COMMENSURABLE CHARGE-DENSITY WAVES IN A RANDOM POTENTIAL

Ulrich Eckern and Alfons Geier

Institut fiir Theorie der Kondensierten Materie, Universitit Karlsruhe,
D-7500 Karlsruhe, Federal Republic of Germany

We study commensurable charge-density wave systemms in the presence of random impuri-
ties. The results of the microscopic theory, especially the contributions of second order in
the impurity fields, are briefly discussed. The lifetime of the excitations is calculated, as
well as the response of a soliton to an external fleld.

1. Introduction

During the last few years, many experimental investiga-
tions' have demonstrated the fascinating properties of
quasi-onedimensional metals at low temperatures. The
observed effects are related to the formation of a charge-
density wave (CDW), as predicted by Peierls and Frohlich,
and the pinning of the CDW by impurities, or the under-
lying lattice. The resuits have been interpreted theoreti-
cally by various models3—9; hers, we only wish to remark
that the perturbational treatment of the impurities’—? hu
besn criticised!?,

In this note, we study the behavior of a commen-

surable. CDW in the presence of disorder. We consider

situations where the commensurability effects dominate
the random potential, allowing for a perturbational treat-
ment of the latter. To be definite, we describe the impu-
rity potential by random Gaussian fields, (z), and £(z),
£*(z), whose means are sero, and correlations are given
by < n€ >=< € >=0, and

<n(z)n(z’) >=Ty x 6(z — z') (1)

<{(=) ¢ () >=Te¢ x §(z - &) @

In one dimension, we have I'y = vp/2n, ['¢ = vp/2n,
with 7 () the electron scattering times with changes in
momentum close to sero and +2py, respectively. (pr,vr:
Fermi momentum/velocity). 1f three dimensional effects
are to be included, we will use Eqs. (1,2) with z — 2,
and the above expressions for ¢, have to be multiplied
by d?, where d is the distance between the conducting
chains. Note that, if the impurity potential is a sum of
randomly distributed §-functions of strength v, we have
T¢q ~ Nimp X v*, where n;n,, is the impurity density.

2. Microscopic Theory

The microscopic theory can be formulated by using
the path integral representation®!1-!¢ of the gener-
ating functional (or partition function) for imaginary
times. In the first step, one integrates over the phonon
variables, and introduces a complex order parameter,

= —¢ | A | exp(—sx). Fluctuations in | A |, however,
are suppressed by large energies, and its equilibrium value

can be inserted. The result is an effective action for the
relevant variable, the phase x, which has a contribution
from the phonons, ~ mpx?, where my is the Fréhlich
mass divided by the band mass, and an electronic contri-
bution given by tr log &, where G is the electron Green’s
function. Commensurability pinning is included® by ex-
tending G to a M x M matrix. Finally, log & is expanded
in second order with respect to vp(8.x)/2 — e¢, where ¢
is the electric potential, and with respect to the impurity
fields. In view of the inequality mp >> 1, we can neglect
time derivatives of x in the electron contribution. From
the resulting effective action, the real time equation for
x is derived, following the method described in Ref. 14.
We obtain (ignoring noise terms) the following equation
of motion:

2
Oix—-Ox+ 55 saMx=L+h-% (3)
Here, c? = v} /mpr, w, is the characteristic frequency of
the commensurability potential'®, and the coupling be-
tween chains can be included® by ¢33 — 233 + ¢} 6%.
For I, we obtain

I, = 2xvpp; my;" Re (€ expix) + 2¢"vp(E — an/e) (4)

Here, p, is the density of electrons condensed in the CDW
state, ¢* = ¢/my, and E the electric field. For finite
temperatures, some coefficients depend on T through |
A |; in addition, ¢? and ¢* have to be multiplied by 1-Y,
where ¥ (T} is the Yoshida function.

" We now discuss in more detail the second order im-
purity contributions, which lead to Iy — yx. The effective
action has a contribution

—i—/dzdz’dfdf',@(z -2, r~1)
x&(z, 1)é(#, ) + c.c.

()

where £(z,7) = £(z) expix(z, 1), and a similar one with
€€*. As in the theory of Josephson tunneling, the first
term is related to the supercurrent, and the second one
(ff‘) to the normal current and thus to dissipation. We
evaluate (5) in the limit of small frequencies and long
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wave-lengths, compared to | A | and & ~ vp/ | & |,
respectively, and find I; to be given by:

I; = 2xvy m;' Re (ip exp 2ix) (6)
Note the similarity to the first term in I;, but also the

factor two multiplying the phase'®. The random field u(z)
is given by

wa) = [ v +uD)ez- Dm0

Here, So(y) is the sero frequency component of S(y, 1),
which we find to be given by

T AR
)= 5 E i P

x exp(—2 (w3+ | A P2 Ly | fur)

(8

where wy, = (2n + 1}xT is the Matsubara frequency. Ob-
viously, this quantity decreases exponentially for y 26
(for low temperatures). Especially

Bo(0) =| A | /2¢} x tanh(] A | /2T) (8

which is proportional o the critical current in Josephson
junctions!”. Note that u(z) is not a Gaussian field, but
all correlation functions can be calculated. For example,
we find

< p(z) p* (') >=T,8(z - 2') (9)

with Ty = £ x [T¢ x B,(0)). Clearly, if simple coarse
graining arguments apply, an effective averaged force can
be derived!® from (6), in the same way as from the
first term in I;. A measure of their relative impor-
tance is X = p3T¢/Ty ~ 10 x (p1/po)?E}naf | A |,
where p, is the total electron density. Inserting, e.g.,
pi/po ~ 0.1, | A |~ 0.1 Ep, we obtain X 3 1 provided
Er1; 2 1. Close to the critical temperature, this factor
will be even larger. Thus, in contrast to other estimates!®,
the present model leads to the conclusion that the *classi-
cal” term is typically larger than the ® Josephson® contri-
bution. The same estimate holds for quasi-onedimensional
situations. We remark, however, that the result may be
different in systems with true three-dimensional coher-
ence. In this case, roughly speaking, X has to be mul-
tiplied by (d/¢,)3 << 1, where £, is the perpendicular
coherence length. Note, also, that the two contributions
have non-vanishing correlations.

The other second order term is similar to the normal
current in Josephson junctions. We consider this contri-
bution averaged with respect to the impurities: Then we
may apply known results!¢, and obsain for example 7 from
the low frequency behavior of the normal current:

1=(ameyt [~ am(-SyvEr (o)

where, f, is the Fermi function, and N{E) the (normal-
ised) density of states. N(E) includes efiects of inelastic
as well as impurity scattering, which we here treat in an
approximate way, by introducing a line-width T',. For
I, >>| A |, we find N(E) ~ 1, and 7 = (rzmp)-!. For

I's <<| A |, 74 decreases exponentially with decreasing
T, reflecting the decrease in the number of excitations,
and approaches for T=0 the limit 4 = (ramyp)~*[N(0)]?,
N@O)=T,/| Al

8. Lifetime of Small Amplitude Modes

In this section we wish to demonstrate that the classical
impurity term in I; leads $o a damping of the small ampli-
tude fluctuations of high enough frequency, by decay into
other phasons. We consider three dimensions, and I; = 0,
4 — 0. The contribution to the action quadratic in x has
the following form:

= Ty
§= 4dxvpd? [daz Py

11
XTZX-n(f)R'l(f»ﬁ;ws)on) .

where xn() = x(#,wn), wa = 2nxT, and the factor
(rupd?)~?! is the density of states at the Fermi surface
{which consists of two parallel planes). Without impuri-
ties, the correlation function, &, depends only on the co-
ordinate difference, and its Fourier transform is given by
x5! (@ wn) = w3 + w3, where w3 = wl + g +cl¢l. In
the presence of the random potential, on the other hand,
we obtain

kM, Jywa) = k7t — S Re(i€()) 6(Z-7)  (12)

where §; = py x 2xvpd3®/mp. Here, p; is the three-
dimensional density of condensed electrons. We treat the
impurities by perturbation theory, and expand & with re-
spect to §; in the approximation which neglects intersect-
ing impurity lines, we find for the inverse of the averaged
correlation function

< x> (§wn) = k5" — Dlun) (13)

where the self energy, I(w,), is given by

1 &
Bon) = 3 ATe [ s mol@un)  (14)
Especially, we want to point out that
Im E(wa — —sw + 0) = yop (w? —w3)Pegnw  (18)

for w? > w3, and sero elsewhere. This quantity determines
the damping of the phasons; it is non-sero only above the
minimum phason frequency, w,, and becomes linear in w
for w >> w,. The damping constant, given by 7y =
1 Te/8xccd, is just the Fukuyama-Lee-Rice frequency’®
characteristic for impurity pinning.

4. Motion of Solitons

To investigate the motion of solitons in the random po-
tential, we use a scaled version of (3), ignoring I, and g5
(the latter can be included without difficulty). We put
© = My, and measure time, length, and electric field
in units of w3l, L, = c/w,, and E, = wl/2¢*vyM,
respectively. In addition, ¢ — !"“E, such that now
< £(z)¢*{z') >= 6{z — 2’}. Then (35 transforms into



p-¢" +ainp=aRe((e*/M)+E—v  (16)

where a = M(L,/L¢)*/3, with Lg¢ the characteristic
length for the impurities'®; generally, o ~ L(‘ ~4)/ 2, where
d is the dimension. We assume a, E, ‘7 << 1, and
employ standard methods of perturbation theory®—3!
to evaluate the effect of the r.h.s. in (16). Dissipa-
tion is due to transfer of momentum to the impuri-
ties: Therefore, we start from the momentum conserva-
tion law which is a direct consequence of (16). With
P=—-¢¢g, Il = ‘(pn‘*"p”) U,and U = ~cosp +
a MRe(3¢ cxpup/M), we obtain

&P + 851l = —(8,U)p, —¢'E ~ P (17

where (3,U),, is the derivative of U for constant . A well-
known example!? is a == 0, in which case, for a constant
field, a stationary situation arises with a kink moving at
constant velocity, v, given by

EE:&:qv{l - B)113 (18)

for an anti-soliton (soliton). This result can be arrived at
by inserting the anti-soliton, p,(y) = 4 x tan~! exp(—y),
where y = (2 — vt)/(1 — v?)%, into (17) and integrating
with respect to the coordinate.

In the first step, we consider the translational mode in
more detail. For small velocities, we may use the ansats3®
© = Po(r — 2) where the location of the kink is taken
time dependent: x = 2z(t). Then we obtain, the following
equation of motion:

F+qi=-V'(s)+xEJ4 (18)
Vi(s) = %j dz ¢l Re[£ e¥e/M| = %[dkfg et = (20)

We assumed E to depend on time only. Clearly
(19) describes the motion of the kink in the random
impurity field, which is integrated with the shape of
the kink. Accordingly, we find that the correlations
of & (£, is the Fourier transform of a real Gaussian
field with average mean) decay exponentially for k 21
With < & & >= I'y6(k + k'), we obtain, for exam-
ple, Iy = nkt[sech®(xk/2) + cach?(xk/2)] for M=1, and
Iy = l'sech’(rk/Z) for M — 0o. In the long wave-length
limit, I'y remains finite except for M = 1, with the result
I‘;.=o = M?[1-cos(2x/M)|/2%. Asa characteri-tic of the
potential, note that

<[V(s)-V(o)] f dk—2(1—cosks) (21)
which, for large | » |, is finite (~ a®) for M = 1, and
increases ~| x| for M > 1.

As an application of (19), we study the linear re-
sponse to a field E(t) = B, exp{—iwt). Let 5, be a lo-
cal minimum of V(s), and define the response function
by Xxw(%) = %,/E,. Instead of x.(%,), we consider a
weighted sum over different minima, averaged with re-
spect to the impurities, of this quantity. We write

P(w,)
Xw = _/ o T o TR twy + w3 (22)

where
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Plwo) = N1 x 2w, < Y 6(wd —V"(2,)) W(s,) > (28)

L2

The constant, N, is determined such that P{w,) is
normalised {and thus (22) gives the correct response for
high frequencies). Here, we consider only W(s,) = 1, i.e.
all minima are taken into account with equal probability;
in this case, N is the average number of minima. We
obtain the following result:

P(wo) = 4w;/@* exp(—w5/a*) (24)

where @3 = (24,)/%2a/8, A; = ::c dkk3Ily = 4 %
(1+8/M3)/3. The relation &2 ~ « is clear from (19),
and the exponential decrease of P(w,) for large w, is re-
lated to the Gaussian distribution of the random field. For
4~ 0, w << &, we obtain

X 2313 [457

(28)

Imx, = x?w?/20* x sgnw

The response function, x., is directly related to the di-

electric function and the conductivity, o, the latter being

proportional to —iw x.,. Eepecially, Reo, ~ w® Xsgnw
for small frequencies.

In the next step, we include dissipation due to scatter-

ing in the random potential, by calculating the correction

to the kink, ¢ = @o(z — 2) + 91,1 ~ a. Note that ¢, is

* perpendicular to the translational mode. We do not study

the general result, but only the impurity average (for fixed
2(t)) of the correction due to ©;. As a result we have to
add the following expression to the Lh.s. of (18):

Hz] = f d¢’ / --1,(:—:') eelsit) sl (26)

Here, 7.t — t') is related to the Green’s function of the
linearised sine-Gordon equation. X the kink moves with
constant velocity, z = vi, we find (note v << 1)

Hc(!)) = Hc[vﬂ o= a’hu Q}-(sla"’"iu)c“'/' (27)

\ ]
\ 2....-_9‘*’/ @
\ -
N ]
— =10 —
Fig. 1: Real part (—) and imaginary part (- — - ~ ) of

the response funktion, x,, (see Eq.(22}).
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and, for example, by = hg = x/4v/2, hoo = hy/2. As
expected, the gap in the excitation spectrum leads to an
exponentially small damping for small velocities.

Finally, we have examined the motion of a kink in
a large constant field (presumably E >> a) , using the
ansats @ = p,(y) + P1, where $; is determined by per-
turbation theory. ¢, is inserted into (17), which is then
integrated over x, and averaged. We consider v — 0; in
this case, however, the perturbation theory works only for
M=1 (for M > 1, the poteniial is not *flat® enough, see
(21}}, and for not too small velocities, ¥ >> «, which
follows from an analyis of the translational mode in ;.
We obtain, for high velocities, a relation similar to (18):

(x/4)E = 7, v(1 - v?)"1/3, v—1 (28)

where 4, = a3 /6 is the damping constant. Note that, al-
though M=1 is meaningfal within our model, the relevant
cases for CDWs are M > 2,

In conclusion, we have discussed in this section some
aspects of the motion of solitons in a random potential.
We expect that a model like the one presented here can
further enhance our understanding of the role impurities
play in CDW systems. Further details will be discussed
elsewhere?2,
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