the pole is of the order (a/!)** and (a/I)}{(T/T.)"?,
respectively, at low and high temperatures.

We have not investigated the equations for higher frequencies, say
w~1/7(po), in great detail since (a) the momentum dependence of 7, is
not known accurately enough, and (b) the simple approximation for the
collision operator may be questionable. However, we expect, at least for
T >» ngv, that a characteristic relaxation occurs on the scale 7(py), i.e., fast
compared to the thermalization time of the quasiparticles, and thus domi-
nated by strong nonequilibrium states. Thus the relaxation appears as a
two-stage process. Starting from an arbitrary initial distribution, we have
at first a fast process, with time scale 7( py), characterized by rearrangements
of the excitations at small energies, < ng»< T, with changes of A% and ¢?
being of equal importance. In the next step, the excitations have to be
thermalized, which takes a rather long time, 7(pr). From this discussion,
it is tempting to identify 7( po) as the order parameter relaxation time (and
we have done so?'); however, it appears difficult to support this conjecture
within the simple approximations we are studying here. The comparison
with analogous situations in superconductors is instructive in this context
(see Section 3). |

4.2. Relaxation close to T,

As discussed in detail in Section 3, we have to include four-excitation
processes in the high-temperature region: I =I;+1}, where I} is the part
of I, that has the same structure as the normal state collision operator (it
describes processes of the form 1+2- 3+4). While, of course, I; and I}
conserve energy individually, there is an important difference: I} also
conserves the number of excitations! This follows directly from (53), and
can be expressed as

Y I {n,}=0 (78)

P
Also, for T - T,, the number of excitations equals the number of atoms in
the excited states: we have u - 1 and v}, - 0 in this limit. Thus we conclude
that I cannot contribute to establishing the equilibrium with respect to
the particle number between condensed and excitated atoms; it is only
effective in thermalizing the excitations. Consequently, we have three time
scales: 73( py) € 74( pr) < 73( pr), and interpret the relaxation process in the
following way. As discussed in the previous section, we have a fast process
characterized by changes for low momenta, ~ 75( po). Then it takes a time
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of order r4(pr) to thermalize the excitations, and, finally, the equilibrium
between condensed and excited atoms is established within a time of the
order of 73( pr). We conclude again that 75( pr) determined the long-time
behavior of the relaxation, and thus we find for all temperatures A ~ 73" ( pr).
From Eq. (51), and using the ideal gas result for ny(T), we find close to T

2
A~ 102(?) eT., &= TCT L (79)

and we can also express this in the form A ~ &/7n, where 7y = 74(pr,) is
the characteristic relaxation time in the normal state at the critical tem-
perature. Note, however, that the critical region was excluded in our
considerations, i.e., e =a/l.

5. SUMMARY AND DISCUSSION

In conclusion, we have studied the kinetic equations for a dilute Bose
gas. The kinetic theory consists of the self-consistent mean field equations
plus a Boltzmann equation from which the distribution function of excita-
tions has to be calculated. It applies to long-wavelength, low-frequency
situations and assumes the quasiparticles to be well defined: the latter
condition leads to the conclusion that the critical region near T,, e<a/l,
has to be excluded. Gould and Wong'” have argued that, in a second-order
approximation, one is able to handle temperatures such that (a/l)’=<
e<al/l

In particular, we considered the relaxation of a nonequilibrium distribu-
tion of the quasiparticles. We found that the relaxation time is determined
by 73(pr), i.e., the relaxation time for three-excitation processes evaluated
for thermal energies. For not too low temperatures (T/T.=a/l=~1072),
we obtained the following result:

1/2
A =-=——-—~~—-(—) X 10% sec™? (80)

where T.=70mK was inserted. Note that ny/p=~¢e¢=(T.—T)/T,. This
result has a very simple interpretation at intermediate temperatures, T'<
0.7 T,: In this regime, 75( pr) is just the thermalization time of the quasiparti-
cles. Imagine a perturbation that initially changes the energy of the excita-
tions: since energy is conserved in the following relaxation, the temperature
as well as the number of condensed particles will approach their new
equilibrium values on a scale set by 73( pr), of course a plausible result.
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The situation becomes more complicated for high temperatures, 7=
0.7T.. To be definite, consider e« 1 (but £>»107?): In this regime, the
number of excitations almost equals the number of the particles in the
excited states. In addition, the dominant scattering processes will be due
to four-excitation processes, which are number conserving for T > T,; the
number-nonconserving contributions to I, are expected to be small (of the
order of* ngu/kgT,). Thus the relaxation has two stages: the relatively fast
thermalization at constant number of excitations, on a scale 74( py), followed
by the conversion of excitations to condensed particles through three-
excitation processes, i.¢., on a scale 73(pr). Since 75(pr)=ripr)/e, Iz
dominates over the number-nonconserving contributions from I,.

In contrast to the Bose gas, relaxation processes and especially the
order parameter relaxation in superconductors have been the subject of
many investigations, experimental as well as theoretical.i The origin of
superconductivity, as well as the (in many metals) dominant scattering
mechanism, is due to the electron-phonon interaction. In addition, the
phonons can often be considered to be in equilibrium, due to very effective
coupling to the surroundings, and act as a heat bath for the electrons. We
consider first very low temperatures, and imagine a situation in which
initially the electrons are in the (unstable) normal state. As is well known,
“Cooper pairs” will form on a time scale given by #i/kgT,, and a gap in
the quasiparticle spectrum is established (the gap A, is of the order of kg T,).
Besides leading to the characteristic equilibrium properties of superconduc-
tors, the gap also manifests itself in the high-frequency response:***” Physi-
cally, “pair breaking’ is possible when the external frequency exceeds
2A,/h. Considering, e.g., the response to a steplike increase of the supercur-
rent, one finds?’” a behavior characterized by oscillations with frequency
2A,/h and by algebraic decay in time. For times long compared to the
inverse of the gap, electron-phonon scattering becomes important in estab-
lishing the final equilibrium state. It is useful to distinguish the scattering
time 7, and the recombination time Tep = Top €XP (A;/kgT), the latter
being related to the recombination of an “electron” and a ‘“hole’ under
emission of a 2A; phonon (and therefore exponentially long). It turns out
that, on a scale set by 7, the electrons are thermalized, at a temperature,
however, not equal to the bath (phonon) temperature. Thus the long-time
behavior is dominated by 7, the recombination time, and the gap is time
dependent since it adjusts to the actual electron temperature. For this
*This small factor is essentially the range in energy over which the coherence factors deviate

from their normal state values, divided by the critical temperature. Applying analogous
results for superconductors® to the present situation, however, suggests that the factor might
be only (nye/ kg T.)'/2.

tFor general reviews, see Refs. 24 and 25.
iSee, for example, Chapter 7 of Ref. 16.
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reason, 7, is sometimes called the order parameter relaxation time. It
seems to us, however, that similar reservations as above (see Section 4)
should be made.

Animportant feature of the theory of superconductivity is the smallness
of the transition temperature compared to the Fermi temperature, the ratio
being of the order of 107*. As a consequence, variations of the magnitude
and the phase of the order parameter are decoupled (in linear response)
in an excellent approximation: Changes of the magnitude couple only to
the temperature of the electrons (and the energy), loosely speaking, and
changes of the phase to variations of the chemical potential and the density.
However, it turns out that, close to the transition temperature, the charac-
teristic time for both modes is of the same order, namely>® ~ 7,/ £'/?, where
Tep 18 the electron—-phonon scattering time in the normal state. Note that
the quasiconservation of the number of excitations, which becomes equal
to the number of electrons at T, plays an important role in establishing
this result for the transverse (phase) mode.

Having some of these results in mind, we have investigated the mean
field equations in the collisionless limit. Some details can be found in
Appendix B. As already discussed in Section 4, the order parameter response
is only weakly modified by the coupling to the quasiparticles. The small
corrections, however, turn out to be formally similar to the high-frequency
results in superconductors, showing algebraic decay and oscillations with a
frequency 24/h. Consequently, these effects depend crucially on the gap
in the spectrum, i.e., on the order in perturbation theory in which the
calculation is done. We must conclude that the conserving approximation
contains effects that must be interpreted with care. However, we emphasize
here the smallness of these corrections, which seems related to the fact that
Bose condensation is a phenomenon that occurs even in the noninteracting
system (unlike superconductivity). Thus, for a weakly interacting gas, it
turns out that it is, so to speak, not a self-consistency problem to determine
the number of condensed atoms n,. For not too low temperatures, the ideal
gas formula is quite sufficient, while for T =0, the ground state depletion
is known to be small. This must also be kept in mind in the discussion of
relaxation processes.

We wish to mention, finally, that a situation analogous to the instability
of the normal state below T, in superconductors was considered by Levich
and Yakhot®® for the dilute Bose gas. They couple the Bose gas to a heat
bath (like the phonons in metals), whose temperature is suddenly changed
from T>T, to T<T,. They study the temporal development of the
occupation number of the zero-momentum state, which is populated by
scattering of particles from other momenta into this state. The characteristic
time for this process is found to be given by 74(pr.), i.e., the normal state
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scattering time (with a slowing down if the final temperature is close to
T.). Clearly, states far from thermal equilibrium are important in this
process.

In conclusion, we expect the kinetic equations presented in this article
to provide an adequate framework to discuss relaxation processes and
transport phenomena in a dilute Bose gas.

APPENDIX A. SCATTERING RATE FROM GREEN’S FUNCTION
THEORY

The Green’s function theory of a weakly interacting Bose gas has been,
of course, the subject of a large number of investigations. As an illustration,
we wish to demonstrate how to calculate the lifetime of the single-particle
excitations due to three-excitation processes from microscopic theory. Fol-
lowing Hohenberg and Martin,” one defines, in the presence of an external
field that couples directly to the field operators, the Green’s functions of
the condensate,

G52 (1) =V = i@, (1)) (A1)

witha=1,2;¢;=¢, §=¢"; 1=(ry, 1,), for t, between 0 and — i/ T, where
T is the temperature. The linear response of Gj,, with respect to the
external field, 7%, is directly related to the Green’s function of the excita-
tions:

8GS,5(1) =~/——ff d1’ G$# (1,172 (1) (A2)

and the sum over repeated indices is implied. Thus the Green’s function of
the excitations is identified as the order parameter response function, or,
more precisely, the retarded function as follows from the analytic con-
tinuation of (A2).

Consider first the Bogoliubov approximation, in which the self-energy
matrix is given by (for a pointlike repulsive potential of strength )

B " a2 1}
2.4(1,1) = newsd(1 1)[1 20, (A3)

The chemical potential is related to the self-energy such that the spectrum
becomes gapless, namely p = ngv». The Green’s function then has the simple
form

Gi(w, q) =[wfs— g,1 — now#;]™ (A4)

where w and q are the Fourier conjugate variables to #;,—¢; and r;—rj,
and &, = £, + nov, with £, = g*/2m. Here 7, and 7, denote the Pauli matrices.
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Clearly, all elements of G, have a common denominator, given by D(w, q) =
w?— wé, with wé = 53 +2&,ngv.

Since we are interested in determining the lifetime of the elementary
excitations, we have to investigate the self-energy in second order, the
Belyaev approximation (as given in explicit form, e.g., in Ref. 9). Ignoring

the real parts of the second-order self-energy, we may write

G (@, q) =[wfs— g1~ ngw s +il'(w, ¢)]" (A5)
with ['=(i/2)(3R-£4). We also define
f1=r3$3+rl¥1+roi (A6)

and realize that for small I'; the denominator of the Green’s functions has
the simple form

D(w, q)zw2~w§ +2iol 4w, q) (A7)

where I'cq Is given by
£ Hov
Fe(@, @) =T'5(w, 9)+=*T(w, g) == =To(w, ) (A8)

Clearly, I'.g(w = @y, q) gives the linewidth of the elementary excitations, or
half the scattering rate. Thus, finally, we have to evaluate the elements of
the self-energy matrix (its imaginary part), and the combination (A8) gives
the desired result. To be explicit, we present the self-energy expression:’

Zap(1, 1) =ingw’[G#(1,1GP° (1, 1)
+GT (L 1)GY (1, )+ G (1, 1)G(1,1)
+G17(1L,1NG¥P (1L, 1) +3G7 (1, 1)GY (1, 1)]  (A9)
Here we use the Green’s functions as calculated in first order. We perform

the analytic continuation with the help of “>" and “<” functions, and
use results like

Gi(w,9)=A(w,q) - b,; G7(w,q)=A(w,q) (1+b,)
with b, =[exp (w/T)—17"", and A= (?{* - é‘{‘ turns out to be given by

.\‘A 2 — 2 . %
iA(w, q)z[ Ug uqu:}S(w—wq)-[ vy ugbqjla(w_{_wq)
27 —UV; Vg —UV; Uy
(A10)

with the amplitudes u, and v, given by

u(v2) =%[sq/wq(f)1]
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and u,v, = nov/2w,. The final result can be brought into a rather simple
form, namely

Tealw, ) =2mngw* Y {W(1;2,3)[1+b,+b;]16(1—2-3)

Pa2:P3
+2W(1,2; 3)[b,— b3]16(1+2-3)} (A11)
with 1= (w, q),
8(1-2~3)=(27)°8(q—p.—ps) 8(w — E,— Ej)
and b, = b(E,), etc. Clearly, we identify the two terms as in Eq. (39),
describing the decay (the scattering) of a fluctuation with frequency w and

wave vector q into (at) elementary excitations, respectively. The W’s are
given by

2W(1;2,3)= a+—‘ib+2"°""
w
. g (A12)
2W(1,2;3)=a+-2b+
w w
with @ =x*>—y?, b=x>+y?% c=xy, and similarly for @, b, ¢, where
X = Uyl — Uy U3 — DylUs; Y = UaUs+ Uy U3— Ua s (A13)
and
X = UslUz— DU+ 0,03 V= U U3— Uplz — Uy U5 (Al14)

for w = w,, we realize that
g /o> ui+ovl;  new/e-2uv

and find W(1; 2,3) =2|A(1; 2, 3)|*and W(1, 2; 3) =2|A(3; 1, 2)]%, with the
amplitude A as given in Eq. (41). We thus have confirmed the expression
for the scattering rate used in Section 3 [and obtained by linearizing Eq.
(39)]. We emphasize that in deriving the expression for I'.g, we did not
need to use a particular approximation for the spectrum: With g,
&+ 01— ¢ and nge - 043, the result is still of the form (A11), (A12).

APPENDIX B. RESPONSE IN THE COLLISIONLESS REGIME
(CONSERVING APPROXIMATION)

In this Appendix we describe in more detail the order parameter
response in the collisionless regime within the self-consistent mean field
approximation. We consider spatially homogeneous situations only. As in
Appendix A, we start from the equations of motion for Gy,,(¢)=
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(—iY2y(2), where &= (¢, ¥*) and G,(p, 1, ):

[iT30, + u s =n+m, (B1)
where 0, =(7,, n¥) is the external field, and
p2 - A A Py
[i‘:"3a,-(—-‘~p)1~2](}1=1 (B2)
2m

As discussed briefly in Section 2, it will be convenient to introduce the
equal-time “ <" Green’s function:

A, =A(p, 1) =iGT (p, 1, 1) (B3)

The expressions for S and 7 in mean field approximation can be found in
Ref. 9; we write

2(6,t)=6()8(t—1);  m=(m, ) (B4)
and obtain

11 = Oy =2up

0’12=‘b‘(¢'2+z filz) (BS)
p

N = v[$(2p —ng)+yY* Y ﬁ12}
P
etc., where p, the total density, is given by

p=ng+Y fiy (B6)
P

As an illustration, consider the equations in equilibrium, in which case ¢
is real and equal to ny/% Then we find from (B1) and (B5) that

1
B=57 (m+m) =0y t+o,—2n0 (B7)
Rg

which is the analog of Eq. (28)

Finally, we introduce 71, = 731,; it is clear from (B2) that the equatmn
of motion for fi, is obtained by subtracting the ‘““adjoint equation” Gl 61 =
1. It is of the form of a matrix transport equation:

3h,+i[€,, A,]=0 (B8)

g, = [(-2’1"-;—”)1‘%] 2 (B9)

with



357

As a direct consequence of these equations, we find the continuity equation
in the form

dp = i(gm¥ —¢*n) =2ny*n} (B10)

a result that was mentioned earlier [Eq. (35)].

Of course, introducing a matrix distribution function is of no particular
advantage if we are just concerned with the linear response in mean field
approximation. We mention, however, that a derivation of the scalar
Boltzmann equation can be given by starting from (B8), generalized to
include spatial gradients and collisions, and performing a Bogoliubov trans-
formation.”®

We consider now the linear response to the field 7,, and write

y=n?+6y, SY==8y"+idy"

oA (B11)
Ai=b+ 84,
etc. Note that the matrix distribution function in equilibrium bis given by
~ 1/(¢, E A)
b Z(BpCthJZT (B12)

where E,=(e;—01,)"% e,=&—u+0oy,, is the energy of the single-
particle excitations in the present approximation. In addition, sy™T are
related to &ny and 8¢ (as defined in Section 2) by

dng=2n*8y";  ni*6¢ =iw sy’ (B13)
The final result can, of course, be brought into a matrix form:
o)~ (x)
) =
(awL X, (B14)

and in & and X, , we encounter several integrals involving the equilibrium
distribution function, e.g., expressions like B[e2], where

_ cth(E,/2T) 1 ‘
AL-] ”§ E{; 4E§-(w+io)2”

Corrections of this type are very small; if we ignore them completely, we
find the simple result

(B15)

4n
L al+nt  (B16)

0 —iw
G = =mnl e
(iw 2?10'2}), Xl Nxs X2

)
Note that det @ = —w?, and the corrections do not modify this behavior.
Consider, as an example, the response to a steplike external field in

this approximation. As a response to a longitudinal field nT we obtain
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8y~ =0 and iw 8¢ = 8n%, i.e., the number of condensed atoms n, remains
unchanged, and the phase of the order parameter is going to rotate. In
response to a transverse field 7y, on the other hand, we obtain an increase
of the total density linearly in time, and the additional particles are simply
added to the condensate. In addition, the phase is accelerated according to
w8y =2ngw 877,

As an illustration, we consider now the effect of the small corrections
in a situation where 7% =0. Expanding (B14) with respect to B[ -], we find

8t~ ~ nowp[1]n% (B17)
—iw ST — 8t = 2%@»3[@] nt (B18)

The corrections thus modify the rotation frequency of the phase and give
a small change in n,. For % = 6(t) we find from (B17) that

SUM(H) = —8 2 cth(E,/2T)
(1) (t)ng % 4Ef,

Clearly, this result is only well defined if the excitation spectrum has a gap.
For example, we obtain

[1~cos (2E,1)] (B19)

ngv>T
167c A’
for not too low temperatures (T > A). For short times, say A< t' < T, ngv,
the behavior is easily calculated, since in this regime a linear spectrum can
be used. With y(f) =8y™(t)/d4-(c0), one finds y(r)=~4A -1, an increase
linear in time. On the other hand, for long times, ' < A,

Sy (o0) = — me* =~ nyv (B20)

y(£)— y(o0) = —(-2—-5-)75(2 Ar)? cos(2 At+§) (B21)
i.e., y(#) oscillates with a frequency 2A and approaches algebraically its
limiting value.™ Similar conclusions can be reached for the correction to
the simple behavior as given by Eq. (B18). Unfortunately, these “interest-
ing” effects should be considered part of the unphysical consequences a
certain approximation can have: Recall that the magnitude of the gap
depends on the order of the approximation.

In conclusion, we remark that Eq. (B14) in the low-frequency limit
can also be derived from the kinetic theory provided we ignore the collision
processes. Essentially, we arrive at the same equations, except that
expressions like (B15) are evaluated at zero frequency, and the kinetic
equations thus ignore oscillation as given in (B21). In addition, the small
corrections of the type B[ -] are related to K, and K, in Eqgs. (59) and

*A similar behavior is found in superconductors (see Ref. 27), where the gap has physical
significance.
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(60), i.e., to variations of the coherence factors; we noted already that these
are small.
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