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Starting from the quasiclassical formulation of the microscopic theory, the
kinetic equations describing low-frequency, long-wavelength phenomena in
quasi-one-dimensional conductors at low temperatures are derived. The solution
of the equations in which electron-phonon and electron-impurity collisions are
taken into account is used to derive the classical equation of motion for the
phase of the order parameter.

1. INTRODUCTION

Some time ago, it was demonstrated by Peierls and Frohlich' how the
interaction between electrons and phonons in quasi-one-dimensional metals
at low temperatures leads to the formation of a charge-density wave (CDW),
which entails a periodic modulation of the electron density as well as a
distortion of the lattice. In the presence of impurities, or if the CDW is
commensurable with the underlying lattice, the CDW will be pinned. On
the other hand, if an electric field above a well-defined threshold is applied,
the CDW slides through the system. Many experimental investigations (see
ref. 2 and references therein) have demonstrated the nonlinear current-
voltage curve related to this effect, as well as the narrowband noise in the
sliding mode, and other phenomena characteristic for nonlinear systems.
Theoretically, the results have been interpreted in terms of a single classical
particle model,> or as Zener tunneling, or in terms of an effective
Hamiltonian for the phase of the complex order parameter.™® Recent
approaches to the problem of impurity pinning discuss the limit of large
electric fields by perturbation theory’ and the behavior close to threshold
as a critical phenomenon.® o

Starting from microscopic theory,” I discuss in this paper two relaxation
mechanisms expected to play an important role in the dynamics of a CDW:
scattering of electrons by impurities and scattering by phonons. While
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scattering by defects is typically an elastic and momentum-nonconserving
process, it is known that electron-phonon scattering in general contributes
to dissipation of energy and momentum. Consider, for example, a simple
normal metal, and let 6 be its Debye temperature. Then, for high tem-
peratures, T > 6, electron-phonon processes are to a good approximation
elastic, and the relaxation rate is of the order of ~AkgT/#, where A is the
dimensionless electron-phonon coupling constant; thus, in this limit, elec-
tron-phonon processes act similar to impurity scattering, and the energy
relaxation rate is expected to be smaller than the momentum relaxation
rate by a factor 0/ T.

On the other hand, for very low temperatures such that T« 6, electron-
phonon scattering is more effective in dissipating energy than momentum.
Typically, the energy relaxation rate is of the order of ~AkpT>/ %67, while
the momentum relaxation rate is smaller by a factor (T/ 6)*. This situation
will be investigated in detail in this paper. To be definite, I consider a model
where momentum dissipation is due to impurity scattering, and electron-
phonon processes are assumed to contribute to energy relaxation only.

In the case where impurity scattering can be neglected completely, it
was noted earlier®'® that a particular type of nonequilibrium between
condensate and excitations can be established. This nonequilibrium state
is of similar form as found in connection with the branch imbalance in
superconductors'! or the spin dynamics'? of superfluid *He. This case also
corresponds to the “mixed” dissipation discussed recently by Leggett" in
the context of dissipative quantum tunneling. The goal of the present paper
is to clarify the relevance of these concepts for CDW systems.

In this paper, I use the quasiclassical approach to derive kinetic
equations for CDW systems, i.e., equations describing the low-frequency
and long-wavelength behavior (where the scale is set by the Fermi energy
and Fermi wavelength). This method, which has been applied success-
fully*-'® to a variety of nonequilibrium phenomena in superconductors and
superfluid *He, was used in the present context by Artemenko and
Volkov.”>*® Essentially, I follow their line of argument, except that the
equations are brought into a more transparent form of a Boltzmann-like
transport equation by introducing quasiparticle distribution functions. As
an additional feature, energy relaxation by phonons is included.

The model is presented in Section 2. Section 3 discusses the approxima-
tion that leads to the equation of motion for the quasiclassical Green’s
function, which is a Green’s function integrated with respect to the magni-
tude of the momentum. Since this Green’s function obeys a normalization
condition, quasiparticle distribution functions can be introduced, and a
Boltzmann equation is derived (Section 4). In Section 5, I solve the transport
equation and discuss the dynamics of the phase of the order parameter in
various limits. Some conclusions and a discussion are given in Section 6.
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2. MICROSCOPIC THEORY

The starting point is the equation of motion for the Green’s function,
which, since my main interest is a description of nonthermal states, is
conveniently modified according to the theory of Keldysh.”! In addition, I
distinguish as usual between positive and negative momentum states. Thus
one is led to define the following (4 X 4) matrix Green’s function:

(’}R GK
é=( 0 éA) (1)

where GR™ is the retarded (advanced) Green’s functiczp and GAf is called
Keldysh’s function. These quantities are related to G~ and G~ in the
following way:

GR=[G" - G<18(1,—1,)
G*=-[G"-G710(1,—1,) (2)

GX=G6"+G
Note that all Green’s functions depend on two spatial and two time coordi-

nates x,, x, and 1, t,, respectively. The quantities G~ and G=, which are
2 x 2 matrices, are defined by

é:e = iZg (W (%2, L)Y (X, 1)) | (3)
éig = —iZya (Yo (x;, 31)4’:3—(3‘2, ta)) (4)

where the branch index a, 8=+ (—) refers to the states with positive
(negative) momentum, and the ¢’s are the corresponding fermion operators.
Note that I ignore here and in the following the spin index, except the
usual factors 2 to account for multiplicity. In addition, note that one can
concentrate on states with momenta close to the Fermi surface, i.e., in the
range (—pg—po) - - - (—=pr+po) and (pr—po) - - - (pe+po), where pg is the
Fermi momentum, and p,« pg is a cutoff, which is assumed to be much
larger than all momenta of interest. Therefore, I included in Egs. (3) and
(4) the factor z,5, which removes the rapid spatial variation of the Green’s
function: '

Zop = @ exp [—ipp{ax; — Bx,)] (5)

In other words, the momentum will be measured relative to the Fermi
momentum. In the following, it is convenient to work with the variables
(p, E; x, t), where p and E are the Fourier conjugate variables to x; —x,
and t,—1,, respectively, and x=(x;+x,)/2 and t=(t,+1,)/2. For two
functions A and B, I define the functional product “*” by

A* B=exp [—21- (0p9B—0ta% -a;,?*afnha?af)} (AB) (6)
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where the notation 4%, e.g., indicates that A is differentiated with respect
to E. The equation of motion has the following form:

0+G=1+3+G (7)
where @=0- 1, and
Q=(E—ep)?,—£+A 8)
Also, I introduced
2 1 A 2 A
§=—m[(PFTs+P—€A)‘”P§]73 (9)
and
2 0 A

Here, ¢ and A are the electromagnetic potentials, 7, is the Pauli matrix,
and one introduces the complex order parameter’ A to describe the coupling
between the branches with positive and negative momenta through phonons
with momentum close to £Q = +2pg (and corresponding energy wo). The
self-energy on the rhs of Eq. (7) contains the scattering with thermal
phonons, which can be separated from the effect of high-energy phonons
(~wg), provided the temperature is low enough, T« wQ, as well as impurity
scattering. Accordingly, one writes

$3=3%.+3%.., (11)

For the following, it will be of central importance that the self-consistency
relation for the order parameter, as well as the expression for the self-energy,
can be expressed in terms of the so-called quasiclassical or momentum
integrated Green’s function g:

g(E; x, t)=;lv;=fdp G(p, E; x, 1) (12)

From the standard expression, it is clear that the self-consistency relation
can be written in terms of g, and is given by

1 A
[1+wgaf]A:Z,\ J dE g%_ (13)

where A is the dimensionless electron-phonon coupling constant. As dis-
cussed above, I neglect the (small) momentum transfer in electron-phonon
collisions, in which case it is possible to introduce the momentum averaged
phonon Green’s function B, which is assumed to depend only on energy,
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since the phonons are considered to be in thermal equilibrium. Analogous
to the theory of superconductors,'” one obtains the following expression:

| BYgX—(B®-BY(£"-§Y  X=K
X =i J dE’{ BAg%+ BXgR X=R (14)
B*g*+ B g" - X=A
where the arguments are such that BXgY = BX(E")¢¥(E +E'; x, t) in this
equation. Note that
B¥(E)=[BYE)-B*(E)] coth (E/2T) (15)
In addition, for a Debye model, one has
2ma’F(E)=i(B®—B*)~ E*xsgn E.
Finally, for the impurity self-energy, use is made of the expression obtained
by neglecting intersecting impurity lines. Also, it is useful to distinguish
between impurity collisions with small (~0) and large (~ +Q) momentum

transfers, which are approximately independent, and their corresponding
scattering times 7, and 7,, respectively. The result is given by*®

. 1
:iimp = Z;;

A XA

1 A A A A
73873 _g[ﬁg’ﬁ + 7,87,] (16)
2

For illustration, consider the electrons in thermal equilibrium, in which case
§Y(E)=[g"-¢"]tanh (E/2T) (17)
and in the normal state, where g% — §* =27;. In this hmlt one obtains, e.g.,
the following results:
a*F(E)
sinh (E/T)

where 7, is the normal-state electron-phonon collision time at the Ferml
surface {(E =0), and

1 4 A
= ‘(zgl}hwzﬁh)++,,€=0=2w’|' dE (18)

cp

I(E‘lmp ;?np ++=§.(%1+le) (19)
While this approximation for the impurities is standard in three dimensions,
and leads (for normal metals) to the usual Boltzmann equation, its applica-
tion for one-dimensional systems is hard to justify.”? In particular, the
localization of the electrons in the random potential and the pinning of the
CDW by the impurities are neglected. One must note, however, that actual
charge-density-wave systems do have three-dimensioal character, i.e., there
is a coupling between different chains through phonons, which introduces
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perpendicular gradients into the equation of motion for the phase,” and
the interaction between electrons leads to a small distortion of the otherwise
flat Fermi surface. In the case of commensurability pinning, further argu-
ments can be given.*>** Note that the present approximation is used here
to derive the dissipative terms in the equation of motion for the phase, and
it is expected that a reasonable approximation is obtained by adding in this
equation the random pinning force due to impurities.*

It must be noted that the equations given above depend explicitly on
the phase of the order parameter, which is introduced according to iA=
|A| exp (—ix). (In the following, the magnitude sign will be omitted.) To
remove this dependence, the transformation

QO=5"%0x8 (G'=5"xG*S§ (20)
is used, where S = §:1,and §= exp (—iTsx/2). For example,
E'=E+if0x,  p'=p—1f0.x (21)

from which Q' is obtained without difficulty. While this transformation
leaves the phonon self-energy unchanged, i.e., in Eq. (14), £ is replaced by
g’, one obtains for the impurities

.i[ — 1 A xp A :1 i ;\; =t Ay

l imp'—4_q_l"'38 7’3“5’;’2’[’?1*g 71 +(1->2)] (22)
where 71(x) = (cos x)7; — (sin x)7, and 75 = 71(x — 7/2). For example, if the
functional product is expanded in first order, one finds

[Fi* g = 71+ (1>2)]
=~[#,8'F+(1->2)]1- i(0x) 0e[7:187— (12)] (23)

Physically, the correction ~(3,x) is related to the fact that a moving charge-
density wave is damped by impurity collisions with large momentum
transfer, which are represented by 7,.

In the following, I investigate the quasiclassical approximation for the
model defined above, i.e., by Egs. (7), (8), (13), (14), and (16); it is assumed
that the transformation (20) has been performed.

3. QUASICLASSICAL GREEN’S FUNCTIONS

From the equations given in the preceding section the quasiclassical
equations are obtained according to the following steps.

1. As noted above, for the present model, the self-energies can be
expressed in terms of the quasiclassical Green’s function g.

*This point of view was also taken in ref. 25.
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2. For electrons close to the Fermi surface, the quadratic spectrum can
be approximated by a linear one, and one obtains

Q= (E —ed +3vrax)7—[ve(p — eA) —33x 11 +iA%, (24)
3. From Eq. (7), it is clear that the equation of motion can be written
in commutator form, namely
[Q+G1=[2%G] (25)
In particular, «
—ve[p* Gl=ivs9,G - (26)
i.e., the strong momentum dependence has dropped out of (25).
~ 4. With quasiclassical accuracy, all spatial gradients, except in (26),
can be omitted. Clearly, the resulting equation can be integrated with respect

to the momentum, and one obtains the equation of motion for the quasi-
classical Green’s function, which is of the following form:

[Qs8]+ivra. g =2 8] (27)
which has to be supplemented by the normalization condition
gog=1 (28)

where the operation ° is defined by
Ao B=exp [é (a;‘;a?—a‘;‘ag)](AB) (29)

In addition, the < operation will be approximated by the ordinary product
on the rhs of Eq. (27), in the spirit of Boltzmann’s ansatz. Equations (27)
and (28), together with the self-energy equations, form a closed set. In
particular, the self-consistency relation in a form in which the phase depen-
dence has been made explicit is given by:

— Iy v i ’\ A
A+ 0 (A—AYY) ~iw G (A% +2A%) =0 J dE g% (30)

where y =4,x, etc. While gauge invariance and conservation laws are, of
course, a direct consequence of the full equations, this has to be checked
for the quasiclassical approximation. Considering first a gauge transforma-
tion, define

S=explif(x, )] 1 (31)
and
g=8"§-8§ (32)
Applying (29), one immediately obtains

F4

Q'=5"-Q(, A)o§=é(¢+§é, A) (33)
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In addition, from the gradient term

(ivp0x8) = ivpd, &' — ve[9.0 5 §'] (34)

By noting that
Q' —vpd, b = Q(d’) +;e,A—;ax9) (335)

it can be concluded that the quasiclassical equations are gauge covariant.
A similar observation could be made for superconductors.'” Note, however,
the formal differences in the matrix structure of the present theory as
compared to superconductors. In particular, ¢ and A enter here in a reversed
way; also, a gauge transformation is described by a unit matrix, and is not
equivalent to the transformation that changes the phase of the order para-
meter. Physically, this is related to the fact that the quantity conjugate to
the phase is the momentum, which will become evident shortly, and not
the charge, as in the theory of superconductors.

To illustrate this more clearly, consider the conservation of particle
number and total momentum (electrons plus phonons), ignoring, for the
moment, collision processes. Therefore, I consider the Keldysh component
of the equation of motion, and expand the ° product in first order. The
result is

[Q, %1 +17,, 0,85, —1i[0.0, 9851, + ivea 85 =0 (36)

where [ -, - ]_(,) denotes the commutator (anticommutator). Take the trace
of this equation, integrate with respect to energy, and multiply the result
by —N(0)/4, where N(0) = (mrve)~" is the normal state density of states at
the Fermi surface (for one spin). By noting that

J dE 3p8*=4%, (37)

one obtains the particle number conservation in the usual form:
80 t0xja=0 (38)

where the electron density and current g and j are given by

p= —%N(O) tr /34 dE§“—2N(0)ed (39)

]

1
Ja= ~2 N(O)vetr | dE§*+ N(0O)vgx (40)
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In the next step, multiply (36) by 7; before applying the same procedure.
Then, however, it is crucial that the self-consistency relation is taken into
account, and one finds

3P+ vrd.p =(e/m)poe (41)
where the total momentum P is given by
1 447 1 1
P=j,+— ZX’"—”““ﬁTJ dE §*+—mgy (42)
T Awg dar T

Here, I introduced mg=1+4A%/ A0}, which is the Frohlich mass divided
by the electron mass; the equilibrium particle density is p,= 2pg/ 7, and the
electric field is € = —,A —d,¢. Note that a constant (= p,) has to be added
in (39). From these expressions, it becomes apparent that the quasiclassical
Green’s function only allows the calculation of difference quantities with
respect to a suitable reference state, which is usually taken as the normal
state in the same external field. This leads to the second term in (39) and
(40), respectively; by considering the conservation laws, these expressions
have emerged in a natural way."”

4. KINETIC EQUATIONS

4.1. Quasiparticle Distribution Function

As a consequence of the normalization condition, it is possible to define
a quasiparticle distribution function. Writing out the normalization (28) in
explicit form

grogt=grogr=1 (43)
grog +g og"=0 (44)

one realizes that the second equation is solved by the ansatz
g =gRoh—hogh @)

Also, one can argue'’ that / can be chosen diagonal, namely
h=h"1+n"7 (46)

and the longitudinal (L) and transverse (T) parts of the distribution function
are introduced by the relations

fF=31-hY;  fT=—3A" (47)
Note that L (T) refers to changes of the order parameter considered as a
vector in the complex plane, to which f*(f) are mainly coupled (see below).

In equilibrium [see (17)], one has A" =0 and h5, =th(E/2T) = h,, such that
f&=f, is the Fermi function. '
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In the following, I consider slow variations in space and time compared
to A™' and &,~ v/ A, respectively, and expand the © product in first order.
Explicitly,
1h(§é 9B_a4 «‘?—E)+0(ﬁ2) (48)
2 oE ot 9t 9E
where the dependence on # in ordinary units is indicated. It will be
convenient to refer to this expansion as an expansion in #; as a rule,
scattering rates are of first order, and so are collision operators. On the
other hand, derivatives of the phase, as appearing in (24), must be considered
of order #°.

4.2. Regular Green’s Function

Consider first the equations for the regular functions (R, A) in thermal
equilibrium. Then one can use the ansatz

g0V = oMM+ RN, (49)

and obtain from (27) and (43)
(E &, il,)BR Y —iAaR® = —iT,a "W gRW (50)
(" W)+ (BW) <1 (51)

where T',, describes the linewidth due to collisions with phonons.* While
this quantity depends on energy, it is known that a good estimate is obtained
by evaluating it for E =~ A. On the other hand, impurity scattering enters
into (50) in the same ay as paramagnetic impurities in the theory of
superconductors; one finds

1/1 1 1
N=-|—+—}=— 52
2 (7‘1 27‘2) 2T (52)
i.e., both types of scattering contribute to I';. I define for further use so-called
spectral densities N; and R; (i=1, 2) by
N, +iR, = a®=—(a®)*

N,+iR,= g% =(B*)* (53)
The results for weak scattering (BCS limit), namely I',,, I'; < A, are
N(E)=(|E|/£)O(E*~ A% (54a)
Ry(E)=~(A/E)Ny(E) (54b)
and, for E?> A?,
Ny(E)=~(AN,/€)(T,,+ N,T;) (54¢)

*Here and in the following, normalization effects are neglected, which amounts to the replace-
ment ER(A) -> {t )%(ER - A).
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where £ = E?—A? and O(-) is the step function. In this range of energy,
N, is of order #'.

From the expression given in (24), it follows that the local equilibrium
expression (~#") of the regular Green’s function is of the form (49), with
the replacement E - E = E — e + vex'/2. Writing g8 = giA) + p1gR"),
one obtains the following equation for the first-order correction g, (the
superscripts R, A are omitted for simplicity, as are collision effects):

E( 7, - +iAl7,, §,]-+3i[ 75, fol+
_%ié[?3a 380l +3A[7,, 58ol+
+ ivpaxgo - i(eva+i}/2)8E§g =0 (553)

Equation (55) simplifies considerably if variations in the magnitude A are
ignored. In this case, g, has to be calculated from

E[#;, &) +iA[7,, §1- = i(3:80)¥ (55b)
where I defined
¥ =3(X — vix") ~ evge (56)
One immediately concludes that g, = y7,, and
y=¥(0ea)/(2iA) (57)

Note that y does not depend on the electromagnetic potentials separately,
but rather on the combination which gives the electric field.

4.3. Transport Equations

For the derivation of the transport equation, consider the diagonal part
of the Keldysh component of (27), into which (45) is inserted. Multiplying
by i/4, one obtains in a first tep for the first term of the lhs of (27)

L{gRo[Qsh1+[QsgM o h—ho[Qsg*1-[Qshl= 8"  (58)

Clearly, one can use the equations for the regular functions to simplify this
expression. Then one inserts for §8* the following ansatz:

§R{A) — ,},\3QR(A)+ ﬁBR(A)"‘_ $2,YR(A) (59)
and defines, similar to (53),
 NiHiRy=yR= (M) (60)

Then one expands the o product Ehrough first order in &, and obtains two
equations, corresponding to the 1 and 7; components of the equation of
motion. To simplify the notation, I introduce

b=ed—ivex, A=evpA+iy (61)
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and

{(A, By =428 24 9B 62)

One obtains the following transport equations:
Ni@f*+ G0t — AdefT+ veafT)

+2AR3f +R2AaEfL+{{N3,AfT}} K* (63)
N0+ ¢3S T~ Rop f + vp9,1Y)
+2AN, fT— NaAopf* —{{R,, Af 1} =K" (64)

Here, the remaining effects of collision processes are included through K"
and K. In these equations, the expansion with respect to # of the spectral
quantities has to be inserted. In particular, since N;~ #', the terms propor-
tional N; are of higher order.

Before discussing the collision operators, I present the expressions for
density and momentum in terms of the distribution functions. Working with
accuracy ~#°, one obtains from (39) and (42)

2lfeide] e

Px-?ij dENJ%ﬁ'-”;g (66)
aw k2

Finally, for the self-consistency equation (30), the off-diagonal part of the
Keldysh component is expressed in terms of f~ as follows:

_1”[§K]+-— E“I'Rz(l ‘2fL)+ stT“ i [szT+lR3(1 ""2fL)]
4i 2 2

N SRS (R, ST (67)

Note, especially, the equation obtained by taking the imaginary part of
(30), namely

wg (AX +24%)
~s03 F0+ [ a8 | Nt iRm0

Here, T also included the force arising in the case of commensurability
pinning,’ which is derived by an extension of the methods discussed.”® On
the other hand, the standard BCS gap equation is recovered from the real
part of (30) by ignoring time derivatives and commensurability effects and
inserting for f; the Fermi function as well as R,=AN,/E.
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4.4. Collision Operators

From the derivation of the kinetic equations, it has become clear that
one has to consider the following expression:

(iT) =gt {(:3) =, ﬂK} (69)

In the self-energy, one has contributions from electron—phoﬁon and impurity
scattering, and therefore one writes

KHM = KL 4 KL 4 pLm (70)

where K, and P arise from impurity contributions. In particular, consider
the limit y « A, in which case P is related to the second term of the rhs of
(23). :

44.1. K.,

From the analogy with the theory of superconductors, discussed in
detail in Section 2, it is clear that one arrives at collision operators of similar
form. Here the linearized version of the collision integral is considered, i.e.,
one puts

fr=fotof" | (71)

and assumes that 8~ and f* are small. The result can be found, e.g., in
refs. 14 and 15. An important property of the collision integrals is

J dEKLT=0 ~ - (72)

which in the present case is related to the conservation of particle number
and momentum.* Also, it must be noted that K., consists of so-called
“scattering-out” and “scattering-in” contributions, the latter being a compli-
cated integral operator. On the other hand, the “scattering-out” is given by

R I

KT fT / ,r'el;’
For T close to T,, 7o, = 74, = Toy, While for low temperatures,”® T« T.,
Tep=(T./ T)rg=(T./ T)"*, (74)

where the scattering timest have been evaluated for E = A. In the following,
an approximation is considered for K" that preserves the conservation
laws and agrees in the scattering-out contribution with the exact expression.

*Note that momentum conservation in electron-phonon collisions in only approximate (see
Section 1, and also Section 6).
TNote that the linewidth [see (50)] is given by T',,, = (275} 7%,
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Also, it is a reasonable approximation to take the rates independent of
energy. This approximation, which elsewhere®® was called the “reduced”
collision operator, has the following form:

KL >KLy= [5#-( /o) J dE’ NI(E’)Sf'g] (75)

Tep

and similarly for the T mode, where f,=29f,/3E, and Y is the Yoshida
function:

= .[ dE Ni(-fo) (76)

This approximation, which provides a considerable simplification, but
nevertheless gives very good results, will be used later.

442. P
The quantity P is given by
== 08T —(1e2), 8 77
(PT) 8 89‘2 tr ;3 [’rl Eg'r2 ( «> ) g] ( )

Inserting (49) and k = ko1, one finds P*'=0, and
PT=(x/27,) N3 dfo/3E (78)

Note that PT is proportional to the backward scattering rate. The general
result, where y is not assumed to be small, is

pTL N(E)

. ——AN(E+X)S(E+X)—f(E)] (F)[x>—x]} (79)

Here, however, higher derivatives of the phase have been neglected. Note
the analogy to the theory of tunneling between superconductors.”’

4.4.3. Kimp

Finally, I evaluate what is called here the impurity collision operator,
namely (69) into which the expression [see (16)]

i A A .
4 7'337'3‘*' {1'1371+(1"2)] (80)
T

is inserted for the self-energy. It is straightforward to see, however, that
forward scattering does not contribute to K;.,,,, and that the L-mode collision
operator is identically zero. Thus, one obtains the result

Kimp=0,  Kip=-(1/m)Nif" (81)
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Physically, this is connected to the fact that forward scattering cannot
equilibrate a nonequilibrium distribution related to a change of density or
momentum, and this is also true for backward scattering with respect to
density fluctuations. Thus, 7; ' appears only in (81), and only in the T mode
related to changes of the momentum.

5. PHASE MODE

Here the kinetic equations are considered in more detail in order to
derive the equation of motion for the phase of the order parameter in the
presence of electron-phonon and impurity scattering. From an inspection
of the Boltzmann equations, it becomes apparent that a solution should be
sought in which E=E- qg instead of E appears as an independent variable.
Defining new distribution functions by

FE; x, 1)=f(E; x, 1) (82)
one can use the following relation:
8 S(E; %, 1)=3,f(E; x, 1)~ § of /9 (83)

where it is understood that the time derivative is for fixed E (é ) on the left
(right) hand side of this equation. A similar relation holds for spatial
derivatives. Clearly, the combination

U=vpdP+a,A (84)

arises in the equation [see (56)]. Note that the Poisson bracket {{-, -}} is
not affected by this transformation. The “~" is neglected in the following.
Ignoring also the terms ~Nj, as discussed above, and derivatives of the
magnitude of the order parameter, one obtains

Ni@ S = toef +vpo f")+2AR, fT= K5, (85)
N@S =t 0pf + vpd ") + 28] N, - 3(3:R,) 8,1 f = K, + K1y + PT (86)

where the collision terms are given in Section 4.4. Inserting f*= f, and the
expression for R; obtained from (57) in the Ginzburg-Landau equation
(68), one finds

(me— DX~ F()]+ (= Y)(¥ —vix" —2evge)

where
27 dV(x)

meg—1 09y

F(x)=- (88)
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is the force due to the commensurability pinning potential V(x). Note
that the transformation defined in (82) changes the expression for the density
into the following:

2 1\ 1
p x—f dE N, (f"——) ——x (89)
TOR 2 w

while the momentum, Eq. (66), is not modified. Note that the (charge)
current is given by

j= eje1=£(2 J dE leT‘*')E) (90)
T

Clearly, by putting f* =0 and thereby ignoring dissipative effects, one
recovers the well-known equation of motion for the phase from (87), namely
¥ —cox"=F(x)+2efvge, where co=0v3(1~Y)/(mg—1) and e¥=
e(1-Y)/(mg—1).

For the present case, the solution of the transport equations can be
further simplified, since deviations from equilbrium are small. Therefore,
one may use

defT=~drfy

in (86), and this term as well as P can be considered a “drive” term for
the T-mode distribution function. In addition, one can ignore the terms
~R; and ~agf" in (85), since these will produce corrections quadratic in
. Fourier transforming the resulting equations yields :

Ny(—iwsf"+iveqfT) = K4, (91)
Ni(—iwf"+ ivegdf") + 2AN, () f"

| 1 N,
-KL-LN2TeN, [«p-{-w(;z)w,q] (32f5) (92)
Ta 27‘2

where Ny(w)= N,+iwdpR,/2. Note that 7, enters only through N, into
these equations. Equations (91) and (92) can be solved, provided the
electron-phonon collision integral is replaced by the “reduced” operator
(75) in terms of a few integrals that have to be evaluated numerically (except
in limiting cases). Note the N, term, which is characteristic for the transverse

mode, and especially its sharp increase for energies close to the gap [see
(54¢)].

5.1. Momentum Relaxation (only)®

As a first application, consider a situation in which energy relaxation
is negligible. Putting K., =0, it is straightforward to solve the kinetic
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equations, and one finds
{~ioN[1- (qu/w)z] + N%/ T+ 2AN2(‘9)}fT
= Ni[+ Ni(¥)ao/ 272115 (93)

Clearly, there are two contributions to f*, corresponding to the two “drive”
terms on the rhs of this equation. Therefore, inserting the solution into (87)
gives two terms, which are proportional to ¢ and y, respectively, with,
however, rather complicated (w, g, T)-dependent prefactors.

As an illustration, consider the limit o, (veq)*/w < 75, . In this case,
(93) simplifies since the w and g dependences can be neglected on the lhs
of this equation. The resulting equation of motion is of the following form:

X+ yx=F(x)+x(cox"+2efvge) (94)

Note that the appearance of +y; and the fact that «; # 1 are related to the
nonthermal distribution of quasiparticles, as expressed by f'#0. Since
mg> 1, one could neglect ¥ in ¢. The y; and «; are given by the following
expressions:

__1 PN VA
YimmF"'z.[ dE( ﬂ)) 52 52/7'2‘*'52/7 (95)
e Bl &1
Ki_1+(1 Y) 1jd5( fo) § 52/7'2+A2/7 (96)

where the integration is over the region E>= A’ recall that &= E*—A®
(¢>0), and 7~ =771+ (27,)"". Also, in (95) one has to take into account
a finite linewidth I',,, since the integral is divergent for I',, > 0. (The authors
of Ref. 20 consider, instead, the bending of the Fermi surface.) For high
and low temperatures, these expressions can be evaluated, and one obtains:

1 {(A/4T) In (A/T.,) A< T 07)
" mer, ((A/T) e TIn(T/T,,) A>T

A=)y Y(mA/4T)(r/ 7)Y AT
K; == {l A>T (98)

where, for A« T, use has also been made of the condition A 7« T 1,.
The Yoshida function is given by

Ye {1-—{75(3)/4«2](:1/ T  A«T

QnA/ TV e T A»T (99)

Taking into account that mg~ A, it is found that close to the transition
temperature, y;~A""In A, and kici~A"!, ked~A~". These results also
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indicate the limitations of the techniques used elsewhere.”>* The results
obtained here are in agreement with ref. 20.

5.2. Energy Relaxation (only)

For illustration, I also consider the limit of dominant energy relaxation,
such that momentum relaxation can be neglected completely. For this case,
it has been demonstrated’*'®% (see also ref. 28) that the following local
equilibrium ansatz gives an excellent description of the energy dependence
of the distribution functions:

fT=(&/E*)(~fo)n"8(E*-A?) (100)

of = (=fo)n" (101)

where " and n" are constants to be determined. Here the linear decrease
of fT for energies close to the gap reflects the increase of the function N,,
(54c). By integrating the kinetic equations with respect to energy, taking

the conservation laws into account, one obtains the following equations,
which can be easily solved for n™':

—iwYn"+ivegZn T =0 (102)
[—iwY +(1/ 1, (Y =Z)]n"+iveqYn"=-Y¢ (103)
where I have defined the function Z:
2
z=[aenEim (104)

whose limiting values are given by
{ 1—(wA/ATY+[72(3)/47*1(A/T)? A< T
2 ==
(T/A)Y A»T

In addition, 7., = fr];p. The solution of (102) and (103) leads to the following
result:

(105)

Yy
1 - iwTe(@) [1~(veq/)’]
where I have introduced (also for historical reasons) the quantity 7x(w):

_Z
oy 7

mj dE Ny(w)fT=— (106)

(1—iwr,,) ™ (107)

a(w) =

Note that 7x(0) is the relaxation time characteristic for the branch imbal-

ance;''* in particular, close to T, it is given by 72(0)=7,,(4T/mA). On

*For a review of the phase Hamiltonian approach, see ref. 29; see also ref. 30.
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the other hand, in the limit w7, » 1, ¢ =0, one immediately makes contact
with the results discussed in refs. 6 and 10. Namely, from (103), one can
conclude that in this case the leading term is given by 5" = ¢/ iw, which
leads to the following relation between current [see (90)] and time derivative
of the phase:

j=(e/m)vy, v=1-2 (108)

where the electric field was ignored in this relation. Note the characteristic
temperature dependence of the ratio j/y~A (near T,), which has been
confirmed experimentally.” The appropriate equation of motion in this limit
turns out to be given by (w7, » 1)

x = F(x)+2efvee (109)
where e¥* =ev/(mg—1).

5.2.1. Equation of Motion (q— 0)

In the limit ¢ - 0, but arbitrary wr,,, one finds an equation of motion
which is the analogue of the equation governing the longitudinal A-phase
spin dynamics'>'® of superfluid *He. Here, of course, it is modified by the
coupling between electrons and photons (my>>1) and by the appearance
of the electric field. In an intermediate step, one obtains

(mF—l){j('[l+ 1= Y}j — F(x) ~2e§‘vF3}

F— @

+{1 —iwrg(w)] 'Y (¥ —2evpe), =0 (110)

which can be transformed back to the time variable after multiplying with
appropriate frequency-dependent factors. Defining ., = (Y —Z)/ Y7, one
finds

B¢+ Yep) [X — F(x) 1+ (v3,+ v ) X/ (me—1)
32€§UF(3;+'}’@/ V)S (111)
which can be written in the following form:

o mg  OF ( Ye )
+ Y, § = Y — ., F = 2e¥vp| 9, + 22 112
Xt vk = Xy~ Vel =2esue| 047 e (112)
More precisely, in this equation one should also multiply vy., by mg/(mg+
v—1), and F by (mg—1)/ mg, on the lhs, and e* by (mg—1)/(mg+v—1).
These factors are close to unity. Note that, close to T, v., ~(wA/4T) Tens
while for T« T., y,,~7.,. On the other hand, »/y,,~ ., for all tem-

peratures.
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As an illustration, consider the linear response to a field of the form
£ =g, exp (—iwt). In this case, one may put F(x)=—wgy, where w, is the
characteristic frequency of the commensurability potential. From Eq. (112),
one obtains

_2ei‘,‘vp —iw+ Y.,/ v

Xo = £, (113)

Yo (1=i0/yy)(0’—0f)+ivlo,
where, with v =1- 2,

oz oTen  ZY
Aw,, = ——e = 20w (114)
yep(mF_"Z} mp—Z Y-Z
For high and low temperatures, one finds (mg> 1)
1 5, [4T/#A AT
Awgp -~ mFﬁ)(}Tep { (27}"?/&)1{2 e_A/‘T A)} T (115)

Consequently, one obtains Awep/w§~' (T.— T) 2, close to the transition
temperature; on the other hand, Aw,, is exponentially small for T« T,
which reflects the gap in the quasiparticle excitation spectrum.

5.2.2. Conductivity (g~ 0; wr, < 1; A< T)

It has become apparent from the preceding discussion, and is also
intuitively clear, that quasiparticle effects are suppressed at low tem-
peratures, while important changes can be found close to 7.. The latter
case is considered in more detail, and especially the conductivity in the
limit g >0, wr,, < 1. From Eq. (103),

T TR

1
n == 5 (X —2evee),, (116)

1—iwTg

where 7 =7x(0)=17,-4T/wA>»1,. This can be combined with the
expression for the current [see (90)], namely

j=(e/m)(2n"+x) (117)
and the with the result obtained above, (113), to give the conductivity. One
finds o, = oM+ o?, with (note that 2ve/ 7 = po/ m)

2
a_ 2e°vp T

o, - (118)
7 1—ietg
and
2 , .
G-E";Z)— 2e Up tw/(l—zw'rg) (119)

T w(me—1) (1-iwrg)(0’ ~ 0d) + io Ao,

Note that o'V diverges for @ =0, T T., which reflects the approximation
of neglecting the momentum-nonconserving contribution in electron-
phonon collisions.
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5.3. Energy and Momentum Relaxation

This section investigates the dynamics in the presence of electron-
phonon and impurity collisions. In general, there are three parameters,
namely TT;” 71, and 7,, characterizing the strength of the electron-phonon
and impurity scattering (recall that 73, is the scattering time at T,). In most
practical cases, however, 1, ~ 7,, and this will be the main concern here.
To simplify the discussion, the kinetic equations are investigated close to
the transition temperature, i.e., for A« T, and in the long-wavelength limit
q-0.

As has become apparent from the preceding subsectmn a more detailed
investigation is necessary in the presence of momentum-conserving amd
nonconserving collisions. I start with a general discussion of the solution
of the Boltzmann equation, within the approximation of the reduced
operator. By noting that, close to T,, 75, = 7., = 7,,, one immediately obtains
the solution of (92) in the following form:

(o) e R lrn(E50) 0w

Here, only the range E>> A? is considered, and N, =|E|/ & The quantity 0
has to be determined self-consistently, namely from ‘

=¢f———1—j dEN, f" (121)
Tep :
where the second term arises from the “‘scattering-in” term of the reduced
operator, and Y has been put equal to ~1, since A< T. Clearly, without
impurity collisions, the local equilibrium solution (100) emerges. Close to
the transition temperature, the integrals in-(121) can be evaluated, and one
finds

~ 1 1 1 1 1 (X))o
t[f('-fw-l--—a-k—) =¢t(-i¢o+-——+—) +.._._w_. (122)
TR To Tep T2 Tep 272
where 7% is given by
" l1-a
7R=7R1_a3/2 ‘ (123)

where, as before, 7 = 7,,- 4T/ 74, and

1
o =— [ (124)
~iw+1/7,+1/7,

Clearly, in the clean limit, « - 0, and the results of the preceding subsection
are recovered. On the other hand, for relatively dirty samples and dominating
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forward scattering, such that 7' » 7 » w, 77, one obtains a =1,,/7> 1,
and (123) is identical to the relaxation rate calculated by Schmid and
Schon.™

To derive the equation of motion for the phase, these results have to
be inserted into (87), which, for A« T( but mg>» 1), can be considered in
the following simplified form:

mp(f*F)w=4AI dE Ny(w)f" (125)

In addition, in evaluating the rhs of this equation, an approximation has
been introduced which formally replaces a density of states multiplying the
impurity rates at some places by unity.* Then one obtains

-~

& m( -—«—iw-i—l/rep-%-l/r)”z

oty — F), = -
X+ yx—F) mg 2T \~iw+1/7,+1/7,

(126)

where y; and J are given by Egs. (97) and (122), respectively. As an
application, consider now the expansion with respect to the frequency w
of the rhs of this equation. As a result, one obtains the standard equation
of motion, namely (after transforming to the time variable)

¥+yx=F+2e*vee (127)

where y and e™ are given by the following expressions (note that « is to
be evaluated for w = 0):

y=v+7y (128)
A 1

- m}: 1 -+ Tg/ T?z
and

w_ € 7A 1+7,/7,
¢ mFA4T 1+7/7% (130)

where A is a dimensionless constant close to unity, namely A=
(1o +7 ')/ (7o +73"). Clearly, the values of the damping constant as well
as the effective charge are modified by the presence of electron-phonon
collisions. In particular, for strong energy relaxation, i.e., Tg < 75,

y=7=(mpr)" (131)

*Nevertheless, this approximation ensures the correct results for 7,,>» 7 and 7, « 7, and is
expected to be sufficiently accurate in between.
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e*=e/mg (132)

which should be contrasted with the results for the opposite limit, namely
y=1v, and e*=(e/mg)(wA/4T)(15/7)"? [see (98)].

As mentioned above, (127) is a valid description in the hydrodynamic
regime, more precisely if o « 77'+ 75" and w”« (,75)"". Here, the second
condition, which applies only if 7 « 7,, ensures that a dissipative correction
of the type discussed in Section 5.2, which is typical for energy-relaxing
processes, is negligible compared to yy.

Physically, the results as represented by Eq. (131) and (132) can be
understood as follows. In a situation of dominant energy relaxation, the
quasiparticle distribution function will be close to the local equilibrium
form (100). With the help of this ansatz, the above results can be obtained
directly by integrating the kinetic equations, similar to Section 5.2; note
that (131) and (132) apply only if 7.,/ T, < A/ T.

Finally, consider the current under the same condition of small
frequencies (and ¢->0, A« T). From Egs. (90) and (121),

j=(e/m)[27,(¢ =) +X] (133)
which can be written as follows:

j=0We+(e/m)ux (134)

) is given by

where o
0'(1)20};/(1'}'72/7;) (135)
and oy =2e*veT,/ 7 is the normal state conductivity. In addition,

() (A AT (12 7)) (14 7 7ep ]
M= T D
(TR) + 7,

(136)

Note that a correction ~Ay in the relation between Jc and ¢ had to be
taken into account here, which could be ignored before [and was not
included in (122)]. In particular, the results for dominant energy and
momentum relaxation, respectively, are

— 1 TR & 7'2
“ '"{(m/ztr)(frz/ N S, (137)

Of course, the equation of motion (127) combined with the expression for
the current (134) are just the more or less standard set of equations often
used to interpret experiments on charge-density-wave systems. The deriva-
tion of these equations has been discussed in detail here to demonstrate
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the role momentum-conserving and nonconserving collisions play in deter-
mining the parameters entering in such a description. The results demon-
strate that careful investigations close to the transition temperature could
shed further light on the mechanism of dissipation in CDW systems.

6. SUMMARY AND DISCUSSION

In this paper, I have derived the quasiclassical equations of motion
for quasi-one-dimensional systems at lcw temperatures in order to discuss
some aspects of the dynamics of charge-density-wave systems. It turns out
that, as in superconductors and superfluid *He, where this method has been
applied very successfully,'*'® the quasiclassical approach is an elegant and
relatively simple (compared to full microscopic theories) tool for investigat-
ing nonequilibrium phenomena. Physically, its simplicity relies on the fact
that “unnecessary” information about the momentum can be integrated
out. More precisely, the equations for the Green’s function, which is
integrated with respect to the magnitude of the momentum, can be derived,
and this function satisfies a normalization condition: this condition allows
the definition of quasiparticle distribution functions, and Boltzmann-like
transport equations emerge in the limit of low frequencies and long
wavelengths (discussed here), and in cases of a linear perturbation above
a time-independent reference state. The collision operators appearing in
these equations can be treated by standard methods. Note that 1 have
discussed the kinetic equations with emphasis on the BCS limit, i.e., situ-
ations in which the scattering rates as well as the frequency are small
compared to the magnitude of the order parameter, and the wave vector is
small compared to the inverse of the magnitude coherence length. In this
limit, the kinetic equations can also be derived from “golden rule” argu-
ments, and the correspondence between the present approach and the
“excitation picture” has been discussed in detail elsewhere.'®

In particular, I have investigated here the dynamics of the phase of
the order parameter, and considered the influence of (elastic) impurity
scattering and (inelastic) electron-phonon scattering. To be definite, I
assumed the temperatures low enough that the momentum relaxation due
to electron-phonon processes can be neglected (T« ). However, no use
was made of any special properties of electron-phonon collisions, except
that they do contribute to energy relaxation, and that the collision operators
in the L- and T-mode equations can be characterized by an energy-indepen-
dent rate (which can be different, in general, in the L and the T mode). In
fact, the “reduced” collision operator has just the eigenvalue zero eigenfunc-
tions that correspond to particle and momentum conservation and, in
addition, has the property of equilibrating all other eigenfunctions within
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a certain relaxation time. Therefore, the model applies to situations in which
a reasonable separation of energy and momentum relaxation can be made,
and should be a good interpolation formula in between. For example, the
equations also apply for T> 6, in which case electron-phonon scattering
is almost elastic (a case considered in ref.31), and one has to identify
i~ 1t~ Akg T/ h.

For illustration, I consider in more detail the parameters characteristic
for systems in which CDW transitions are observed (see Griiner and Zettl,?
Section 3). For example, for NbSe;, some typical values are Ex~1¢V,
A(T=0)/kg~T,~100K, #wo/kg~6~100K, and A~1/4. Also, one
obtains a Frohlich mass of the order of mg~ 10°. [In addition, a BCS-like
behavior of the temperature dependence of the gap is found, with A*~
kiT.(T.—T) close to the transition temperature.] Considering the tem-
perature dependence of the resistivity found in the early experiments,*
which is almost linear for high temperatures, one can conclude that momen-
tum relaxation is due to electron-phonon scattering, with 8=<T, at least
close to and above the upper CDW transition® (T, =~ 144 K). Impurity
scattering seems to be negligible, except at very low temperatures.’” Further-
more, since #=100 K, one can conclude that energy relaxation is of the
same order (or even larger) than momentum relaxation close to the lower
transition (T, =~ 59 K). Generally, the results obtained in this paper suggest
that careful measurements close to the transition temperature should be
able to clarify the role of energy versus momentum relaxation. Of course,
the momentum relaxation rate can also be varied experimentally, by chang-
ing the concentration of impurities.

For completeness, I discuss the limit in which momentum relaxation
is neglected completely. Then, one has a situation similar to the branch
imbalance in superconductors'**?® and to the spin dynamics'>'® of super-
fluid *He. Considering the branch imbalance, it has to be noted that the
variable conjugate to the phase is the electron density, and the branch
imbalance relaxation is due to electron-phonon collisions, with the charac-
teristic behavior of the relaxation time 7 ~ 7, 4kgT/7A (close to T.).
This result is not affected by (nonmagnetic) impurities. On the other hand,
for CDW systems, the phase is conjugate to the momentum, and even weak
momentum relaxation invalidates the analogy to the branch imbalance (see
Section 5.3). Note, however, that the parameters in the equation of motion
(127) are different, and especially their temperature dependence close to
T,, in cases when energy relaxation dominates over momentum relaxation
compared to the opposite limit.

Finally, note again that the pinning of charge-density waves by the
random impurity potential has not been considered here. I believe that by
adding the random impurity pinning force to the equation of motion
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obtained in this paper a reasonable description of transport in CDW systems
is obtained. Also, I have neglected the interaction with “normal” electrons,
i.e., electrons not affected by the Peierls transitioh. Some aspects of this
problem have been discussed recently.*

In conclusion, I have presented a detailed discussion of the dynamics
of quasiparticles in CDW systems and their impact on the dynamics of the
phase of the order parameter. In particular, the quasiclassical technique,
as in superconductors and superfluid *He, is a convenient and elegant tool
for the description of nonequilibrium states in quasi-one-dimensional con-
ductors, and may have further applications.
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