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Abstract. - The dynamics of a quantum particle moving in a periodic potential and coupled to a
dissipative environment is investigated. Field-theoretical methods as introduced by Keldysh are
used to determine the generating functional for real-time finite-temperature correlation
functions. Recent results for the weak corrugation limit are confirmed, and extended, by
summing an infinite set of higher-order terms, which allows us to express the mobility in terms
of the self-energy. The relation to recent experiments on the superconductivity of granular films
is discussed.

Stimulated by the ideas of Leggett [1] on the consequences of quantum mechanics when
applied to a macroscopic object, and by the investigation of Caldeira and Leggett of
macroscopic quantum tunnelling [2], several authors have studied the problem of quantum
coherence for a particle coupled to a dissipative environment [3-7]. Surprisingly, the
behaviour depends critically on the value of the friction constant, ». Consider, for example
the dynamics of an object in a periodic potential V(g)= —g cosq, where ¢ is the
(dimensionless) co-ordinate, whose classical equation of motion is given by (})

mi+ng=—gsing+F, (1

where F = F'(t) is an external force. Apparently, for g = 0, the (normalized) mobility is given
by olw) = ton/(maw? + iwy); especially 40(0) = 1. On the other hand, for g finite, the classical
treatment shows that #(0)— 0 for 7'— 0, where T is the temperature. However, considering
the quantum dynamics of this model [4-6], a diffusion-localization transition is found at zero
temperature, upon increasing « = 27y through its critical value a =1. Correspondingly,
©(0) =1 or u(0) = 0, for « <1 or « > 1, respectively. In addition, as a function of temperature,
the mobility decreases and increases again upon lowering T, for « <1, while it decreases

(*) Units are chosen such that g m ™!, and F' are in units of frequency. Thus, strictly speaking,
k- V{g) is the potential energy.
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monotonically to zero for > 1[6]. Qualitatively, such a behaviour was observed in recent
measurements of the resistance of granular Sn films [8]. (See also[9, 10], and below.)
In this article, we study the quantum dynamics of an object («particle») whose classical
equation of motion is given by (1), by means of a field-theoretical approach due to
KELDYSH [11]. This technique(®) has conceptual as well as computational advantages
compared to other approaches, in particular, standard perturbation theory can be employed.
As an important feature of the Keldysh technique, there appears a contour, say C, with
respect to time integration which runs from ¢= —  to t = + « (forward path; path index
B=1) and from ¢ = + < to { = — » (backward path; path index 3 = 2). Accordingly, we wish
to specify whether the time argument of a Heisenberg operator, for example, ¢(t), is on the
forward or backward path. Thus, at a given time, we have formally two operators, ¢,(f) and
G=(%), which can be combined to a vector ¢(t) = (§,(f), §2(1)); it is also convenient to introduce
&1 =01 — G2)/V2, &a=1(Gi+G2)/V2, and £=(x;, x3). Then we define the generating

functional
215t = <<Tc exp [z [ate -x<t>}>> : @)

where T orders in time along the contour C, and the expectation value is with respect to the
equilibrium statistical operator. This means that the system (object and environment) has
been in thermal equilibrium in the infinite past. Note that, by this assumption, our approach
differs from the Feynman-Vernon theory[14], which employs a somewhat artificial
factorization of the density matrix at an initial time. The mobility, u(w), is obtained from (2)
by the following relation:

} ; (3)

{=0}u

where { }, denotes the Fourier transform with respect to the time difference.
Applying the perturbation theory with respect to the potential, we write

Z15)= {exp [z {—-z °m Zig1, @

where .4, (the subscript refers to «interaction») is given by [12]

RS
wlw) = o {% @)

~

Rt

Al1=— [ VGO - Vi@ = 2 | dtsin@/VDsin@VD . ®
The harmonic generating functional, Z,[{], is of the standard Gaussian form, namely
Z,[{1= exp [— 5 cgu)oiga} , (6)
where
D= S [atar 5Dy ¢, 5 @) . Q)

AE =1

(®) Some details of the Keldysh technique are given in[12, 13].
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The 2 x 2 matrix Green’s function D, of the harmonic problem has elements given by
D=0, D= D&, D& =D, D#=D¥, where R (A) denotes the retarded (advanced)
function, and K the Keldysh component. The Fourier transforms of these quantities are
given by Do (w) = (mw +zwr}" D{(w) = [D&(w))* and, from the fluctuation-dissipation
theorem, D& (w) = [Df(w) — D (w)} ctgh (he/2kT ). We immediately vemfy the usual results
for the harmonic case; for example, the mobility is given by wo(w) = iwnD(w). Note that the
external field can be included in (6) by the replacement Z;— &; + V2F.
It is convenient to rewrite (5) in terms of «charges» = %1, e= % 1, such that

A [X] -— > f dt ée exp [i(Sx; + e2)/V2] .

6 g= ikl

Introducing «charge densities» p(t) = (p:(2), e2(1)),

(L) . Z ( )3(5- &, &
\/ék =1

we obtain in a first step

exp [iotu[x]] = D, — ( ) E&n f dty...dt, ¢ .. . epexplicp®x o], 9)
7= ’3 . 3.

where Cplxd> = [dtp(t)-x(t). This equation is written as exp[iApylx]]="Tr exp-
-[icplx>], which defines «Tr» by comparison with (9). Inserting this result into (4) and
applying Taylor’s formula, we obtain

ZI)=TrZy{+pl . (10)

As a general property of the Keldysh technique, we remark that Z[0] = Tr Z,[p] = 1; thus
the normalization of the generating functional is preserved in the presence of the
interaction. This can be shown as follows. Consider the term of order n > 0 and focus on the
part of the expression depending on J-charges:

S 4 ... ,exp[—i C o DFler 1. (11)

Here, the exponential is a part of Zfp], using Cp|Dolpd = Coa|DFlead + 2 Ceo|DE|eyd. We
insert p(f), and perform the sum over é-charges, which leads to a product of sine-functions.
Then, for a given ordering of the time arguments, we concentrate on the earliest time,
tr < {t:}i»x, and the factor resulting from the sum over 8. Due to causality, this factor and
thus the total expression is zero, leaving only the n=0 contribution, which gives
TrZ 0 [P] =1.

We consider in more detail the perturbation series of the connected Green’s function, D,
which is defined by (?)

2InZ[Z)

DFE ) =1
GO e,

(12)

() From now on, the external field will be included in Zyfp] by ¢;1— o1 + V2F.
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Inserting (10) and defining an expectation value (-) by

(-} =Tr(-Zyp), ~ (13)
the following result is found:
D =D+ D,SD, (14)
with
S#(, )=~ {es®pp(t)) . (15)

By arguments similar to those used to prove the normalization, we find $?22=0. Given an
explicit expression for S in terms of a power series in g, we can compute the self-energy, X,
which contains only one-particle~irreducible diagrams, according to the relation

I=S1-D.X). (16)
In terms of the self-energy, the mobility u(w) = iwnD¥w) (D¥ =D?) is given by
o) = iwn[me? + iwn — TR(w)] L 1n

Turning to specific results, we first discuss the self-energy in first order in the coupling
constant, g. We obtain

SR=gexp {—- %D?(t = O)J +O0(g% . 18)

However, since iDE(t=0)= + o, the first-order term vanishes (*). Similarly, considering
for n>1 the expression iCgs|DE|e2D, we conclude that this quantity is + «, unless

a=0. (19

B=

k=1

]

Thus only charge-neutral s-charge configurations contribute to S (and X). In particular, »
has to be even, i.e. X is expressed as a power series in g°. Considering the first term, we
obtain from (15) and (16)

83: 33 é\k &;

= €
3,8, e+ oD k=1 L&k

(Y One might be tempted to use the first-order expression for the self-energy to determine =¥ self-
consistently, which is clearly identical to the variational ansatz[6, 10]. Thus, for 7= 0 and small g, one
finds that a =1 separates the diffusion from the localization regime. However, we also find a first-
order tramsition for a<1 upon increasing g, similar to[10], but in disagreement with other
investigations [5]. :
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where we used ;&2 = — 1. Note that 311 =3¥ 512= 3R gnd % = 34, Explicitly, Zo[p] is
given by

Zipl=exp {%} {616, D8ty — to) — S en DE(t — ) + DE (b — t) — D¥O)} . (21)

In the presence of a constant external field, F, the r.h.s. of (21) is multiplied by
exp [ie; F(t; — t3)/1]; thus the self-energy depends only on the time difference. We obtain the
following resuit:

DE®)  Ft

2% = g*sin =5 ~cos Lexp {% {D§<t>-z>§<o>3}—- XB, @)

where the constant B is given such that ¥ (w = 0) = 0. For the Keldysh component, we find

) .
D) 1 22O Pty {% {Dg@-«a&(e)}]. (23)

SK(t) = ~ ig®eos

Consequently, due to the factor cos (Ft/y) in (22) and (23), we obtain the following relations
for the Fourier transforms of Z® and X¥:

23R (e, F) = [SB(w + Fly, 0) + Z2(ew — Fn, 0)] ~ [ = 0], (24)
235% (e, F) = % (e + Fln, 0) + ZX(ew — F/n, 0) . (25)

Finally, we consider in more detail the case =0 and define the frequency-dependent
correction of the friction constant, #(w), by the relation — 2iw - Flw) = Zw) — Z4(w). Using
ZK(w) = [Z®(w) — Z%(w)] ctgh (hw/2kt), which is a direct consequence of (22) and (23), we
arrive at #{w) = 1 Z¥(w) tgh (hw/2kT /2w. Thus we obtain the following expressions:
w) ==%§ f di sin wisin E%(l —expl- yt})} exp [w %— f (t)} (26)
[

and
#(e) xﬁ:- tgh (-%,-) of dt cos wit cos [i—(l —exp[- yt]}} exp {._ {f- f(t)} : @7

where we inserted D) =D@~1t)=—0®I[1— exp[— yt]l/n with y=rvn/m; note that
a = 277. The quantity f(f), given by

_[dv 1 gAY
f(t)—ef S etgh(sz)(l cosvh), (28)

increases monotonically from f(t=0)=0 to infinity for increasing t. In particular, for
kT << ity and yt = 1, we can approximate f(t) by noting that the v-integration in (28) is cut off



136

at v~y; thus f{t) = In[sinh (=kT#/h) Ay/=kT]. This leads to the following result:

” 2 Rl
7(0) = (Eexp - 201) (—f;) (-";—f{) for kT <<hy , (29)

where a a-dependent prefactor (which we find to be equal to unity for o = 1) was omitted; C
is Euler’s constant. With u(0) = #/[5 + 7(0)], we find u(0) =1 and x(0) =0 for <1 and a > 1,
respectively, in the limit 7— 0. As an illustration, the temperature dependence of u(0) is
shown in fig. 1, for « = 0.6 and « = 1.5 (7(0) is computed numerically from (26); in both cases,
we have taken g = y). Remarkable is the nonmonotic dependence on 7', for « < 1, in contrast
to the monotic dependence for « > 1. Note that, due to the partial summation of higher-order
terms, a finite result is obtained for the mobility, even for a>1, T—0.

| | i

2
kTihy

Fig. 1. — Normalized zero-frequency mobility, u(w=0), as a function of temperature. The coupling
constant is chosen to be g=y. —— 2 =0.6, ——— a=15.

So far, we have concentrated on the weak corrugation limit. However, at zero
temperature, there exists a duality transformation which relates the mobility for small g,
i.6. g < wo, where wy = (g/m)* is the frequency of classical small-amplitude oscillations, to the
one in the opposite (tight binding) limit. To be precise, the partition function has been
evaluated [4] by expansion with respect to the potential (method I), and by means of the
instanton method (method II), respectively, the latter being asymptotically correct (*) for
wy << g. For both cases, the result can be interpreted as the partition function of a neutral
plasma. In addition, I and II can be mapped onto each other, provided the core region of the
interaction is unimportant, i.e. for T7=0 it is small compared to the average distance
between charges: this leads to the conditions y ™! <« g~* (I) and wg ! «< 47 (11), respectively,
where A is the tunnelling frequency. Then, for small frequencies, pg(w) = 1 ~ ii(w), where
#(w) is obtained from u(w) by using the replacement a—> o™, and g/y— A/w,. By similar
arguments, the duality transformation is going to hold for finite temperatures, provided #/kT
(which is the length of the classical gas) is larger than the core of the interaction, i.e. Ay >> kT
(D) and Ao >> kT (11), respectively; apparently, we need the additional rule kT/Ay — kT/hey.
For example, from (29), the zero frequency mobility in the tight-binding limit is found to be

(®) In addition, v =< g/wy, which includes the regime of very large damping, vy = wy.
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given by
2rat)

1+ 2ran’

where 7 = (=/2)(exp [~ ClAwe2(kT/hwe)** V. Consequently, for T— 0, we obtain urg(0)— 0
for @>1 and pp(0)— 1 for « <1, which is the same behaviour as in the weak corrugation
limit. Note that, for o = 1, we obtain urg(0) = A%[1 + A%], where 4 = rnd/w, (see also [5a]). In
fact, recent investigations of the tight-binding limit [15-17] lead to results in agreement with
(8), except for the denominator, which in our expression is due to the use of the self-energy.
As a consequence, our result gives a meaningful answer for T— 0 even if a<1.

The present model applies to a resistively shunted Josephson junction: the co-ordinate of
the macroscopic object is identified with the phase difference across the junction, and the
parameters are related by m = hC/4€?, a = Ry/R, with By = 2nh/de? = 6453 Q, v = (R;C)™},
and g = I/2e, where C is the capacitance, R, the resistance of the shunt and I, the eritical
current. From the Josephson relation, #§ = 2 eV, where V is the voltage, it is apparent that
the mobility of the object is proportional to the resistance of the junction. Indeed, recent
experiments on granular Sn films [8] show a nonmonotonic temperature dependence of the
resistance for Ry = 6 kQ, in contrast to a monotonic decrease for samples with By <6 kQ,
where Ry is the normal state sheet resistance, in qualitative agreement with the discussion
above provided Ry is identified with E;. In short, the argument[9] is as follows:
superconducting granular films are modelled as an array of superconducting islands
connected by Josephson junctions, and this picture is combined with percolation ar-
guments [18] which indicate that the resistance of the film is determined by the resistance of
a single junction. (Thus, assuming a temperature-independent shunt resistance—which is
not at all obvious—one identifies R, with the measured normal state resistance Ry.)
However, quantitative theoretical investigations, for example of the temperature depend-
ence of the resistance, and of realistic models, remain to be done. In particular, percolation
and localization effects seem to play an important role [19, 20] and should be incorporated in
a detailed theory.

Finally, we want to stress that the results obtained here and elsewhere [4-6, 9, 10, 16, 17],
rely on the model of ohmic dissipation, i.e. the presence of a shunt resistor. Physically, a
shunt allows for a continuous charge transfer across the junction. On the other hand, if the
dissipation is due to quasi-particle tunnelling [21], charge is transferred in units of the
elementary charge [22]. In fact, in such a case, a qualitatively different picture of the motion
in a periodic potential emerges [23]. The mechanism of dissipation in granular films seems to
us an open question,

In conclusion, we have demonstrated that field-theoretical methods provide a
transparent and straightforward approach to the dynamics of an object in a periodic
potential, in the presence of ohmic dissipation and at finite temperatures. We emphasize
that, in contrast to the Feynman-Vernon theory [14] (see also [6]), the present approach
assumes that the system (object and environment) has been in thermal equilibrium in the
infinite past. In particular, this means that we do not have to wait until transients arising
from the factorization of the density matrix at an initial time have become unimportant.
Thus we were able to consider directly frequency-dependent correlation functions, and we
applied standard perturbation theory to compute the self-energy, with the result discussed
above. We expect that the present techniques may be a convenient tool in other situations
(like quasi-particle tunnelling) as well.

wrp(0) = (30)

B 2
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