Decay of a Dissipative Object by Quantum Noise
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The decay time, 7, of a dissipative object out of the metastable minimum of a (cubic) potential due to
quantum noise is determined by a numerical investigation of the quasiclassical Langevin equation. In the

zero temperature limit, and for moderate to large damping (y 2 w,), we find that o = In(w,7/27) can be
approximated by o ~ k- yAV/hw?, where the constant « is & ~ 3.20. This is in good agreement with an
analytic treatment of the Langevin equation, but about a factor three smaller than the result obtained

by Caldeira and Leggett by the instanton method.

1. Introduction

Almost eighty years ago, it was suggested by
Langevin [1] that the motion of a classical object, when
coupled to an environment which consists of infinitely
many degrees of freedom, can be described by a stochastic
differential equation of the form

mé + nd + V'(2) = {(t) (1)

where z is the coordinate of the object, m its mass,
V(z) the potential, and v = n/m the damping con-
stant. The stochastic force on the rhs of this equation,
&(t), is a white Gaussian stochastic process such that
< E()([') > = D - §(t —t'), where D = 2nkT accord-
ing to the fluctuation-dissipation theorem. Equation (1),
or the corresponding Fokker-Planck equation, has been
investigated in great detail. In particular, for a potential
with a metastable minimum (say, at £ = 0), it is known
[2] that the escape rate due to thermal activation is given
by 77! = (wo/27) - ar - exp(—br), where w? = V"(0)/m,
br = AV/kT, and AV is the barrier height; ar is the
usual prefactor, given by w, - ar = (w? 4+ 42/4)1/% — /2.
Recently [3], it was suggested that the Langevin equa-
tion can be extended to the quantum regime, by replacing
the white £(t), eq. (1), by a “blue” stochastic force, with
correlations given by < £(¢)é(¢') > = D - K(t — t'), with

K(w) = (hw/2kT) coth(hw/2kT) (2)

where K(w) denotes the Fourier transform of K(t — t').
We call this stochastic force quantum noise. In fact, it
has been confirmed experimentally [3] that this “quasi-
classical” Langevin equation describes, at low tempera-
tures, quantitatively the voltage noise in current-driven
Josephson junctions in the free-running state, i.e. for an
applied current larger than the critical current. In addi-
tion, theoretical arguments have been given [4] that the
quasiclassical Langevin equation should be valid for not
too small damping.

On the other hand, in the past few years, the decay
of a dissipative object out of a metastable state by quan-
tum tunneling, has been studied intensively [5-7]. While
the experiments seem to be in agreement with the theo-
retical prediction obtained by quantum-mechanical calcu-
lations, one may ask [8] to what extent the decay can be

described by “quantum activation”, i.e. by the quasiclas-
sical Langevin equation.

2. Numerical Investigations

In order to determine the decay time, we solve the
quasiclassical Langevin equation for a large number (n ~
1000) of realizations of the stochastic force, £(t), under
the initial conditions (¢ = 0) = 0, £(¢ = 0) = 0. For
a given realization, £(*)(t), the decay time is determined
from the condition z(7;) = z,, i.e. 7; is identified with the
time the object needs to reach the “exit point” z,, defined
by V(z,) = V(z = 0). In order to generate the blue
stochastic force, we fix a certain time interval, ¢, (typically
to ~ 10%*/w,), and the corresponding discrete frequencies
vk = 2wk/t,. Then we generate the Fourier coefficients,
&(vk), and finally compute the stochastic force, £(2).

There are different possibilities to discretize the equa-
tion of motion, eq. (1). We use the following one:

m[(&); +(8)] +V'(2:) = & (3)
where ¢ labels the time, t; = At -1, ¢; = z(¢;), and

(&)i = (zit1 + zim1 — 225)/(At)°
2. = (2 (4)
()i = (zig1 — zi-1)/(24A1)
Furthermore, £; is the stochastic force averaged over a
time interval At; we have checked that the results do not
depend on the discretization, or on the special way we
average £(t), as long as At << w;!. Typically, we have
taken At ~ 0.1w;!, and N, = t,/At = 216,
As an important point, we note that the ensemble
(of n realizations) can be observed only over a finite time
interval given by ¢,. In the interval 0...%,, however, not
all realizations have necessarily shown a decay of the ob-
ject. Let m(< n) be the number of realizations which have
shown a decay within the observation time; then the best
estimate of the decay time is

T=%[Zn+(n—m)-to:| (5)

In a first step, we have determined the decay time in
the classical limit, and found excellent agreement with the
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result quoted above, including the corrections to Kramers’
result which are known to be important [9] for v/w, <
kT /AV. Secondly, from the quasiclassical Langevin equa-
tion, we find that the decay time saturates for T' — 0 to
a value which depends on v and AV. Some of our results
(for T = 0) are shown in Fig. 1. Defining the quantity
o = In(wot/27), it is quite evident that for v 2 w,, the
data are close to linear in «, and can be represented by
o (AV/hw)) - (vfws)y 7Rwa  (6)
where x is approximately independent of the ratio
AV/hw, for the parameters considered here, namely
AV/hw, = 1.83...0.5. The average value of & is found
to be given by £ ~ 3.20; in fact, x is largest for curve
D, kp ~ 3.4, while its smallest value is Ky ~ 2.95. For

small damping(y = 0.2w,), o is found to increase with
increasing AV/hw,.

3. Discussion

In a brief discussion of our results, we concentrate on
two questions:

(i) Can the numerical results be confirmed by an in-
dependent calculation within the Langevin equation ap-
proach? Very recently [10], path integral methods have
been applied to this problem. This technique is, for the
present case, based on the fact that [4]

Wia(t)] ~ exp{—55; [ dtate@K - 1))} ()

into which eq. (1) is inserted, can be interpreted as the
probability density for a path z(t) (see ref. 11 for a dis-
cussion in the classical limit). Writing the result for the
decay rate in the form ¢ = b — lna, it is found [10], for
T =0 and v >> w,, that the “exponent” b is given by

b 4.2 (AV/hw,) - (v/w,) ®)
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Fig. 1: 0 = In(w,7/27) versus v in the zero temperature
limit, for AV/hw, = 1.83(A), 1.67(B), 1.5(C),
1.33(D), 1.17(E), 1.0(F), 0.83(G), 0.67(H), 0.5(J).
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Assuming that this equation is reasonably accurate
for, say, v =~ 3w,, we find from a comparison with the re-
sults of the simulation, that the prefactor is approximately
given by Ina ~ 2.

In addition, we have repeated the simulation for a
piecewise parabolic potential, which is chosen to have the
same curvature at the extrema, and the same AV, as the
cubic potential. For this potential, ¢ is found to be a few
percent less than the one for the cubic potential. Further-
more, the exponent has been calculated analytically [10],
with a result similar to eq. (8); however, the numerical
factor turns out to be given by = instead, in the large
damping limit. In fact, for the piecewise parabolic poten-
tial, we find that our data can be fitted rather accurately
by assuming that the prefactor is given by its classical
value, namely a ~ w, /7.

(ii) In comparison with the results of Caldeira and
Leggett [5] and others on quantum tunneling, we quote
their result, for T'= 0 and v >> w,, namely

ber =37 - (AV/hw,) « (v/wo) (9)

Therefore, we find that the decay rate as calculated
from the Langevin equation is much larger than the one
calculated, for example, in refs. 5 and 6. Thus, the de-
cay out of a metastable state due to quantum activation
appears to be much faster than predicted by quantum tun-
neling.
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