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An effective action (in imaginary time) for the phase of the order parameter is derived
using the path integral formulation of the microscopic theory. After analytic continua-
tion, the classical equation of motion is derived. Dissipation is found to arise from
impurity scattering and from the screened Coulomb interaction with normal electrons.
Similarities to a recent theory of Josephson junctions are discussed.

1. Introduction

In recent years, it has become clear that the unusual
low temperature transport properties of linear-chain
compounds such as NbSe,, TaS; etc. [1] are related
to the formation of a charge-density wave (CDW),
ie. a periodic distortion of the lattice accompanied
by a periodic modulation of the electron density.
The transition into a CDW state which was suggest-
ed by Peierls [2] more than thirty years ago, is
related to the instability of onedimensional metals
against perturbations with wavevector Q=2p,/h,
where p, is the Fermi momentum. In addition,
Frohlich [3] argued that in the incommensurate
case a CDW could slide through the lattice without
friction. Subsequent work [4] has shown that impu-
rities or lattice imperfections are important since
they lead to pinning of the charge-density wave.
Consequently, for small electric fields, the charge-
density wave does not contribute to the dc con-
duction. In general, a strong frequency and field
{above a threshold field) dependent response is ob-
served, as well as other phenomena characteristic for
non-linear systems: interference phenomena, hys-
teresis, narrow-band noise, etc. Recent reviews of
experimental and theoretical developments can be
found in [57 (see also [1]).

Different models have been proposed in order to
explain the experimental results. While it is accepted
that the phase of the charge-density wave is the
relevant variable, there is a controversy between
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classical models [6-11] and models employing con-
cepts of quantum tunneling [12-14]. Among the
classical models, it was noted that the model of a
particle in a periodic potential [6, 1] describes quali-
tatively many of the experimental features, and an
improvement can be expected by including, for ex-
ample, a kind of shot noise in the equation of mo-
tion [7]. In detail, however, it is clear that local
deformations of the charge-density wave have to be
taken into account [8-117. Near threshold, for ex-
ample, it seems to be useful to view the CDW de-
pinning as a dynamical critical phenomenon [11]. In
contrast to the classical models, which are based on
a classical equation of motion, the quantum ap-
proach [12-147 starts with the idea of Zener tunnel-
ing, and combines it with the concept of photon-
assisted tunneling which is well known from the
theory of tunneling between two weakly coupled
superconductors.

The controversy between classical and quantum
models was one of our original motivations to
undertake the research presented in this article.
Therefore, our aim is, starting from microscopic
theory, to derive an effective action for the phase of
the order parameter (which describes the distortion
of the lattice) thus including the full quantum me-
chanics of this collective variable. This approach is
similar to the phase Hamiltonian [15-17]. As a new
feature, dissipative effects are included in the action,
and we propose to calculate the damping constant
usually introduced phenomenologically in the classi-
cal equation of motion. This is of particular impor-
tance since dissipation is known to decrease quan-
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tum effects [18]. In fact, the present approach is
analogous to recent investigations of the tunneling
between superconductors [19, 20], in which path
integral methods have been applied successfully.
Similar methods, in the context of charge-density
wave systems, have been used before [21, 22]. We
remark that dissipative effects can also be investi-
gated within what we call the kinetic equation ap-
proach [23-25], which is particularly suited for stud-
ies of quasiparticle nonequilibrium effects [15, 26].

This article is organized as follows. In Sect. 2, we
briefly present the microscopic model and derive the
effective action for the phase of the order parameter.
The analytic continuation to real times and the
classical equation of motion, are discussed in Sect. 3.
Section 4 contains a discussion of the interaction
with normal electrons, which are known to be pres-
ent in some materials due to an incomplete de-
struction of the Fermi surface in the Peierls tran-
sition. A conclusion is given in Sect. 5. Some of the
results presented here have been discussed briefly
[27, 28] (see also [297]).

2. Model Hamiltonian and Effective Action
2.1. The Model

We consider the standard model where electrons are
strongly coupled to phonons of wave-vectors close
to +Q, and where they are scattered by impurities
and driven by an external field. In particular, it is
assumed that the Fermi surface consists of two par-
allel planes (perpendicular to the x-axis), while the
phonon spectrum is taken to be three-dimensional.
In addition, for electrons close to the Fermi surface,
the electron spectrum can be replaced by a linear
one.

Ignoring for a moment impurity scattering and
the external field, we take the Hamiltonian to be

H=H,+H, ,+H, 1)
where

H,=}% Up Doy Ay (2a)
and* "

th=%: w(q) by by, (2b)

The notation is standard: v, denotes the Fermi ve-
locity, s the electron spin, w(q) the phonon disper-
sion, and a*, a and b*, b are the electron and
phonon creation and annihilation operators, respec-

* Units are such that h=kgz=1

tively. In the following, we ignore the spin index
except the usual factor two to account for multiplici-
ty. It is convenient to work in the coordinate repre-
sentation, in which the electron-phonon interaction
is given by

H, =g ro®mi ¢ (2¢)

where g is the coupling constant, and ¢(r) the pho-
non field operator. Considering only phonons with
wave-vectors q~Q=(0,0,0), it is useful to in-
troduce the order parameter 4 according to

go)—>Are'® + 4*(r)e 1 &)

such that A(r) is slowly varying in space. Taking
only slowly varying contributions (compared to
0~ 1) in the Hamiltonian into account, we arrive at*

Hy+Hy p={ d*r* @ (). Q)

In this expression, the components of the vector y
=,y ) are the field operators for the two elec-
tron branches, where o= +(—) refers to positive
(negative} momenta. The matrix % is given by

. - A
h=vF(-i6x—eA)%3+eq51+[A*Z_C* :5] 5)
Here, A and ¢ arc the electromagnetic potentials,
and 7, is the third Pauli matrix. In addition, im-
purity scattering is taken into account through a
real field #(r), describing processes with small mo-
mentum transfer, and a complex field &(r) for mo-
mentum transfer close to +Q. We assume that
and ¢ have a Gaussian distribution with average

mean, and correlations given by
1
N Q)<n(r)nx)> =3z o(r—r), (6a)
1

nN(0)(&(r) E*(r)> =51—2 o(r—r’) (6b)

while {(£¢&)={&*&*>=0. Here, {-)> denotes the im-
purity average, and N(0) is the normal state density
of states at the Fermi surface (for one spin). Clearly,
7, and 7, are the impurity scattering times for small
and large momentum transfer, respectively. Equations
{()-(6) define the model we investigate in this and
the following section.

2.2. Effective Action

In the next step, we consider the path integral repre-
sentation [19-227] of the partition function Z for the

* A hat indicates a 2 x 2 matrix



present model. After integrating over the electron
fields, we arrive at the following expression:

Z={ 24 94* exp(—35) (7)

where the path integral is over functions periodic in
imaginary time with period f, with f the inverse
temperature, such that A(r,7=0)=A(r,7=f). The ac-
tion §=8[4,4*]=5_,+S, has two contributions,
given by

N(0) #

Sv=r) [ de [ d2r 4%(e,7) D" 406, 52)
Ay o

and

S,=TrlogG. (8Db)

Here A is the dimensionless clectron-phonon cou-
pling constant, and w,=w(Q). The inverse of the
phonon Green’s function, D~ !, Fourier transformed
with respect to the spatial coordinate, is given by

D '= -2+ (9a)

which upon expansion with respect to dq=q—Q
leads to

D le -2t wi—c2P2. ©9b)

In this expression, gradients in x-direction have been
neglected, since the sound velocity (~c¢,) turns out
to be much smaller than the phason velocity (see
below). Finally, G is the electron Green’s function,
which depends on the order parameter as well as on
the external and impurity fields. We obtain the fol-
lowing result:

G l=(—0,—edp—n)ty+vp(id, +eA)T

+[—(A"?+£*) Agé]' (10)

In (8b), the Tr operation is with respect to all vari-
ables as there are, space, time, branch and spin
indices. As an illustration, consider the Green’s func-
tion in equilibrium and without impurity fields, G,.
This quantity depends only on the relative coor-
dinates, and its Fourier transform is given by*

Gopw,)=[iw, 5 —vppl+ila|£,] 1 (11)

where the phase of 4 was fixed such that A=il4|.
Then we obtain

N po d R
Trlog Gy=2-N(0) | ?FTP-TZtrlogGo(p,wn).
-~ Ppo Wy

(12)

* No confusion should arise between 7, the Pauli matrix, and 7,
the scattering time
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Here, the first factor two is due to the spin, p, is a
cut-off momentum, and tr denotes the trace with
respect to the branch index.

In order to deal with situations in which the
order parameter varies in space and time, we in-
troduce an expansion with respect to gradients of
the phase of the order parameter. We put 4
=i]d|exp(—1i)), and transform the Green’s function
according to

G,r,7,7)=8*(r,7) Gt v, 7, 7) ST, ) (13)
where
S@,1)=exp[ —it, 1(r,7)/2]. (14)

As a result, the inverse of G is given by an ex-
pression similar to (10), with the replacements

A=ild],  {=&exp(iy), non—vpl.x/2, 10,~10,
+10,_x/2vg. Thus, we may write
G-1=G;1-V (15)
4
where, with V=Y V¢, and ,=1
i=1
V,=—iIm(¢¢'), (16a)
V,= —iRe(¢e'r), (16b)
Vi=ed+n—3v:0,7, (16¢)
V,=— (evFA—l»%@,x). (16d)

Small variations of the magnitude of the order pa-
rameter could be easily included by letting V, -V,
~16, where ¢ is the deviation of |4| from its equilib-
rium value. Note that

S.,=Trlog G
=Trlog G,—Trlog(I—G, V). (17)

In addition, the phonon part of the action follows
from (8a) to be given by (in the following |4| will be
denoted by A):

_N(Q@©

Sph_T)janrM

+3NO) [drd®rme[30. 0 +5c1( 0] (18)

where mp=44%/2 w3, and variations of the magni-
tude of the order parameter have been ignored for
simplicity. The quantity (m,+1) is the Fréhlich mass
divided by the electron band mass (typically m,p> 1).
Considering the first term in (17) and (18), respec-
tively, namely

N(O) )
Soz—ilgd‘cda'rALFTrlogGo (19)
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we remark that in equilibrium S,=fF where F is
the free energy. Surprisingly, the condition 6F/04=0
turns out to lead to an equation similar to the BCS
gap equation in the theory of superconductivity.

2.3. Expansion of the Action

In the following, we concentrate on the low fre-
quency long wavelength behavior of the charge-den-
sity wave. The magnitude mode can be omitted,
since it has a finite gap (~a)Q) in the excitation
spectrum. In addition, S, 1s expanded in second
order in the “perturbation” V. The result is of the

form:
SP=TrG,7, (20)
SP=1Tr G, VG, V. (21)

Inspecting the first order term, S{}), we realize that
only the contribution related to the backward scat-
tering impurity field is relevant, the others being
either independent of the phase or total derivatives.

Using the gap equation, we obtain
s .
SP=p,[dr[d*rRe[i&(r)e*®?] (22)
0

where p, is the CDW amplitude, given by p,
=2N(0)A4/2. [p,/po=A/AE, Where p, is the equilib-
rium electron density, and E, the Fermi energy.]
Equation (22) is the so-called “classical” impurity
pinning contribution [15, 16].

Considering the second order terms, we realize
that (21) can be written in the following form:

‘2’—121 dydy V) Viy) s,y =) (23)

where yE(r, 7), ¥y =(,7'), and

s;(0)=21tr GO(Y) 7 C,;\0( =¥ fj' (24)

The factor two in (24) is due to the trace over the
spin index. Equation (23) can be simplified further
by assuming that ¥ is slowly varying compared to

the variation of the response functions s;;, which
leads to
SP~32 Jdy Vo) V) s, 23)

t.J
where §;; is the low frequency long welve-length limit
of s;; (for the off-diagonal parts of V, however, see
below). Due to symmetry with respect to w,——w,
or p——p, we find that 5,,=0 for i4j. One obtains,
for example, 55, =2N(0)-(1 —Y) while 5,,=0, where

the Yoshida function Y is given by

AZ

(26)

Combining the results obtained so far, we write S
=8,+S,+S,, and ignore for a moment S, which
contains the contributions of second order in the
backward scattering impurity field. For §,, the fol-
lowing result is found:

S, [xd=3my N(O)fdffd3r[%(5t W0+ U] (274)

with °

U(y)=3ct (V. 0)? +3c*(0,2)?
—2e*vp(e—0,nfe)x+p, Re(ile®].  (27b)

Here, the phason velocity, c, is given by c¢*=vi(1
—Y)/m,, e*=e(1-Y)/m; is an effective charge, ¢=
—0,¢ the electric field, and p1—2p1/mF (0). The
couplmg between ¢ and y as apparent in (27), also
implies the following expression for the charge den-
sity:

Sp=—eN(O)vy(1—Y)&,z. (28)

Note that in one dimension N(0)=(rv;)~ !, while for
a quasi-onedimensional model of electrons moving
along individual chains, N(0)=(zv,d?)~*, where d*
is the area for one chain perpendicular to the chain
direction. The effective action (27) or the corre-
sponding phase Hamiltonian is the standard result
{17, 307.

We wish to add a few remarks. As a first point,
note that the above result, (27), has been derived in
a gauge where A=0. In this gauge, the evaluation of
the coefficients is straightforward. Of course, the
general expression, (8b), is gauge invariant, and we
could have worked with a gauge in which ¢=0,
with the same result. We feel, however, that gauge
invariance is most easily discussed within the frame-
work of Boltzmann-like transport equations [25].

Secondly, though (27) is expected to be the cor-
rect result for low temperatures, the temperature
dependence of ¢? and e* also requires a more de-
tailed discussion. Essentially, at finite temperatures
and especially close to the critical temperatures, T,
a careful treatment of the quasiparticles becomes
necessary [25]. An inspection of the transport equa-
tions shows that (27), or more precisely the corre-
sponding classical equation of motion, is recovered
provided the deviation of the quasiparticle distribu-
tion function from equilibrium is small. Considering
the kinetic equations in the absence of inelastic col-
lisions, this can be realized in the low frequency



limit, w <, g, v:q> 7,, where @ and g are the exter-
nal frequency and wave-vector, respectively. On the
other hand, for g—0 and wt, <1, one obtains [23-
25] mpc* ~mpe* ~ A for temperatures close to T, a
result which is also known to hold in the high
frequency limit [26], in contrast to the behavior
~ 4* as follows from (27).

24. Non-Local Elastic Forces [31]

As a brief extension of our results, we consider the
g-dependence of the phason velocity, represented in
the effective action (27) by a non-local contribution
of the form

j dxc?(d, X)Z"f dxdx'(2, 1) c*(x—x) (0, 7). 29)

Note that x, x' refers to the spatial coordinate along
the chain direction. This term is obtained directly
from the zero-frequency component of s;,, and turns
out to be given by

2
c*(x) ::TF nvp T tr Go(w,,x) T35 Go(w,, —x) 5. (30)
F

@n

This quantity is even in x, and inserting (11), we
obtain for x>0:

v2 T A%
Ax)=-Lt." = ——
Mg Vp G o5 +4
-exp[—2(w? + 4% 1/v;] (31)

Clearly, ¢*={dxc*(x). For zero temperature, one
finds [31]

(x)=c?- 5t T dzK,(2) (32)

2x/&o

where £,=v,/4 is the coherence length, and K,(2)
the modified Bessel function. In addition, the Fou-
rier transform of ¢2(x) is given by (g>0):

2 log{g &2+ [1+(9¢0/2*1"}
4% [1+(q&0/2)*1

c(q)=c? (33)

Note that ¢,/2 plays the role of a screening lengih*.

2.5. Impurity Fields (in 2" Order): S,

We discuss now in more detail the contributions of
second order in the backward scattering impurity
fields [287]. These have been called [32] “Josephson”
terms, since there is an analogy between the group

* See [31] for a detailed discussion
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of electrons with momenta close to +py and —p,,
with the electrons in the two superconductors, re-
spectively, which are weakly coupled in a Josephson
junction. However, it will become clear that this
analogy has only a limited validity.

From the general expression (23), we obtain the
following result:

S, L] :éjdy dy/{z()’) E(y/)[sn_szz +1(54, +529)1,—
—&() Z*(y()[sll+s22—i(SIZ—SZI)]y—y'+C'C‘} (34)

where E(y)zé(r) -expiy(r, 1), and y'=(r', 7'} as before.
The first (second) term in this expression depends on
1MW x(y), and thus is related to pinning (dissi-
pation) of the charge-density wave. In the low fre-
quency long wave-length limit, we can approximate
the sum and difference of the phase as follows:

p +y
X+ () ~2y (y—zl)
+ (35)
N T r B r+r.
x—x()~x (—2 ,r> X (—~2 ,r).
Then we obtain
S,[x]=—2d*)~'{dr d®r Re[u(r)e?ix9]
+{d1d7v d%r Re[v(r, t —7) elxn - 1200 (36)

where u(r) and v(r,7—7'), which depend on the im-
purity field, are easily found from (34), (35). The
prefactor in the first term has been chosen for con-
venience (see [28]), and we have written 42 instead
of mv, N(0) for simplicity. Considering the pinning
term, and taking into account that the Green’s func-
tions extend in the perpendicular direction only over
a length of the order of d, we find the following
result:

pO=Jax e (nx+T) ¢ (=) fol)  G9)

where r=(r, x), and f,(x) is the function introduced
earlier [28]. [Note that (31) can be written in the
form ¢*(x)= (v/my)- n v, fo(x).] In addition

fo(x=0)=(4/202) tanh(4/2 T) (38)

which is an expression familiar from the critical
current of Josephson junctions [33]. The impurity
average of y is zero, and correlations are given by

pm) p*)y =T, 6(r—r). (39)

The first term in (36) was called Josephson contri-
bution [32], and it is periodic in y with period =,
compared to the period 2z for the classical term. To
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estimate its relative importance, note that
I=(&o/d*) [T, Bo(0)] (40)

where I',=v; d*/2z,. Comparing the Josephson term
with (22), we note that

_4 2
"L o1 ("0) 472 (41)

pil; pi/ Ef

Typical values are p, ~0.1p, and we conclude, even
if 4 is relatively large (4 ~0.1E;), that the ratio of
the Josephson to the classical contribution is very
small, ~(Ep1,)~'<1. The Josephson term becomes
even smaller close to T,, where we have an ad-
ditional factor ~(4/T)> in (41) (note that for T~T,,
o= vp/T, in (40)).

On the other hand, consider now the dissipative
contribution to S,, which adds a new feature to the
effective action. This term is rather complicated, and
we suggest the following procedure. Inspecting the
expression for v(r,7—7'), we realize that it depends
on &(r+r'/2) E*(r—r'/2); thus the impurity average of
v gives a non-zero result. Consequently, we propose
to replace v by its impurity average, which gives an
average description of dissipation. Thus (36) is re-
placed by

Sz[x]:mFN(O)ljidrljzdr’j"dW

26, 1) —x(r, f’)]

. Y @i 2
a(t—1)sin [ 5

“2)

where a constant has been omitted. The quantity

o(t—1') is given by

a(t—7)={4nm[N(0)}*1,}~*
[811+8,,1@=0,7—7). (43a)

This result is most conveniently presented in terms
of the momentum integrated Green’s function (be-
cause of the condition r=0 in (43a)). We define

iv 1 . A
g3(7):7F I dP§ tr 5 Go(p, 7)

w

=Ty n

Loy o

and obtain, with y,=(m;,)~':
T
a(t)=y, Egs("f') g3(—1). (43b)

Especially, in the normal state (T'>T)), and for zero
temperatures, this leads to [20, 27]

T>T,

T—0 (45)

9o ((aT)?sin(z T7)
"= {[AKI(A (22

with K, the modified Bessel function. Considering 4
=0 but nevertheless T—0, we find a(t)=y,/2n1?,
which is the relation proposed by Caldeira and Leg-
gett [18].

As a conclusion of this section, we remark that,
for the model discussed so far, the quantity

S=SLx+5,0x] (46)

where S; and §, are given in (27) and (42), respec-
tively, is the appropriate (imaginary time) action for
the phase of the order parameter. Some con-
sequences of the dissipative contribution, S,, namely
dissipation and fluctuations in the classical equation
of motion, are explored in the next section.

2.6. Comparison with the Theory
of Josephson Junctions

As mentioned before, similar techniques as discussed
here have been applied to the theory of tunneling
between two weakly coupled superconductors [19,
20]. The following results has been obtained:

B
Sl[w]=gdf[(c/8€2)(5r<ﬂ)2+ Ulo)], (47)
S,[e] =2f dffdr’cx(r—r’) sin? [ﬂ);“’—@]. (48)

The total effective action is given by S=8,+S,; ¢
denotes the phase difference across the junction, C
the capacitance, and U{p)= —(l/2¢)cosp—I1p/2e,
where I is the external current, and I, the critical
current. In addition, «(t—1t) is given by an ex-
pression similar to (43b), with y, replaced by a fac-
tor proportional to the inverse of the normal state
resistance of the junction. Note also that

I/I(T=0)=[4/4(T=0)]-tanh(4/2T) (49)

for tunneling between identical superconductors
[33]. Comparing (47) and (48) with (27) and (42),
some formal similarities are apparent.

However, we wish to discuss in more detail the
differences between the two systems. First of all, in
the CDW case, the phase is a spatially varying
quantity, even in equilibrium situations, because of
the impurity potential. Secondly, the electrons with
momenta close to +pp and —p; are strongly cou-
pled by phonons, and impurity scattering is assumed
to be only a small correction to this. As a con-
sequence, the dominant contribution to the pinning



potential arises from the contribution of first order
in the impurity potential, while the second order
pinning term is very small. However, the second
order term leads to a dissipative contribution, as
discussed above.

On the other hand, in Josephson junctions, the
two superconductors are uncoupled in the absence of
tunneling. Therefore, the washbord potential as well
as the dissipative contribution are of second ovder in
the tunneling matrix element ie. proportional to the
inverse of the resistance. Note also the factor 1/4 in
the argument of the sine in (48), compared to the
corresponding 1/2 in (42).

Finally, we wish to emphasize another aspect,
which charge-density wave systems and Josephson
junctions have in common. This is the appearance of
the trigonometric function in the dissipative contri-
bution of the action, S,, as given in (42) and (48). In
this respect, the present results differ from the model
discussed in [18], in which dissipation is introduced
by coupling a particle linearly to an environment of
oscillators. In fact, only if the sine is replaced by its
argument, do we recover the result of [18]. This has
some consequences in the quasiclassical limit (see
[207, and below), and may change the results quali-
tatively in the quantum limit [34].

3. Real-Time Description and Equation of Motion
3.1. Analytic Continuation

In the real time description, we are concerned with
the temporal evolution of the density matrix p(t). As
an illustration, we consider an object having only
one coordinate, say ¢; then we may write

p(Qla QZ7 tf)
={dq,dq, 41, 95,45 45,45, 1) p(d3- 45, 1) (50)

where t; and ¢, denote the initial and final time,
respectively. The quantity J can be expressed as a
path integral [35]:

J=({Dq,2q, expiq,,q,]. (51)

Here, the integration is over paths g,(t), g,(¢) such
that q,(t)=4q;, 4:()=q,, and q,(t)=45, 4,(;)=4,.
In addition, for the present example, we have
A4y,4,1=5[9,1—S1g,], where S[q] is the classi-
cal action of the object. As is well known, « is
modified if the particle interacts with an environ-
ment [35].

Returning to our investigation of charge-density
wave systems, we consider the appropriate general-
ization of (51), i.e. a quantity J defined as

21

J={ Dy, Dy, expisd [y, 1,1 (52)

and o/[x,%,] can be obtained by well-known ana-
Iytic continuation procedures, which have been dis-
cussed in detail [20], from the effective action de-
rived above. The results can be obtained without
difficulty, by compatrison with [20].

An essential concept is the deformation of the
time integration path, such that it runs along a
contour C, from ¢; to ¢, to t;, along the real axis, and
from t; to ¢,—if. This leads to a doubling of the
variables, according to x(t)—(y,{(t), x,(£). Analogous
to (46), we define

oA = sty + st,. (53)

Taking into account that (see (27))

B
S, LA=MJdz[d*r[5(0, %)+ U]

where M =m; N(0)/2, we immediately arrive at the
following result:

A1 %2]

=M [dtd®r[5(6,2,)" = Ulxy) ~ (6, = x2)]-
The dissipative contribution, on the other hand,
leads to a coupling between y; and y,. Therefore, it
is advantageous to introduce center-of-mass and rel-

ative variables ¢=(x, +x,)/2, x=x, —¥,, in which
(54a) assumes the form

14, 1]
=M {ded®r [QSX'“U (¢+§)+U (QS-%)]

(54a)

(54b)

where ¢ =0, ¢, 7=0,y. The analytic continuation in
the dissipative contribution is more difficult. Es-
pecially, the quantities o> (t —¢") and «<(t—1) appear,
which are analytic continuations of a(t—7') for 1>1'
and 1<, respectively. We define the real and imag-
inary part, o), and o, by

a” () =og(t)+10,(t) (55)

and «~(t)=[a”(t)1*. Consequently, &/, has a real
and imaginary part, and we obtain the following
result:

Rest,[¢,x1=8M [dz [dt' d’rO(t—r)

oyt —1)sin(¢p — ") Sin% cos % ,  (56)
Im o, [¢, ]1=4M [dtdr d3r

/

gt — ') cos(p — ') sin % sin% (57)
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where ¢ =¢(r, 1), ¢’ =¢(r,t), etc, to simplify the no-
tation. 6(t—¢) is the step function. Since ./ has an
imaginary part, it is not possible to derive the classi-
cal equation of motion directly by a “least action”
principle.

3.2. Langevin Equation

We proceed by introducing two independent Gauss-
ian random fields f,(r,z) and f,(r,t) such that [20]

J={D¢ Dylexpisdy, (58)

where (), represents the average with respect to fi
and f,, and & =/, +Re A, +o/,, with

;z¢f=2detd3rsin22<i(f1 cos ¢ + £, sin ). (59)

From the condition <expisZ, ) =exp(—Im.,), we
find that the correlations of f; and f, have to be
chosen as follows:

il ) [, 1)) = (oo, ) £, 00,
=—]\2/f (e —1)og(t—t) (60)

and {f,),={f,),=0. Note the non-locality with re-
spect to the time argument, expressed by agz(t—1t').
Then the “classical” equation of motion can be ob-
tained by minimizing .o/ with respect to the relative
variable, y, and putting y =0 (which is a solution of
the equation 6.57/8¢=0). We find the following re-
sult:

b—4 f dt o, (t—t) sin[(r, t) — p(r, )]

U
-~

where the force, —dU/0¢, is understood to include
the gradient terms. Note the rather complicated
dissipative term on the lhs of (61), and the corre-
sponding fluctuating force on the rhs, which depends
on ¢ as indicated. The procedure which led to (61) is
well-known in the limit of high temperatures T > o,
and has also been examined in the quantum limit
[36] w> T, for a simpler model. Equation (61) is
called a quantum Langevin equation. Though its
-range of applicability in the quantum case is not
completely clarified, we remark that dissipation
should not be too small in the limit of low tempera-
tures [36].

+ ficosp+ fosin¢p (61)

3.3. Dissipation and Fluctuations: Specific Results

As a general result, we note that ag(f) and «;(f) are
even and odd functions of t, thus their Fourier
transforms og(w) and o(w) are real and imaginary,
respectively; also, they are related by the fluctuation
dissipation theorem:

aglwy=10;(w) coth(w/2T). (62)

Explicit expressions are found as follows. From
(43b), we conclude that

@ (=" 85 (03 (~1) (63)

where the Fourier transforms of the Green’s func-
tions, g3 (E) and g5 (E), are given by

83 (E)=2N,(E) fo(—E),
g3 (E)= —2N,(E) fo(E)

such  that g3 (E)—g5(E)=2N,(E)=g5(E)—g5(E),
where R(A) denotes the retarded (advanced) func-
tion, N,(E) is the normalized BCS density of states
(N,(E)=1 for 4=0), and f,(E) the Fermi function.
Some straightforward algebra leads to the following
result:

(64)

o> ()= —fg—cge‘i”‘b(—w)l(w)

o (65a)

where b(w) is the Bose function, and I{w) is given by
(recall that y,=(mz7,)""):

l(a)):yojjldlzzxzl (E+%) N, (E—%)

[ 512 5]

Apart from a constant factor, I(w) is just the quasi-
particle current in Josephson junctions. Since I(—w)
= —I(w), we recover (62) from (65), and in addition
2ia(w)=1I(w). Given the quantity I(w), which can
be calculated from (65b), the dissipative contri-
butions as well as the fluctuating forces in the equa-
tion of motion (61) can be determined.

Of particular interest is the low frequency limit,
w< A, in which case

I{w)=y- (66)

(65b)

or equivalently, 2o,(t)=vd(¢), where the damping
constant y is given by

°° 0
7=70 | dELN(B)]? (‘Fng) (67)



In the BCS limit of a sharp density of states, this
integral is, strictly speaking, logarithmically diver-
gent, and a finite smearing of N (E) has to be as-
sumed (for example, due to inelastic electron-phonon
scattering). Clearly, for 4—0, we have y—7,, while
at low temperatures T<T,, y depends strongly on T
because of the gap in the single particle excitation
spectrum. To summarize, we obtain the following
equation of motion provided I(w)=7 w:

. . ou

$+7¢= ="t f(r,1,0) (68)
o¢

where f=f cos¢p+ f,sin¢ denotes the total fluc-

tuating force. Note that the correlations of f are

given by the following expression:

[}(I’ - l'/, - tl) = <f(l', L ¢) f(r/a t/, ¢,)>f
=25 aglt—1)cos(6 =) (69

with ag(w)=(y w/2) coth(w/2T). As an example, con-
sider the charge-density wave in the sliding mode, in
which case we can assume that the time derivative
of ¢ is fixed and independent of the spatial coor-
dinate. Then we may put ¢—@'~¢-(t—1) in (69)
and obtain the following result:

wt ¢

y =
——«—mF NO) +Z_(w + ) coth o7 (70)

I:(q, )=

For comparison we note that in Josephson junc-
tions, the time derivative of the phase can be fixed
by the voltage, V. This leads to (w+eV) in the
expression corresponding to (70), which is the char-
acteristic feature of shot noise. Note that for high
temperatures such that o, ¢ <T, the standard white
noise power spectrum is obtained:

4Ty
e, NO
In this limit, the phase dependence of the fluctuating
force becomes unimportant. On the other hand, for
low frequencies and low temperatures such that
o, T<¢, we obtain the following expression:

w,$<T. (71)

b o T<d. (72)

heo 50

Thus the noise spectrum is proportional to the aver-
age current in this case. For most experimental sit-
uations, we expect (71) to be applicable.

3.4. Comparison with Kinetic Theory

We briefly summarize our results, and compare
them with the results of the kinetic equation ap-

23

proach. In an expansion of the action with respect
to gradients and impurity fields, we have recovered
the standard model, and also found additional con-
tributions of the “Josephson” type. While the second
order contribution to pinning turned out to be very
small, we found that the analog of a “normal cur-
rent” led, on the average, to a dissipative contri-
bution in the action, which is given in (42). General-
ly, such a term shows a rather non-ohmic behavior,
because of the non-linear dependence on the vari-
able, and because of the characteristic dependence
on time of the kernel a(t —17').

However, considering low frequencies such that
w<4, an ohmic damping term y¢ emerged in the
equation of motion, after analytic continuation to
real times. We have found that the damping con-
stant 7y is strongly temperature dependent for low T,
roughly given by y~y, exp(—4/T), see (67). In gen-
eral, the corresponding fluctuations in the equation
of motion include quantum fluctuations, and depend
on ¢. However, for low frequencies such that
w, di< T, the fluctuations are of the well-known form,
namely white noise whose strength is proportional
to the temperature.

As mentioned before, dissipation has been in-
vestigated by using Boltzmann like transport equa-
tions [25]. In particular, consider the results for the
damping constant derived from the kinetic equa-
tions. For a situation with elastic scattering only, the
following results is obtained (see [24] and [25], Eq.
(93)):

@ 0
y=210 AELN(ET? (~2) - 208) 73
! o
which differs from (67) by Z(E), given by
A*1,n 11 1
ZE) = 2 I 4 T
(E) E>—A*+ A% 7,00 1oty 21, (74)

Therefore, both results agree for 7,—»c or more
precisely if 7,/t,2T/4, which is realized for tem-
peratures T<09T,, provided 7,~7,. On the other
hand, for 4<T, (73) leads to y~y,4/4T,, where a
logarithmic factor was omitted. In the kinetic equa-
tions, however, it has been possible also to include
inelastic collisions through the corresponding col-
lision operators in the Boltzmann equation [25].
Especially in the limit of strong inelastic collisions, it
was found in agreement with (67) that y~vy, for
A—0. Note that the kinetic equaiion approach pre-
dicts y/e* to be independent of 4 for 4—0, for weak
and strong energy relaxation. We expect that a for-
mulation of the action in real times which explicitly
introduces as variables the phase and the quasiparti-
cle distribution function, should shed further light
on the differences between the two approaches.
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4. Interaction with Normal Electrons

Up to now, we considered the model of a Fermi
surface consisting of two parallel planes, in which
case all electrons participate in the Peierls transition.
However, in some materials [1], for example,
NbSe,, only part of the Fermi surface is involved in
the transition, and we expect some new features by
the interaction of the “Peierls” electrons with the
“normal” electrons, the latter having no gap in the
single particle excitation spectrum. Especially, we
wish to investigate impurity scattering, and the
screening of the Coulomb interaction by the normal
electrons.

4.1. Impurity Scattering

Similar to the discussion in Sect. 2.1, we consider the
following contribution to the Hamiltonian operator
due to the impurity potential:

ﬁi,n=[d3r[x/71vtﬁn+l/7fv* ¥, +h.c] (75)

where v(r) is another Gaussian random field, inde-
pendent of the n and ¢ fields (see (6)), and lﬁ,‘f ),
Y, (r) are the field operators of the normal electrons.
The correlations of v are taken to be

1

Tn

S(r—r') (76)

N, O V@) v )y =5

where N,(0) is the density of states of n-electrons.
This model implies an extension of the Green’s func-
tion in (8b) to a 3 x 3 matrix. We expand the elec-
tron action with respect to v up to second order,
and in the spirit of the discussion in Sect. 2.5, con-
sider the impurity average (for fixed x) of the result-
ing contribution. We arrive at a term similar to (42),
given by

S3[x1=4m N©)fdrdr' d*r

x(r,7)— x(r, T’)] . 77

. __/S'Z
o,(t r)ln[ 1

Note the additional factor 1/2 in the argument of
the sine, which arises because of the coupling of
Peierls to normal electrons. The kernel in (77) is
given by:

%,(1)=7, 5 85(0) 8,(~ ) (78)

where y,=(myt,)"', and g, is the quasiclassical
Green’s function of the normal electrons. We have
used the relation 1G,(r=0,7)== N,(0) g,(v) to arrive

at this result. Besides an obvious factor v, instead
of y4, a,(t) differs from o(z) by the fact that one of
the Green’s functions in (43b) assumes its normal
state value. Keeping this in mind, or repeating the
procedure of Sect. 3 for S;[x] we conclude that (77)
leads to an additional dissipative term in the equa-
tion of motion, and the total damping constant is
given by

_%h

r= [ dEN®) (-2

) o NutE)+3,]. (19)
The additional contribution has a temperature de-
pendence given by Y, the Yoshida function. Note
that in the presence of a finite line-width in the
density of states, we have N;(E=0)=%0, and find y to
be given by y=y,[N,(0)]*+y,N,(0) in the zero tem-
perature limit,

4.2. Screened Coulomb Interaction

Finally, we wish to examine some aspects of the
Coulomb interaction (see also [37]), in particular
with respect to dissipation of the charge-density
wave. We imagine that the interaction between the
electrons participating in the CDW is screened by
the presence of normal electrons: This picture is in
close correspondence with [38], where the friction in
the motion of a particle interacting with a Fermi
fluid is investigated (see also [397]). Thus we are led
to consider the following contribution to the effec-
tive action:

S.=3{dtdv d*r d*r' n(r,7) Vir—r,7—7)n(r.7) (80)

where V(r—r,7—1') denotes the screened Coulomb
interaction, ie. V(q,w,)="V,(qQ)/,@ »,), where
¢,(q,w,) is the dielectric function of the normal elec-
trons, related in the usual way to the normal elec-
tron density-density correlation function. In ad-
dition, the CDW density is given by n(r,1)=
—N@©)v; 0, x+p,cos(Qr—y), where the second
term is the rapidly oscillating contribution, and
the factor (1 —7Y) was omitted (in the first term, see
(28)) for simplicity. Neglecting terms varying as
exp(+iQr), we obtain two contributions which we
denote by S, and S,:

S d=3IN©) 01 f (@2, VE =1, 7= 1) e

and (81)

Ss[]=1p} Re{elk® s Py r—z)}  (82)

where the integration is with respect to the same
variables as in (80), and V=V-expiQ(r —r). Thus,



for the Fourier transforms of ¥ and ¥V, we have the
relation V(q,w,)=V(q+Q,®,). Following [38], we
consider the low frequency expansion of the normal
clectron density-density correlation function, for sim-
plicity at zero temperatures, which leads to the fol-
lowing result:

INO)LV(g, 0)—V(@,0)]=|ol (@) + ... (83)

where the factors have been chosen for convenience.
Omitting the static part, we thus obtain S, to be
given by:

mg N(0)
4

jEi%(:)*ﬁ“‘w‘z‘52‘15‘2'lerc(q) (84)

S, ll=

(recall that c¢?>=v%/m;). Comparison with (27) de-
monstrates that S, can be considered a - and g-
dependent correction to the phason velocity, given
by dc*=c?-|w|1,(q). For a discussion of S, on the
other hand, we can use y(r,t")~x(r,7") in (82), and in
addition assume y(r,7)—x(r,7'}<1. Then we find the
relevant contribution to be given by the following
expression:

1 dwd?
SsLd =44 [~ Maol V(Qo0). (85)

Assuming again a linear behavior for small @, we
can write (85) as follows:

my N (0)

dod?
S5 [x]=" 1

4 ] 2n*

|Xq,0% elo0] (86)

where y,=[p?/mz N(0)] - (0V(Q, w)/6®),_. .. To find
the corresponding term in the equation of motion,
we minimize S, + S with respect to y, and perform
the analytic continuation according to the rule |w|—
—iw. The following modification of the damping
term (see (68)) is found:

v $1a 0 ~i0ly+¢* 4} 7. @) +7.] ¢, (87)

A reliable estimate of ,(q) and y, seems to be very
difficult, especially for the anisotropic materials un-
der consideration. As an illustration, we quote the
standard RPA result for an isotropic system, which
leads for small q to the following expression:

7.(9)=nN(0)/2N,(0) v; q (88)

where v} is the Fermi velocity of the normal -elec-
trons, and we used the relation gZ,=4e’pim/n
=87 ¢? N,(0). Consequently, with @ ~cg and assum-
ing N(©)~N,(0), vp~v}, we conclude w1 ,~c/vp<1;
thus this contribution to damping is small. It must
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be kept in mind that the behavior of V(q,w) linear
in @ for @—0 is related to the possibility to create
particle-hole pairs in the normal electron system, of
arbitrarily small energy. Though this mechanism is
likely to exist for the small wave-vectors which have
to be considered in 7.(g), we expect the result in
general to be very anisotropic, and possibly smaller
than our estimate.

The situation is even more complicated for the
large wave-vectors which are considered in V(Q,w),
see (85). Of course, assuming the normal electrons to
have a spherical Fermi surface with diameter
2p%>0Q, we conclude from the RPA results that

2 2 4
P 8nm”e
= . (89)
T NO) 007+ 42p)

Note that the range in frequency of the linear be-
havior shrinks to zero for Q—2p% and y,=0 for
2pr<Q. As an estimate, assume gpp~pp~pr,
N(0)~N,(0), mp~10% and p, ~0.1p%, which leads to
P~10"°E ~10°5~1 However, from the above
discussion, it is clear that an estimate of y, depends
very much on the details of the Fermi surface.

5. Conclusion

Several contributions to the damping of charge-den-
sity waves have been investigated, especially the ef-
fects of impurity scattering, and the particle-hole
pair creation through the screened Coulomb interac-
tion. With respect to elastic scattering, we remark
that for high temperatures compared to the Debye
temperature, @, electron-phonon scattering also con-
tributes to momentum relaxation, with a rate given
by #/t,,~4n ik, T (in the normal state). Accord-
ingly, (79) has to be modified. Considering recent
experimental results [40], typical values for the
damping constant y are y,,,~5x 10**s~*, which im-
plies with m,~10? a single particle scattering rate
(~mp7) which is comparable to or even larger than
the value quoted for A [40]. If this interpretation
can be confirmed, some aspects of the weak coupling
theory have to be revised.

We briefly discuss the extension of our results to
this case, i.e. to situations in which a large line-width
(compared to A4) is present in the density of states
(strong pair-breaking limit). It is well known that
N, (E), the normalized density of states, assumes its
normal state value N,(E)=1; then, from (79), we
conclude that y is given by the total elastic scatter-
ing rate, divided by m,. Assuming that electron-
phonon scattering is the dominant process (T3> ©),
we thus obtain Ay~4n Ak, T/m,. For example, using
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the values for 1 and m, as quoted in [40] for NbSe,
at T=120K, we find y~2x10''s~!; thus our es-
timate is in reasonable agreement with the experi-
mental result.

Finally, we remark that the damping of the
charge-density wave motion due to interaction with
thermal phasons was studied recently [41]. We note
that the phason-phason interaction, which was dis-
cussed in [41], can also be derived easily with the meth-
ods described in this article, by expanding the action,
(17), in higher orders with respect to V. This pro-
cedure was used in [21], and applied to the low
temperature limit. As stated in [41], the resulting
damping constant is slightly smaller than the result
found above (at T~150K), however, it is propot-
tional to the square of the temperature. Clearly, ad-
ditional experimental and theoretical investigations
are desirable, to illuminate further the relaxation
processes relevant for the dissipation in the motion
of charge-density waves.

Returning to the question alluded to in the in-
troduction, namely the controversy between classical
and quantum models, it seems to us that under most
circumstances, the transport properties of charge-
density wave systems can be adequately described by
the classical equation of motion as discussed above.
In this context, it is also important that dissipation
decreases quantum effects: For example, it was
shown that the decay rate of a single particle out of
a metastable minimum of the potential decreases
upon increasing the coupling to an environment
[18]. Similar results have been found for the soliton-
antisoliton pair creation rate in the sine-Gordon
model [42, 437, which has been discussed in relation
to the nonlinear conductivity [44, 30]. Furthermore,
for a single particle moving in a periodic potential,
quantum coherence is destroyed by increasing the
dissipation beyond a critical value [45, 46]; i.e. the
particle behaves classically if dissipation is large. In
the context of charge-density wave systems, these
ideas remain to be investigated.
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man exchange program through the Deutsche Akademische Aus-
tauschdienst, which made an enjoyable visit at the H.C. (Jrsted
Institute in Copenhagen possible. Interesting discussions with
L.X. Hansen are acknowledged. A.G. was supported by the
Deutsche Forschungsgemeinschaft.
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