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Results of the microscopic theory of the dissipative quantum mechanics of a tunnel
junction are obtained from a model in which non-linear functions of the phase variable
are coupled to two independent sets of oscillators describing the environment. Both
the statistical mechanics (“imaginary time effective action”) and real time correlations
are treated. The spectral densities of the oscillators are discussed in detail.

1. Introduction

The study of the dissipative quantum mechanics of
the phase variable associated with weakly coupled
superconductors raises technically interesting, and
perhaps deep, theoretical questions, requires non-triv-
ial experiments, and is enjoying a well deserved vogue.
The relevant dynamical equations have been derived
in two ways. One method, due to Caldeira and Leg-
gett [1-3], very cleverly starts from a “classical”
equation for the motion of the phase and adds, on
well motivated physical grounds, an environment of
oscillators which when coupled to the phase provides
the (not necessarily weak) damping mechanism of the
latter variable.

In the other method, pioneered by Schon and the
present authors [4-7], the junction and the supercon-
ductors on either side are modelled microscopically,
order parameters are introduced via a functional rep-
resentation, and the dynamics of the phase variable
is obtained by explicitly tracing out the electronic de-
grees of freedom. This method is not completely free
of technical worries — in particular, the operator prop-
erties and the boundary conditions of the phase have
to be put in by hand - but it has the merit of generat-
ing the effective potential for the phase and the steady
and fluctuating currents across the junction at one
and the same time. This second method yields results
that are both similar and significantly different from
those obtained from the first. Notably, it contains
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as a special case — in the limit of small quantum fluctu-
ations — the full Werthamer calculation of junction
dynamics [8], including the infamous “cos ¢~ dissipa-
tive current (see [9] for a review).

Although it is true that in many present experi-
ments circuitry external to the junction is the most
important dissipative mechanism, and that this is best
modelled by the phenomenological method, it would
seem useful to keep in mind for delicate tests of the
theory that the “washboard” potential, U(¢)= —(k/
2e) [I;cos ¢p+1..-¢], is not the only way in which
pairing correlations enter the problem. [In the formu-
la, ¢ is the phase, and I; and I, are the Josephson
and external currents, respectively.] Unfortunately,
the microscopic derivation from first principles
seeems to require mathematical language so special-
ized as to discourage casual reading. We have there-
fore thought it useful in this paper to expand on the
observation ([ 7], Sect. 4) that the results of that meth-
od can, after the fact, be obtained from a model in
which the phase variable is coupled in a special way
to two independent sets of oscillators. This rather cur-
sory hint seems not to have been widely appreciated,
and its generality has been questioned (see [10],
Sect. 2).

In outline, the program of this article is as follows.
In the next section, we summarize the Caldeira-Leg-
gett method in a manner sufficiently general to permit
the easy working out of our oscillator model. In
Sect. 3, we use this model to obtain the statistical
operator. In Sect. 4, we discuss the equivalent of the
Feynman-Vernon theory [11, 12], ie. the real time
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dynamics. The final section contains remarks about
the physical consequences of the results.

2. Preliminaries

Caldeira and Leggett have carefully described their
work in a long paper [3]. In brief, their method pro-
ceeds by imagining a quantum object (“particie”)
moving in a given potential, designing an environ-
ment that provides the required dissipation in the
classical limit without changing the potential, and
working out the quantum mechanics of the object
plus environment under the assumption that the latter
is characterized by a temperature but is otherwise
unobserved. A key idea is that the environment is
very large, so that any one of its many degrees of
freedom is only weakly perturbed. Without loss of
generality, the environment can then be thought of
as a infinite set of oscillators. Thus, Caldeira and Leg-
gett consider a Hamiltonian of the form

H=HO+Hint+Hosc (1)

where H, depends only on the (momentum and posi-
tion coordinates of the) object, H, describes the envi-
ronment, and

(q)

Hiy, ZF (@) a+2 @

is the coupling between object and environment, tak-
en linear in {x,} and as a function of the “position”
coordinate of the object, g, only. The second term
is the counter term which cancels a renormalization
of the potential in H, (due to the first term in (2)).
For this model, let us consider the path integral ex-
pression for the partition function, Z:

Z=[Dq [P {x,} exp(—S/h) 3)

where S=S¢ + Sin+ Sosc 1s the imaginary time action
of the model (1), and path integration with respect
to {x,} is under the restriction* x,(t=0)=x,(t="Hhp).
As usual, f=(kT) "', where Tis the temperature. For
the present model, it is only a little exercise in Gaus-
sian integrals to show that Z can be expressed in
terms of an effective action involving only the coordi-
nate of the object, namely

Z=[2q exp(—See/) 4)

with S¢[g]1=So[g]+ S:1[g], where S, is a quadratic
form in F,(g(z)). It is sufficient to specialize to the

* The boundary conditions for g(t) need not be specified for the
moment, and will be discussed below

case of a “separable” interaction, namely

F,(q)=C,f(q) (%)

such that f(g) is independent of the environment.
Then we obtain

hp hp
Silql=% | dt [ dva(e—7)[f(g(@)~f(g=N]* (6)
where the kernel a(r—1') can be expressed by the

spectral density of the environment, J(w), defined by:

2

J{w)= 3 Z [5 w—w,)—0(w+w,)] (7

through the relation
® dw ol
a(c—7)= | Ej(w)[—b(—a))]e ole=wl, 8

Here, b(w)=[exp (#fw)—1] * denotes the Bose-Ein-
stein distribution function. Equation (8) holds in the
range 0<|t—1'| <A B; outside this interval, «(z) can
be periodically continued. This concludes our brief
summary of the Caldeira-Leggett method. The special
case f(q)=gq, for ohmic dissipation, i.c. J(w)=#w, has
been discussed in great detail [1-3] (see also [10],
and references therein).

3. Tunneling between Superconductors —
Effective Action

In the oscillator model for the tunneling between su-
perconductors, we start like Caldeira and Leggett
from a Hamiltonian of the form given by (1), however,
modified in two ways. First, we take H, to contain,
besides the kinetic energy of the object, only the har-
monic part of the potential, U,(g); in the case of a
current biased tunnel junction U,(q)= —F-q, where
F=hl./2e, and q is identified with the phase differ-
ence across the junction. On the other hand, for a
superconducting ring interrupted by an oxide barrier
or a weak link, we have to consider the quadratic
potential due to the inductance of the ring, L, instead,
ie. Uy(@=a-(g—gex)?, where a=®3/8 L. Here, &,
is the flux quantum, g=2n®/®,, and g, =27 P,/ Py,
where @ and @, are the magnetic flux in the ring,
and the external magnetic flux, respectively.

Secondly, the interaction of the object with the
environment is chosen in the form

Hip= Z fm(q)z Ci x” ©)



1. the object is coupled in two different ways, charac-
terized by fi(g) and f,(g), to two independent sets
of oscillators, {x{"} and {x{”}. Since in contrast to
(2) there is no counterterm in (9), the periodic poten-
tial as well as the dissipative contributions to the junc-
tion dynamics, are treated on an equal footing. In
particular, we choose

Ji(@=sin(g/2);  fr(g)=cos(g/2). (10)

Why should we use (10) to describe the tunneling
between superconductors? The final criterion is the
agreement with the results of the microscopic theory.
A hint towards such a choice can also be found in
discussions of the classical equation of motion [13].
Since g is a phase variable, we expect trigonometric
functions to be adequate. In addition, since the super-
conductors are described by complex order parame-
ters, and the order parameter and its complex conju-
gate are independent variables, a coupling of two
functions to two independent sets of oscillators is indi-
cated. Finally, the fact that electrons tunnel singly
leads to (10) as the consistent choice. [Higher order
terms, like sing, sin 2q, etc., are unimportant under
most circumstances. ]

Obviously, the trace over the environment is simi-
lar to the one of Sect. 2, and the partition function
is written in the same form as in (4), with S, =S, +S;.
As already mentioned, S, contains the harmonic con-
tribution to the action only, and

2 np nB
Silql= Z fdr | d7 e, (t—7)fu(@(@) fulg(x)-

(11)

Here o,,(t—1') is given by (8) with J(w) replaced by
J. (), and J, (w) and J,(w) are the spectral densities
of the two sets of oscillators. Of couse, (11) follows
from (9) for any choice of f,,(g).

Inserting (10), and also defining

(o) =3 Lo =) st~ 1)

we arrive at the following result:

Silal= | de | dv [/3(1—1') COSM

—o(t—1') cos

q(f)-él(f')]‘ (13)

2

This agrees with the result of the microscopic theory
(£71, (25)), provided a(zr) and B(z), or equivalently
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Jy(w) and J,(w), are chosen as follows:

Ji(w) h

(o)~ ) L. (14
Here I,(w) and I (w) are given, for example, in [7],
(41). From previous definitions, it follows that*

(ﬁii)i j %g(f{g))[—b(—wﬂe‘“'”- (15)

—

Note that a(t), f(t) here are # times the corresponding
quantities in [7]. I, (w) is related to the normal
(super) current across the junction. More precisely,
if the junction is driven at a constant voltage, V, the
normal current and the quasiparticle-pair amplitude
(the prefactor of the “cos ¢™ in the current) are given
by I,(eV/f) and I.(eV/h), respectively.

Finally, to arrive at the most familiar form of the
washboard potential, we introduce the quantity

Y—1)=p(r—7)+g o(t—7) (16)

where g is chosen such that the time average of y(1)
vanishes. This leads to the identification g=H1I,/2e,
where 1;, the Josephson (critical) current, is given by

=2V arpy=— | L2100, )

ISR A0

Then we obtain S, =S+ S + 5, with
1 1 1

swo s Md 18
'=—=_ [ drcosg(), (18)
0

np np !
S = j dr j dt'y(t—1) cosi(r);—qg—), (19)
0 0

S = hjﬁdr ?ﬂdr’a(r—r’)[l—cos &2'@] (20)

An unimportant constant has been added to S. The
interpretation of the three terms is the following: S¢
describes the supercurrent across the junction; S
and $ are related to the quasiparticle-pair interfer-
ence term, and the normal current, respectively. The
quasiparticle-pair interference term seems to be of mi-
nor importance in many cases, and is omitted in most
considerations.

We have thus demonstrated that the tunneling be-
tween superconductors, to the extent that it is given
microscopically by the standard tunnel Hamiltonian,
can be described by coupling sin(g/2) and cos(g/2)

* Some details on the functions «(z) and B(z) are summarized in
the appendix
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to two independent sets of oscillators. For complete-
ness, we add some results of the microscopic theory.
The spectral densities of the environment are found
to be given by [7]

h [o0)
J1(2):m _.[ dE ﬂl(Z)(E+5 E—)[fo(E-)_fo(E+)]
(21)

where Ry is the normal state resistance of the junc-
tion, fy(E) the Fermi function, and E,=E+hw/2.
In addition,

ﬂ1(2)(E+>E—)==/V1(E+)/V1(E~)(4_‘) Ry(EL) R (E-)
(22)

where 4] and £, are related to the diagonal and
off-diagonal components of the (momentum integrat-
ed) Green’s functions of the two superconductors
[14]. Specializing to the tunneling between two identi-
cal superconductors, and assuming a finite linewidth,
I, one obtains

N (E)=Re(E+il/[(E+il)*>—A)*]'72, (23)
R,(E)=Re A/[(E+il)?—4%]*/? 24
where 4 is the magnitude of the order parameter;
the square root has to be taken such that Im(})*/?>0.
Thus A{(E) and Z£,(E) are even and odd functions
of E, respectively. In the limit I'—0, A7 reduces to

the BCS density of states, while #, ~A 4{/E.
In analogy to the ohmic dissipation case, we write

Ji 2@, T)=1m12(0, T) w (25)
and note the following results:
(i) T->T orhaw>kT,

hZ

’71:’72:m5711\1 (26)

(ii) o0, T-0

F2
M=M= N (27
(iii) -0, -0
Na/My=2fo(4). (28)

Note that #, has a logarithmic divergence for o,
I' - 0. To complete the picture, we show the tempera-
ture and frequency dependence of #, and #,, as well
as of n, =(n, +#,)/2, in Figs. 1-4. The linewidth has
been taken to be a constant, namely I'=0.3 kT,.

It may be important to note that J, (@) and J,(w)

Fig. 1. ny/ny and #,/py versus reduced temperature; w=0, T
=03kT,

O ri L " ] L L " L
5 5 1
1.

Fig. 2. 5/ny=(n, 2 n,)/2ny versus reduced temperature; w=0, I’
=03 kT,

1
7
Fig. 3. /1y and #,/yy versus frequency; T=0.5T,, =03 kT,

arc proportional to the frequency dependent attentua-
tion of so-called case IT and case I external perturba-
tions, for example, electromagnetic radiation and ui-
trasound, respectively.* This guarantees, from very
general considerations, that J, ,(w) is odd in w, and
positive for w>0.

* These quantities have been discussed in detail in the literature.

See, for example, Tinkham’s book [15], where further references
can be found
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Fig. 4. . /ny and n_/ny versus frequency; T=0.5T,, =03 kT,

4. Real Time Dynamics — Feynman-Vernon Theory

In the preceding section, we have demonstrated the
complete equivalence of the results obtained from the
oscillator model with the results from the microscopic
theory for the statistical operator. Therefore, it is clear
that the real time dynamics can be derived by well-
known analytic continuation procedures. Neverthe-
less, we believe it to be instructive also to consider
directly the Feynman-Vernon theory for the model
we started with in Sect. 3. The quantity under consid-
eration is the density matrix at time ¢ >0, traced over
the environment, p(q,, 45, t), under the assumption
that the density matrix of the total system at, say,
time t=0 factorizes into the density matrix of the
object, py (g1, 4,), times the equilibrium density matrix
of the environment. Then one has the relation [11,
12, 2]

p(q1,9,, t)=j.d51 dq,J(q1,92. ;15 G2) Polds, 42)
(29)

where
sz Dq, D q, oI F gy, q,]. (30)

Here, o704y, 421=S0[4:11—S0[4g2], So is the usual
(real time) action corresponding to H,, and % [q,,
q,] is called the influence functional. As before, since
the interaction between object and environment is lin-
ear in the environment coordinate, and the environ-
ment is modelled hy harmonic oscillators, the influ-
ence functional can be computed without difficulty
[11, 12]. The result is written as follows:

i
y[@an]:engﬂl[%s%] (31)
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where

(i r)2 2
.<—afn(t1 —t2)> [ @y (ED) £ L2 (E2))]-(32)

+ o (ty —15)

Iy

jdﬁ j diy [ fm(q1(t) — fin(q2(t1))]

1

In this expression, o® and «f, are the real and imagin-
ary part, respectively, of

©d .
4y (=8O + 10O = [ 5 (@) [ —b(—)] e

(33)

where J, (w) and J,(w) have been introduced above.
We define, analogously to (12), the quantities a;
=[a! +0L]/2, and similarly ag, and §; and Bg. It is
also convenient to introduce center of mass and rela-
tive variables, according to

x=%(q1+49), y=41—4>- (34)

Inserting these definitions into (32), it follows that:

Re ‘%1 [x7 y]
t |3

—8 [ dt, [ dt, O(t, —t,) sin y(E)
0 0

y(ty) cos
4

: [oc,(tl—tz) sin ——x(tl);x(m

Cox(t)+x(
Bl 1) sin ") 63)
where ©(t, —t,) is the step function, and
t t
Im o, [x,y]=4 | dt, | dt, sin vt sin y(t)
5 o 4 4
t)—x(t
. [OCR(H*tz) COS M
2
t t
T Bty —t) cos X TX) 1)‘;36( 2)]. (36)

These expressions are in agreement with the micro-
scopic theory ([7], (45)). Note also that

Mo[x,y:l:uftdt[—mic'%—F]'y (37)
0

where the “mass” is given by m=h%C/4e?, with C
the capacitance of the junction, and F the external
“force” hl.,/2e (see above). As we have previously
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remarked [4, 5, 7], (35) and (36) agree with the results
of [2] if we formally replace the trigonometric func-
tion by their small argument expansion, and take the
limit |A| — 0 in the spectral densities.

In order to develop some physical intuition for
the above the results, we proceed to discuss the qua-
siclassical limit (see [16]), or,more precisely, the
quasiclassical equation of motion. As is well known,

it is not possible to apply a least action principle

directly to of =7+ .7, since this quantity has an
imaginary part, and one proceeds by introducing two
Gaussian fields, &, (¢) and &,(t), such that

exp (—Im o/ /h)=expi:/h); ., (38)

where ();, ¢, denotes the average with respect to ¢,
£,. Then the quasiclassical equation of motion is ob-
tained from the condition

5&{ [X, y: 517 52] :0 (39)

5.)} y=0
where o7 = .o/, + Re o | + o . The result is a stochas-
tic equation of motion, which is called the quantum
Langevin equation, since the noise includes quantum
fluctuations as well. From the condition (38), one is
lead to the following choice:

Ay=4 j dr [él(z’) cos igg-f- £, (1) sin }%] sin @
(40)

which involves the coupling of sin (x/2) and cos (x/2)
to two independent random fields, analogous to the
interaction between object and environment as dis-
cussed above. To satisfy (38), £, and &, have to be
chosen independent of each other, with average equal
to zero, and correlations given by

i) &1 ot)) =hlag(t— t’)(f)ﬁR(t— 12 (41

Applying (39), we obtain the following quasiclassical
equation of motion:

mx—2 f dz'[a,(z—t') sinM

—B,(t—1) sin M] —F+F, 42)

where the stochastic force, F;, is a nonlinear function
of the coordinate, and given by

X

. @3)

F=¢,(1) cos§+52(t) sin

Note that the initial time has been shifted to (— o0)
in (42); on the left of this equation, the quasiparticle
and the supercurrent in their general non-local form
are apparent. An interesting aspect is the form in
which the noise enters. As it turns out, the non-linear
dependence on x is the characteristic feature of shot
noise, 1.€. related to the fact that charge is transported
is units of the elementary charge across a junction,
and not continuously as in the presence of a shunt
resistor. More detailed investigations have been done
for the tunneling between normal metals [17, 187;
however, the difference between shot noise and (ordi-
nary) Johnson-Nyquist noise scems to be small in
many cases*.

5. Discussion and Conclusion

In this article, we have demonstrated in detail that
the results of the microscopic theory of the tunneling
between superconductors, can be re-derived from a
model in which the phase variable is coupled in a
special way, employing certain trigonometric func-
tions of the phase, to two independent sets of oscilla-
tors. The spectral densities of these oscillators, which
we denote by J, {w) and J,(w), have been character-
ized in detail for the tunneling between two supercon-
ductors, which are weakly coupled through a thin
oxide barrier, i.e. a situation which can be modelled
microscopically by the standard tunneling Hamilton-
ian. In general, J, and J, are strongly temperature
and frequency dependent, because of the gap in the
single particle excitation spectrum; they are also sen-
sitive to whether a finite level broadening or other
pairbreaking mechanisms, such as paramagnetic im-
purities, are present. Specializing to the case of a finite
level broadening, we have given illustrations of the
temperature and the frequency dependence in Figs. 1
and 3. Most notable is the fact that J,(w) and J,(w),
for the tunneling between identical superconductors,
are proportional to the attentuation of case Il and
case I external perturbations, i.e. perturbations which
are odd and even under time reversal, respectively.
[These are characterized by different coherence fac-
tors.] In addition, J; and J, are closely related to
I,(w) and I.(w), where I,(o) is the frequency depen-
dent normal current, and I (w) is related to the quasi-
particle-pair interference term, and the supercurrent
across the junction.

The result for the (imaginary time) effective action
is given in Eq. (13); in fact, we expect that such a
form is also applicable for tunneling between super-
conductors which are weakly coupled, for example,
through a weak link. For such a situation, the charac-
teristic functions «(t) and B(7) still have to be investi-

* A detailed discussion can be found in the review of Schén [19]



gated (see, however, [20]). If, however, quasiparticle
non-equilibrium populations play an important role,
as in the case of weak links at high temperatures [ 21],
we believe it to be more appropriate to work directly
with the real-time representation, e.g. the Keldysh
technique [22, 23].

For the remainder of the discussion, let us sum-
marize the result for the effective action, in the ap-
proximation which ignores the quasiparticle-pair in-
terference term, i.e. with f(z) > —g-d(v) in (13):

5= jfdr[%fw(q)]

+2 ?ﬂ dr hfﬂdr’oc(r—r’) sinzq—(ﬂiz(ﬁ. (44)
0 0

For a current-biased junction, the potential is given
by Ul(g)=—gcosq—F-q. Even at this level of ap-
proximation, our result significantly differs from the
one obtained by Caldeira and Leggett [1-3]. In par-
ticular, the kernel a(t—7') is related to the normal
current, which is strongly temperature and frequency
dependent as discussed above. More generally, we
think that Eq.(44) can be applied to describe the
quantum dynamics of a realistic junction, provided
we consider I,{(w) to be an input to the theory, which
has to be determined experimentally. Depending on
the junction, it then may be sufficient to characterize
the behavior of I ,(w) by a (temperature independent)
sub-gap conductance, i.e. I,(w)~hw/eR ¢, provided
frequencies and voltages small compared to the gap
play the only role.

The appearance of the trigonometric function in
the dissipative part of the action is worth re-empha-
sizing. This is related to the fact that in our model,
dissipation is due to electron tunneling, in contrast
to what Caldeira and Leggett had in mind, namely
dissipation due to an external shunt resistor. [In the
latter case, one finds a result which follows from (44)
by the replacement sin? x — x2, x=(q(r) —gq(z))/4.] In
the classical limit, the two cases differ only in the
way in which noise enters the equation of motion,
Le. the noise being shot-noise or Johnson-Nyquist no-
ise, respectively. Thus, in principle, we may extend
the argument of Caldeira and Leggett who also start
from the classical equation of motion: Given a certain
tunnel junction, and given the experimental observa-
tion that its properties can be described, in the classi-
cal limit, by the standard RSJ model, with the tilted
washboard potential, and with ohmic dissipation.
Then, in addition, one has to characterize the noise
in order to decide which model should be applied
in the quantum regime. We suspect this to be difficult
in general except, of course, in cases in which a shunt
resistor has been explicitly attached to the junction.
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Fortunately, for a discussion of macroscopic
quantum tunneling, the difference between electron
tunneling and a shunt resistor is unimportant, be-
cause when the external current is close to the critical
current, only small (<€2x) excursions of the phase
need to be considered. As another interesting exam-
ple, the difference between the two types of dissipation
is also found to be unimportant for the problem of
quantum coherence in the double-well potential [24],
which may be realizable in a SQUID with an external
bias of half a flux quantum.*

Physically, the difference between dissipation due
to electron tunneling, and due to a shunt resistor,
becomes most transparent if one works with the vari-
able conjugate to the phase, namely the charge (differ-
ence) across the junction [19]. Clearly, in the case
of electron tunneling, the charge changes in discrete
units (& e for single electron, and +2e for pair tunnel-
ing, respectively), while the charge transfer across a
shunt resistor in continuous. In fact, the allowed
charge states (discrete or continuous), are intimately
related to which boundary conditions are chosen in
evaluating the path integral with respect to the phase
[197: If the phase is considered an extended coordi-
nate, which applies to a current biased junction, to
a SQUID, and to situations in which a shunt resistor
is present (see aiso [25]), then the charge is continu-
ous. On the other hand, in an isolated junction in
which dissipation is due to electron tunneling, one
has to restrict the phase to the interval O ... 47, and
the charge is an integer times the elementary
charge.**

A more detailed discussion of the consequence of
the discreteness of the charge states is beyond the
scope of the present article (see Refs. 26 and 27, and
also Ref. 19). In brief, for a junction coupled very
weakly to the external circuitry (see also [28]), it
seems possible to introduce the concept of a (continu-
ous) external charge, which is the analog of a Bloch
wave vector, and to calculate the corresponding ener-
gy bands. As an important result [27], the energy
bands and thus the response of the system (“Bloch
oscillations™), is strongly modified by the presence
of single electron tunneling. Of course, these ideas
have to be tested experimentally. Finally, we wish
to mention that electron tunneling may be relevant
[29, 30] for an understanding of recent experiments
[31] on granular superconducting films.

* Chakravarty [24], in fact, considered the action given in (44).
Note, however, that the “critical” resistance is slightly different for
the two cases

** Formally, in the path integral with respect to the phase, the
restriction to a finite interval is taken into account by introducing
the concept of a winding number
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Appendix

The functions a(r) and B(z), defined above (Eq. (12)),
which are characteristic for the tunneling between su-
perconductors, can be expressed in terms of the mo-
mentum integrated Green’s functions of the supercon-
ductors. For simplicity, we consider homogeneous
equilibrium situations, and I' — 0, and define*

—iwLT Wy

g3(‘1:)=TZC " (@2 + AH? (A1)
—iw,T 4

g1 =T e " (A2)

where w,=(2n+1) =T is the Matsubara (Fermi) fre-
quency. [Note that the momentum integrated (“qua-
siclassical”) matrix Green’s function is given by ¢
=g, %;+g, t;, where £; and %, are the Pauli matri-
ces.] In general, in these equations, one has to replace
A, the magnitude of the order parameter, by A, (4g)
for the “left” (“right™) superconductor. Then the fol-
lowing result has been found [7]:

() =52 - 8a() 82— ), (83)

T
/))(T)=mg1(f)gl(“5)- (A4)
In the following, we restrict ourselves to two identical
superconductors. We introduce, for convenience, the
functions &(t) and f(z), whose Fourier transforms are
dimensionless, by the relation

a(t)= —da(t)-4/2e* Ry,
B(v)= —B(1)-4/2¢* Ry.

Since &{w,=0) is irrelevant, it will be subtracted in
the following. Some results are easily derived from
the expressions given above:

(i) o> 4

(A5)
(A6)

Thus &(w,,) approaches the familiar (linear) normal
state result for high frequencies. Note that w,=2m=T
denotes a Bose frequency.

* In the appendix, we choose A=k=1

(i) 0,=0

B(c,,=0)=(n/2)-tanh (Qf’f) (A8)

This quantity (see Eq. (17)) determines the tempera-
ture dependence of the critical current (see also [32]).
(iii) w, <4

3 2\2
o‘c(wm)z?;(%) ) (A9)
Blw,)— (e, =0)~ ~%(%> . (A10)

In particular, for T=0, we conciude from these equa-
tions that the tunneling between ideal superconduc-
tors is dissipationless and, because of the quadratic
dependence on frequency, the capacitance renormal-
ization [7] can be recovered easily.

(iv) T=0
In this limit, it is straightforward to confirm that

o?(co)=7A }Odr[l—cos wt]-[K(47)]? (A11)
0

and

_ 24 %

ﬂ(co)=7 | dr-cos wt-[Ko(47)]? (A12)

where K, and K, are the modified Bessel functions.
From these expressions, we obtain the following re-
sult:

R Pk
and

~ 24

Blo)="-"K() (A 14)

where zZ2=w?*/(w?>+44?), and K(-) and E(-) denote
the complete elliptic integral of the first and second
kind, respectively.

Finally, the results of a numerical determination
of d(w,) and B(w,), for 4/2anT=10, are shown in
Fig. 5, where these quantities are given for the first
~ 40 Matsubara frequencies. The curve labelled “N ”
is the normal state result. It is apparent that & and
B approach their asymptotic values only for very high
frequencies. For completeness, @ and f are shown,
in the zero temperature limit, in Fig. 6.
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Fig. 5. &(w,,) and B(w,,) versus w,,/4 for 4/T=20m. The line labelled
“N *is the normal state limit of &, &y =|w,,}/4
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Fig. 6. Same as Fig. 5, in the limit T—0
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