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Quantum dynamics of the sine-Gordon model in the presence of dissipation
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The influence of dissipation on the quantum soliton-antisoliton pair creation rate P is calculated for the

sine-Gordon model using the path-integral formulation. The external field dependence of P is shown to

change drastically in the weak-field limit. The relation to the electric conductivity of commensurability

pinned charge-density waves is discussed.

Tunneling phenomena in nonlinear quantum systems
have been attracting the attention of many authors as a typi-
cal example of essentially quantum phenomena. In systems
with infinite degrees of freedom, tunneling has been dis-
cussed in terms of the "fate of the false vacuum. "' On the
other hand, Maki suggested that the electric conduction in
commensurate charge-density wave (CDW) systems is relat-
ed to the creation of soliton-antisoliton pairs, in the sine-
Gordon model. In this example, and others, the sine-
Gordon model is usually obtained through the elimination
of microscopic degrees of freedom. Although these degrees
of freedom are irrelevant to equilibrium properties of the
system, they influence the dynamical properties by acting as
a heat bath and thus inducing dissipation. In the classical
sine-Gordon model, it is known that dissipative effects play
an important role in the dynamics. Therefore, it is impor-
tant to investigate the effect of dissipation on the quantum
dynamics of the system.

The influence of dissipation on quantum tunneling was
studied by Caldeira and Leggett4 for systems with one de-
gree of freedom. They found that it is convenient to in-
clude dissipation within the path-integral formulation of
quantum mechanics. In the present work we extend the
above formulation to the case of 1+1 dimensions, and cal-
culate the soliton pair creation rate under an external field
in the semiclassical approximation.

We consider the one-dimensional (1D) quantum sine-
Gordon model in an external field whose Lagrangian is
given by

&=A dx — +2a)2(:cos@—I:)+eQ, (I)
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where P is the Bose field, e the external field, A a positive
constant, and co the frequency of small amplitude oscilla-
tions. The notation:: denotes the normal product, which is
introduced to avoid the ultraviolet divergence. 5 At &=0,
the properties of this system have been studied by one of
the authors and co-workers6 using the exact method. This
method is, however, not suitable to investigate the behavior
of the system in an external field. Therefore, we use the
path-integral formulation in which quasiclassical results are
easy to obtain, in close analogy to Ref. 2.

When ~ is smaller than e, =2co2, this system has an infin-
ite series of metastable states with values of $ = Pe+ 2nm
(n:integer), where $e vanishes if e = 0. The decay rate P of
one of those states, in the semiclassical approximation, is

given by'

P = Eexp( —Sg ') (2)

In this equation, E denotes the determinantal factor, multi-
plied by the size of the system, and S~ the Euclidean action
S, evaluated for a single "bounce. "' ~ Specifically, S is
given by

OO r '2

S = t d7dr'dx ~
7 7

(4)

In the limit of small e, the bounce is a bubble with $ =27r
on the x —~ plane in a background with $ = 0, and the size
of the bubble is much larger than its wall (thin-wall approxi-
ination). To be able to make contact with the limit of zero
dissipation, we assume the wall to be of the form

Q = 4 tan ' exp[r/2d(&) ] (5)

where r is the coordinate normal to the wall of the bubble;
r = 0 corresponds to the center of the wall and 8 is the angle
between the x axis and the normal (Fig. 1). The thickness
of the wall d (8 ) will be determined later. However,
evaluating the dissipative term with (5) is cumbersome, and
we choose to evaluate Sq by inserting $= —r/d+n for
—md & r & md. This approximation does not change the
singularity in the weak-field limit which we are most in-
terested in. Then the action is found to be given by

1
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Here, x= x(r) is the contour with P= m, ro the maximum
value of r on the contour [we assume x(re) =Oj, x, = dx/
dr = —tan8, y = r

sin8/hard,

and q =ye/A. It is assumed
that the form of the bubble is symmetric with respect to the
x and 7 axes. Thus, we could restrict ourselves in (6) (and
in the following) to the region x & 0, i & 0. Finally, the
function h (y) behaves as lny for large arguments, and van-
ishes for y 1, which reflects the fact that dissipation is
ineffective as long as the wall is parallel to the ~ axis. As

S= —
J ~Ed7+S4,

where WE is obtained from Wby t —ir, and the coupling
to the heat bath is described by4
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account. Then we obtain

x, VF'g 7T E
lny = — v(1+x,')' ' 4~ (12)

X

In the limit of zero dissipation, we find from x, (7.
=so) = —~ that ~0=8&v/me, and also reproduce the result
of Maki, 2 in our notation given by Ss/A =128cu2/e. How-
ever, for finite q, this is only valid as long as

m~
1

16M' &14'
and it is clear that this condition cannot be satisfied for very
small e. To investigate this limit, we neglect the first term
in (12), and find that rp is determined by the equation

F

27[ 2'o= "ln 7o
7T

(14)

which is easily iterated. Finally, the action can be calculat-
ed, and we obtain the following result:

FIG. 1. Form of a bubble with @=2m in a background with
@=0 on the x-r plane. r is the coordinate normal to the bubble
surface. 8 is defined as the angle between the x and r axes.

an approximate form, we take h(y) =O(y —1) Iny, where
O( ) is the step function. By minimizing (6) with respect to
d(e), and as long as y & 1, we obtain

d(e) = ~g sine+ (~2+2sjn2e+ 16~2)1/2

8QJ

For q « co, as well as for 8 = 0, the thickness of the wall is
given by do= (2') ', as expected. On the other hand, we
find for q » co'.

128CtJ rt
l
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1T6

p 4'g QJ
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Note, however, that the determinantal factor in E depends
weakly on the external field. For q = 0, the result is E —~.

(ii) q »co. In this limit, the contribution of the first
three terms in (6) is very large ( —g/length) except in the
case where the wall is parallel to the r axis ( —co/length).

%'e remark that this expression is valid provided
~ & e, (7i/co)exp( —4'/mg), where e, is the classical depin-
ning field as introduced above. Taking only the exponential
factor in (2) into account, we obtain for the decay rate

' —128gruA/e

d(e = m/2) = (q/a)) dp, (8)

in agreement with the results of Ref. 4. In the following,
we determine the action of the bubble for weak and strong
damping, q « co and q » co, respectively.

(i) g && co. In this limit, d(e) = do, and we optimize the
action with respect to the contour x(~). We obtain the fol-
lowing differential equation:

tP=2TI: q =Q

—16m' [iny+ (1+x2) ']O(y —1)=0
dT

with y = 2&or ~x, ~/7r(1+x2)'~2. Using this equation, we can
write the action in the form

f+ To
S/A =64&v (1+x ) '~ dv~o T (10)

Equation (9) can be integrated once. For simplicity, we
neglect the second term in the square bracket of (9), and
obtain for small T T ( Tg = 2/6'

me

(1+x,')' ' 8'
while for large v, 7 & r„ the dissipation has to be taken into

FIG. 2. Form of the bubble in the strongly damped limit
(m « g).
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TABLE I. Correspondence between the commensurability pinned CDW and the present system. N: com-
mensurability; cp.'phason velocity; e electronic charge; E: electric field; vF. Fermi velocity; v2'. backward
scattering time due to impurities.

Commensurability
pinned CDW

vF

4mN2cp

4eNcf
E Cf

2VF
2

Present system

16')
7TK

(18)

which shows the expected behavior, namely, a && b. The
value of the action at the minimum, and the decay rate are

given by

128gco
1

8eco

t

and
' —128gruA/e

P 8eo)2

7T
(20)

These expressions are essentially the same as those for the
weak-field limit for g &( co, since we have neglected terms
of the order e ' in the action. Note that, as in the case of
one degree of freedom, 4 damping strongly reduces the decay
rate, as can be seen from (19) which, up to numerical fac-
tors, can be expressed as

r

CdSs(q ))o)) —Ss(7)=0)~in
CO

(21)

Thus, we can minimize the action by maximizing the. length
of the wall which is parallel to the 7 axis. As a result, a rec-
tangular bubble elongated along the r axis is the most suit-
able one (Fig. 2).

The action can be estimated to give

S (a, b)/A = 8' br) + 32roa + 8m br) ln(2r02a/m271 ) —2rreab

(17)
where a and b are the lengths of the bubble along the v and
x axes, respectively. It is straightforward to minimize this
expression with respect to a and b, and we find the follow-
ing result:

4q
1

2eo)2

This should be compared with the result of Ref. 4, which
also shows that the action is increased by a factor of order
7)/cu, in the strong dissipation limit.

In order to discuss the experimental implication of our
results, we show the correspondence between our Lagrangi-
an and that of the commensurability pinned charge-density
wave in Table I. ~ ' In the latter system, P is proportional
to the electric conductivity except a prefactor which is weak-
ly dependent on ~.

In the absence of dissipation, the typical'scale of the elec-
tric field is given by E~ = 128eo A, which is for small N larger
than the classical depinning field e, :

—=642 = 16vF
vr cpN

(22)

We thank A. Schmid and W. Wonneberger for useful dis-
cussions. One of us (K.H. ) is grateful to the Alexander von
Humboldt Foundation for financial support.

Although vF = 10. . . 10 cp, quantum tunneling phenome-
na could be observed before the CDW is depinned classical-
ly if commensurability is high enough. On the other hand,
our results show that the typical scale of electric field in the
dissipative case is given by ~d=128qcoA, which is smaller
than e~ for small q.

Unfortunately, in systems in which quantum tunneling is
large enough to be observed by usual experiments, the
quantumness is so large that the semiclassical approximation
becomes doubtful. Thus, the construction of the fully
quantum-mechanical approach is desirable. We may expect,
however, that the functional dependence of P on e would be
unchanged if parameters are renormalized by the quantum
fluctuation because these renormalizations do not depend
on the external field as far as the external field is small
enough.
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